
4

CompressGraph: Efficient Parallel Graph Analytics with
Rule-Based Compression
ZHENG CHEN, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
FENG ZHANG∗, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
JIAWEI GUAN, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
JIDONG ZHAI, Department of Computer Science and Technology, Tsinghua University, China
XIPENG SHEN, Computer Science Department, North Carolina State University, United States
HUANCHEN ZHANG, Tsinghua University, China and Shanghai Qi Zhi Institute, China
WENTONG SHU, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
XIAOYONG DU, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China

Modern graphs exert colossal time and space pressure on graph analytics applications. In 2022, Facebook
social graph reaches 2.91 billion users with trillions of edges. Many compression algorithms have been
developed to support direct processing on compressed graphs to address this challenge. However, previous
graph compression algorithms do not focus on leveraging redundancy in repeated neighbor sequences, so
they do not save the amount of computation for graph analytics. We develop CompressGraph, an efficient
rule-based graph analytics engine that leverages data redundancy in graphs to achieve both performance boost
and space reduction for common graph applications. CompressGraph has three advantages over previous
works. First, the rule-based abstraction of CompressGraph supports the reuse of intermediate results during
graph traversal, thus saving time. Second, CompressGraph has intense expressiveness to support a wide range
of graph applications. Third, CompressGraph scales well under high parallelism because the context-free rules
have few dependencies. Experiments show that CompressGraph provides significant performance and space
benefits on both CPUs and GPUs. On evaluating six typical graph applications, CompressGraph can achieve

∗Feng Zhang is the corresponding author of this paper.

Authors’ addresses: Zheng Chen, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School
of Information, Renmin University of China, China, chenzheng123@ruc.edu.cn; Feng Zhang, Key laboratory of Data
Engineering and Knowledge Engineering (MOE), and School of Information, Renmin University of China, China, fengzhang@
ruc.edu.cn; Jiawei Guan, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information,
Renmin University of China, China, guanjw@ruc.edu.cn; Jidong Zhai, Department of Computer Science and Technology,
Tsinghua University, China, zhaijidong@tsinghua.edu.cn; Xipeng Shen, Computer Science Department, North Carolina State
University, United States, xshen5@ncsu.edu; Huanchen Zhang, Tsinghua University, China and Shanghai Qi Zhi Institute,
China, huanchen@tsinghua.edu.cn; Wentong Shu, Key laboratory of Data Engineering and Knowledge Engineering (MOE),
and School of Information, Renmin University of China, China, 2019201418@ruc.edu.cn; Xiaoyong Du, Key laboratory
of Data Engineering and Knowledge Engineering (MOE), and School of Information, Renmin University of China, China,
duyong@ruc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/5-ART4 $15.00
https://doi.org/10.1145/3588684

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0000-8342-9504
HTTPS://ORCID.ORG/0000-0003-1983-7321
HTTPS://ORCID.ORG/0000-0002-7538-9722
HTTPS://ORCID.ORG/0000-0002-7656-6428
HTTPS://ORCID.ORG/0000-0003-3599-8010
HTTPS://ORCID.ORG/0009-0001-4821-1558
HTTPS://ORCID.ORG/0009-0000-7752-9752
HTTPS://ORCID.ORG/0000-0002-5757-9135
https://orcid.org/0009-0000-8342-9504
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0002-7538-9722
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0003-3599-8010
https://orcid.org/0009-0001-4821-1558
https://orcid.org/0009-0000-7752-9752
https://orcid.org/0000-0002-5757-9135
https://doi.org/10.1145/3588684

4:2 Zheng Chen et al.

1.97× speedup on the CPU, while 3.95× speedup on the GPU, compared to the state-of-the-art CPU and GPU
methods, respectively. Moreover, CompressGraph can save an average of 71.27% memory savings on CPU and
70.36 on GPU.

CCS Concepts: • Information systems→ Graph-based database models; • Theory of computation→
Graph algorithms analysis.

Additional Key Words and Phrases: graph analytic, compression, compressed data direct processing

ACM Reference Format:
Zheng Chen, Feng Zhang, Jiawei Guan, Jidong Zhai, Xipeng Shen, Huanchen Zhang, Wentong Shu, and Xiaoy-
ong Du. 2023. CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression. Proc. ACM
Manag. Data 1, 1, Article 4 (May 2023), 31 pages. https://doi.org/10.1145/3588684

1 INTRODUCTION
Graph analytics has become the basis in many fields, such as social networks [3, 6, 10, 45, 79, 134,
156], machine learning [45, 48, 103, 108, 110, 122, 127, 128, 148, 149], and data mining [19, 20, 23, 31,
36, 45, 66, 82, 123, 130, 150]. However, the tremendous growth of graph sizes poses great pressure
in graph analytics systems. For example, as of 2022, the Facebook social graph involves 2.91 billion
users and trillions of edges [93]. Such magnitude of graphs brings challenges from both time and
space perspectives, making the traditional adjacency matrix approach impractical [34]. Large graph
representations are particularly unfriendly to heterogeneous accelerators such as GPUs, because
these accelerators usually use discrete memory that has limited capacity and is connected through
PCIe.
There is an extensive literature on graph representations [9, 12, 13, 16, 17, 49, 116, 117, 119],

among which the adjacency list [119] is the most widespread. The adjacency list for a graph node
is simply a list of its neighboring vertices, and is space-efficient when the graph is sparse. However,
the size of the adjacency lists still grows linearly with the number of edges in the graph, which
means that graph analytics tasks still need to process the same number of edges as they would for
the adjacency matrix, making this approach suboptimal in handling the explosion of graph sizes.
Fortunately, graphs in the real world such as web graphs [13] and social graphs [132] contain

a lot of redundancies. Our experiments (detailed in Section 6) show that 74.6% of the edges are
repeatedly stored when adjacency list is used to represent real web and social graphs. Previous
lossless compression methods achieve significant space savings by leveraging such redundancies [9,
12, 13, 16, 49, 116, 117]. However, applications operating on these compressed graphs have to
decode on-the-fly, causing performance degradation. Moreover, the irregular access patterns and
dependencies of the decoding procedures make it difficult to parallelize.
We propose to use rule-based compression to facilitate efficient parallel graph analytics. There

are three main advantages. First, rule-based compression can effectively reduce redundancies in
a graph, where a repeated sequence of neighboring vertices is represented by a rule that takes
less space. For example, as shown in Figure 1, when we perform PageRank [104] and connectivity
analysis [8] to find “small worlds” on a large social network graph, we find that 57.8% of people
have mutual friends, showing a great potential for data reuse. Second, rule-based compression
can reduce redundant computations by caching and reusing the process results for rules. Prior
works show that similar computation reusing techniques achieve 2.2× speedup for 77.5% data
redundancy on data science applications [142, 146]. Finally, our rule-based compression allows
processing directly on compressed graph, thus avoiding the expensive graph decoding operations.
Additionally, rule-based computing has been proved to be GPU friendly [140], and the compression
format effectively expands the processing capacity of GPUs on graph analytics.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3588684

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:3

Important person

Small world

1

23

4 5

Fig. 1. Use case of social network analytics. Users 3, 4, and 5 are repeated neighbors of both users 1 and 2.

Performing efficient graph processing directly on compressed graphs requires handling the
following three challenges. The first challenge is to achieve space and computation reductions
simultaneously on a graph. The second challenge is to enable the compression format to serve a
wide range of graph applications efficiently. Finally, the proposed algorithm must be highly parallel
so that it can be accelerated by GPUs to achieve even better performance.
In this paper, we present CompressGraph, our graph analytics engine leveraging rule-based

compression. CompressGraph represents graphs using a hierarchy of rules to achieve efficient
compression and computation reuse. The engine supports a wide range of graph applications,
thanks to our built-in finite state machine (FSM) that has a high expressive capacity. The FSM also
has fewer dependencies compared to the systems that require decoding (detailed in Section 6.2) to
allow higher parallelism. We developed a synchronization-free parallel strategy in CompressGraph,
which has both CPU and GPU supports.

We compared CompressGraph against state-of-the-art solutions (Ligra+ [116, 117] on CPU, and
Gunrock [129] on GPU) on six common graph algorithms: breadth-first search (BFS), single-source
shortest path (SSSP), connected component (CC), pagerank (PR), topological sorting (TP), and
Hyperlink-Induced Topic Search (HITS). Experiments show that CompressGraph accelerates the
applications by 1.97× when executing on CPUs. For GPUs, the speedup reaches 3.95×. Meanwhile,
CompressGraph is space-efficient, with a 74.6% compression rate (1 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑠𝑖𝑧𝑒/𝑟𝑎𝑤𝑠𝑖𝑧𝑒), and
consumes 71.27% and 70.36% less memory for CPU and GPU processing, respectively.

We summarize the contributions of this work as follows.
• We exhibit our insights in the rule-based graph compression, and point out that we can perform
compressed graph direct processing via rule interpretation.

• We develop CompressGraph, a graph analytics engine that can perform efficient compressed
graph direct processing on both CPU and GPU.

• We evaluate CompressGraph with six typical graph analytics applications, and demonstrate its
benefits over the state-of-the-art graph processing methods.

2 BACKGROUND ANDMOTIVATION
2.1 Existing Graph Compression
Researchers have studied compressed graph representations extensively [5, 21, 54, 113]. The most
commonly used formats are adjacencymatrices and adjacency lists. Compared to adjacencymatrices,
adjacency lists are more compact because graphs are usually sparse in practice. Accordingly, many

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:4 Zheng Chen et al.

123124123124121
R0 → R1 R1 R2 1
R1 → R2 3 R2 4
R2 → 1 2

Input: Rules:

(a) Original data. (b) TADOC compressed data. (c) DAG representation.

R0: R1 R1 R2 1

R1: R2 3 R2 4

R2: 1 2

Fig. 2. A rule-based compression.

graph compression studies [12, 13, 16, 117] investigate encoding the adjacency list to maximize
space savings.

Graph encoding. Encoding the neighbors of vertices can significantly reduce storage space. We
list four representative graph compression techniques as discussed in the study [9]: 1) Variable-
length encoding employs variable-length codes to represent the vertices in the adjacency list instead
of fixed byte representation such as int and long. 2) Reference encoding begins by extracting the
same neighbors of two vertices and then uses reference coding to encode them. 3) Interval encoding
stores consecutive vertices (e.g. x,x+1,...,x+k) using interval boundaries 𝑥 and x+k. 4) Gap encoding
preserves the difference between neighbors 𝑁1 (𝑣)-𝑣 , 𝑁2 (𝑣)-𝑁1 (𝑣), ..., 𝑁𝑑𝑣 (𝑣)-𝑁𝑑𝑣−1 (𝑣), rather than
the vertex ID 𝑁𝑖 (𝑣)𝑠 themselves, given a neighbor sequence “𝑁1 (𝑣), 𝑁2 (𝑣), ..., 𝑁𝑑𝑣 (𝑣)” of vertex 𝑣 .
All of these encoding-based approaches must spend extra cycles decoding the graph on the fly
when performing graph analytics.

GPU processing. In recent years, heterogeneous accelerators, represented by GPUs, are becom-
ing more and more popular, and have already been used in graph systems [50, 55, 59, 63, 106, 129,
152]. However, GPUs have limited capacity and on-the-fly decompression is difficult to parallelize,
making existing graph compression solutions unsuitable for GPU parallelism.

2.2 Redundancies in Real-World Graphs
We define the “redundancy ratio” of a graph as the portion of the adjacency list where a neighbor
sequence (with length ≥ 2) appears more than once. Redundancies exist in a wide range of
graph applications [8, 39, 44, 64, 104, 133]. Here, we examine two real-world graphs from different
categories (see Section 6.1 for graph details). sk-2005 is a representative web graph where algorithms
such as page rank [104] can be applied to mine hubs and authorities [64]. hollywood-2009 is a social
network graph where the vertices represent actors/actresses and the edges indicate cooperation in
the same movie. Our analysis shows that the redundancy ratios for sk-2005 and hollywood are as
high as 85.3% and 57.8%, respectively. Such a high fraction of repetition motivates us to develop a
rule-based compression scheme to improve the efficiency of graph analytics.

2.3 Rule-Based Compression
Rule-based compression has been proved to be a big success in data science [29, 100, 101, 142–
144, 146]. One representative is TADOC (text analytics directly on compression) [142–144, 146],
which utilizes a set of context-free grammar rules to represent text data. TADOC uses a rule to
denote a repeated piece of content, and a rule can contain subrules and pieces of original data.
TADOC can further use a DAG to organize the rules, and thus can transform the original text
analytics tasks into a DAG traversal problem.
Data compression. In rule-based compression, a rule represents a subsequence that occurs

multiple times in the original data. The compressor reads a string of length 𝑁 sequentially and
stores digrams in a hash table (a digram is a pair of two adjacent elements). Each time a new element
is scanned, the compressor checks the hash table for its digram. The compressor substitutes a

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:5

Step 1
Step 2 1: 1×2 = 2 3: 1

2: 1×2 = 2 4: 1

<1,2> <2,2> <3,1> <4,1>

Step 3 1: 2×2 + 1 + 1 = 6
2: 2×2 + 1 = 5
3: 1×2 = 2
4: 1×2 = 2

<1,1> <2,1>

<1,6> <2,5> <3,2> <4,2> R0: R1 R1 R2 1

R1: R2 3 R2 4

R2: 1 2

CFG Relation
Information propagation

Fig. 3. An example of using TADOC for counting word frequencies.

digram with a rule if it already exists; otherwise, it creates a new digram record. After replacing a
digram with a new rule, the compressed format contains fewer elements. Then, the compressor
restores unique subrules. Note that the compressor scans the data only once and the hash table
digram search complexity is O(1). Each substitution shortens the string by one, so the maximum
number of substitutions is 𝑁 . Accordingly, the compression has O(𝑁) complexity.
We illustrate the process in Figure 2. The numbers in Figure 2 (a) represent different elements,

which are compressed into different rules denoted by 𝑅𝑖 in Figure 2 (b). Specifically, when we scan
up to {1,2,3,1,2}, the compressor substitutes “1,2” with rule R1, and generates {R1,3,R1}. Similarly, the
compressor would transform the scan sequence {1,2,3,1,2,4,1,2,3} to {R1,3,R1,4,R1,3}. Because there
are repeated occurrences of “R1,3”, it is replaced with a new rule “R2”. This process continues until
we obtain string {R4,R4,R1,1} after the full scan, where R4→ “R3,4”, R3→ “R1,R2”, R2→ “R1,3”,
and R1 → “1,2”. Because R2 and R3 appear only once, the compressor restores R2 and R3, making
R4→ {R1,3,R1,4}. After renumbering the rules, the original string is represented in the form shown
in Figure 2 (b). In addition, the rules can be organized as a DAG, as shown in Figure 2 (c).
Application. Figure 3 shows an application where the task of counting word frequencies is

transformed to a graph traversal. Each node in the DAG performs a local word count for its rule
and passes the result to the parent node. Because we compute only once for each rule (although it
appears multiple times in the hierarchy), we save duplicate computations. Specifically, instead of
scanning the entire sequence of uncompressed data (Figure 2 (a)), we first obtain word frequencies
{<1,1>, <2,1>} for R2. We then perform the task in R1 and get an intermediate result {<R2,2>, <3,1>,
<4,1>}. After substituting R2 with its prior computation result, the final word frequencies for R1
become {<1,2>, <2,2>, <3,1>, <4,1>}. We repeat the process for R0 and deliver the final result. Note
that we perform the word count only once for R1 and R2, despite that the sequences are repeated
multiple times in the original data.
Opportunities. We argue that the rule-based compression also fits graph analytics, where

repeated neighbor sequences can be represented using rules. Figure 4 (b) shows an example where
the neighbor sequence of each vertex is represented by a combination of vertices and recursive rules.
However, a naive application of TADOC on the adjacency list cannot support efficient processing
on the compressed graph directly. One reason is that graph algorithms are often iterative, causing
multiple traversals of the DAG of rules. In the next section, we describe the conceptual framework
of our system that makes this idea practical.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:6 Zheng Chen et al.

R2

7

R1

R3 4

21

R1 R2

0

5

1

R2

2

Graph traversal Rule traversal

Edge in graph Edge in rule

Level:0

Level:1 4

75

6

2 0 3

5

31 R2

6

R10

7

2 5

(c) BFS on CompresseGraph.

(a) Original graph.

2
1

0

7
6

5

4

3 1

0

7

Vertex Neighbors
0 R1, 5, R2
1 2, R2
2 0, 3
3 R1, R2
4 5, 7
5 1, 3, R2
6 0, R1
7 2, 5

Rule Content
R1 R3, 4
R2 6, 7
R3 1, 2

(b) Rule-based representation.

3

R1 R2

Level:2

Unvisited vertex

Visited vertex

Unvisited rule

Visited rule

Fig. 4. An example of BFS using CompressGraph.

3 CONCEPTUAL FRAMEWORK
We develop a graph analytics engine called CompressGraph, which can perform graph analytics
tasks without decompression. In this section, we introduce the conceptual framework of Compress-
Graph. We first describe our basic idea of conducting graph processing directly on CompressGraph.
Then, we model graph traversal on the compressed graph using a finite state machine to generalize
our solution to a wide range of graph applications.

3.1 Basic Idea of CompressGraph
The core idea behind CompressGraph is data reuse. To reuse data, we calculate only once for
the results of multiple repeated computations in graph traversal and then reuse the duplicated
intermediate results in subsequent computations. In graph application, we can attach special
attributes to the rules, such as whether certain rules of neighbors have been traversed or not. If
a rule has been processed by one parent, its other parents do not need to further scan the rule
including its subrules, thus saving computation.
Design. CompressGraph adopts a two-level traversal design, including a graph traversal (i.e.,

processes vertices without rules) and a rule traversal. The two-level traversal process contains four
steps. 1) Initialization. CompressGraph puts the initial vertex into a vertex queue. 2) Graph traversal.
CompressGraph selects its neighbor vertices that have not been visited, marks them as visited, and
puts them into the vertex queue. 3) Rule traversal. CompressGraph recursively expands the rules it
encounters into vertex sequences using the rule graph. It also marks the not-yet-visited vertices
and puts them into the vertex queue. 4) CompressGraph pops out the first element from the vertex
queue and repeats the procedure from the second step.

Example. We use breadth-first search (BFS) to illustrate the above process in Figure 4. We start
with the graph traversal step for vertex 0 whose neighbors include {𝑅1, 5, 𝑅2}. We mark vertex
5 as visited and put it into the queue for next iterations. Then, we deal with {𝑅1, 𝑅2} in the rule
traversal step, during which we recursively expand 𝑅1 by marking and visiting {𝑅1, 𝑅3, 1, 2, 4},
and recursively expand 𝑅2 by marking and visiting {𝑅2, 6, 7}. The vertex queue now includes
{5, 1, 2, 4, 6, 7}. Note that during the rule traversal of 𝑅1, we mark 𝑅3 as visited to avoid potential

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:7

re-traversals later. Figure 4 (c) shows the remaining BFS process. Because {𝑅1, 𝑅2, 𝑅3, 1, 2, 4, 5, 6, 7}
are already marked as visited during the first iteration, we can skip them in later ones.

3.2 Graph Traversal Modeling
To generalize our idea, we use a finite state machine (FSM) [71] to model the graph traversal process.
We first introduce a programming model to describe the compressed graph applications. Second,
we use a FSM to describe the state transition in graph traversal. Third, we use an example to show
the graph traversal process.
Programming model. CompressGraph functions in a vertex-centric mechanism. In each it-

eration, CompressGraph is driven by changes in vertices. Both CompressGraph and other graph
processing frameworks [63, 96, 129] that use vertex-centric models include two major steps: (1)
Advance. Given an input vertex set, the system visits the neighbors of the set and generates the
set of neighbors that satisfy the condition as the output. (2) Compute. The compute step performs
the operation on all the neighbors of the set of vertices being processed. These two steps can be
defined as condition and operation, where condition corresponds to the advance step and operation
corresponds to the compute step. The input of the condition is a vertex𝑢, and the output is a Boolean
value. The input of the operation is a vertex pair <𝑢, 𝑣>, where 𝑢 belongs to the currently processed
vertex set, and 𝑣 is a neighbor of 𝑢. A similar idea has also been adopted by Gunrock [129].

The difference between CompressGraph and other vertex-centric graph analytics frameworks [63,
116, 129] is that CompressGraph directly processes the compressed graph, which contains two
different types of elements: vertices and rules. We treat rules as a new type of vertices. Therefore,
CompressGraph comprises two types of vertices: traditional vertices and rules. CompressGraph
also includes four types of edges: v2v, v2r, r2v, and r2r, where 𝑣 represents a vertex and 𝑟 represents
a rule. For different types of vertices and edges, their conditions and operations are also different.
We propose the definition for CompressGraph based on the vertex-centric programming model.

Through examination of various graph applications, we develop a unified conceptual framework,
which can be represented by a six-element tuple <Graph, Operation, Condition, Result, 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 ,
𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑>. The conceptual framework can capture common graph traversal operations. The detailed
definition is as follows.
• Graph, which represents the compressed graph, denoted as <𝑉 , 𝑅, 𝐸>, where 𝑉 represents the set
of vertices, and 𝑅 represents the set of rules. 𝐸 represents the set of edges in the graph. An edge can
be represented by <𝑠𝑟𝑐 , 𝑑𝑠𝑡>, which has four different types: <𝑣 ,𝑣>, <𝑣 ,𝑟> , <𝑟 ,𝑣>, and <𝑟 ,𝑟>, where
𝑣 is an element of𝑉 and 𝑟 is an element of 𝑅.𝐺𝑟𝑎𝑝ℎ satisfies the condition: 𝐸 ⊆ (𝑉 ∪ 𝑅) × (𝑉 ∪ 𝑅).

• Operation, which has four types in CompressGraph, corresponds to four types of edges. We use
𝑂𝑣2𝑣 , 𝑂𝑣2𝑟 , 𝑂𝑟2𝑣 , and 𝑂𝑟2𝑟 to indicate the operations between vertices and rules.

• Condition, which determines whether an element needs to be processed in the next iteration,
including 𝐶𝑣 for vertices and 𝐶𝑟 for rules. In each iteration, for a vertex or rule, the Condition
function checks all the neighbors. Then, CompressGraph adds the neighbors that satisfy the
condition function to the set of elements to be processed in the next iteration. In detail, given
a vertex 𝑣 or rule 𝑟 , Condition can check all their properties, including the user-defined 𝑅𝑒𝑠𝑢𝑙𝑡
field and common properties such as degree we provide. For example, in topological sorting (TP),
Condition checks whether the in-degree of input element is 0.

• Result, which represents the data structure for the final result, and can be used in Operation and
Condition.

• 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 , which represents the start state.
• 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 , which represents the end state.

Finite state machine for compressed graph traversal. We use (𝑊,𝐺, 𝐵) to represent the
states of CompressGraph in graph traversal, where𝑊 denotes the set of elements (part of𝑉 ∪𝑅) that

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:8 Zheng Chen et al.

	𝑆𝑡𝑎𝑡𝑒!"#$" 		𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑠𝑡𝑎𝑡𝑒 	𝑛𝑒𝑥𝑡	𝑠𝑡𝑎𝑡𝑒 	𝑆𝑡𝑎𝑡𝑒%&'

v v r... ...

Ov2v Ov2r

...

r v r... ...

...

Cv Cr

Or2v Or2r

Cv Cr

Fig. 5. Finite state machine in CompressGraph.

do not need to be processed,𝐺 denotes the set of elements that need to be processed, and 𝐵 denotes
the set of elements that have already been processed. We use a fixed-length array to maintain the
state of each vertex and rule in the graph. All the vertices and rules are independent of each other
without a nested relationship, so the space complexity of FSM is 𝑂 (𝑉 + 𝑅). Since there are only
three states for a vertex or rule, we can represent the state using only two bits. Experiments show
that such data structures occupy less than 2% of the total space, which is negligible. Both 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡
and 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 are special states of (𝑊,𝐺, 𝐵). Therefore, the states in CompressGraph satisfy the
conditions in Equation 1.

𝑊,𝐺, 𝐵 ⊆ (𝑉 ∪ 𝑅),
𝑊 ∪𝐺 ∪ 𝐵 = 𝑉 ∪ 𝑅,

(𝑊 ∩𝐺) ∪ (𝑊 ∩ 𝐵) ∪ (𝐺 ∩ 𝐵) = ∅
(1)

Then, the graph traversal in CompressGraph can be described as a finite state machine, as shown
in Figure 5. The finite state machine starts from 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 , and ends at 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 . We formally define
the state transition as operating on all elements belonging to𝐺 (part of𝑉 ∪𝑅). For an element, 𝑣 or
𝑟 , in𝐺 , CompressGraph traverses all its neighbors and executes the operation based on the type
of edges (𝑂𝑣2𝑣 , 𝑂𝑣2𝑟 , 𝑂𝑟2𝑣 , and 𝑂𝑟2𝑟). Afterwards, CompressGraph checks all its neighbors to see
whether the condition, 𝐶𝑣 or 𝐶𝑟 , is met. If so, CompressGraph adds the neighbor to𝐺 , which needs
to be processed in the next iteration. When CompressGraph reaches 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 , CompressGraph
stops.

Correctness proof.Assume a vertex 𝑣 in the original graph, whose neighbor set is {𝑢1, 𝑢2, ..., 𝑢𝑛}.
For a neighbor 𝑢𝑖 , if edge <𝑣,𝑢𝑖> is in the compressed graph, we can process the edge <𝑣,𝑢𝑖> with
𝑂𝑣2𝑣 and process 𝑢𝑖 with 𝐶𝑣 to determine whether to add it to 𝑆𝑡𝑎𝑡𝑒.𝐺 . If edge <𝑣,𝑢𝑖> is not
in the compressed graph, then there must be a path <𝑣, 𝑟1, ..., 𝑟𝑚, 𝑢𝑖> between 𝑣 and 𝑢𝑖 in the
compressed graph with only rules. In this case, we perform rule traversal to process the edge
<𝑣,𝑢𝑖> in the original graph. We use 𝑂𝑣2𝑟 to process edge <𝑣, 𝑟1>, 𝑂𝑟2𝑟 to process <𝑟𝑖 , 𝑟𝑖+1>, and
𝑂𝑟2𝑣 to process <𝑟𝑚, 𝑢𝑖>. Besides, we use 𝐶𝑟 to determine whether to add {𝑟1, 𝑟2, ..., 𝑟𝑚} to 𝑆𝑡𝑎𝑡𝑒.𝐺 .
During rule traversal, we can use the 𝑅𝑒𝑠𝑢𝑙𝑡 field of rules to store the intermediate results. Thus,
the programming model and finite state machine of CompressGraph can handle any vertex and its
neighbors with the rule-based compression format.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:9

Listing 1. BFS definition in CompressGraph.

1 CompressGraph = {Graph; Operation; Condition; Result, State_start, State_end};
2 Graph = {V, R, E};
3 class Operation{
4 void Ov2v(vertex src, vertex dst){
5 if(dst.distance == INIT) { dst.distance = src.distance+1; }
6 }
7 void Ov2r(vertex src, rule dst){
8 if(dst.distance == INIT) { dst.distance = src.distance+1; }
9 }
10 void Or2v(rule src, vertex dst){
11 if(dst.distance == INIT) { dst.distance = src.distance; }
12 }
13 void Or2r(rule src, rule dst){
14 if(dst.distance == INIT) { dst.distance = src.distance; }
15 }
16 };
17 class Condition{
18 bool Cv(vertex V) { return V.distance == INIT; }
19 bool Cr(rule R) { return R.distance == INIT; }
20 };
21 class Result{
22 int distance;
23 Result(Graph G){
24 distance = INIT;
25 }
26 };
27 State_start = {V&R-{root}, {root}, null};
28 State_end = {U1, null, U2};
29 State_cur = State_start;

Example. We use BFS as an example to illustrate the graph processing using CompressGraph in
Listing 1. The result of BFS is the distance from the root to all vertices (Line 22). The distances of all
elements are initially set to 𝐼𝑁 𝐼𝑇 (Lines 23 to 25). The𝑂𝑣2𝑣 and𝑂𝑣2𝑟 operations assign 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+1 of
𝑠𝑟𝑐 to the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of 𝑑𝑠𝑡 if 𝑑𝑠𝑡 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is equal to 𝐼𝑁 𝐼𝑇 (Lines 4 to 9). The𝑂𝑟2𝑣 and𝑂𝑟2𝑟 operations
set the distance value of 𝑑𝑠𝑡 to that of 𝑠𝑟𝑐 if 𝑑𝑠𝑡 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is equal to 𝐼𝑁 𝐼𝑇 (Lines 10 to 15). The
conditions of 𝐶𝑣 and 𝐶𝑟 represent whether the distance from the elements to the root has been
updated (Lines 17 to 20). In BFS, 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 is < 𝑈 , {𝑟𝑜𝑜𝑡},∅ >, where𝑈 is {(𝑉 ∪ 𝑅) − {𝑟𝑜𝑜𝑡}} (Line
27). 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 is < 𝑈 1,∅,𝑈 2 >, where 𝑈 1 ∪𝑈 2 = 𝑉 ∪ 𝑅 (Line 28). In this definition, because the
distance of a rule and the distance of a vertex are changed once the rule (vertex) has been visited,
they are put into 𝐺 at most once. Therefore, we only need to process the rule once, after which all
elements that access the rule do not need to retraverse the rule recursively again, thus achieving
data reuse.
Figure 6 illustrates the state transition process of the BFS example in Section 3.1. In 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 ,

only vertex 0 is in 𝐺 , and all the other elements are in𝑊 . In each state transition, we take out an
element (𝑣 or 𝑟) in 𝐺 , traverse all its neighbors, put the neighbors that have not been traversed
from𝑊 into 𝐺 , and put the element into 𝐵, to form the next state. The execution terminates when
𝐺 is empty.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:10 Zheng Chen et al.

R3

R2

R1

...

5

4

...

R2

5

R10

... ...

R3

R2

R1

...

5

4

...0

R3

...

6

4

...

W G B W G B W G B
start state state 1 end state

R3

R2

...

5

4

... R1

W G B

0

... ...

state i

Fig. 6. Illustration of the state transition process. The white grid cells𝑊 represent the elements that do not
need to be processed. The gray grid cells 𝐺 represent the elements that need to be processed. The black grid
cells 𝐵 represent the elements that have been processed.

4 SYSTEM DESIGN
4.1 Overview
We show the overview of CompressGraph in Figure 7. After receiving the user input <Graph,
Operation, Condition, Result, 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 , 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑>, CompressGraph engine starts to process the
input, which consists of two main phases: an initialization phase and a two-level traversal phase
(Section 4.2). The initialization phase is used to pre-scan the user input and initialize data structures.
The two-level traversal phase is used to traverse the compressed graphs. GPU can accelerate the
two-level traversal phase. To enable high parallelism in processing compressed graphs, we develop
an inter-level synchronization-free graph traversal optimization (Section 4.3) and in-edge support
to solve write conflict issues (Section 4.4) on GPU.

Novelties.We summarize the novelties of CompressGraph as follows. First, CompressGraph can
improve performance and reduce storage space at the same time by means of data reuse in the rule-
based compressed graph. Second, CompressGraph uses a finite state machine (FSM) innovatively to
support a wide range of graph applications by parsing rules. Third, we propose a novel inter-level
synchronization-free graph traversal and in-edge support optimization, which removes the last
barrier to enable CompressGraph to take advantage of parallelism in both multi-core CPUs and
GPUs.

4.2 CompressGraph Engine
This section introduces CompressGraph, which consists of two phases, initialization and two-level
traversal, as shown in Figure 7.
Initialization. In the initialization phase, CompressGraph first checks whether 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 and

𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 are valid. Second, CompressGraph loads the graph data, constructs necessary data struc-
tures, and builds functions for user-defined input. Third, CompressGraph conducts branch reduction
since different types of operations can include the same content.
1) State checking. The rationality of the state determines whether CompressGraph can execute

successfully. Wrong 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 and 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 can incur program errors, causing the program to crash.
𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 and 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 must satisfy the constraints in Equation 1.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:11

User Input

𝐺𝑟𝑎𝑝ℎ

Initialization

Check states

Load graph

Construct

Branch
reduction

Parallel strategy

Intra-thread

Inter-thread

Two-level traversal

V V V V V

V V V V V

Rule traversal
R R R R

R R R R

State transition

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑅𝑒𝑠𝑢𝑙𝑡

 𝑆𝑡𝑎𝑡𝑒௦௧௔௥௧

 𝑆𝑡𝑎𝑡𝑒௘௡ௗ

Graph traversal

Average
number of
iteration

൏ 4

൒ 4

GPU
optimization

Synchronization
- free graph

traversal

In-edge support

CompressGraph

Fig. 7. CompressGraph overview.

2) Graph loading and construction. The elements of compressed graphs can be categorized into
graph vertices and rules. CompressGraph loads the compressed graph into memory and records
vertices and rules, respectively. Afterwards, the application-related data structures and operations
are constructed.

3) Branch reduction. We find that different types of operations can include the same content. For
example, for BFS, 𝑂𝑣2𝑣 and 𝑂𝑣2𝑟 , 𝑂𝑟2𝑣 and 𝑂𝑟2𝑟 , and 𝐶𝑣 and 𝐶𝑟 are the same. These operations can
be merged to reduce program branches for efficiency.
Two-level traversal. CompressGraph uses a two-level traversal model for graph applications,

which includes graph traversal and rule traversal. The graph traversal serves to traverse vertices,
whereas the rule traversal serves to traverse rules. The two-level traversal is a nesting of these two
kinds of traversals. The outer layer is graph traversal, and the inner layer is rule traversal, as shown
in Figure 7. Both graph traversal and rule traversal consist of iterations, and we use state transition
to abstract the processing in each iteration of the two-level traversal. Because it is necessary to
further traverse rules as vertex neighbors, each graph traversal iteration can include multiple rule
traversal iterations. We define that the elements processed in each iteration in graph traversal and
rule traversal are at the same level, and they can be processed in parallel. We further call each
iteration in the graph traversal a graph level, because all elements in the same graph level belong to
the same level in the uncompressed state.
Graph traversal. We call the traversal of the vertices graph traversal, which is the same as the

uncompressed data. The input of each iteration in graph traversal is a set of vertices. After processing,
a set of vertices is generated as the input of the next iteration. The CompressGraph engine guarantees
that each iteration in the graph traversal obtains the same result as the uncompressed data, which
naturally proves the correctness of our program.

Rule traversal. The rule traversal is nested in the graph traversal, where CompressGraph processes
the DAG of rules. CompressGraph starts with a rule and traverses all its sub-rules recursively. For
each rule encountered in the rule traversal process, CompressGraph decides whether to traverse
downwards of the rule according to the user-defined condition 𝐶𝑟 . If the rule has been traversed,
which means that𝐶𝑟 is false, CompressGraph does not need to process the rule repeatedly, including
its subrules, thus saving computation.
State transition. We use the state transition for graph traversal and rule traversal switching in

the two-level traversal. We record only the start state and end state in one iteration to parallelize
the state transition process without recording the intermediate states. Accordingly, the elements in
a state transition can be processed in parallel. For example, there are several state transitions from

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:12 Zheng Chen et al.

R3:

R1:

R2:

0:

5:

1:

R1 5 R2
R3 4

6 7

1 2

2 R2

2: 0 3

3: R1 R2

4: 5 7

1 3 R2

6: 0 R1

7: 2 5

thread 0

(a) Intra-thread rule traversal.

R3:

R1:

R2:

0:

5:

1:

R1 5 R2
R3 4

6 7

1 2

2 R2

2: 0 3

3: R1 R2

4: 5 7

1 3 R2

6: 0 R1

7: 2 5

(b) Inter-thread rule traversal.

thread 0

thread 2

thread 1

thread 3

Fig. 8. Different parallel strategies for rule traversal.

𝑠𝑡𝑎𝑡𝑒𝑖 to 𝑠𝑡𝑎𝑡𝑒 𝑗 in Figure 6. We record only the 𝑠𝑡𝑎𝑡𝑒𝑖 and 𝑠𝑡𝑎𝑡𝑒 𝑗 because they are the beginning
states of the two different traversal iterations. In detail, we can process {R2,5,R1} in parallel, and
process {7,6,3,1,4,R3} in parallel.

We dynamically determine the parallel strategy for rule traversal in each state transition. There
are two parallel strategies for rule traversal: (1) intra-thread rule traversal, and (2) inter-thread
rule traversal, as shown in Figure 8. For intra-thread rule traversal in Figure 8 (a), CompressGraph
creates 𝑁 threads at the beginning of each graph traversal iteration, where 𝑁 is the number of
vertices in 𝑆𝑡𝑎𝑡𝑒.𝐺 . Rule traversal is processed recursively within the same thread. In contrast,
inter-thread rule traversal, as shown in Figure 8 (b), processes rules in parallel in graph traversal,
which creates a thread for each rule at the rule level. Inside the thread, the inter-thread rule traversal
processes only the direct children of the rule. Intra-thread rule traversal requires fewer threads
and synchronization times, but can cause excessive processing time for certain threads due to load
imbalance problems. Inter-thread rule traversal can increase the degree of parallelism and avoid
the long waiting time caused by the tail of long processing time for specific threads; however, it has
more parallelism overhead than the intra-thread rule traversal. We calculate the average number
of iterations needed to traverse each rule in 𝑠𝑡𝑎𝑡𝑒.𝐺 . If the number is higher than the threshold
(four by default), we choose the inter-thread rule traversal; otherwise, we use the intra-thread rule
traversal.
GPUs are widely used in graph analytics applications, and CompressGraph can also perform

compressed graph direct processing on GPUs. In the rest part of this section, we introduce the
optimizations of inter-level synchronization-free graph traversal (Section 4.3) and in-edge sup-
port for handling write conflicts (Section 4.4) to address the parallelism challenges of applying
CompressGraph on GPU.

4.3 Inter-Level Synchronization-Free Graph Traversal
To handle the parallelism challenge of the complicated dependencies in the two-level traversal
(graph-level and rule-level), we develop an inter-level synchronization-free graph traversal strategy.
The basic idea is to avoid rule-level synchronization waiting at the end of the graph-level traversal
to make full use of GPU capacity. In other words, our strategy enables rules and vertices at different
graph levels to work simultaneously. Note that a corrective procedure is required for the parallel
inconsistency issue.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:13

0 R1 5 R2 R1 R3 4 R3 1 2 5 1 3 R2 3 R1 R2

R2 6 7 4 5 7

6 0 R1

7 2 5

1 2 R2

2 0 3

thread4

thread0
thread1
thread2
thread3

thread5

Level 1 Level 2 Level 3 Level 4 Level 5
Graph Level 1 Graph Level 2

0 R1 5 R2 R1 R3 4 R3 1 2 1 2 R3
5 1 3 R2 4 5 7 2 0 3
R2 6 7 1 2 R2

3 R1 R2
6 0 R1
7 2 5

Level 1 Level 2 Level 3 Level 4

(a) Inter-level synchronization-based graph
traversal.

Unvisited Visited Update level Vertex or rule being processed

(b) Inter-level synchronization-free graph
traversal.

Fig. 9. Difference between normal graph traversal and our proposed synchronization-free graph traversal.

General design. The general design of CompressGraph is as follows. The first step is to start from
𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 and process all the neighbors of the elements in the set of 𝐺 . For vertices and rules, we
put them into 𝐺 according to the different conditions provided by the user. Second, for the vertices
and rules that exist simultaneously in 𝐺 , we directly process them in parallel without waiting for
the end of a graph level. We call a parallel iteration a level. Third, CompressGraph repeats this
process in a loop until it reaches 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑 . Note that the vertices and rules in the same level can
belong to different graph levels in this process. Fourth, simply using such synchronization-free
traversal can incur inconsistency from the serial scheme, and therefore we develop a corrective
procedure in the program to solve this issue.

Example. We use the graph data in Figure 4 as input, and show the difference between normal
graph traversal and our proposed synchronization-free graph traversal in Figure 9. Figure 9 (a)
shows the graph traversal with synchronization, which can be divided into different graph levels.
A graph level contains different levels for rule traversal. The next graph level cannot start until
CompressGraph reaches the end of the current graph level. For example, CompressGraph in graph
level 1 processes all the neighbors of vertex 0, and ends only after the completion of all traversals
of R1 and R2. Figure 9 (b) shows the synchronization-free graph traversal. With such optimization,
traversals in different graph levels are overlapped, and CompressGraph can process as many
elements as possible in each level. For example, at level 2, CompressGraph can process 𝑅1, 𝑅2, and
vertex 5 at the same time.

For applications that need to obtain the distance from the root to the target vertex, Compress-
Graph requires an extra corrective procedure. In this example, using the operation defined in
Section 3.1, the distance from the root to vertex 1 is 2. Because vertex 1 is the neighbor of vertex 5
when we first visit vertex 1, the distance from the root to vertex 5 is 1. However, the distance from
the root to vertex 1 should be 1 because vertex 1 belongs to the neighbors of vertex 0. To solve this
issue, we develop a corrective procedure. Every time we visit the vertex, we need to justify which
of the original distance and the new distance is smaller; if the new distance is smaller, we need to
update the original distance. In Figure 9 (b), we update the distance from the root to vertex 1 in
level 3.
Algorithm. Algorithm 1 shows the pseudocode of our proposed synchronization-free graph

traversal. This algorithm contains only one layer of loop for state transition, because there is no
need to synchronize inside the loop to wait for the completeness of all rule operations. For each
state transition, we process the vertices and rules in the candidate set in parallel. In a thread, the
first step is to obtain the candidate element in Line 9. Next, we traverse all the neighbors of the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:14 Zheng Chen et al.

element, and divide them into four categories for different operations and into two categories for
different conditions from Lines 10 to 16. The loop stops when it reaches the end state. Algorithm 1
is a synchronization-free algorithm. In the model of two-level traversal mentioned in Section 4.2,
CompressGraph waits for the end of the rule-level traversal in each iteration of the graph-level
traversal. In detail, all threads are synchronized once in an iteration of graph-level traversal, waiting
for the rule-level traversal to complete. In contrast, Algorithm 1 puts the graph-level and rule-level
traversals into a single kernel shown in Lines 10-16, and allows different threads to process vertices
and rules simultaneously. For example, Lines 11-12 represent the processing of vertices, while Lines
13-14 represent the processing of rules. In this way, we avoid synchronization between graph-level
traversal and rule-level traversal. Although the synchronization-free method generates more
branch statements, the overhead is negligible compared to the performance benefits. More details
are shown in Section 6.4.

Algorithm 1: Synchronization-Free Graph Traversal
1 Function Traversal(𝐺𝑟𝑎𝑝ℎ, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 , 𝑠𝑡𝑎𝑡𝑒𝑒𝑛𝑑):
2 Initialize(𝐺𝑟𝑎𝑝ℎ, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑆𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 , 𝑆𝑡𝑎𝑡𝑒𝑒𝑛𝑑)
3 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡

4 while 𝑠𝑡𝑎𝑡𝑒 != 𝑠𝑡𝑎𝑡𝑒𝑒𝑛𝑑 do
5 SyncFreeTraversal(𝐺𝑟𝑎𝑝ℎ, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑠𝑡𝑎𝑡𝑒)

6 Function SyncFreeTraversal(𝐺𝑟𝑎𝑝ℎ, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑠𝑡𝑎𝑡𝑒):
7 if 𝑡𝑖𝑑 not in 1 to 𝑠𝑡𝑎𝑡𝑒.𝐺.𝑠𝑖𝑧𝑒 then
8 return

9 𝑠𝑟𝑐 = 𝑠𝑡𝑎𝑡𝑒.𝐺 [𝑡𝑖𝑑]
10 for 𝑑𝑠𝑡 in 𝑠𝑟𝑐.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

// Operation and condition for graph-level and rule-level traversal

11 if 𝑠𝑟𝑐 is Vertex and 𝑑𝑠𝑡 is Vertex then 𝑂𝑣2𝑣 (𝑠𝑟𝑐, 𝑑𝑠𝑡);
12 if 𝑠𝑟𝑐 is Vertex and 𝑑𝑠𝑡 is Rule then 𝑂𝑣2𝑟 (𝑠𝑟𝑐, 𝑑𝑠𝑡);
13 if 𝑠𝑟𝑐 is Rule and 𝑑𝑠𝑡 is Vertex then 𝑂𝑟2𝑣 (𝑠𝑟𝑐, 𝑑𝑠𝑡);
14 if 𝑠𝑟𝑐 is Rule and 𝑑𝑠𝑡 is Rule then 𝑂𝑟2𝑟 (𝑠𝑟𝑐, 𝑑𝑠𝑡);
15 if 𝑑𝑠𝑡 is Vertex and 𝐶𝑣 (𝑑𝑠𝑡) then 𝑠𝑡𝑎𝑡𝑒.𝐺.𝑝𝑢𝑠ℎ(𝑑𝑠𝑡);
16 if 𝑑𝑠𝑡 is Rule and 𝐶𝑟 (𝑑𝑠𝑡) then 𝑠𝑡𝑎𝑡𝑒.𝐺.𝑝𝑢𝑠ℎ(𝑑𝑠𝑡);

Complexity analysis. The complexity of Algorithm 1 depends on the execution of
𝑆𝑦𝑛𝑐𝐹𝑟𝑒𝑒𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 and its execution times. The time complexity of this algorithm in the serial

version is O(|V|+|R|+|E|). In the parallel version, assume the total number of threads is 𝑁 . Then,
the average time complexity is O((|V|+|R|+|E|)/N), which is more efficient compared to the normal
non-synchronization version.

Correctness proof. The inter-level synchronization-free optimization can be directly applied to
the graph traversals that can satisfy at least one of the following conditions: (1) The result field is
irrelevant to the graph level. For example, each vertex uses a Boolean value to indicate whether
it has been visited or not. (2) The application contains only one-level of graph traversal in each
round, such as PageRank and HITS [109]. Applications that satisfy the conditions do not require the
corrective procedure, so they can achieve high-performance improvement with this optimization.

We have the following proof of correctness for the inter-level synchronization-free graph traversal.
(1) In the first condition, for those applications where the result field is irrelevant to the graph-level,
CompressGraph needs only to ensure that the vertices that can be traversed in the original graph

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:15

(a) Write conflict without in-edge support. (b) In-edge support.

0 1 2 3 4

R1 R2

thread0 thread1 thread2 thread3 thread4

out-edge
Push

thread0 thread1

0 1 2 3 4

R1 R2

in-edge

Pull
vertex

rule

Fig. 10. An example of compressed graph direct processing based on in-edge support.

can also be traversed in the compressed graph. Given a root vertex, for any vertex 𝑣 that can be
traversed from the root, we denote the path from the root to 𝑣 as {𝑟𝑜𝑜𝑡, 𝑝1, 𝑝2, ..., 𝑝𝑛, 𝑣}. If all the
edges <𝑟𝑜𝑜𝑡, 𝑝1>, <𝑝1, 𝑝2>, ..., <𝑝𝑛, 𝑣> on this path exist in the compressed graph, then it is obviously
possible to traverse from the root to 𝑣 along the same path in the original graph. Otherwise, assume
that an edge <𝑝𝑖 , 𝑝𝑖+1> is missing in the compressed graph. Then, there must be a rule 𝑟 , which is the
direct or indirect parent node of 𝑝𝑖+1, and 𝑟 has already been traversed when we traverse from 𝑝𝑖 to
𝑝𝑖+1. In this situation, we can find a vertex 𝑢 in the compressed graph, from which we have already
visited the rule 𝑟 . Accordingly, there should be a path from 𝑟𝑜𝑜𝑡 to 𝑢, next to 𝑟 , and then to 𝑝𝑖+1.
Therefore, we can traverse from the 𝑟𝑜𝑜𝑡 to 𝑣 along the path {𝑟𝑜𝑜𝑡, ..., 𝑢, 𝑟, ..., 𝑝𝑖+1, 𝑝𝑖+2, ..., 𝑝𝑛, 𝑣}.
The proof is also applicable to the cases of multiple missing edges. (2) In the second condition,
those applications containing only one iteration of graph-level do not involve graph-level overlap.
In detail, it is unnecessary to process the vertices and rules belonging to different graph levels in
one round of iterations, and thus the optimization can be directly applied.

4.4 In-Edge Support Handling Write Conflicts
To handle write conflicts in parallel, we propose a compressed graph processing solution based on
in-edge design. In detail, we also store the inverted edges from the destination to the source, that is,
the in-edge, which corresponds to the out edge from source to destination. With such a design,
CompressGraph can put conflicting operations into one thread to avoid massive atomic operations.
General design. In graph traversal, a common operation is to pass values from vertices to

neighbors. As for CompressGraph, the system can pass values, not only to vertices but also to
rules. Unfortunately, multiple threads operating on the same vertex or rule at the same time can
cause write conflicts. Atomic operations can ensure the correctness of this procedure, but can
severely decrease performance. To solve this problem, we process the compressed graph based on
the in-edge records, which store the elements pointing to the sources of vertices or rules. We use
one thread to aggregate the values of all in-edges of vertices or rules, avoiding write conflicts.
Example. Figure 10 shows an example of compressed graph direct processing based on the

in-edge support. Assume in the partial graph, CompressGraph needs to push values from vertices
0, 1, 2 to 𝑅1, and from vertices 2, 3, 4 to 𝑅2. Figure 10 (a) is an example of write conflicts without
in-edge support. In detail, suppose threads 0-4 are assigned to vertices 0-4. Then, threads 0-2 write
to 𝑅1 at the same time incurring write conflicts, so do to threads 2-4. Atomic operations can solve
this problem but serialize the multi-threaded operations, degrading the benefits of parallelism. In
contrast, Figure 10 (b) is an example of in-edge support, where we assign 𝑡ℎ𝑟𝑒𝑎𝑑0 to 𝑅1 and 𝑡ℎ𝑟𝑒𝑎𝑑1
to 𝑅2. Based on the in-edge design, 𝑡ℎ𝑟𝑒𝑎𝑑0 pulls the values from neighbors 0-2 for 𝑅1 whereas
𝑡ℎ𝑟𝑒𝑎𝑑1 pulls the values from neighbors 2-4 for 𝑅2. Such an in-edge design can avoid write conflicts
and does not require atomic operations.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:16 Zheng Chen et al.

Complexity analysis. The time complexity of graph traversal based on in-edge design is
O(|V|+|R|+|E|), which is the same as that of graph traversal based on out-edge design. However, for
those traversal applications with write conflicts, in-edge support can save |E| atomic operations,
thus improving the overall performance.

5 IMPLEMENTATION
We develop CompressGraph on both CPU and GPU platforms using C++ and CUDA. This section
shows the implementation details.

Graph compression.We use the rule-based compression [142] discussed in Section 2.3 as our
graph compressor. Similarly, CompressGraph recursively represents neighbors of vertices into
hierarchically compressed form. There are two major differences between CompressGraph and
previous works. First, the neighbors of a vertex is a set but not a sequence, which means that
although two vertices have the same neighbors, their neighbors can be different in representation
because of different permutations. Second, we need to ensure that we can accurately and randomly
access neighbors of any vertices in the compressed state. Accordingly, we sort the sequence of
neighbors of vertices to eliminate the differences in representation. In order to randomly access the
neighbors of different vertices, we insert splitters between different vertices, and the number of
different splitters is the number of vertices. Each splitter is unique and is inserted in the root. In
this way, we can randomly obtain the neighbors of each vertex according to the position of the
splitter. We then compress the processed adjacent list, whose length is the sum of the numbers
of the edges and the splitters. CompressGraph recursively uses hierarchical rules to represent
common neighbors and generates a set of context-free grammar (CFG) to describe the original
graph. Thus, the computation complexity of compression is 𝑂 (𝑉 + 𝐸), where 𝑉 is the number of
vertices and 𝐸 is the number of edges in the graph.

Note that in CompressGraph, a rule represents a set of common neighbors, and the relations
of the rules can be further represented as a DAG. A possible concern could be that the rules can
be ambiguous, i.e., two possible rules can be applied to the neighbors of a node. Fortunately, such
an ambiguity problem can be addressed by immediately replacing the subsequence that can be
expressed as a rule during the scanning of a vertex’s neighbor sequence in order. For example, in
Figure 4, the neighbor list of vertex 0 is {1,2,5,6,7}, where {1,2} and {2,5} can all be replaced as rules. We
first replace {1,2} instead of {2,5} with a rule to obtain the neighbor sequence. Thus, CompressGraph
can eliminate rule ambiguity. Therefore, after graph compression, an inner rule-based DAG is
included inside, which needs further traversal. Moreover, we develop a parallel compression to
significantly reduce the compression time. Note that the innovation of this paper mainly lies in how
to use the rule-based representation for graph processing. Hence, we focus on the direct processing
of compressed graphs by parsing rules.

Weighted graph. To support weighted graph 𝐺 <𝑉 , 𝐸,𝑊 (𝐸)>, we separately store the weights
{𝑤 (𝑣1),𝑤 (𝑣2), ...,𝑤 (𝑣𝑛)} of the neighbors {𝑣1, 𝑣2, ..., 𝑣𝑛} of vertex 𝑣 . Then, we compress the neigh-
bors {𝑣1, 𝑣2, ..., 𝑣𝑛} without weights. Since we sort the neighbors of the vertex before compression,
the relative positions of the neighbor vertices and rules are the same as before compression. We can
obtain the weight of a neighbor by calculating the position of the current neighbor in the compressed
format. For a neighbor sequence {𝑒1, 𝑒2, ..., 𝑒𝑚} of vertex 𝑣 , the weight of𝑢𝑖 is𝑊 (∑𝑘<𝑖

𝑘=0 𝐿𝑒𝑛𝑔𝑡ℎ(𝑒𝑘)).
𝐿𝑒𝑛𝑔𝑡ℎ(𝑒𝑘) is 1 if 𝑒𝑘 is a vertex, or 𝐿𝑒𝑛𝑔𝑡ℎ(𝑒𝑘) is the number of vertices included in the rule if 𝑒𝑘 is
a rule.
In detailed implementation, for the edge type of <V,V>, only one weight exists between two

vertices, which is the simplest case. To represent the weight of an edge containing a rule, we propose
different solutions for different types of edges, including <V,R>, <R,V>, and <R,R>. 1) For <V,R>, it

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:17

contains all the weights between the vertex and all vertices within the rule. We can aggregate all the
weights to obtain the weight of the edge type <V,R>, represented as 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑉 , 𝑅). Considering
that different graph applications can use weights in diverse manners, we provide several aggregate
functions, including 𝑠𝑢𝑚, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ,𝑚𝑎𝑥 , and𝑚𝑖𝑛. 2) For <R, V>, we propose a new traversal design
to avoid ambiguity, since there can be multiple parent vertices of the rule. For instance, if 𝑣1 and 𝑣2
all point to 𝑟1, and 𝑟1 points to 𝑣3, then, the weights of <𝑟1,𝑣3> are ambiguous and can be interpreted
as the weight of <𝑣1,𝑣3> or <𝑣2,𝑣3>. To address this problem, we record the parent vertex in a
specific rule traversal and represent it as 𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 . Thus, the weight of <𝑟1,𝑣3> is <𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 ,𝑣3>
in a certain rule traversal. 3) For <R,R>, we combine the solutions of <V,R> and <R,V> above
to represent the weights of the edge type <R,R>, which is 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑠𝑟𝑐_𝑟𝑜𝑜𝑡, 𝑑𝑠𝑡). With these
solutions, CompressGraph can support weighted graphs.
Example. In the example of single-source shortest path (SSSP) on a weighted graph, classical

algorithm [33] starts from a vertex, and places all the updated vertices into the processing set until no
more vertices need to be updated. For a vertex 𝑣 , we update its distance to a shorter one only if there
is a vertex𝑢 satisfying𝑢.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢, 𝑣) < 𝑣 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . In CompressGraph, the operation𝑂𝑣2𝑣
for the edge type <𝑉 ,𝑉> and condition 𝐶𝑣 for vertices operate the same as the original graph does.
Otherwise, we perform rule traversal from 𝑢 to 𝑣 and record 𝑢 as the 𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 during the traversal.
The 𝐶𝑟 function returns true if 𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +𝑚𝑖𝑛_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑠𝑟𝑐_𝑟𝑜𝑜𝑡, 𝑟) < 𝑟 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 for
rule 𝑟 in the path from 𝑢 to 𝑣 . The 𝑂𝑣2𝑟 and 𝑂𝑟2𝑟 functions update the distance of rule 𝑟 as the
minimum of current distance of 𝑟 and 𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑚𝑎𝑥_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑠𝑟𝑐_𝑟𝑜𝑜𝑡, 𝑟). SSSP’s𝑂𝑟2𝑣
and 𝑂𝑣2𝑣 are similar, which are used to replace the input vertex with the record 𝑠𝑟𝑐_𝑟𝑜𝑜𝑡 .
Attributed graph. CompressGraph can support attributed graphs by separately storing the

attributes of each vertex. We can store attributes directly in the 𝑅𝑒𝑠𝑢𝑙𝑡 field, which can be used in
the 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 functions. Since CompressGraph does not change the attributes of
vertices in compression, users can easily define the attribute-based graph analytics applications.
For example, for an attributed graph with a label for each vertex, the label constrained connectivity
(LCC) [7, 125] algorithm detects whether there is a path between a give vertex pair <𝑢, 𝑣> where the
labels of all vertices on this path belong to a given label set 𝐿. LCC adopts the BFS implementation
to start from a vertex and add its neighbors whose label is in 𝐿 to the processing set. Then, LCC
iterates until 𝑣 is found or no new vertices are added. CompressGraph can support it by adding the
label constraint for 𝐶𝑣 functions.

6 EVALUATION
6.1 Experimental Setup
Evaluated methods. We compare CompressGraph with three state-of-the-art graph compression
solutions.WebGraph [4, 13] is a novel in-memory compressed graph representation. Ligra+ [117] is a
lightweight graph processing framework that compresses graphs based on encoding. Gunrock [129]
is a powerful GPU-based graph-centric programmable framework.

Benchmarks. We use six common graph applications, including breadth-first search (BFS), single-
source shortest path (SSSP), weakly connected component (CC), PageRank (PR), topological sorting
(TP), and Hyperlink-Induced Topic Search (HITS). These benchmarks have been used in various
previous studies [56, 81, 99, 147, 154, 155]. We evaluate these benchmarks on CompressGraph,
WebGraph, Ligra+, and Gunrock.

Datasets. We evaluate CompressGraph using 12 graphs listed in Table 1. |V| represents the
number of vertices, and |E| represents the number of edges. We use CompressGraph to compress
these graphs, with the “#Rules” column showing the number of rules after compression. We also
report the size of the original graph and the compressed graph stored by adjacency list, denoted

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:18 Zheng Chen et al.

Table 1. Graphs used in evaluation.

Dataset Graph |V| |E| #Rules 𝑆𝑖𝑧𝑒 𝑆𝑖𝑧𝑒𝑐 𝛾

1 uk-2007-05@100000 100,000 3,150,615 26,044 24M 5M 4.88
2 cnr-2000 325,558 3,216,151 28,748 27M 10M 2.59
3 web-BerkStan 685,231 7,600,581 92,614 63M 26M 2.43
4 in-2004 1,382,909 16,917,053 132,416 153M 44M 3.16
5 eu-2005 862,665 19,235,139 213,755 153M 43M 3.52
6 uk-2007-05@1000000 1,000,000 41,247,159 222,678 322M 47M 6.77
7 hollywood-2009 1,139,906 113,891,327 2,109,634 877M 367M 2.39
8 eu-2015-host 11,264,052 386,915,963 273,080 2.97G 871M 3.49
9 arabic-2005 22,744,080 639,999,458 864,234 4.93G 0.98G 5.03
10 it-2004 41,291,594 1,150,725,436 1,458,222 8.88G 1.74G 5.11
11 gsh-2015-host 68,660,142 1,802,747,600 2,521,370 13.94G 6.47G 2.15
12 sk-2005 50,636,154 1,949,412,601 2,372,508 14.9G 2.62G 5.68

as 𝑆𝑖𝑧𝑒 and 𝑆𝑖𝑧𝑒𝑐 respectively. The compression ratio, denoted as 𝛾 , is defined as the size of the
original data divided by the size of the CompressGraph-compressed data. These graphs can be
downloaded fromWebGraph [12, 13] and the Stanford Network Analysis Project (SNAP) [72]. They
have been widely used in previous studies [65, 97, 99, 147, 154]. These graphs are originally stored
in adjacency list format. WebGraph and Ligra+ need to compress the graph in advance to be used
as the input of the program. For Gunrock, we convert the graph data into “mtx” format to serve as
the input. Each line in the “mtx” format records the 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of one edge.
Platform. We evaluate CompressGraph on a GPU server. The platform is equipped with an

Intel Core i9-10900X CPU, which includes ten cores with 20 threads. The global memory is 128
GB. The platform is also equipped with an Nvidia GeForce RTX 3090 GPU, powered by Ampere
micro-architecture with 24 GB of G6X memory. The operating system of the platform is Ubuntu
20.04.01.

6.2 Performance Benefits
CPU performance speedup. On average, CompressGraph achieves 1.97× speedup over Ligra+ and
27.01× speedup over WebGraph. We show the detailed performance speedups compared to Ligra+
on different workloads in Figure 11, and we have the following observations. First, CompressGraph
can bring significant performance improvement in most cases, which proves the effectiveness of
CompressGraph on CPU. Second, CompressGraph achieves the highest performance benefits in PR
and HITS. The reason is that the operation time on each edge in these two applications is long, and
therefore the advantage of data reuse in CompressGraph can be fully utilized. Third, for datasets
with similar compression ratios, CompressGraph can achieve greater speedup on the datasets with
more edges. The reason is that the reusable part of the application with more edges accounts for
a higher proportion of the total execution time. For example, the compression ratios of datasets
6 and 12 are close, but dataset 12 has more edges. Accordingly, CompressGraph achieves greater
speedup on dataset 12.

GPU performance speedup. We show the performance speedup on GPU compared to Gunrock
in Figure 12. For the last four large graphs, because the space required by Gunrock exceeds the
GPU memory limit, we use GraphBIG [99] as the baseline. We have the following observations.
First, CompressGraph outperforms Gunrock by 3.95×, which proves that CompressGraph is highly
suitable for GPU parallelism. Second, due to the GPU optimization mentioned in Sections 4.3

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:19

1 2 3 4 5 6 7 8 9 10 11 12
Dataset

0

1

2

3

4

5

6

Sp
ee

du
p

BFS SSSP CC PR TP HITS

Fig. 11. CPU performance speedup (vs. Ligra+).

1 2 3 4 5 6 7 8 9 10 11 12
Dataset

0
2
4
6
8

10
12
14

Sp
ee

du
p

BFS SSSP CC PR TP HITS

Fig. 12. GPU performance speedup (vs. Gunrock).

and 4.4, CompressGraph achieves a greater speedup on the GPU than that on the CPU. Third,
CompressGraph achieves the highest speedup in PR. The reason is that PR can provide relatively
high computation density, and we use the in-edge support in PR to remove the write conflicts,
which enables CompressGraph to take full advantage of the data redundancy on GPU. Moreover,
HITS achieves more than two times speedup, which shows that CompressGraph provides a clear
performance improvement for backward traversal.

Our GPU performance also includes the transfer time between CPU and GPU. For Gunrock, the
CPU-GPU transfer time accounts for 8.62% of the total runtime on average. As for CompressGraph,
the CPU-GPU transfer time accounts for only 6.95% on average. When comparing the CPU-GPU
transfer times of Gunrock and CompressGraph, we find that the transfer time of CompressGraph is
19.32% of Gunrock’s transfer time, illustrating one of the main advantages of CompressGraph on
GPU.

6.3 Space savings
Runtime space savings. CompressGraph can save 74.6% storage space savings on average. More-
over, CompressGraph can achieve 78.20% memory savings on CPU and 77.19% on GPU. Com-
pressGraph involves marginal additional memory costs, especially compared to the original un-
compressed graphs. In detail, the memory costs of CompressGraph can be divided into two parts:
the compressed graph data and the 𝑅𝑒𝑠𝑢𝑙𝑡 field. We use a data structure similar to the adjacency
list in memory to represent the compressed graph, which is consistent with its storage form on
disk. Compared with other graph compression formats, CompressGraph needs additional space
to store the Result field for rules. However, the Result field for rules is negligible compared to the
whole memory space overhead of applications. Experiments show that the memory occupancy of
CompressGraph is only 32.19% of that of the original graph. Specifically, the additional memory

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:20 Zheng Chen et al.

2 4 8 16 32 64 128
Frequency

2
4
8

16
32
64

128

Le
ng

th

(a) Compress ratio.

2 4 8 16 32 64 128
Frequency
(b) BFS.

2 4 8 16 32 64 128
Frequency
(c) SSSP.

2 4 8 16 32 64 128
Frequency

(d) CC.

2 4 8 16 32 64 128
Frequency

(e) PR.

2 4 8 16 32 64 128
Frequency

(f) TP.

2 4 8 16 32 64 128
Frequency
(g) HITS.

Fig. 14. Tradeoffs in space and time of CompressGraph. The darker the color, the better is the result.

cost from the 𝑅𝑒𝑠𝑢𝑙𝑡 field accounts for only 0.82% of the applications’ memory space overhead
based on the original graph and 2.54% based on CompressGraph. Moreover, during execution,
the program needs auxiliary data structures, which also causes little space overheads. The space
overhead of auxiliary data is slightly different for diverse applications on CPU/GPU platforms.
For example, BFS needs to maintain a queue, but PR does not. We compare the space overhead
of auxiliary data in CompressGraph with that in other graph compression formats. Experiments
show that CompressGraph entails an additional space overhead of only 0.79% of the whole memory
space overhead.

0 10 20 30
Bpe (bits per edge)

0

1e7

2e7

3e7

Pe
rf

or
m

an
ce

 (e
dg

es
/s

ec
)

Gunrock
WebGraph

Ligra+
CompressGraph (CPU)

CompressGraph (GPU)
CompressGraph+WebGraph

Fig. 13. Time/space measurement of different formats.

Time/space measurement. We
next measure the time and space re-
lations. We use the number of pro-
cessed edges per second to represent
performance, and the ratio of the size
of the compressed graph to the num-
ber of edges, which is bits per edge
(bpe), to represent space cost. Par-
ticularly, since CompressGraph uti-
lizes only data redundancy, the bpe
of a compressed graph using Com-
pressGraph can reflect the data redun-
dancy of the graphs. We use the aver-
age performance of CC on all datasets
for illustration, as shown in Figure 13.
Other workloads have similar perfor-
mance behavior. We have the follow-
ing observations. First, for conventional compression formats, greater space savings usually lead to
increased processing overhead. However, CompressGraph can overcome this shortcoming because
it can achieve high performance by utilizing redundancy to avoid repeated computation. In Fig-
ure 13, CompressGraph (CPU) generates 1.69 × 107 edges/sec under 8.81 bpe. Second, with similar
bpe, utilizing GPU can deliver 40.84% extra performance benefits, which proves the efficiency of
CompressGraph on GPU. Third, CompressGraph can obtain an even higher compression ratio
by integrating other compression methods. In detail, CompressGraph-compressed results include
vertices and rules, and the content of a rule has the same form of neighbors of the vertex. We can
treat the rules as new vertices, meaning that the compressed form of CompressGraph is consistent
with common graph representations. Therefore, we can apply other compression methods after
CompressGraph compression. For example, after integrating WebGraph, CompressGraph achieves
the smallest bpe in Figure 13.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:21

6.4 Benefit Breakdown
Dynamic rule traversal strategy. As discussed in Section 4.2, we dynamically choose to use
intra-thread rule traversal or inter-thread rule traversal during the processing of graph analytics.
The dynamic rule traversal strategy provides 18.74% performance improvement over the intra-
thread-only rule traversal strategy, and 51.14% improvement compared to the inter-thread-only rule
traversal strategy. The determination overhead accounts for only 3.8% of the total time. Moreover,
to guide the selection, we need to store the number of iterations required to traverse each rule,
which accounts for only 0.072% of the overall memory consumption on average.

Synchronization-free traversal. The benefits of synchronization-free traversal come from the
time overlap of graph traversal and rule traversal. We evaluate the synchronization-free benefits
by comparing CompressGraph with the implementation without the synchronization-free design.
Experiments show that this optimization brings 42.40% benefits on average. The synchronization-
free design is effective for applications that need many levels of traversal, such as BFS and SSSP.
Moreover, BFS does not need the corrective procedure, which has less overhead than SSSP. Except
for BFS and SSSP, HITS achieves the highest benefits. The reason is that HITS needs to traverse the
in-edges and out-edges at the same time in a single round, and synchronization-free design can
obtain benefits from both in-edge and out-edge traversals.
In-edge design. The in-edge design is effective in compute-intensive applications, such as PR

and HITS. By removing write conflicts, this optimization leads to an average of 28.4% performance
improvement. The in-edge design brings prominent performance speedup on graphs with a large
number of edges per element (vertex or rule). For example, CompressGraph can achieve 53.21%
and 58.06% performance improvements on datasets 7 and 8, respectively.
Branch reduction. The branch reduction design can reduce the number of operations of

conditional statements. This optimization brings an average of 10.02% performance improvement
on CPU and 21.31% on GPU. The performance improvement on GPU is greater than that on CPU.
The reason is that the massive branches can cause severe performance degradation of GPU parallel
execution.

Impacts for different rules. We compare three rule generation methods that are similar to our
rule definition, TADOC [146], LZW [32], and RePair [70], whose complexities are all O(N). Their
average compression ratios are 6.23, 4.78, and 4.92. We also compare the performance on top of the
compressed data of these three compression methods. The result shows that CompressGraph with
TADOC is 1.3× faster than that with LZW, and 1.26× faster than that with RePair. Therefore, we
build our compressor on TADOC.

6.5 Design Tradeoffs in Space and Time
In this part, we show our design tradeoffs in space and time. The generation of optimal rules is an
NP-hard problem, as described in the previous study [22]. Hence, the compressor does not pursue
the optimal rule compression, but adopts the simplification [100] to ensure that the compression
result can be obtained in linear time. However, we find that rule length and rule frequency are
still adjustable to ensure a balance in time and space. Rule length refers to the minimum number
of elements to store per rule. Rule frequency refers to the minimum number of times that a
rule appears in the compressed graph. For a given graph, we can set thresholds of rule length
and frequency adapting to different scenarios. Lower thresholds usually mean more rules to be
generated. However, there is a tradeoff between time savings and space savings. We find that it is
not true that the smaller the compressed graph, the greater the benefit of data reuse for computation
savings. We show our findings in Figure 14. Figure 14 (a) shows the space benefits of different
length and frequency thresholds. The highest performance appears in the lower-left-hand corner of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:22 Zheng Chen et al.

Figure 14 (a). However, in Figures 14 (b) to (g), the rule length and frequency setting for the highest
performance do not appear in the lower-left-hand corner of the performance heat map. Hence, we
set the rule length and frequency according to the tradeoffs from both time and space perspectives.

2 4 8 16 32 64 128
Frequency

2

4

8

16

32

64

128

Le
ng

th

GPU CPU

Fig. 15. Configuration distribution at the highest per-
formance.

Configuration. We show the rule length
and frequency for the highest performancewith
different workloads on both CPU and GPU in
Figure 15. To select the rule length and fre-
quency, we first compress the graph 𝐺𝑖𝑛𝑖𝑡 with
parameters (2,2). Then, we resort to a multi-
layer perception (MLP) [105] model to assist in
determining the rule length and frequency con-
figuration. In detail, we abstract the rule con-
figuration as a classification problem, where
each category corresponds to a combination of
parameters of rule length and rule frequency.
The input features include the number of ver-
tices, the number of edges, the length and fre-
quency distributions of rules in𝐺𝑖𝑛𝑖𝑡 , the avail-
able threads, and a feature vector indicating
different workloads from processing the sam-
pled data. Note that the workload features can be obtained from processing a small sampled graph.
As for model setting, we construct a three-layer neural network with 1500 hidden neurons in each
hidden layer, using 𝑇𝑎𝑛ℎ as the activation function; we use 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 for output, and cross-entropy
as loss function. The model attains 82.5% accuracy. Besides, the difference between our selection
and the highest result for different configurations is only 12.42%, which is acceptable. In terms of
efficiency, we can complete the inference in less than 7.18 ms, which is very efficient.

6.6 Additional Baselines and Discussion
There are many other novel graph systems, such as disk-based graph systems [38, 67, 87, 97] and
graph systems built on relational databases [35, 61, 121, 136, 137], targeting different application
scenarios. In this section, we compare CompressGraph with the representatives of these systems
and show our application scenario.
Comparison with the disk-based graph system. Disk-based graph systems [38, 67, 87, 97]

store the entire graph on disk and a portion of it in memory to handle large graphs. HCon [38] is a
novel hierarchical contraction scheme for querying large graphs, which recursively contracts a set
of vertices satisfying a particular structure into supernodes until the graph size fits in the memory
limitation. We compare CompressGraph with HCon in terms of space cost and performance on PR
and CC. Since HCon is not open source, we implement a version using clique, star, and diamond
(the most frequent regular structures in our dataset). HCon can save an average of 72.2% graph size
when the contract level is 3, while CompressGraph can save 74.6% graph size. HCon can increase
the number of levels to further reduce memory space consumption. However, increasing the
number of levels causes performance degradation, and its top-level graph is already small enough
to fit in memory. The average performance of HCon on PR and CC is 3.73× and 1.06× slower than
that of CompressGraph. HCon needs to decontract from disk on PR, which is significantly slower
than accessing data from memory. HCon can handle CC well. The reason is that all the vertices
in the structures used in HCon are connected, so there is no need to decontract in CC. Note that
HCon uses a different design philosophy compared to CompressGraph. The novelty of HCon is the
optimization of disk access for graph queries. In contrast, we assume that the compressed graph can

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:23

fit into memory. Therefore, we can apply HCon to CompressGraph to handle compressed graphs
that cannot fit in memory.
Comparison with graph systems built on relation databases. In the real world, large

amounts of data are stored in relational databases. Many works [35, 61, 121, 136, 137] focus on
extracting and analyzing graphs from relational databases. GraphGen [136, 137] is a novel system
enabling efficient graph analytics on top of relational data. In particular, GraphGen proposes a
condensed representation for the graph data extracted from the relational database to eliminate
the duplication issue. After we compare GraphGen with CompressGraph, we find that GraphGen
cannot gain the same space savings as CompressGraph. The reason is that there is no duplication
defined by GraphGen in standard graph we use. We also evaluate the performance of GraphGen on
BFS and PR. Experiments show that GraphGen is 1.89× slower than CompressGraph on BFS, and
2.84× slower than CompressGraph on PR. Note that the application scenario of GraphGen is graph
analytics of relational data, which is orthogonal to CompressGraph.
Weighted graph. To measure the performance of CompressGraph on weighted graphs, we

generate random weights for the graphs in Table 1. We use SSSP as an example and measure the
performance benefits of compressed weighted graphs in SSSP. Experiments show that we can still
obtain 27.52% space savings and 1.93× performance speedup on average.
Attributed graph. We evaluate the performance of CompressGraph on attributed graphs. We

generate random labels for each vertex in graphs (four types in total). The experiments on LCC
show that we can obtain 72.58% storage space savings and 1.55× performance speedup on average.
Application scope. Similar to WebGraph and Ligra+, CompressGraph is designed for graph

analytics on datasets that do not change frequently. The compressed graph can be accessed and
used by many users for various purposes. For example, some users may need to perform a page
rank, whereas others compute the single-source shortest path. With CompressGraph, a graph needs
to be compressed only once, and thus, the compression time is amortized by the time savings in
the many uses of the graphs by many users. Different from HCon [38], to support maintenance,
CompressGraph uses a bitmap to indicate the updated vertices and edges, and saves the changes to
another data structure. Recompression occurs when the system is idle or the modification is over
25% of the compressed graph. We also measure the compression time required by different methods.
On average, the compression time of CompressGraph is 31.29% shorter than that of Ligra+, and
45.27% shorter than that of WebGraph, respectively.

7 RELATEDWORK
Compression, as an important data storage optimization, has been applied in various fields [15,
25, 46, 47, 68, 69, 73–78, 84, 85, 89, 112, 138]. This section presents the related work of graph
compression and processing.
Graph compression formats and systems.Many works focus on graph compression [4, 12,

13, 16, 26, 29, 34, 57, 83, 86, 115, 116, 120]. Traditionally, graphs are stored in adjacency matrices
and adjacency lists. The adjacency matrix has high access efficiency, but can incur a large space
overhead for sparse graphs. Much effort has been invested in solving the sparsity problem of
adjacency matrix [16, 34, 86, 120]. Another optimization targets data redundancy in graph storage,
especially when vertices share many neighbors. It is usually performed on adjacency lists, saving the
neighbors for each vertex. WebGraph [12, 13] is a novel representation of compressed graphs that
provide efficient graph processing. Chierichetti et al. [26] applied WebGraph to social networks and
further proposed methods to obtain a better ranking for neighbors [4, 57, 115]. Ligra+ [116, 117] is
a novel framework that can process compressed graphs efficiently. Maneeth et al. [88] summarized
the grammar-based compression of three types of objects: strings, trees, and hyper graphs. Maneth
et al. [90, 91] proposed GraphRePair, which is a novel grammar-based compression method for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

4:24 Zheng Chen et al.

hypergarphs. GraphRePair can detect recurring hyperedges in the hypergraph and recursively
replace them with grammar rules. Zhou et al. [153] proposed adaptive partitioning to process
graphs efficiently in large geo-distributed scales. Different from these works, CompressGraph
emphasizes the reuse of intermediate results during traversal and is suitable for highly parallel
application scenarios, such as GPUs.

Direct processing on compressed data. Compressed data direct processing has been proved
to be a promising technology solving big data challenges [76–78, 80]. Many works utilize grammar
compression on strings [14, 18, 27, 30, 51, 52, 92, 135, 147]. TADOC [107, 139, 142–146, 151] is a rep-
resentative grammar-based compression method for text analytics. Traditional methods for queries
on compressed data are based on suffix arrays, trees, and indexes [11, 28, 40–43, 53, 58, 102]. Suc-
cinct [1] is a representative method for queries on compressed data. Moreover, there is a large body
of literature on compressing the inverted index [98, 100, 111, 114, 118, 124, 126]. CompressDB [141]
enables the rule-based compression in storage layer, supporting diverse databases. Different from
these works, CompressGraph targets analytics of rule-based compressed graphs, and provides
efficient CPU and GPU implementations. In future work, we plan to offload part of ComprssGraph
to the novel GPU-centric SmartNIC FpgaNIC [131] to enable efficient distributed graph analytics
between distributed GPUs.

Graph compression for queries. Numerous studies [2, 37, 60, 94, 95] focus on graph compres-
sion for queries. Maserrat et al. [94] proposed a multi-position linearization compression approach
to accommodate out- and in-neighbor queries. Fan et al. [37] presented a novel query-preserving
graph compression for readability and pattern-matching queries. Khandelwal et al. [62] developed
ZipG, which is an efficient distributed memory graph store based on Succinct [1], supporting
interactive queries on compression format. Fan et al. [38] proposed a novel hierarchical contraction
scheme for querying large graphs, which recursively contracts graph vertices into supernodes
until the graph size can fit in the memory constraints. Xirogiannopoulos et al. [136] proposed a
condensed graph representation to extract and analyze the graphs stored in multiple tables in a
relational database. HBMax [24] proposes a compression approach to reduce the memory footprint
for parallel influence maximization on multi-core architectures, by compressing the intermediate
reverse reachability information and directly querying on the compressed data. In contrast, Com-
pressGraph focuses on supporting diverse graph analytics that require scanning the whole graph
through rule parsing on both CPU and GPU.

8 CONCLUSION
This paper has proposed a method to directly process compressed graphs, and developed a graph
analytics engine, called CompressGraph. By enabling direct processing on compressed graphs, we
can obtain 74.6% space savings, 1.97× performance improvement on CPU, and 3.95× on GPU. This
paper unveils how to compress graphs by rules to make the compressed data suitable for direct
processing. Then, the paper proposes data reuse methods for different types of graph applications.
Moreover, the paper proposes a series of GPU optimizations to handle the parallelism challenge of
directly processing without decompression on GPUs. Experiments demonstrate the huge application
prospects of direct processing on compressed graph data.

ACKNOWLEDGMENT
This work is supported by the National Natural Science Foundation of China (62172419, 61732014,
62072458, and U20A20226), CCF-Tencent Open Research Fund, Beijing Nova Program, the Funda-
mental Research Funds for the Central Universities, and the Research Funds of Renmin University
of China (21XNH182). Feng Zhang is the corresponding author of this paper.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:25

REFERENCES
[1] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: Enabling queries on compressed data. In 12th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 15). 337–350.
[2] Sebastian E Ahnert. 2013. Power graph compression reveals dominant relationships in genetic transcription networks.

Molecular BioSystems 9, 11 (2013), 2681–2685.
[3] Ahmed Al-Baghdadi and Xiang Lian. 2020. Topic-based Community Search over Spatial-Social Networks. Proc. VLDB

Endow. 13, 11 (2020), 2104–2117. http://www.vldb.org/pvldb/vol13/p2104-al-baghdadi.pdf
[4] Alberto Apostolico and Guido Drovandi. 2009. Graph compression by BFS. Algorithms 2, 3 (2009), 1031–1044.
[5] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarath, and P Sadayappan. 2014. Fast sparse matrix-

vector multiplication on GPUs for graph applications. In SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 781–792.

[6] Prithu Banerjee, Wei Chen, and Laks VS Lakshmanan. 2019. Maximizing welfare in social networks under a utility
driven influence diffusion model. In Proceedings of the 2019 International Conference on Management of Data. 1078–
1095.

[7] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, MadhavMarathe, and DorotheaWagner. 2008. Engineering
label-constrained shortest-path algorithms. In International conference on algorithmic applications in management.
Springer, 27–37.

[8] André M Bastos and Jan-Mathijs Schoffelen. 2016. A tutorial review of functional connectivity analysis methods and
their interpretational pitfalls. Frontiers in systems neuroscience 9 (2016), 175.

[9] Maciej Besta and Torsten Hoefler. 2018. Survey and taxonomy of lossless graph compression and space-efficient
graph representations. arXiv preprint arXiv:1806.01799 (2018).

[10] Song Bian, Qintian Guo, SiboWang, and Jeffrey Xu Yu. 2020. Efficient Algorithms for Budgeted InfluenceMaximization
on Massive Social Networks. Proc. VLDB Endow. 13, 9 (2020), 1498–1510. https://doi.org/10.14778/3397230.3397244

[11] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. the Journal of machine Learning
research 3 (2003), 993–1022.

[12] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered Label Propagation: A MultiResolution
Coordinate-Free Ordering for Compressing Social Networks. In Proceedings of the 20th international conference on
World Wide Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar (Eds.). ACM Press, 587–596.

[13] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression techniques. In Proceedings of the
13th international conference on World Wide Web. 595–602.

[14] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache Project 53, 1-13 (2008), 2.
[15] Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. 2015. XML compression via directed

acyclic graphs. Theory of Computing Systems 57, 4 (2015), 1322–1371.
[16] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. 2009. k 2-trees for compact web graph representation. In

International symposium on string processing and information retrieval. Springer, 18–30.
[17] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining approach to web graph compression with

communities. In Proceedings of the 2008 international conference on web search and data mining. 95–106.
[18] Michael Burrows and David Wheeler. 1994. A block-sorting lossless data compression algorithm. In Digital SRC

Research Report. Citeseer.
[19] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2016. Cost-Effective Crowdsourced Entity

Resolution: A Partial-Order Approach. In SIGMOD, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,
969–984.

[20] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2018. A partial-order-based framework for
cost-effective crowdsourced entity resolution. VLDB J. 27, 6 (2018), 745–770.

[21] Venkat Venkat Bala Chandar. 2010. Sparse graph codes for compression, sensing, and secrecy. Ph. D. Dissertation.
Massachusetts Institute of Technology.

[22] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat. 2005. The
smallest grammar problem. IEEE Transactions on Information Theory 51, 7 (2005), 2554–2576.

[23] Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang, Yifan Hou, Changji Li, and James Cheng. 2019.
Large Scale Graph Mining with G-Miner. In Proceedings of the 2019 International Conference on Management of Data.
1881–1884.

[24] Xinyu Chen, Marco Minutoli, Jiannan Tian, Mahantesh Halappanavar, Ananth Kalyanaraman, and Dingwen Tao.
2022. HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures. arXiv
preprint arXiv:2208.00613 (2022).

[25] Yixin Chen, Guozhu Dong, Jiawei Han, Jian Pei, Benjamin W Wah, and Jianyong Wang. 2006. Regression cubes with
lossless compression and aggregation. IEEE Transactions on Knowledge and Data Engineering 18, 12 (2006), 1585–1599.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

http://www.vldb.org/pvldb/vol13/p2104-al-baghdadi.pdf
https://doi.org/10.14778/3397230.3397244

4:26 Zheng Chen et al.

[26] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar
Raghavan. 2009. On compressing social networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 219–228.

[27] Trishul M Chilimbi. 2001. Efficient representations and abstractions for quantifying and exploiting data reference
locality. ACM SIGPLAN Notices 36, 5 (2001), 191–202.

[28] Trishul M Chilimbi and Martin Hirzel. 2002. Dynamic hot data stream prefetching for general-purpose programs. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and implementation. 199–209.

[29] Francisco Claude and Gonzalo Navarro. 2010. Fast and compact web graph representations. ACM Transactions on the
Web (TWEB) 4, 4 (2010), 1–31.

[30] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to algorithms. MIT
press.

[31] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support for Modern Graph Analytics in
TigerGraph. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 377–392. https://doi.org/10.1145/3318464.3386144

[32] HN Dheemanth. 2014. LZW data compression. American Journal of Engineering Research 3, 2 (2014), 22–26.
[33] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959),

269–271.
[34] Kasper Dinkla, Michel A Westenberg, and Jarke J van Wijk. 2012. Compressed adjacency matrices: Untangling gene

regulatory networks. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2457–2466.
[35] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. 2015. The Case Against Specialized Graph Analytics

Engines.. In CIDR.
[36] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Xiaojian Luo, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.

2020. Application Driven Graph Partitioning. In Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1765–1779. https:
//doi.org/10.1145/3318464.3389745

[37] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving graph compression. In Proceedings of
the 2012 ACM SIGMOD international conference on management of data. 157–168.

[38] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2022. A Hierarchical Contraction Scheme for Querying Big Graphs.
In Proceedings of the 2022 International Conference on Management of Data. 1726–1740.

[39] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social
recommendation. In The world wide web conference. 417–426.

[40] Andrea Farruggia, Paolo Ferragina, and Rossano Venturini. 2014. Bicriteria data compression: Efficient and usable. In
European Symposium on Algorithms. Springer, 406–417.

[41] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini. 2009. Compressed text indexes: From
theory to practice. Journal of Experimental Algorithmics (JEA) 13 (2009), 1–12.

[42] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. Journal of the ACM (JACM) 52, 4 (2005),
552–581.

[43] Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2009. On the bit-complexity of Lempel-Ziv compression. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 768–777.

[44] Linton C Freeman, Douglas Roeder, and Robert R Mulholland. 1979. Centrality in social networks: II. Experimental
results. Social networks 2, 2 (1979), 119–141.

[45] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: Lightweight Interactive Community Search via Graph
Neural Network. Proc. VLDB Endow. 14, 6 (2021), 1006–1018. http://www.vldb.org/pvldb/vol14/p1006-gao.pdf

[46] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. 2020. Discrete model compression with resource constraint
for deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1899–1908.

[47] Adrià Gascón, Markus Lohrey, SebastianManeth, Carl Philipp Reh, and Kurt Sieber. 2020. Grammar-based compression
of unranked trees. Theory of Computing Systems 64, 1 (2020), 141–176.

[48] Advitya Gemawat. 2021. GraphGem: Optimized Scalable System for Graph Convolutional Networks. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li,
Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2920–2922. https://doi.org/10.1145/3448016.3450573

[49] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya Haghi, Antonino Tumeo, Shuai
Che, Steve Reinhardt, and Martin C. Herbordt. 2020. AWB-GCN: A Graph Convolutional Network Accelerator
with Runtime Workload Rebalancing. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 922–936. https://doi.org/10.1109/MICRO50266.2020.00079

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3389745
https://doi.org/10.1145/3318464.3389745
http://www.vldb.org/pvldb/vol14/p1006-gao.pdf
https://doi.org/10.1145/3448016.3450573
https://doi.org/10.1109/MICRO50266.2020.00079

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:27

[50] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020. Traversing large graphs on GPUs with
unified memory. Proceedings of the VLDB Endowment 13, 7 (2020), 1119–1133.

[51] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. 2014. From theory to practice: Plug and play with
succinct data structures. In International Symposium on Experimental Algorithms. Springer, 326–337.

[52] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. Powergraph: Distributed
graph-parallel computation on natural graphs. In 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12). 17–30.

[53] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2004. When indexing equals compression: experiments with
compressing suffix arrays and applications.. In SODA, Vol. 4. 636–645.

[54] Ankit Gupta and Sergio Verdú. 2009. Nonlinear sparse-graph codes for lossy compression. IEEE Transactions on
Information Theory 55, 5 (2009), 1961–1975.

[55] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-scale asynchronous graph traversals
on just a GPU. In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
233–245.

[56] Wentao Han, Xiaowei Zhu, Ziyan Zhu, Wenguang Chen, Weimin Zheng, and Jianguo Lu. 2016. A comparative
analysis on Weibo and Twitter. Tsinghua Science and Technology 21, 1 (2016), 1–16.

[57] Cecilia Hernández and Gonzalo Navarro. 2011. Compression of web and social graphs supporting neighbor and
community queries. In Proc. 5th ACM Workshop on Social Network Mining and Analysis (SNA-KDD). ACM.

[58] Wing-Kai Hon, Tak Wah Lam, Wing-Kin Sung, Wai-Leuk Tse, Chi-Kwong Wong, and Siu-Ming Yiu. 2004. Practical
aspects of Compressed Suffix Arrays and FM-Index in Searching DNA Sequences.. In ALENEX/ANALC. Citeseer,
31–38.

[59] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. 2017. A distributed
multi-gpu system for fast graph processing. Proceedings of the VLDB Endowment 11, 3 (2017), 297–310.

[60] Xiaowei Jiang, Xiang Zhang, Feifei Gao, Chunan Pu, and Peng Wang. 2013. Graph compression strategies for
instance-focused semantic mining. In China Semantic Web Symposium and Web Science Conference. Springer, 50–61.

[61] Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. 2015. Graph analytics using vertica relational
database. In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 1191–1200.

[62] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and Ion Stoica. 2017. Zipg: A memory-efficient
graph store for interactive queries. In Proceedings of the 2017 ACM International Conference on Management of Data.
1149–1164.

[63] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha: Vertex-centric graph processing on
GPUs. In Proceedings of the 23rd international symposium on High-performance parallel and distributed computing.
239–252.

[64] Jon M Kleinberg. 1999. Hubs, authorities, and communities. ACM computing surveys (CSUR) 31, 4es (1999), 5–es.
[65] Christine Klymko, David Gleich, and Tamara G Kolda. 2014. Using triangles to improve community detection in

directed networks. arXiv preprint arXiv:1404.5874 (2014).
[66] Seongyun Ko, Taesung Lee, Kijae Hong, Wonseok Lee, In Seo, Jiwon Seo, and Wook-Shin Han. 2021. iTurboGraph:

Scaling and Automating Incremental Graph Analytics. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 977–990. https://doi.org/10.1145/3448016.3457243

[67] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. {GraphChi}:{Large-Scale} Graph Computation on Just a
{PC}. In 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12). 31–46.

[68] Laks VS Lakshmanan, Jian Pei, and Yan Zhao. 2003. Efficacious data cube exploration by semantic summarization
and compression. In Proceedings 2003 VLDB Conference. Elsevier, 1125–1128.

[69] Laks VS Lakshmanan, Jian Pei, and Yan Zhao. 2003. Socqet: semantic olap with compressed cube and summarization.
In Proceedings of the 2003 ACM SIGMOD international conference on Management of data. 658–658.

[70] N Jesper Larsson and Alistair Moffat. 2000. Off-line dictionary-based compression. Proc. IEEE 88, 11 (2000), 1722–1732.
[71] David Lee and Mihalis Yannakakis. 1996. Principles and methods of testing finite state machines-a survey. Proc. IEEE

84, 8 (1996), 1090–1123.
[72] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.

stanford.edu/data.
[73] Jinbao Li and Jianzhong Li. 2005. Data sampling control and compression in sensor networks. In International

Conference on Mobile Ad-Hoc and Sensor Networks. Springer, 42–51.
[74] Jinbao Li and Jianzhong Li. 2007. Data sampling control, compression and query in sensor networks. International

Journal of Sensor Networks 2, 1-2 (2007), 53–61.
[75] Jianzhong Li, Qianqian Ren, et al. 2011. Compressing information of target tracking in wireless sensor networks.

Wireless Sensor Network 3, 02 (2011), 73.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3448016.3457243
http://snap.stanford.edu/data
http://snap.stanford.edu/data

4:28 Zheng Chen et al.

[76] Jianzhong Li, Doron Rotem, and Jaideep Srivastava. 1999. Aggregation algorithms for very large compressed data
warehouses. In VLDB, Vol. 99. 651–662.

[77] JZ Li, Doron Rotem, and Harry KT Wong. 1987. A new compression method with fast searching on large databases.
(1987).

[78] Jianzhong Li and Jaideep Srivastava. 2002. Efficient aggregation algorithms for compressed data warehouses. IEEE
Transactions on Knowledge and Data Engineering 14, 3 (2002), 515–529.

[79] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019. Scaling distance labeling on
small-world networks. In Proceedings of the 2019 International Conference on Management of Data. 1060–1077.

[80] Hyeontaek Lim, Bin Fan, David GAndersen, andMichael Kaminsky. 2011. SILT: Amemory-efficient, high-performance
key-value store. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. 1–13.

[81] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen, Lufei Zhang, Torsten Hoefler,
Xiaosong Ma, Xin Liu, et al. 2018. Shentu: processing multi-trillion edge graphs on millions of cores in seconds. In
SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 706–716.

[82] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-based Community Search over Large
Directed Graphs. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2183–2197. https://doi.org/10.1145/3318464.3380587

[83] Wei Liu, Andrey Kan, Jeffrey Chan, James Bailey, Christopher Leckie, Jian Pei, and Ramamohanarao Kotagiri. 2012. On
compressing weighted time-evolving graphs. In Proceedings of the 21st ACM international conference on Information
and knowledge management. 2319–2322.

[84] Markus Lohrey, SebastianManeth, and RoyMennicke. 2013. XML tree structure compression using RePair. Information
Systems 38, 8 (2013), 1150–1167.

[85] Markus Lohrey, Sebastian Maneth, and Carl Philipp Reh. 2017. Compression of unordered XML trees. In 20th
International Conference on Database Theory (ICDT 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[86] István Lukovits. 2000. A compact form of the adjacency matrix. Journal of chemical information and computer sciences
40, 5 (2000), 1147–1150.

[87] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic:
Processing a trillion-edge graph on a single machine. In Proceedings of the Twelfth European Conference on Computer
Systems. 527–543.

[88] SebastianManeth. 2019. Grammar-Based Compression. Journal: Encyclopedia of Big Data Technologies (2019), 801–808.
[89] Sebastian Maneth and Fabian Peternek. 2015. A survey on methods and systems for graph compression. arXiv

preprint arXiv:1504.00616 (2015).
[90] Sebastian Maneth and Fabian Peternek. 2016. Compressing graphs by grammars. In 2016 IEEE 32nd International

Conference on Data Engineering (ICDE). IEEE, 109–120.
[91] Sebastian Maneth and Fabian Peternek. 2018. Grammar-based graph compression. Information Systems 76 (2018),

19–45.
[92] Sebastian Maneth and Fabian Peternek. 2020. Constant delay traversal of grammar-compressed graphs with bounded

rank. Information and Computation 273 (2020), 104520.
[93] Davide Marengo, Cornelia Sindermann, Jon D Elhai, and Christian Montag. 2020. One social media company to rule

them all: Associations between use of Facebook-owned social media platforms, sociodemographic characteristics,
and the Big Five personality traits. Frontiers in psychology 11 (2020), 936.

[94] Hossein Maserrat and Jian Pei. 2010. Neighbor query friendly compression of social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining. 533–542.

[95] Hossein Maserrat and Jian Pei. 2012. Community preserving lossy compression of social networks. In 2012 IEEE 12th
International Conference on Data Mining. IEEE, 509–518.

[96] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 1–39.

[97] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability! But at what {COST}?. In 15th Workshop on
Hot Topics in Operating Systems (HotOS {XV}).

[98] Kinichi Mitsui. 1993. Information retrieval based on rank-ordered cumulative query scores calculated from weights
of all keywords in an inverted index file for minimizing access to a main database. US Patent 5,263,159.

[99] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: understanding graph
computing in the context of industrial solutions. In SC’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[100] Craig G Nevill-Manning and Ian H Witten. 1997. Identifying hierarchical structure in sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research 7 (1997), 67–82.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3318464.3380587

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:29

[101] Craig G Nevill-Manning and Ian H Witten. 1997. Linear-time, incremental hierarchy inference for compression. In
Proceedings DCC’97. Data Compression Conference. IEEE, 3–11.

[102] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. 1996. Pthreads programming: A POXIS standard for
better multiprocessing. Vol. 19. O’reilly Sebastopol, CA, USA.

[103] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin. 2020. Progressive Top-K Nearest
Neighbors Search in Large Road Networks. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,
1781–1795. https://doi.org/10.1145/3318464.3389746

[104] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank citation ranking: Bringing
order to the web. Technical Report. Stanford InfoLab.

[105] Sankar K Pal and Sushmita Mitra. 1992. Multilayer perceptron, fuzzy sets, classifiaction. (1992).
[106] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D Owens. 2017. Multi-GPU graph analytics. In 2017

IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 479–490.
[107] Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2021. Exploring

data analytics without decompression on embedded GPU systems. IEEE Transactions on Parallel and Distributed
Systems 33, 7 (2021), 1553–1568.

[108] Alberto Parravicini, Rhicheek Patra, Davide B. Bartolini, and Marco D. Santambrogio. 2019. Fast and Accurate Entity
Linking via Graph Embedding. In Proceedings of the 2nd Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA), Amsterdam, The Netherlands, 30 June 2019, Akhil
Arora, Arnab Bhattacharya, and George H. L. Fletcher (Eds.). ACM, 10:1–10:9. https://doi.org/10.1145/3327964.3328499

[109] Punit Patel and Kanu Patel. 2015. A Review of PageRank and HITS Algorithms. International Journal of Advance
Research in Engineering, Science & Technology (IJAREST) 2, 1 (2015), 1–4.

[110] Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. 2021. LightNE: A Lightweight Graph
Processing System for Network Embedding. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2281–2289.
https://doi.org/10.1145/3448016.3457329

[111] Erhard Rahm and Hong Hai Do. 2000. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23, 4
(2000), 3–13.

[112] Qianqian Ren, Jianzhong Li, and Jinbao Li. 2007. An efficient clustering-based method for data gathering and
compressing in sensor networks. In Eighth ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD 2007), Vol. 1. IEEE, 823–828.

[113] Ryan A Rossi and Rong Zhou. 2018. Graphzip: a clique-based sparse graph compression method. Journal of Big Data
5, 1 (2018), 1–14.

[114] Kunihiko Sadakane. 2007. Compressed suffix trees with full functionality. Theory of Computing Systems 41, 4 (2007),
589–607.

[115] Quan Shi, Yanghua Xiao, Nik Bessis, Yiqi Lu, Yaoliang Chen, and Richard Hill. 2012. Optimizing K2 trees: A case for
validating the maturity of network of practices. Computers & Mathematics with Applications 63, 2 (2012), 427–436.

[116] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming. 135–146.

[117] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and faster: Parallel processing of compressed
graphs with Ligra+. In 2015 Data Compression Conference. IEEE, 403–412.

[118] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. 2014. Operating system concepts essentials. Wiley Hoboken.
[119] Harmanjit Singh and Richa Sharma. 2012. Role of adjacency matrix & adjacency list in graph theory. International

Journal of Computers & Technology 3, 1 (2012), 179–183.
[120] Jie Sun, Erik M Bollt, and Daniel Ben-Avraham. 2008. Graph compression—save information by exploiting redundancy.

Journal of Statistical Mechanics: Theory and Experiment 2008, 06 (2008), P06001.
[121] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and Guotong Xie. 2015. Sqlgraph:

An efficient relational-based property graph store. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 1887–1901.

[122] Yizhou Sun. 2020. Graph Neural Networks for Graph Search. In GRADES-NDA’20: Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics
(NDA), Portland, OR, USA, June 14, 2020, Akhil Arora, Semih Salihoglu, and Nikolay Yakovets (Eds.). ACM, 1:1.
https://doi.org/10.1145/3398682.3399159

[123] Frank Tetzel, Romans Kasperovics, and Wolfgang Lehner. 2019. Graph Traversals for Regular Path Queries. In
Proceedings of the 2nd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA), Amsterdam, The Netherlands, 30 June 2019, Akhil Arora, Arnab Bhattacharya, and
George H. L. Fletcher (Eds.). ACM, 5:1–5:8. https://doi.org/10.1145/3327964.3328494

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3318464.3389746
https://doi.org/10.1145/3327964.3328499
https://doi.org/10.1145/3448016.3457329
https://doi.org/10.1145/3398682.3399159
https://doi.org/10.1145/3327964.3328494

4:30 Zheng Chen et al.

[124] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai Zeldovich. 2013. Processing analytical queries
over encrypted data. (2013).

[125] Lucien DJ Valstar, George HL Fletcher, and Yuichi Yoshida. 2017. Landmark indexing for evaluation of label-constrained
reachability queries. In Proceedings of the 2017 ACM International Conference on Management of Data. 345–358.

[126] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-prod2vec: Product embeddings using side-information
for recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems. 225–232.

[127] Alina Vretinaris, Chuan Lei, Vasilis Efthymiou, Xiao Qin, and Fatma Özcan. 2021. Medical Entity Disambiguation
Using Graph Neural Networks. In Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA, 2310–2318. https:
//doi.org/10.1145/3448016.3457328

[128] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui, Yupu Yang,
Bowen Sun, and Zhenyu Guo. 2021. APAN: Asynchronous Propagation Attention Network for Real-time Temporal
Graph Embedding. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2628–2638. https://doi.org/10.
1145/3448016.3457564

[129] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D Owens. 2016. Gunrock: A
high-performance graph processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 1–12.

[130] Ye Wang, Qing Wang, Henning Koehler, and Yu Lin. 2021. Query-by-Sketch: Scaling Shortest Path Graph Queries
on Very Large Networks. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1946–1958. https:
//doi.org/10.1145/3448016.3452826

[131] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso. 2022. FpgaNIC: An FPGA-based Versatile
100Gb SmartNIC for GPUs. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 967–986.

[132] Stanley Wasserman, Katherine Faust, et al. 1994. Social network analysis: Methods and applications. (1994).
[133] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’networks. nature 393, 6684 (1998),

440–442.
[134] Jack Waudby, Benjamin A. Steer, Arnau Prat-Pérez, and Gábor Szárnyas. 2020. Supporting Dynamic Graphs and

Temporal Entity Deletions in the LDBC Social Network Benchmark’s Data Generator. In GRADES-NDA’20: Proceedings
of the 3rd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network
Data Analytics (NDA), Portland, OR, USA, June 14, 2020, Akhil Arora, Semih Salihoglu, and Nikolay Yakovets (Eds.).
ACM, 8:1–8:8. https://doi.org/10.1145/3398682.3399165

[135] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013. Graphx: A resilient distributed graph
system on spark. In First international workshop on graph data management experiences and systems. 1–6.

[136] Konstantinos Xirogiannopoulos and Amol Deshpande. 2017. Extracting and analyzing hidden graphs from relational
databases. In Proceedings of the 2017 ACM International Conference on Management of Data. 897–912.

[137] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande. 2015. Graphgen: Exploring interesting
graphs in relational data. Proceedings of the VLDB Endowment 8, 12 (2015), 2032–2035.

[138] Chi Yang, Xuyun Zhang, Changmin Zhong, Chang Liu, Jian Pei, Kotagiri Ramamohanarao, and Jinjun Chen. 2014. A
spatiotemporal compression based approach for efficient big data processing on cloud. J. Comput. System Sci. 80, 8
(2014), 1563–1583.

[139] Feng Zhang, Yihua Hu, Haipeng Ding, Zhiming Yao, Zhewei Wei, Xiao Zhang, and Xiaoyong Du. 2022. Optimizing
random access to hierarchically-compressed data on GPU. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, 233–247.

[140] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2021. G-TADOC:
Enabling efficient GPU-based text analytics without decompression. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, 1679–1690.

[141] Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixiang Li, and Xiaoyong Du. 2022.
CompressDB: Enabling Efficient Compressed Data Direct Processing for Various Databases. In Proceedings of the 2022
International Conference on Management of Data. 1655–1669.

[142] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018. Efficient document analytics
on compressed data: Method, challenges, algorithms, insights. Proceedings of the VLDB Endowment 11, 11 (2018),
1522–1535.

[143] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018. Zwift: A programming framework
for high performance text analytics on compressed data. In Proceedings of the 2018 International Conference on
Supercomputing. 195–206.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3448016.3457328
https://doi.org/10.1145/3448016.3457328
https://doi.org/10.1145/3448016.3457564
https://doi.org/10.1145/3448016.3457564
https://doi.org/10.1145/3448016.3452826
https://doi.org/10.1145/3448016.3452826
https://doi.org/10.1145/3398682.3399165

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression 4:31

[144] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2020. Enabling efficient random access
to hierarchically-compressed data. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1069–1080.

[145] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022. POCLib: a high-performance framework
for enabling near orthogonal processing on compression. IEEE Transactions on Parallel and Distributed Systems 33, 2
(2022), 459–475.

[146] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang, Zheng Chen, Onur Mutlu, Wenguang Chen, and Xiaoyong Du.
2021. TADOC: Text analytics directly on compression. The VLDB Journal 30, 2 (2021), 163–188.

[147] Feng Zhang, Jidong Zhai, Bo Wu, Bingsheng He, Wenguang Chen, and Xiaoyong Du. 2019. Automatic irregularity-
aware fine-grained workload partitioning on integrated architectures. IEEE Transactions on Knowledge and Data
Engineering (2019).

[148] Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas, and Bin Cui. 2020. Reliable Data
Distillation on Graph Convolutional Network. In Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1399–1414. https:
//doi.org/10.1145/3318464.3389706

[149] Wentao Zhang, Yu Shen, Yang Li, Lei Chen, Zhi Yang, and Bin Cui. 2021. ALG: Fast and Accurate Active Learning
Framework for Graph Convolutional Networks. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
2366–2374. https://doi.org/10.1145/3448016.3457325

[150] Xiaofei Zhang, M. Tamer Özsu, and Lei Chen. 2020. ELite: Cost-effective Approximation of Exploration-based
Graph Analysis. In GRADES-NDA’20: Proceedings of the 3rd Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA), Portland, OR, USA, June 14, 2020, Akhil Arora,
Semih Salihoglu, and Nikolay Yakovets (Eds.). ACM, 6:1–6:10. https://doi.org/10.1145/3398682.3399164

[151] Yu Zhang, Feng Zhang, Hourun Li, Shuhao Zhang, and Xiaoyong Du. 2023. CompressStreamDB: Fine-Grained
Adaptive Stream Processing without Decompression. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE). IEEE.

[152] Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph processing on GPUs. IEEE Transactions on Parallel
and Distributed Systems 25, 6 (2013), 1543–1552.

[153] Amelie Chi Zhou, Juanyun Luo, Ruibo Qiu, Haobin Tan, Bingsheng He, and Rui Mao. 2022. Adaptive Partitioning for
Large-Scale Graph Analytics in Geo-Distributed Data Centers. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 2818–2830. https://doi.org/10.1109/ICDE53745.2022.00256

[154] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A computation-centric distributed
graph processing system. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16).
301–316.

[155] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15). 375–386.

[156] Yuqing Zhu, Jing Tang, and Xueyan Tang. 2020. Pricing Influential Nodes in Online Social Networks. Proc. VLDB
Endow. 13, 10 (2020), 1614–1627. https://doi.org/10.14778/3401960.3401961

Received April 2022; revised July 2022; accepted August 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 4. Publication date: May 2023.

https://doi.org/10.1145/3318464.3389706
https://doi.org/10.1145/3318464.3389706
https://doi.org/10.1145/3448016.3457325
https://doi.org/10.1145/3398682.3399164
https://doi.org/10.1109/ICDE53745.2022.00256
https://doi.org/10.14778/3401960.3401961

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Graph Compression
	2.2 Redundancies in Real-World Graphs
	2.3 Rule-Based Compression

	3 Conceptual Framework
	3.1 Basic Idea of CompressGraph
	3.2 Graph Traversal Modeling

	4 System Design
	4.1 Overview
	4.2 CompressGraph Engine
	4.3 Inter-Level Synchronization-Free Graph Traversal
	4.4 In-Edge Support Handling Write Conflicts

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance Benefits
	6.3 Space savings
	6.4 Benefit Breakdown
	6.5 Design Tradeoffs in Space and Time
	6.6 Additional Baselines and Discussion

	7 Related work
	8 Conclusion
	References

