
7772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Cloud-Native Databases: A Survey
Haowen Dong , Chao Zhang , Guoliang Li , Fellow, IEEE, and Huanchen Zhang

(Survey Paper)

Abstract—Cloud databases have been widely accepted and de-
ployed due to their unique advantages, such as high elasticity,
high availability, and low cost. Many new techniques, such as
compute-storage disaggregation and the log is the database, have
been proposed recently to seek for higher elasticity and lower cost.
To better harness the power of cloud databases, it is crucial to
study and compare the pros and cons of their key techniques.
In this paper, we offer a comprehensive survey of cloud-native
databases. Particularly, we investigate and summarize the state-of-
the-art cloud-native OLTP and OLAP databases, respectively. In
the first part, we discuss three types of architectures of cloud-native
OLTP database. Then we introduce their key techniques including
data placement strategy, storage layer consistency, compute layer
consistency, multi-layer recovery, and HTAP optimization. In the
second part, we present two kinds of architectures of cloud-native
OLAP databases. Then we take a deep dive into their key techniques
regarding storage management, query processing, serverless com-
puting, data protection, and machine learning in databases. Finally,
we discuss the research challenges and opportunities.

Index Terms—Cloud-native databases, database architecture,
disaggregation, log is data, serverless.

I. INTRODUCTION

TRADITIONAL database vendors provide service-level ob-
jective (SLO), e.g., 99.99% high availability, and signs Ser-

vice Level Agreement (SLA) with database customers. Nowa-
days, cloud database vendors [12], [22], [25], [27], [94] are
increasingly proliferating because of their better SLOs, such as
high elasticity, high availability, and cost-efficient services [1],
[50], [75]. As a result, many on-premise databases are moving
toward cloud data service.

Both customers and cloud vendors can benefit from cloud
databases. From the perspective of customers, cloud databases
own four main advantages as follows.

1) Elasticity: The workloads of the cloud customers usually
change periodically (e.g., peaks and valleys), and the cloud
customers do not need to worry about the computing re-
sources and the cloud databases can dynamically schedule
the resources by benefiting from the underlying cloud
services.

Manuscript received 28 February 2023; revised 26 April 2024; accepted
29 April 2024. Date of publication 27 June 2024; date of current version 13
November 2024. This paper was supported in part by the National Key R&D
Program of China under Grant 2023YFB4503600, in part by the NSF of China
under Grant 61925205, under Grant 62232009, and under Grant 62102215, in
part by Zhongguancun Lab, CCF-Huawei Populus Grove Challenge Fund under
Grant CCF-HuaweiDBC202309. Recommended for acceptance by A. Bonifati.
(Corresponding author: Haowen Dong.)

The authors are with Tsinghua University, Beijing 100084, China (e-mail:
dt.dtech.dhw@gmail.com).

Digital Object Identifier 10.1109/TKDE.2024.3397508

2) Availability: The cloud customers have high-availability
requirements to tolerate computing-server failures and
data-center failures. Cloud databases maintain multiple
replicas to guarantee high availability. Besides, the cross-
region deployment of the data center ensures quick recov-
ery from extreme disasters such as earthquakes and power
outages.

3) Flexibility: The cloud customers do not want to maintain
the hardware and software, and the out-of-box feature of
the cloud databases eases the burden of the complicated
deployment process. Moreover, the automated manage-
ment service reduces customers’ operation and mainte-
nance costs.

4) Low Price: The customers only want to pay for the
on-demand resources and service costs rather than the
provisioned cost in a fixed period. Cloud databases adopt
the pay-as-you-go pricing model to enable this.

In terms of cloud vendors, cloud databases also bring three
merits as follows.

1) Expanded Market Scale: Due to high maintenance cost
of on-premise databases, many small businesses and in-
dividuals who lack professional maintenance skills or
teams cannot use databases. Due to the out-of-the-box
flexibility of cloud databases, small companies can use
cloud databases, and thus expand the market scale.

2) Reduced Unit Cost: Thanks to the large-scale data centers,
it realizes the scale effect and reduces the unit cost by
sharing the resources among the users. The operation and
maintenance cost is reduced by benefiting from the scale
effect.

3) Improved Resource Utilization: When using on-premise
databases, the hardware resources are bounded to their
customers, leaving the resources to be idle when it comes
to a fluctuating workload. With cloud databases, the sys-
tems will dynamically allocate resources to different users
according to their workload status, which improves re-
source utilization.

The development of cloud databases can be divided into two
stages: 1) the stage of cloud-hosting databases and 2) the stage
of the cloud-native databases.

At the stage of cloud-hosting databases, customers can choose
the offered data service by the cloud vendors (i.e., databases as a
service (DBaaS)), then pay for the on-demand resource fee based
on the service level agreement (SLA) [65], [67]. However, those
providers regard the deployed databases as a general kind of
software without any underlying optimizations, and customers

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-5901-5202
https://orcid.org/0000-0002-8924-7629
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0009-0001-4821-1558
mailto:dt.dtech.dhw@gmail.com

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7773

Fig. 1. A comparison of cloud-hosting architecture and cloud-native architec-
ture.

must provision the resources and tune the database performance
on their own. Moreover, the elastic scheduling capability of
cloud services cannot be fully utilized as the resources are
scheduled at an instance level.

Cloud-native databases are proposed to improve the elasticity
and reduce the cost of cloud-hosting databases. The foremost
innovation is the disaggregation of compute and storage ar-
chitecture [94], [96], which decouples the storage from the
compute nodes, then connects the compute nodes to shared
cloud storage through a high-speed network. On the one hand,
the disaggregation architecture enables customers to scale the
compute and storage resources independently, thereby bringing
more elasticity for the customers. On the other hand, providers
can alleviate the write amplification problem by only writing
the log (without writing dirty pages) to the storage layer and the
dirty pages are replayed based on the log in the storage layer
(i.e., the log is the database).

As shown in Fig. 1, compared with cloud-hosting architec-
tures, the computing and storage resources coupled in the virtual
machine can be split to achieve independent expansion, which
improves the elasticity, availability, and efficiency of the system.

Since cloud applications have different types of workloads,
e.g., write-heavy or read-heavy, there has emerged two types of
cloud-native databases: 1) cloud-native online transaction pro-
cessing (OLTP) databases, and 2) cloud-native online analytical
processing (OLAP) databases. Both types of databases adopt the
disaggregation architecture, but they own disparate techniques
and face different challenges. In summary, there are five main
challenges that need to address, including log-based transac-
tion processing, multi-layer data consistency, failure recovery,
cache-based query processing, and serverless computing.

Challenge 1. Log-based Transaction Processing: Since the
storage is disaggregated, it is challenging to support efficient
transaction processing based on the cloud storage. As the log
becomes the first-citizen, it is rather hard to handle the cache
miss when the log has yet to be replayed.

Challenge 2. Multi-Layer Data Consistency: Cloud-native
OLTP databases focus on processing transactions in the cloud.
However, the main challenge is to ensure the data consistency
in the multiple layers, e.g., the compute layer, the storage layer,
or even the memory layer.

Challenge 3. Failure Recovery: For the cloud-native
databases, it is more complex to provide high availability as
each layer may occur exceptions. Thus, a major concern is how

Fig. 2. An overview of cloud-native databases.

to quickly recover the databases when facing compute/storage
node failures.

Challenge 4. Cache-based Query Processing: Cloud-native
OLAP databases target at scalable query processing with a
remote cloud storage. To reduce the network traffic, they need to
design effective caching strategies and computational pushdown
on the storage side. However, finding an optimal yet cost-
efficient query plan is challenging due to the trade-off between
performance and cost.

Challenge 5. Serverless Computing: Many cloud databases
have supported serverless computing that can dynamically
schedule resources for users’ workloads with the pause-and-
resume policy, but it is still challenging to adaptively schedule
the resources for the workloads in a query granularity [83] as
the resources are provisioned in the instance level.

Fig. 2 presents an overview of key techniques of cloud-native
databases. In this survey, we introduce the state-of-the-art tech-
niques of cloud-native OLTP and OLAP databases, respectively.
We introduce each type of cloud-native database from two
aspects. First, we introduce a taxonomy of their disaggregated
architectures. Then we present the representatives for each cat-
egory. Second, we take a deep dive into their key techniques
regarding OLTP and OLAP workloads. We summarize how
existing approaches address the above-mentioned challenges.

A. Cloud-Native OLTP Databases

1) Cloud-Native OLTP Architectures: Cloud-native OLTP
databases emphasize concurrency and low latency in transac-
tion processing. The architecture design needs to consider the
consistency of the primary and secondary nodes, the durability
and availability of the storage layer, and the efficiency of query
processing. We classify the architectures of cloud-native OLTP
databases into three categories as follows:

1) Disaggregated Compute-Storage OLTP Architecture: The
first category has a two-layer architecture, where the compute
layer processes the transactions on volatile devices, and the

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

storage layer maintains the data’s durability and availability
based on the cloud storage service.

2) Disaggregated Compute-Log-Storage OLTP Architecture:
The second category separates the data durability and availabil-
ity management by physically splitting the log storage and page
storage.

3) Disaggregated Compute-Buffer-Storage OLTP Architec-
ture: The third category adds a shared buffer layer, which
aims to improve the efficiency of data synchronization among
computing nodes and reduce the average latency of reading data
from the storage layer.

2) Cloud-Native OLTP Techniques: According to the func-
tional modules of the OLTP techniques, we categorize them into
five types:

1) Data Placement Strategy: Data placement strategy con-
siders organization of logs and data in the disaggregated archi-
tecture. We introduce two types of data placement strategies
that organize the logs and pages in the cloud. The first type
is i) coupled log-page strategy [94]. The second type is ii)
disaggregated log-page strategy [12].

2) Storage Layer Consistency: The storage layer needs to
maintain multiple data replicas to ensure high availability, which
requires the consistency of these replicas. We introduce two
types of storage layer consistency. The first type is i) quorum-
based consistency protocol [94]. The second type is ii) Paxos-
based consistency protocol [22].

3) Compute Layer Consistency: Computing layer consistency
refers to the method of updates synchronization from the primary
nodes to secondary nodes. We introduce three ways to maintain
consistency among all compute nodes. The first type is i) sync
based on persistent storage [94]. The second type is ii) sync
based on local cache status [27]. The third type is iii) sync based
on the shared remote buffer [22].

4) Multi-layer Recovery: According to the hierarchical divi-
sion in the architecture, fault recovery techniques can be divided
into three levels. The first level is i) No-Redo Recovery in the
Compute Layer [94]. The second type is ii) Two-Tier ARIES
based on Buffer Layer [115]. The third type is iii) Optimizations
in the Storage Layer [95].

5) HTAP Optimization: We discuss HTAP optimizations in
cloud-native databases, which include three types. The first type
is i) dynamic storage format transformation [35]. The second
type is ii) heterogeneous data replicas [38]. The third type is iii)
unified table storage design [78].

B. Cloud-Native OLAP Databases

1) Cloud-Native OLAP Architectures: Cloud-native OLAP
databases emphasize efficiency and throughput in analytical
query processing. The architecture design needs to consider the
elasticity of computation to support fluctuating workloads, as
well as the local cache and shared memory for efficient query
processing. The architectures of cloud-native OLAP databases
are classified into two categories as follows:

1) Disaggregated Compute-Storage OLAP Architecture: The
first category has a two-layer architecture, where the compute

layer executes the queries with the local SSDs, and the storage
layer persists the entire data with the computational pushdown.

2) Disaggregated Compute-Memory-Storage OLAP Architec-
ture: The second category owns a three-layer architecture, where
a shuffle memory pool is disaggregated to process the distributed
joins more efficiently.

2) Cloud-Native OLAP Techniques: We present five types of
cloud-native OLAP techniques.

1) Storage Management: The disaggregation of functional
modules in the cloud-native environment results in differences in
data management methods. We introduce three types of storage
management techniques. The first type is i) Metadata storage
management [25], the second type is ii) Data partitioning [15],
[37], and the third type is iii) Semi-structured data manage-
ment [25], [59], [111].

2) Query Processing: Compute nodes read data from remote
storage services, which drives the query processing optimiza-
tions to reduce network transmission. We introduce three types
of query processing techniques. The first type is i) Columnar
scan with pushdown [70], [96], [103], which aims to push
the computation into the storage side. The second type is ii)
Columnar scan with caching and pushdown [102]. The third
type is iii) Columnar scan with the shuffle memory pool [59].

3) Serverless Computing: Serverless computing intends to
make customers use the data analytical services without con-
sidering the server deployment and configuration. We introduce
two types of serverless computing methods in cloud databases.
The first type is i) Serverless with functions as a service [73],
where queries are adaptively executed based on the cloud func-
tion services. The second type is ii) Serverless with the elastic
query engine [16], which enables to perform the queries by
dynamically provisioning the query engine.

4) Data Protection: Protecting user data privacy and security
is the basis for customers to use cloud services. We present two
types of techniques: i) Software-based data protection [25] and
ii) Hardware-based data protection, e.g., the enclave in Intel
SGX [11].

5) Machine Learning: We will look at emerging cloud
database techniques for machine learning, such as Sage-
maker [55]. Moreover, we will introduce how cloud databases
can benefit from machine learning techniques [52], [53], [93].

C. Contributions

Differences with existing surveys: In this paper, we focus
on the fundamental techniques of cloud-native databases [50].
We also summarize the pros and cons of various architec-
tures and techniques. Before the emergence of cloud-native
databases, Sakr [81] reviewed cloud-hosting databases. Man-
souri et al. [58] surveyed the key techniques of cloud storage
management. Narasayya et al. [65], [66] discussed various
cloud data services. Unfortunately, existing works neglected
many fundamental techniques of cloud-native databases, such
as data consistency, data synchronization, and failure recovery.
Last but not least, we review newly-emerged techniques, such
as the cloud-native HTAP techniques, pushdown-based query
processing, and machine learning-based optimization.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7775

Fig. 3. Architectures of cloud-native OLTP databases.

To summarize, we make the following contributions:
1) We survey cloud-native databases from the perspective of

system architectures. We introduce a taxonomy of cloud-
native OLTP and OLAP databases, respectively. We also
discuss their pros and cons.

2) We summarize the key techniques of cloud-native
databases concerning the OLTP and OLAP workload.
We take a deep dive into the key techniques concerning
transaction processing, data replication, database recov-
ery, storage management, query processing, serverless
computing, data protection, and machine learning.

3) We provide new research challenges and discuss future di-
rections, including multi-writer architecture, fine-grained
serverless, SLA-aware cloud-native HTAP techniques,
and multi-cloud data service.

II. CLOUD-NATIVE OLTP ARCHITECTURES

OLTP database systems are designed for transaction pro-
cessing scenarios, which means they should guarantee ACID
properties during query processing [36]. However, the coupled
compute-storage architecture in cloud-hosting databases suf-
fers from write amplification due to coupled resource schedul-
ing [48], [94]. The disaggregated architecture designs in cloud-
native databases are introduced to solve the above problems.
According to the degree of separation management of storage
services and the use of remote memory services, the archi-
tectures of cloud-native OLTP databases can be classified into
three categories (shown in Fig. 3): 1) Disaggregated Compute-
Storage OLTP Architecture, 2) Disaggregated Compute-Log-
Storage OLTP Architecture and 3) Disaggregated Compute-
Buffer-Storage OLTP Architecture.

A. Disaggregated Compute-Storage OLTP

1) Design Motivation: This category of databases adopts a dis-
aggregation architecture that separates the compute and storage
modules in the cloud. The design motivation of this architecture
can be concluded as the following three aspects. i) Elasticity.
it aims to schedule the computing and storage resources in-
dependently, which could avoid the waste of resources caused
by resource coupling in cloud-hosting databases. ii) Efficiency.

Dirty page flushing is eliminated under this architecture, which
significantly reduces the write amplification. iii) Availability.
Because of the multiple disaggregated modules, it must provides
a multi-level failure tolerance to reduce the average recovery
time compared to instance-level recovery.

2) Data Access Path: The data access path is different from
the cloud-hosting databases. The primary node will only transfer
redo logs and metadata to the storage layer during the data
writing process. The storage nodes will asynchronously replay
the logs in the background to update records, avoid dirty page
transmission, and relieve the network bottleneck in the cloud
environment. Nevertheless, reading data from pages without the
dirty page flush-back may suffer from the update delay caused
by the asynchronous log replaying. Therefore, the databases
organize the redo logs into the linked list structure in the order
of log serial number (LSN), which allows the storage nodes to
read the records by directly analyzing the redo logs.

3) Pros and Cons: Compared with cloud-hosting databases,
cloud-native databases have the following advantages. i) Low
Write Latency. The write operation can commit once the redo
logs are persistent without waiting for the updates of record
pages. ii) Reduced Write Amplification. Since the data update
is pushed down to the storage layer, which avoids the dirty page
transmission and relieves the network pressure. iii) Improved
Elasticity. Computing and storage are supported by different
cloud services. The independent scheduling process improves
the system’s elasticity. The limitation of this architecture is
the read latency. The compute nodes send read requests to the
storage layer when the cache misses, which may suffer extra log
chain analyzing latency.

4) Representatives: The representative databases with the
disaggregated compute-storage architecture include Aurora [94]
and AlloyDB [35]. These two systems use a similar system ar-
chitecture design but with different technique implementations.
For the common part, they implement the same log processing
techniques, like “the log is the database” in Aurora and “Log
Processing Service” in AlloyDB. For the difference, Aurora
optimizes storage management based on Quorum mechanisms
by extending data replicas; it also implements non-blocking
failure recovery. While AlloyDB optimizes the HTAP workload
via dynamic data format transformation in the compute nodes.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

B. Disaggregated Compute-Log-Storage OLTP

1) Design Motivation: This category of databases extra sep-
arates the storage service for logs and pages based on the first
category of databases. Logs guarantee the persistence of updates,
while pages provide high-efficiency query processing. The de-
sign motivations can be concluded as two aspects. i) Efficiency.
First, a fast cloud storage service for logs can significantly reduce
the write commit latency. Second, standard cloud storage service
for pages can avoid high costs. ii) Elasticity. It can improve the
systems’ elasticity if these two storage services are scheduled
independently.

2) Data Access Path: The disaggregation of log and page stor-
age influences the data access path. This architecture separates
the data read and write path. Compute nodes only write to log
storage and read from page storage. The storage layer handles the
synchronizations of log and page storage internally. However,
due to the asynchronous updates and the network latency across
different storage services, the page updates could lag in storage
nodes.

3) Pros and Cons: Compared with the first category of
databases, the disaggregated compute-log-storage architecture
has the following advantages. i) Low Write Latency. The write
commits latency further declines with the help of the fast cloud
storage service for logs. ii) Improved Elasticity. The databases’
elasticity is improved with the disaggregation of different stor-
age services. Standard storage for pages has a relatively-low cost,
and fast storage for logs improves the transaction processing per-
formance. The limitation of this architecture is the synchronize
latency. The compute nodes could be blocked and continue to
wait for the synchronization in storage nodes when data lags.

4) Representatives: The representative databases with the
disaggregated compute-log-storage architecture include Azure
HyperScale [12] and Huawei Taurus Database [27]. The main
differences between these two systems are the storage manage-
ment method. Taurus adds Storage Abstract Layer (SAL) [27]
in each compute node to handle the data access on the stor-
age layer. While HyperScale implements XLOG [12] service
to take responsibility for similar functions. The difference is
that the XLOG service is separated from compute layer as
an independent layer, which achieves further independence on
manageability and fault tolerance.

C. Disaggregated Compute-Buffer-Storage OLTP

1) Design Motivation: This category of databases expands the
shared buffer for databases. The buffer is supported by remote
shared memory service [98], which provides much lower latency
data access than the persistent storage service. The design moti-
vation can be concluded in three aspects. i) Efficiency. The read
latency can be significantly reduced with the remote memory. ii)
Throughput. If all the compute nodes share the remote buffer, it
could reduce the duplicate read requests from different compute
nodes. iii) Elasticity. Since the memory resource allocation
is independent of persistent storage service, it could further
improve the elasticity of databases.

2) Date Access Path: The shared buffer provides an additional
layer of buffer on top of the local cache in each compute node.

Unlike the local cache, the buffer is shared by all compute
nodes, which allows the primary node to transfer the updates to
secondary nodes. Besides, since the buffer is shared by multiple
nodes, it could become the bottleneck of the network. Hence,
the shared buffer will not flush back dirty pages, and the redo
logs still guarantee the update’s durability.

3) Pros and Cons: Compared with the first two categories of
databases, the disaggregated compute-buffer-storage architec-
ture has the following advantages. i) Low Read Latency. The
read latency is significantly reduced when data is cached in the
remote buffer. ii) Improved Read Throughput. The number of
duplicate read from different compute nodes is reduced since all
nodes share the buffer. iii) Improved Elasticity. Memory disag-
gregation enables the elastic scheduling of memory resources,
hence the higher elasticity. The limitation of this architecture is
the high network cost. Fully utilizing the performance of remote
memory requires an expensive RDMA network for low network
latency. Besides, it has a high requirement of network bandwidth
since all the compute nodes need to share the same buffer.

4) Representatives: The representative databases with the
disaggregated compute-buffer architecture include Alibaba Po-
larDB Serverless [22], which builds a shared buffer for all
compute nodes based on the remote memory service. The data
updates from the primary node can be written to the shared buffer
layer and can be synchronized to secondary nodes, which im-
proves data synchronization performance. The main challenge is
to keep the data consistent between the primary node and shared
buffer, which will be discussed in the next section.

D. Summary of the Cloud-Native OLTP Architectures

Table I presents a comparison of the cloud-native OLTP ar-
chitectures concerning read and write performance, availability,
elasticity, and cost.

1) Disaggregated compute-storage: These databases don’t
require fast storage and remote memory service, which have the
lowest cost. Particularly, the primary node only writes the log to
the storage layer, which is more efficient than the cloud-hosting
architecture. Reading records requires additional log replay,
which affects read efficiency.

2) Disaggregated compute-log-storage: These databases re-
quire fast storage service to reduce log write latency, increasing
costs but improving write performance. Databases’ elasticity
and availability are higher than the first category because of the
further separation of storage services.

3) Disaggregated compute-buffer-storage: These databases
require remote memory service with low network latency, which
demands an expensive RDMA network. Hence, they have a high
cost. Nevertheless, they provide a better read performance with
the shared remote buffer. Since the remote memory service is
independent of computing and storage, it enhances the system’s
elasticity. Besides, the remote buffer can accelerate the recovery
of the compute layer, which improves the availability as well.

III. CLOUD-NATIVE OLTP TECHNIQUES

This section will introduce the fundamental techniques in
cloud-native OLTP databases. We classify them into five groups:

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7777

TABLE I
A CLASSIFICATION OF CLOUD-NATIVE OLTP DATABASES BASED ON THE ARCHITECTURE

TABLE II
AN OVERVIEW OF KEY TECHNIQUES OF CLOUD-NATIVE OLTP DATABASES

Fig. 4. An overview of cloud-native OLTP techniques.

data placement strategy, storage layer consistency, compute
layer consistency, multi-layer recovery, and HTAP optimization.
The relationship between these five parts is depicted in Fig. 4.
Data placement strategy refers to the data organization and
placement methods in the cloud. As there are multiple instances
in both the storage layer and compute layer to ensure high avail-
ability, storage layer consistency and compute layer consistency
care about the consistent protocols in the cloud. Multi-layer
recovery mechanisms are designed to provide a fine-grained
method to recover the failure in multiple layers. Finally, HTAP
optimizations add the OLAP support based on the original OLTP
mechanism. Table II summarizes the main approaches in each
group, as well as their advantages and limitations.

A. Data Placement Strategy

In cloud-native databases, the data placement strategy refers
to organizing different data types in databases, mainly focusing
on the logs and pages. The data placement strategy determines
the transaction processing workflow. They are influenced by the
architecture design, which can be categorized as 1) Coupled

Page-Log Placement Strategy and 2) Disaggregated Page-Log
Placement Strategy. For the former type, a unified cloud stor-
age service supports log and page storage, which can provide
physical correlation to reduce network pressure. The coupled
placement strategy is used in disaggregated compute-storage ar-
chitecture. For the latter one, the disaggregated placement strat-
egy is used in disaggregated compute-log-storage architecture.
Isolated cloud storage services support log and page storage,
which separates the read and write process of transactions to
achieve both low write latency and high read throughput.

1) Coupled Page-Log Placement Strategy: In the cloud-
native OLTP databases, redo logs keeps the updating history,
which means any record at any database version can be analyzed
from the redo logs. Hence, databases can directly load records
from redo logs. Unlike traditional databases that read records
through data pages, the coupled page-log placement strategy
uses the same cloud storage service to store the log and page data.
The fundamental difference lies in the data processing process
within the storage layer, summarized as “the log is the database.”

As shown in Fig. 5, the same storage node saves pages and
redo logs simultaneously. The data update from the compute
layer only requires the storage node to complete the persistence
of the redo log. Thus, the dirty pages will not flush back to the
storage layer, which significantly reduces the write amplification
in cloud-hosting architectures due to the updates of multiple
replicas. A read operation from compute layer requires the
storage node to load the record with a specific version from
the redo logs. However, the overhead of loading records will
increase with the growth of historical data, most of which has
already expired. Therefore, the page materialization controls the
storage capacity and the read time by discarding expired redo
logs. This process is done asynchronously in the background
of the storage node, which avoids the update delay of direct

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 5. The coupled data placement strategy.

page updating. As shown in Fig. 5, update requests on value
X will not be directly written into the page (Page k) to which it
belongs. Instead, the database will generate the redo log (L9010)
and append it to the storage node. During the read requests, the
storage node will ignore the redo logs later than the transaction
(version T). The page materialization will consume the redo logs
and update the page, which reduces the length of log chains and
accelerate the read operations.

In summary, this strategy has the following advantages: 1)
Reduced write amplification. Dirty pages do not flush to the
storage layer, significantly reducing network pressure. 2) Re-
duced update delay. Storage nodes can directly load records from
log data, which avoids the update delay of page data. The main
limitation of this strategy is the extra process of redo log analysis
during the reading process.

2) Disaggregated Page-Log Placement Strategy: Pages and
logs stored in persistent storage have different responsibilities in
the database system. Pages can directly read a specific version of
the record, which is mainly used in the reading process. Besides,
it guarantees the availability of the database. In contrast, logs
can be written to disk sequentially, which is mainly used in the
reading process and guarantees the durability of the transac-
tions. The disaggregated page-log storage placement strategy
places the pages and logs based on their different features. The
fundamental difference between this strategy and coupled one
can be summarized as “the disaggregation of availability and
durability.”

As shown in Fig. 6, logs and pages are persisted in separated
storage using the cloud storage service. Since the data update
from compute layer only requires the persistence of the logs, the
compute layer only needs to write the redo logs to the log storage,
which is supported by fast storage services and gets lower write
latency. At the same time, pages will be stored in standard cloud
storage services to reduce the cost. The update logs will be
batched asynchronously to page storage. Considering the pos-
sible unavailability of page storage nodes, the log transferring
does not require all page storage nodes to complete the sync.
The nodes inside the page store supplement these missing logs
from other nodes through the Gossip protocol [24].

Fig. 6. The disaggregated data placement strategy.

Compared with the coupled strategy, this method has the
following advantages: 1) Reduced data write latency. The log
persistence is backed by fast cloud storage, which improves the
write performance. 2) Better elasticity. The scheduling of storage
services is independent, enhancing the system’s elasticity. The
main limitation of this strategy is the larger read latency caused
by synchronization across storage services when the cache
misses.

B. Storage Layer Consistency

In cloud-native databases, storage layer consistency tech-
niques are used to maintain the consistency among multiple
data replicas in the storage layer. These techniques are based on
original distributed systems protocols with specific optimization
for cloud environments, which can be categorized as 1) Quorum-
based Protocol and 2) Paxos-based Protocol. The quorum-based
protocol is derived from the quorum algorithm [89] with some
mechanisms to enhance consistency. In comparison, the Paxos-
based protocol is derived from the Paxos-like algorithm (in-
cluding Paxos [47] & Raft [68]) with customized mechanisms
to improve the concurrency.

1) Quorum-Based Protocol: Quorum-based voting [89] is a
classic method to guarantee the consistency in the distributed
systems. The quorum algorithm sets the minimum voting num-
ber that a distributed transaction has to obtain, which is then used
to solve the read-write and write-write conflicts among storage
nodes. Migrating the quorum algorithm to the cloud environment
mainly faces two challenges: 1) high availability requirement
and 2) low recovery latency.

For the first challenge, most distributed systems implement
the quorum algorithm with three data replicas, which provide
single-node fault tolerance. However, data centers for cloud
service are deployed geographically isolated and require ex-
treme availability [34]. Therefore, Aurora increases the number
of replicas for improving the system’s reliability [94]. Cloud
services can be divided into multiple fault-tolerant independent
regions through the isolated physical deployment. Hence, the

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7779

probability of simultaneous failure in different regions is ex-
tremely small. Based on the above facts, the cloud databases
can maintain two replicas in three regions to achieve “region +
1”-level fault tolerance. Even if a single region fails, at least four
replicas still run normally to ensure high availability.

For the second challenge, a possible solution of reducing
failure recovery time is to prepare a new replica before the system
breakdowns. In the case of multiple replicas, the database can
migrate data in advance and can generate a backup instance
after a single replica is abnormal. Since the data migration is
performed asynchronously, the backup instance will not replace
the abnormal one immediately due to the high migration cost.
Instead, they will run simultaneously and be controlled by the
quorum set mechanism [95]. Backup and abnormal instances and
the rest of the normal replicas form two quorum sets. Multiple
sets are managed in a logical “or” manner. Query processing only
requires at least one set to complete. Instances with long-term
exceptions will be removed, and the database will discard the
quorum sets containing such instances.

The advantage of quorum-based protocol is the high con-
currency supported by the simple algorithm workflow. The
limitation is that quorum-based protocols do not guarantee lin-
earizability. Replicas implement extra gossip protocols to fill up
the missing updates caused by temporary exceptions in certain
replicas.

2) Paxos-Based Protocol: Paxos [46], [47] is a family of
protocols to reach the consensus in a network of unreliable or
fallible participants. Since the Raft protocol [68] can be regarded
as the simplified Paxos with stronger assumptions, we categorize
all methods derived from Paxos and Raft as Paxos-like protocols.
Classical Paxos-like algorithms strictly follow the linearization
process, which limits the concurrency of transaction process-
ing. Therefore, how to improve the concurrency is the most
important problem in applying the Paxos-like algorithms to the
cloud-native databases.

Traditional databases require logs to be committed in a strict
order, which means the previous logs must be committed suc-
cessfully. Such a mechanism limits the concurrency due to the
strict committing order. ParallelRaft [21] makes two optimiza-
tions to improve the performance. Out-of-order acknowledging
and committing are allowed in ParallelRaft when the writing
ranges of log entries are not overlapping, which is considered
not conflicted. Besides, ParallelRaft optimizes the catch-up pro-
cesses for lagging followers to re-synchronize with the leader.

The advantage of paxos-based protocol is the linearizable
features supported by the Paxos-like algorithms. The limitation
is that Paxos-based protocols limit the system’s concurrent
processing efficiency, which requires customized optimizations
such as out-of-order committing.

C. Compute Layer Consistency

In cloud-native databases, compute layer adopts the “single-
writer, multi-reader” architecture. That is, the primary node
handles update queries and syncs the data to secondary nodes.
All the secondary nodes are read-only and just update their status
to the primary node. The synchronization process requires it

Fig. 7. Compute layer synchronization.

to be low-latency and high-reliable, which can be categorized
into three types: 1) Persistent storage based, 2) Local cache
based, and 3) Remote shared buffer based. Notice that metadata
synchronization always adopts direct transmission, and the data
size is much smaller than log and page data. Therefore, this part
mainly focuses on the synchronization of log and page data.

1) Persistent Storage Based Synchronization: The first syn-
chronization method is based on the persistent storage. As shown
in Fig. 7(a), the primary node transfers the redo logs to the
storage layer. Combining the data placement strategy, the dirty
pages in the primary node never flush back to the storage layer.
The storage layer internally replays the redo logs to update the
data pages. Since all the compute nodes share the storage service,
the secondary nodes receive the updates once the corresponding
logs have been replayed in the storage layer. The single-writer
architecture only allows one primary node to update data at any
time, thereby eliminating the possibility of write-write conflicts
and guaranteeing strong data consistency. However, the network
transmission that crosses different services suffers from long net-
work latency. Besides, as the logs are replayed asynchronously,
it significantly increases the update delay of secondary nodes.

2) Local Cache Based Synchronization: The second syn-
chronization method is based on the local cache status in sec-
ondary nodes. This method aims to directly update the cache
data of the secondary node and clear its dirty pages. As shown
in Fig. 7(b), the primary node directly transfers redo logs to sec-
ondary nodes. The secondary nodes will update the dirty pages in
the local cache based on these logs, achieving cache consistency
with the primary node. The main challenge of this method lies
in network transmission, which mainly includes two aspects:
1) Bandwidth. The network bandwidth of the primary node is
limited, and simultaneous transmission to multiple secondary
nodes may become the bottleneck. 2) Latency. All the replicas
need to obtain the logs, which may lead to stragglers that affect
the overall performance, namely, “the bucket effect”.

For bandwidth issues, the compute layer can push down the
transmission task to the fast storage service (e.g., the log storage)
to reduce the pressure on the network bandwidth [27]. In this
way, the computing layer distributes the transmission tasks to
multiple nodes of the fast storage service, which significantly
reduces the transmission pressure of a single node. For latency
issues, the step of receiving logs in secondary nodes is controlled
by a loose protocol [12]. The primary node does not require the
secondary node to confirm the receiving process. The secondary
nodes allow transmission failure. Moreover, they only need to
read the missing part through the storage layer without affecting
the correctness of the system.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

3) Remote Shared Buffer Based Synchronization: The third
synchronization method is based on the remote shared buffer.
The primary and secondary nodes share the same remote buffer,
which makes it possible to transfer the data updates. As shown
in Fig. 7(c), the update requests in the primary node must update
data in the local cache and remote buffer simultaneously. Sec-
ondary nodes can directly load the record from the remote buffer.
This method has two following challenges: 1) Consistency.
Updates in the primary node’s local cache and remote buffer
do not satisfy strict atomicity. 2) Network. The shared buffer
is accessed by multiple nodes simultaneously and has a high
requirement on the network access.

For the consistency issue, PolarDB serverless [22] proposes a
cache invalidation mechanism to ensure the consistency between
the primary node and shared buffer. A specific table in the shared
cache records the consistency relationship. Then the secondary
nodes will ignore the invalid pages. The update of the table and
data satisfies atomicity, whose delay is much lower than directly
udate the corresponding pages in the remote shared buffer. For
the network issue, the RDMA network can support both high-
bandwidth and low-latency network requirements. Therefore,
the system requires a high-speed RDMA network deployed in
the hardware layer.

D. Mutli-Layer Recovery

In cloud-native databases, different cloud services support
various functional modules, resulting in the fault-tolerant inde-
pendence between the modules. On the one hand, independent
fault tolerance produces high availability. On the other hand,
the physical isolation of different cloud services significantly
increases network latency for failure recovery, which demands
specific treatment in the failure recovery phase. According to the
architecture design of the cloud-native databases, the recovery
optimization can be performed at different layers, which can
be classified into the following three categories: 1) No-Redo
Recovery in Compute Layer, 2) Two-Tier ARIES in Buffer
Layer, and 3) Optimization in Storage Layer.

1) No-Redo Recovery in Compute Layer: Failure recovery of
the computing layer requires restarting the computing nodes. As
shown in Fig. 8, traditional database systems use a monolithic
architecture. The write-back policy postpones the flush process
of dirty pages and causes some page updates to be lost under
abnormal circumstances. Therefore, databases need to write redo
logs to the persistent storage before committing the transactions
to avoid the loss of page updates. ARIES algorithm [63] is a
classic recovery algorithm in database systems, which contains
three main stages: analysis, redo, and undo. During the redo
stage, the database will scan the required logs sequentially based
on the analysis results to restore the dirty page status. However,
as cloud-native databases use a disaggregated architecture and
follow the philosophy of “the log is the database”, the compute
layer does not need to sync the dirty page status to the storage
layer for the durability of transactions, and the storage layer
can directly load data from the redo logs without sending it to
the compute nodes. Therefore, the redo process is pushed down

Fig. 8. The comparison of monolithic architecture and disaggregation archi-
tecture on failure recovery.

to the storage layer, which reduces data transmission between
layers and the recovery latency of the compute nodes.

2) Two-Tier ARIES in Buffer Layer: The exceptions in the
buffer layer will not affect the durability and availability of the
system. However, the disaggregation of cloud computation and
memory services produces independent fault tolerance, which
means the compute nodes and remote buffer are unlikely to
fail simultaneously. Based on the above assumption, LegoB-
ase [115] proposes the two-tier ARIES protocol to handle the
failure of the compute node and the remote buffer. Such a
protocol extends the traditional ARIES algorithm by creating
checkpoints into two layers: 1) the remote buffer layer and 2)
the persistent storage layer. The compute nodes and the remote
buffer forms the first-tier ARIES. The network transmission cost
of this part is small, and checkpoints can be recorded more
frequently to reduce the failure recovery time. The first-tier
protocol can deal with failure recovery in most cases, except
for the case that the computing nodes and remote memory are
abnormal simultaneously. In this case, the persistent storage
in the second-tier ARIES will guarantee the worst-case failure
recovery.

In summary, this algorithm is similar to the traditional ARIES
one in the worst case. Nevertheless, it significantly reduces the
recovery time in most cases with the help of remote shared buffer.

3) Recovery Optimization in Storage Layer: The storage
layer is the foundation of the system’s durability and availability
in cloud-native databases, which maintains multiple replicas
simultaneously to ensure the extremely high-reliability require-
ments. Particularly, the storage layer has two types of optimiza-
tion in failure recovery: 1) More replicas; and 2) Pre-failure
recovery preparation.

The most basic way of improving fault tolerance is to increase
the number of redundant replicas, e.g., doubling replicas in each
available zone [95]. Moreover, it could expand the number of
nodes in the log storage [27]. The main limitation of this method
is that it introduces additional storage overhead. The second
approach requires pre-preparing new standby nodes when partial
replica anomalies are detected, e.g., the quorum set mechanism

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7781

Fig. 9. HTAP optimization.

in Aurora [95]. Such a method has a smaller storage overhead
but will occupy network bandwidth while generating backup
nodes.

E. HTAP

Traditional OLTP database systems are generally used for
transactional workloads, so they have implemented many tech-
niques to optimize the efficiency of transactional processing,
e.g., row-format page organization and index structures. How-
ever, with the further development of data-intensive applications
in recent years, it calls for real-time analysis requirements for
the transactional databases, e.g., real-time fraud detection [79].
These demands drive the OLTP databases to add support for
real-time analytical workloads [51], [74], [107], [108]. Regard-
ing the cloud-native OLTP databases, there exists three types
of HTAP optimization (shown in Fig. 9): 1) Dynamic storage
format transformation in the compute layer; 2) Heterogeneous
data replicas in the storage layer; and 3) Unified Table Storage.
These techniques add particular optimizations for analytical
workloads based on the original OLTP databases. Therefore,
the ACID properties of the databases will not be affected.

1) Storage Format Transformation: The first type is the
dynamic storage format transformation in the compute layer.
Conventionally, the pages of the storage layer in the OLTP
databases organize records in row format. Such an organization
method has obvious performance advantages in dealing with
transactions and point queries. However, it is not suitable for
analytical queries, which are mainly composed of large-scale
aggregation and scan queries. AlloyDB [87] proposes a method
to transform the row-format data to the columnar data in the
compute nodes dynamically. Particularly, the optimizer analyzes
the characteristics of the workload and predicts data that is likely
to be frequently accessed in analytical workloads. Then, in the
process of reading records from the storage layer, this part of the
data is directly converted into the columnar format and kept in
the cache. As a result, the analytical queries can directly use the
data in the columnar format in the cache to speed up the query.

The above approach has two main challenges: 1) Storage for-
mat transformation will yield additional computing and storage
overhead, so selecting which data to be converted is critical to the
system performance. AlloyDB adopts the method of machine
learning to assist in the work of data selection. However, few
details have been revealed. 2) Storage format conversion should
minimize the impact on the efficiency of transaction processing.
Therefore, AlloyDB can keep data in both storage formats in the

cache at the same time [87]. The optimizer chooses which type of
data to scan based on workload type. However, it is challenging
to select an optimal execution plan due to the exponential growth
of the planning space.

2) Heterogeneous Data Replicas: The second type of
method [20], [38] maintains heterogeneous data replicas in the
storage layer. The main difference from the first method is that it
persists the row-wise and columnar replicas in the storage layer
rather than the compute layer. Particularly, when handling the
transaction requests, the master node asynchronously replicates
the logs to the secondary nodes for data synchronization.

From the implementation perspective, the overall architecture
do not need to be modified. The columnar format replicas are
stored in read-only nodes, which are the learners of the row
format replicas in the consensus protocol. Hence, it ensures the
consistency of the heterogeneous replicas without influencing
the origin OLTP system. Analytical workloads will be allocated
with extra computing resources on demand according to the
workload’s intensity, benefiting from cloud services’ elastic
scheduling capability. Therefore, handling analytical workloads
will not influence the computing resources for transaction pro-
cessing.

From performance perspective, this method’s advantage is
that it isolates the performance of transactional and analytical
processing, meaning that both transactions and queries can be
efficiently processed at the same time. Moreover, the excellent
isolation facilitates the flexible scheduling of the heterogeneous
workloads. However, since the columnar format replicas are the
learners of row format ones, it must face the problem of data
freshness due to the data transmission and transformation. That
is, recent updates on the primary node must take certain time to
be transferred and transformed to the columnar replica, causing
analytical workloads to have a version lag compared to trans-
actional workloads. Furthermore, this method adds additional
computation and storage resources for the OLAP workload.

3) Unified Table Storage: The third type of method is a
unified table storage design for both OLTP and OLAP work-
loads, which is employed in the SingleStoreDB (S2DB) [78].
The main difference is that S2DB does not persist data into
different layouts, which is often adopted in other HTAP systems.
The unified table storage contains two parts: 1) In-memory row
store. The in-memory storage is developed from its predecessor
MemSQL [86], which implements a lock-free skiplist to index
the rows and use the pessimistic concurrency control to avoid
conflicts. This part is mainly used to improve the OLTP perfor-
mance. 2) On-disk column store. WAL logs on the disk supports
durability, which are written to the storage sequentially. Other
data pages are organized in columnar format to optimize the
aggregation and scan operations in analytical queries. Besides,
it constructs the secondary and unique indexes on the column
store, which provides the optimization on point-queries on the
columnar store. In addition to the extra indexes on the disk,
the key to maintain the high performance of S2DB is that the
in-memory row store needs to cover most of the search re-
quirements. Otherwise, on-disk column storage will degrade the
performance in transaction processing compared with on-disk
row store.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Overall, this method does not need to copy data into different
layouts, which saves the computation and I/O overhead caused
by the data conversion. The limitation of this method is that
maintaining the high cache hit rate is necessary for the high
seeking performance which requires more memory resources.

IV. CLOUD-NATIVE OLAP ARCHITECTURES

Cloud-native OLAP databases target at large-scale data an-
alytics with elastic and scalable cloud services. Compared
to share-nothing MPP data warehouses, cloud-native OLAP
databases increase the elasticity with the disaggregation archi-
tecture and achieve high availability with the cloud storage
and cross-region availability zones. We classify the cloud-
native OLAP architectures into two categories: 1) disaggre-
gated compute-storage OLAP architecture and 2) disaggregated
compute-memory-storage OLAP architecture.

A. Disaggregated Compute-Storage OLAP

This category of databases [3], [15], [96] adopts a disaggre-
gated compute-storage architecture, and the compute layer and
the storage layer are connected to a high-speed network. As
shown in Fig. 10(a), the compute layer consists of a service
manager and compute clusters, the service manager provides
a collection of services that manage the metadata, resources,
queries, and security. The compute clusters perform the queries
with elastic compute resources, and each worker node has the
local SSD for caching.

1) Motivation and Key Features: There are three motivations
for such an architectural design. First, the traditional coupled
architectures can only manage the resources at the instance
level, and storage and compute resources need to be scaled
independently for high elasticity. Second, the cloud service
should tolerate cluster and node failures for high availability.
Thus a disaggregated architecture can have smaller downtime
as it can handle the failures of compute and storage nodes
separately. Lastly, since the workloads are heterogeneous (either
high I/O bandwidth or heavy computation), different hardware
configurations could be used to compute the storage nodes. In
summary, this architecture features i) disaggregation of compute
and storage, ii) multi-tenancy and serverless, iii) elastic data
warehouses, iv) local SSD caching, and v) cloud storage service,
such as AWS S3 [80].

2) OLAP Workflow: Processing the queries in the cloud mainly
involves three steps. First, the queries are parsed, rewritten, and
optimized with the catalog statistics in the metadata storage.
Second, the query plans are compiled and sent to the computer
clusters for execution. The computer nodes perform the tasks
with the local attached SSDs that can be treated as the local
cache. Third, if the local cache is not hit, the data will be loaded
from the cloud storage with the optional computation pushdown.

3) Pros and Cons: Compared to on-premise share-nothing
OLAP architectures, the disaggregated compute-storage archi-
tecture has higher availability, where cluster and node failures
can be recovered quickly because of the data replication across
many availability zones and the scalable cloud service. It is
more cost-efficient in two-fold. First, resources are virtualized

Fig. 10. Architectures of cloud-native OLAP databases.

and shared by multiple tenants. Second, serverless computing
provides the pay-as-you-go model in a query-level granular-
ity. Finally, since the compute and storage resources can be
scheduled on demand individually, it provides better elasticity.
However, the major limitation of the first architecture is that
network traffic becomes the bottleneck when the local cache
misses. Therefore, it needs to design efficient and effective
caching and computation pushdown strategies.

4) Representatives: Two representatives are Snowflake [25],
[96] and Redshift [70]. Snowflake relies on cloud services to
manage multiple virtual warehouses, workloads, security, and
metadata. In the compute layer, it provides multiple VWs(Virtual
Warehouse), where each VW is a cluster and consists of multiple
EC2 instances. Normally, one query is executed in one VW for
one tenant, and each VW can be started or shut down at any point.
For data storage, it combines local ephemeral storage and cloud
storage(e.g., AWS S3) to store data. Another representative is
Redshift [15], [70], which was initially an MPP data warehouse
and then transformed into a cloud-native database. It also con-
tains multiple compute clusters, each with a leader node as the
coordinator, with multiple compute nodes. Particularly, it has an

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7783

acceleration layer with various components. First, the spectrum
nodes are customized for querying semi-structured data using
partiQL [5]. The advanced query accelerator (AQUA) [70]
service leverages FPGAs [72] to accelerate query processing.
The compilation as a service (CaaS) [15] service is for caching
the code generation. The data of each cluster is managed in the
Redshift managed storage (RMS) backed by the Amazon S3.

B. Disaggregated Compute-Memory-Storage OLAP

As shown in Fig. 10(b), the second architecture consists of
three layers, a compute layer, a shuffle memory layer, and
a storage layer. Similar to the first architecture, the compute
layer has a service manager and a compute cluster. The main
difference is that the compute cluster schedules the jobs for
the workers in a centralized fashion. Moreover, it contains a
shared memory pool to accelerate the shuffle process of complex
operations such as aggregations and joins.

1) Motivation and Key features: There are three motivations.
First, as memory is an expensive resource, it needs to be disag-
gregated and scaled independently for high elasticity. Second, it
is preferable to achieve centralized scheduling, enabling better
resource utilization for query processing. Third, when it comes
to complex and costly workloads, it is challenging to cope
with large intermediate results as the high I/O overhead is the
bottleneck. In summary, this architecture features i) disaggre-
gation of compute, memory, and storage, ii) shuffle memory
layer for speeding up complex operations such as joins and
aggregations, iii) multi-tenancy and serverless computing, iv)
local SSD caching, and v) cloud storage service.

2) OLAP Workflow: For query processing, this architecture
processes the data in parallel with multiple stages. Specifically,
the worker nodes load the columnar data (e.g., ORC and Parquet
files) from the shared storage, apply the filters locally, and send
the data to the next stage. Then the system performs multiple
shuffle operations to aggregate and sort the partial data by keys.

3) Pros and Cons: Compared to the on-premise share-
nothing OLAP architectures, the disaggregated compute-
memory-storage architecture has higher throughput, where the
shuffle memory tier can significantly reduce I/O overhead by
avoiding writing intermediate results to the disks. It has higher
resource utilization as compute resources are virtualized and
scheduled in a centralized way. Finally, since the compute,
memory, and storage resources can be scheduled individually, it
provides better elasticity. However, the major limitation of the
second architecture is that shuffle memory tier could incur a high
cost, so it needs to design efficient and effective pushdown and
scheduling algorithms to reduce the data loaded to memory.

4) Representatives: A representative that adopts the three-tier
architecture is BigQuery [59] which is built on the Dremel query
engine [60]. It introduces a shared memory tier to accelerate the
shuffle processing of the distributed joins, which significantly
reduces the latency by avoiding writing and reading the interme-
diate results from disks. Moreover, it supports semi-structured
data querying based on the Dremel query engine. Regarding
storage management, it relies on the colossus file system [31]

with the capacitor format [59] that is similar to Parquet and ORC.
For query processing, it adopts the producer-consumer model,
where the producers in each worker generate partitions and send
them to the in-memory nodes for shuffling, then the consumers
combine the received partitions and do the operations locally.
Another representative is Databricks Lakehouse [104], which
support data analytic over the data lakes with Spark SQL [14]
directly. It has also developed an ACID table storage layer over
the cloud object store, called Delta lake [13], and a vectorized
query engine, called Photon [18], which can integrate with the
Spark SQL runtime.

C. Summary of the Cloud-Native OLAP Architectures

Table III presents a comparison of the cloud-native OLAP
architectures concerning computation, storage, throughput, elas-
ticity, isolation, and cost. The first category has the disaggregated
compute-storage architecture. For the computation, it employs
multiple clusters with various worker nodes. For the storage,
it relies on local SSD caching and cloud storage. It has a high
throughput based on scalable cloud computing. Its elasticity is
also high because of the disaggregated architecture. Since the
clusters are isolated and a query is typically only executed in
one cluster, it has excellent performance isolation. By embracing
the multi-tenancy with the elastic cloud service, it saves a large
amount of cost for the cloud provider. The second category
adopts the disaggregated compute-memory-storage architec-
ture. For the computation, it employs multiple worker nodes
with a shuffle memory layer. For the storage, it leverages the
shared memory pool and the cloud storage. As the memory
layer is disaggregated for shuffling, it has excellent throughput
and elasticity. However, it leads to high costs due to the high
price of in-memory computing. In addition, compared to the first
category, it has lower performance isolation due to the shared
memory pool.

V. CLOUD-NATIVE OLAP TECHNIQUES

This section introduces the key techniques of cloud-native
OLAP databases in detail. Table IV summarizes five types of key
techniques, including storage management, query processing,
serverless computing, data protection, and machine learning. It
also summarizes their pros and cons.

As shown in Fig. 12, storage management is the cornerstone
of the cloud data service, which focuses on organizing and
partitioning the data for optimizing the queries in the cloud.
Query processing aims to handle queries with the local cache and
the elastic cloud storage. By taking as input the SQL requests,
serverless computing responds to each query by provisioning
and scaling the resources on demand. Data protection relies
on software-based or hardware-enabled techniques to protect
data from stealing and tampering throughout the cloud service.
Machine learning techniques include two parts: employing AI
techniques to optimize the service quality of cloud-native DBMS
(AI4DB) and harnessing the power of cloud-native DBMS to
support AI.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

TABLE III
A COMPARISON OF TWO CLOUD-NATIVE OLAP ARCHITECTURES

TABLE IV
AN OVERVIEW OF KEY TECHNIQUES OF CLOUD-NATIVE OLAP DATABASES

Fig. 11. Three key techniques based on metadata store.

Fig. 12. An overview of cloud-native OLAP techniques.

A. Storage Management

We introduce three techniques of storage management: 1)
metadata store based optimization; 2) join key based data parti-
tioning; and 3) column store for semi-structured data.

1) Optimization With Metadata Store: For cloud-native
OLAP databases, metadata is managed in the layer of cloud
service separately, which contains information for schema, data
version, location, statistics, logs, etc. With metadata, the cloud

databases can enable three optimizations: pruning, zero-copy
cloning, and time traveling. Particularly, pruning means that the
scanning data can be pruned without touching the underlying
cloud storage; zero-copy cloning refers to cloning data without
creating new copies; time traveling enables querying the his-
torical data based on MVCC, which is similar to the flashback
query in RDBMS. Fig. 11 depicts an example of each technique.
Consider a customer table T, which is partitioned into two files
and saved in the storage. The metadata file stores the range of uid
and name for each file. Suppose a SQL query that requests the
customer data with uid = 2. The metadata can be used to prune
the data of file 2 because only file 1 covers the range of uid of 2.
For the DDL operation that creates table T2 cloning from table T,
the cloud database simply creates a new metadata file M2 from
M1 without making physical copies of table files, namely, the
zero-copy cloning technique (Note that at the time of cloning, file
2 has been deleted). Time-traveling technique utilizes timestamp
information in the metadata. As shown in Fig. 11(c), the first
two SQL queries find the data with an absolute and relative

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7785

Fig. 13. An example of data partition.

timestamp, respectively; the third query scans a versioned table
with a specified statement ID.

For the pros, metadata-based optimization can largely im-
prove query performance. However, the main challenge of meta-
data management are 1) how to serve the metadata request
with super low latency; 2) how to provide the scalability of the
metadata service.

2) Data Partitioning With Key Selection: Although cloud
databases can always read persisted data from the cloud storage,
the network traffic could become the bottleneck. Hence, how to
organize the ephemeral data in the local cluster is also essential.
To improve the query performance, one of the most important
issues is to select the partition keys for large tables to distribute
the data shards across the compute nodes. Take a schema in
Fig. 13(a) as an example, it has a customer table and an order
table, and these two tables can be joined on the country field.
By partitioning both tables on the country field and placing the
data partitions with the same hash value to the same node, it
enables the join operation locally and can minimize network
communication. However, selecting an optimal partition key set
for the cloud databases is a non-trivial problem. First, existing
partitioning solutions in distributed databases rely on tailored
cost models [37] to which the customers have no access. Second,
the cost models are inaccurate due to the uniform and inde-
pendent assumption. There exist two solutions for cloud-native
databases. The first one is the join graph approach [71] proposed
by Redshift. Its basic idea is to build a multi-join graph based on a
query workload. Then it performs random walks over the graph
to select partition keys. In a join graph, each node represents
a table; each edge denotes a join between two tables; the join
weight on the edges denotes the join number from the queries. By
randomly walking the join graph, it greedily selects the partition
keys with the largest weight to collocate the joins in the same
nodes. For the pros, it has high efficiency as it can efficiently
build the join graph and can search for a solution in the graph. For
the cons, it neglects the cost of different types of joins, leading
to a suboptimal solution. The second method is to leverage deep
reinforcement learning (DRL) [37] for selecting the partition
keys. DRL can explore column combinations as partition keys
and learns from the partitioning feedback, e.g., the reward. Such
a method extracts partition features as a vector of tables, query
frequencies, and foreign keys. Then it uses DQN models to
partition the tables for a workload. To migrate the learned models
to new workloads, it trains a cluster of Deep Q-Network models

Fig. 14. Three key techniques for query processing.

on typical workloads. Then it picks one with the most similar
features for a new workload.

The major problem of the DRL-based method is the high
training overhead. Since it needs to train the agent in an online
fashion, it still consumes a large amount of time to make the
learning process converge.

3) Columnar Format for Semi-Structured Data: Represent-
ing semi-structured data in a columnar format can speed up
the query processing over the nested data [109], [110]. As
semi-structured data such as HTML and JSON files are growing
rapidly, it is crucial to manage a large amount of nested data in
the cloud. There exist two major methods for encoding semi-
structured data. The first method encodes the documents with
lengths and presences of the fields, where the length implies the
number of occurrences of each repeated field and the presence
uses a boolean value to indicate whether or not an optional field
is null. Two columnar formats, ORC and Apache Arrow [59],
adopt such a representation. The second method encodes the
documents with repetition levels and definition levels. Particu-
larly, the repetition level tells which repeated field is changed
compared to the previous record and the definition level indicates
the length of the repeated or optional fields. Two columnar
formats, Parquet and Capacitor [59], adopt such a representation.

There is a trade-off between the file size and query perfor-
mance. To read a nested field, the first method requires access
to its ancestor information, as only the ancestor field tracks the
nested information. Nevertheless, it has a smaller file size as the
information is denormalized in the separated tables. The second
method can directly access the child fields without reading other
tables as it repeates the ancestor information for each field.
However, it has a larger file size due to the redundant infor-
mation about the common ancestors. Besides the schema-based
encoding method, there is a schema-less method [25] that can
infer the data type and cluster the frequently-accessed paths
automatically.

B. Query Processing

We introduce three types of query processing, including 1)
columnar scan with pushdown [70], [96], [103], 2) columnar
scan with caching and pushdown [102], and 3) columnar scan
with shuffle memory pool [59]. As shown in Fig. 14, the first type
loads the pushdown results from the cloud storage. The second
one merges the results from both the pushdown results and the
local cache. The third one loads the pushdown results from

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

the cloud storage, then performs the queries using the shuffle
memory tier.

1) Columnar Scan With Pushdown: This type of query pro-
cessing [20], [103], [106] aims to reduce network traffic by push-
ing down the computation to the storage side. A representative
is Amazon Simple Storage Service (S3), which has exposed the
Select API, by which users can specify the bucket and key of
the S3 objects, then the unwanted data can be filtered with simple
computations, such as selection and projection. When it comes to
highly-selective operators, S3 Select can reduce a large amount
of data in the storage side, thereby saving the computation cost
on the compute layer. However, S3 Select does not mean that
it is always cheaper than computing on normal EC2 nodes due
to the more expensive pricing model for scanning ($0.002/GB)
and returning data ($0.0007/GB).

PushdownDB [103] has studied the relation between the
pushdown performance and its price. It particularly extended the
S3 Select API to support more operations, including index scan,
hash-join, group by, and top-k. For instance, it designed an offset
index table based on S3 Select, which has the form of |indexed
value | first_byte_offset | last_byte_offset|. Finding the objects
involves two phases. First, the S3 objects are filtered using the
index table and the offset of the target data is returned. Second,
the data is fetched using the cheaper HTTP API instead of the
S3 Select API. To push down the join, it builds a bloom filter
for the join key of the small table, then adopts a substring-based
matching strategy to perform the join using S3 Select.

Overall, these pushdown operations can have a lower cost and
higher throughput regarding highly selective operators. Other-
wise, it could have no payoffs due to the pushdown cost. Another
drawback of the pushdown-only methods is that they make no
use of the cache data.

2) Columnar Scan With Caching Pushdown: The second
type of query processing is to scan the data with both caching and
pushdown. The main idea is that since the local cache is more
efficient than pushdown, it can be combined to further speed
up the queries. FlexPushdown [102] is a representative of such a
technique. Specifically, it consists of two parts: hybrid execution
and cache replacement. For hybrid execution, it organizes the
columnar data with segments and transforms the original query
plan to a separable query plan with the consideration of the
local cache and computation pushdown. For instance, suppose a
scan query retrieves two attributes A and B, if all the segments
of A are cached, these data can be scanned using local cache
while the filters on segments of B are pushed down to the cloud
storage, and finally the segments are merged at the compute
nodes. Regarding cache replacement, it employs a weighted
LFU strategy to manage the cache data. Intuitively, the larger
the pushdown computation cost is, the larger weight the related
data has for caching. As a result, it relies on a benefit-based
caching framework by calculating a segment’s weight w(s) =
(tnet(s) + tscan(s) + tcompute(s))/size(s), where tnet(s) is
the time of network transfer, tscan(s) is the time of data scanning,
and tcompute(s)) is the time of computation from the query. For
the pros, it has high throughput as it can utilize local cache.
However, it has low scalability due to the limited capacity of
local cache.

Fig. 15. An overview of serverless computing.

3) Columnar Scan With Shuffle Memory Tier: The third cat-
egory uses a shuffle memory to perform queries. This tech-
nique is associated with the second disaggregated OLAP ar-
chitecture. BigQuery [59] is a representative, which follows
the map-reduce-style processing paradigm that partitions and
processes the data with multiple phases. It adopts the producer-
consumer execution model, where producers in each worker
generate partitions and send them to the in-memory nodes for
shuffling. Consumers in the next stage asynchronously combine
the partitions and do the operations locally. For the shuffle phase
of (n-1), workers use the consumers to receive partitions and
use producers to generate new partitions. Then the distributed
in-memory nodes conduct the shuffling. Regarding the shuffle
phase of (n+1), the workers do the same operations with new
consumers and producers. Finally, a single worker merges the
results and returns to the coordinator. For the pros, it has high
throughput as the shuffle phase is conducted using the shared
memory. For the cons, it incurs high costs due to high pricing of
in-memory computing.

C. Serverless Computing in Cloud Databases

Serverless computing is expected to be the next generation
of cloud computing [84], which allows the programmers to
write functions and code in the cloud without caring about
server management, including resource provision and scaling,
fault tolerance, and system monitoring. By combining cloud
databases with serverless computing, users can enjoy the auto-
scaling feature and pay for the used resources in a query gran-
ularity. Generally speaking, there are two implementations of
serverless computing in cloud databases (see Fig. 15). The first
type is i) serverless with functions as a service (FaaS) [64],
[73], [91], where queries are adaptively executed by invoking
the cloud function services. The second type is ii) serverless
databases [16], [77], which automate the process of provisioning
and scaling for the queries at the level of the database instance.

1) Functions as a Service: The first type of serverless com-
puting technique [64], [73], [91] relies on serverless functions
to process the queries. Particularly, the function as a service
(FaaS) such as AWS Lambda [9], Azure Functions [62], Google
Cloud Functions [33], allows to invoke multiple functions in a
few milliseconds, and users are charged only for used resources.
With FaaS, users could invoke many parallel jobs to scan, join,
and aggregate tables in the cloud storage. As shown in Fig. 15,
the workflow is as follows: users submit the SQL queries to a
coordinator, which compiles the query and uploads the code to
a cloud function service. Then, the coordinator schedules the
tasks by provisioning resources and invoking them through the

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7787

function service. Afterward, the function service executes the
tasks in the cloud.

This line of work is mainly driven by the research community.
Two representatives are Starling [73] and Lambada [64], both
of which build a query engine on top of the cloud function
and storage service. Starling [73] implements the coordinator,
which generates the C++ code for the specified query plan and
invokes the AWS Lambda functions. The intermediate results are
exchanged with the AWS cloud storage, i.e., S3. It makes two
optimizations. First, it uses tuned models to detect stragglers,
which increase the overall latency of parallel query processing.
Then it invokes functions with duplicate computation. Second,
it employs function-based combiners to reduce the overhead
of large shuffling. Lambada [64] implements a part of TPC-H
queries [29] using a Python front-end, and the code is gener-
ated based on its own compilation and execution framework. It
uses three types of cloud storage service to exchange states: i)
Amazon S3 for a large amount of data, ii) DynamoDB [88] for a
small portion of data, and iii) Amazon Simple Queuing System
(SQS) [5] for passing messages such as query results. To address
the limitations of slow invocations of multiple tasks, it uses
the two-level invocations that enable the first-level workers to
invoke the second-level workers internally. Apart from the query
processing, there exist works that focus on FaaS-based data ana-
lytics with specific programming languages (e.g., Python), such
as Cloudburst [91] and general serverless computing runtime
like NightCore [41].

There are two main challenges for FaaS-based query process-
ing, First, since functions are stateless and cannot communicate
with each other, their states are hard to keep and exchange.
Simply using cloud storage often incurs large latency. Thus it
calls for new methods for stateful serverless computing. There
exists a number of works focusing on developing a unified
storage service, including Pocket [45], Boki [40], Anna [99], and
Jiffy [44]. However, they target general programming languages,
and it is unclear how they can be applied and optimized for
query processing. Second, it is challenging for users to decide
how many resources (e.g., the number and size of the functions)
should be obtained before performing the task [64], [73]. There-
fore, how to balance the trade-off between cost and performance
remains critical [43].

2) Serverless Databases: The second type of approach [76],
[77], [85] supports serverless computing with database in-
stances by dynamically scheduling the resources. This line of
work is mainly led by commercial cloud data services, such
as Aurora Serverless [6], Athena Serverless [16], and Azure
Serverless [61]. These services have a tailored resource unit for
scheduling. For instance, Aurora Serverless V2 [7] defines Au-
rora Capacity Unit (ACU), where the minimum unit is 0.5*ACU,
and each ACU has 2 GiB memory (the CPU and network is
the same as an instance’s). Depending on the input size and
the predicated resources, BigQuery [59] and AutoExecutor [85]
can vary the number of executors for performing the tasks from
multiple tenants. Four key operations in serverless computing
are provisioning, pausing, resuming, and scaling, where pro-
visioning aims to allocate the resources based on the issued
queries; pausing stops the service tentatively and charges no fee

Fig. 16. Enclave-based query processing.

for users; resuming starts the service again with the provisioned
resources; scaling allows for smoothly scaling up/down when
the access pattern of workloads change. For provisioning and
scaling, the main problem is to predict the required resources
for a query workload. However, it is a challenging problem as
even an expert can hardly estimate the resources needed for a
given query [85]. For pausing and resuming, the main problem
is to predict the arrival pattern of the workload. The main
challenge is starting a database is expensive after a pause period,
and resources could be wasted for a proactive resume period.
Therefore, an adaptive model that can predict the pause/resume
patterns is needed [76], [77].

D. Data Protection

Security is one of the most important issues in cloud
databases. There are two main types of data protection tech-
niques: software-based data protection [25] and hardware-based
data protection [11].

1) Key-Based Data Protection: The first type of security
method relies on key management services such as AWS
CloudHSM [8] to manage the encryption keys for users. A
representative is Snowflake [25], which utilizes an encryption
key hierarchy that has four levels: root keys, account keys, table
keys, and file keys. The keys are managed with life cycles and
would be rotated and re-keyed periodically to ensure security.
For instance, each key is rotated once per month, and data is re-
keyed once per year in Snowflake. There are two main challenges
for software-based data protection. First, data is decrypted for
query processing. Second, the cloud vendors may be untrusted,
so the keys may be stolen.

2) Enclave-Based Data Protection: The hardware-based
data protection utilizes customized hardware, e.g., Enclave [10],
for data protection. An enclave is a kind of Trusted Execution
Environment(TEE), which has a virtual address space of a
process that cannot be accessed by other processes, including
operating system. Moreover, it assumes both database systems
and cloud providers are untrusted, so it adopts a bring-your-own-
key model, where only the data owners have the keys to access
the encrypted data. Fig. 16 shows the design of enclave-based
query processing: 1) the user requests a key from the key provider
for the protected data (e.g., at a column granularity); 2) then
the user issues a query “select * from T where value = @v”
with the obtained key; 3) the attestation service verifies the
key; 4) notifies the result to the encrypted database; 5) the

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

7788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

DBMS fetches the data and invokes the enclave for evaluation,
and enclave will decrypt the data to plaintext and evaluates
the filter; and 6) finally the query results are sent back to the
user. There are two main challenges for hardware-based data
protection. The first challenge is how to perform the computation
over ciphertext directly, particularly for the range queries [2].
The second challenge is how to improve the efficiency and the
scalability of the enclave due to its limited computing resources
and space.

E. Machine Learning

Intersecting cloud-native databases with machine learning
(ML) is another major trend for modern data-intensive appli-
cations. On the one hand, machine learning can benefit cloud-
native databases by optimizing various database tasks [4], [15],
[28], [37], [54], [100], [113], [114]. On the other hand, cloud-
native databases can facilitate machine learning techniques with
SQL-enabled ML pipelines [26], [30], [55].

1) ML-Enabled Cloud Data Service: Advanced ML tech-
niques have been widely studied in the setting of cloud database
tasks such as workload management [15], partition-key selec-
tion [37], knob tuning [4], [19], [54], [112], buffer size tun-
ing [49], and index tuning [100]. For instance, AutoWLM [15]
tunes the workload concurrency by predicting the memory con-
sumption and execution time for the workload. It featurizes
the query plans and trains an XGBoost [23] model for each
cluster to predict the query performance. Ottertune [4] is an
automatic knob tuning service that leverages Gaussian Process
(GP) to tune the database configurations interactively. Further,
CDBTune [112] and Qtune [54] employ the deep reinforcement
learning (DRL) [56] to search for the optimal knobs in the large
exponential space. Further, Hunter [19] combines the traditional
ML techniques such as Genetic algorithm (GA) with DRL to
address the cold-start problem, then it improves the performance
based on multiple cloned database instances. Wu et al. [100]
employs Monte Carlo Search Tree (MCTS) to build the indexes
with the given budget of what-if calls. There are two main
challenges for the ML-based cloud data service. First, most
of the services are optimized independently. Thus it is hard to
optimize the overall performance due to the interaction of the
tuned components. Second, the machine learning models will
become inaccurate due to the data drift or workload drift, and
it is challenging to migrate a trained model to a new workload
and dataset effectively and efficiently.

2) SQL-Based ML Pipeline: Using cloud-native databases
for machine learning brings many benefits. First, it supports
an SQL-enabled machine-learning pipeline backed with high
elasticity and availability. Second, it brings the model to the data
without additional data transferring overhead. Third, it supports
AutoML [42], [82], [101] for the users, such as automatic model
selection, training, and hyper-parameter tuning. For instance,
Sagemaker [26], [55] supports the syntax of “Create Model” to
train a model automatically, then it can make predictions with
the SQL function. In order to perform ML inference locally,
it invokes the Neo service to compile the model, and Neo
transforms the machine learning models into inference code

and brings the models to the databases. BigQueryML [30] also
enables a similar functionality, where users can leverage SQL
tools to import, build and invoke advanced ML models based on
TensorFlow [57].

VI. RELATED WORK

There is a general lack of a comprehensive survey on the
cloud-native database as it is a relatively new field for both
industry and academia. Particularly, Sakr [81] reviewed cloud-
hosting databases. The survey discussed several topics, such
as NoSQL databases, Database-as-a-Service (DaaS), and vir-
tualized database servers. It also presented several future di-
rections, including true elasticity, data consistency, live migra-
tion, SLA management, transaction support, and benchmarking.
Mansouri [58] surveyed the storage management techniques in
the cloud, namely, Storage as a Service (StaaS). The survey in-
troduced cloud storage based on the intra-cloud and inter-cloud
storage architectures. It also covered the topics of the data model,
data replication, data consistency, transaction, and data man-
agement cost. Gartner [75] compared different cloud database
systems from the business perspective. By weighing the business
value with a set of evaluation criteria such as service quality and
market record, the report classified the cloud DBMSs or cloud
vendors into four roles in a Magic Quadrant, including niche
players, visionaries, challengers, and leaders. It also discussed
the strengths and weaknesses of each cloud DBMS. Narasayya
et al. [65], [66] reviewed the cloud data services. The survey
discussed various topics, including workloads and architectures,
multi-tenancy and virtualization technologies, SLAs and pricing
models, resource management, efficiency, and cost, as well as
serverless databases.

Our work is different from existing surveys in three aspects.
First, we classify the cloud-native databases into two types,
OLTP-oriented and OLAP-oriented. We give a taxonomy for
each type based on their disaggregation architecture and sum-
marize their pros and cons. Therefore, our taxonomy is based
on the architectures rather than the specific product. Second,
our work covers a wide spectrum of advanced techniques devel-
oped by state-of-the-art cloud-native databases, including HTAP
techniques, serverless computing, and machine learning. These
update-to-date techniques are rarely reviewed and summarized
in the previous work. Third, we give new future directions that
existing works have not been discussed.

VII. OPEN PROBLEMS AND OPPORTUNITIES

Multi-Writer Architecture: Existing cloud databases only sup-
port a single writer and multiple readers, which may cause a
large Recovery Time Objective (RTO) if the primary node has
any failure. Besides, such an architecture has a limited capacity
for highly-concurrent write transactions due to the single read-
write (RW) node. Thus, it calls for cloud-native multi-writer
techniques that can scale out write capabilities. Two promising
architectures are 1) the share-storage architecture [97], [105]
and 2) coherent cache architecture [69], where the former sup-
ports multiple RW nodes accessing the same storage with an
RDMA network, and the latter enables the multi-writer with a

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7789

coherent cache layer. The challenge is to handle skewed write
as the storage layer will accept write requests from multiple RW
nodes [116].

Fine-Grained Serverless: Existing elastic databases mainly
support provisioning the resources for a query with coarse-
grained serverless (VMs or specific units, e.g., Aurora Capacity
Unit). However, they are not cost-efficient and may suffer from
the high latency of elastic scaling. One promising direction is to
combine the advantage of FaaS-based Serverless and databases,
where the former has a lower starting cost that can be used
to address the cold-start problem, and the latter has a better
performance. The challenge is to balance the trade-off between
cost and performance.

SLA-Aware Cloud-Native HTAP: Existing cloud-native
HTAP solutions only care about how to improve the HTAP
performance, which may not be cost-efficient. For instance,
transforming the row data to column data may accelerate query
processing, but it also brings the higher dollar cost of memory
computing. Two main challenges are 1) how to organize the
data storage to achieve the best performance with the satisfied
SLA [66], [81], and 2) how to judiciously schedule the resources
for OLTP and OLAP workloads with SLA-aware optimization.

Multi-Cloud Data Service: As multi-cloud has become avail-
able, more and more data-intensive applications can benefit from
using multi-cloud data services. However, it also poses new
challenges to cloud-native databases with higher complexity.
First, it is challenging to provide high availability as the data
is stored across the cloud vendor. Thus, data migration in real
time can largely affect availability [39]. Second, it is hard to
maintain data consistency between the cloud vendors when the
data is updated frequently. Third, it is challenging to have a
cost-efficient execution plan for query processing as different
cloud vendors have different pricing models. Even for the dif-
ferent regions in the same cloud vendor, the offering resources
are disparate. A promising direction is sky computing [92],
which aims to build an abstraction on top of inter-cloud services.
For example, Skyplane [39] has been developed to facilitate
data migration across clouds, and the SkyPilot [90] framework
has supported the ML workload using multiple cloud providers
such as AWS [5], Google Cloud [32], and Azure Cloud [17]
simultaneously.

VIII. CONCLUSION

This paper offers a comprehensive survey of cloud-native
databases. We summarize the state-of-the-art cloud-native archi-
tectures and techniques. We introduce three types of cloud-native
OLTP architectures including 1) disaggregated compute-storage
OLTP architecture, 2) disaggregated compute-log-storage OLTP
Architecture, and 3) disaggregated compute-buffer-storage
OLTP architecture. We also introduced their key techniques
including data placement, storage layer consistency, compute
layer consistency, multi-layer recovery, and HTAP optimiza-
tion. Furthermore, we present two types of cloud-native OLAP
architectures, including two-layered compute-storage OLAP ar-
chitecture and three-layered compute-memory-storage OLAP
architecture. We also summarize their key techniques regarding

storage management, query processing, serverless computing,
data protection, and machine learning. Finally, we discuss the re-
search challenges and opportunities for cloud-native databases,
including multiple write architecture, fine-grained serverless,
SLA-aware cloud-native HTAP techniques, and multi-cloud
data service.

REFERENCES

[1] D. Abadi et al., “The seattle report on database research,” Commun. ACM,
vol. 65, no. 8, pp. 72–79, 2022.

[2] D. Agrawal, A. E. Abbadi, F. Emekçi, and A. Metwally, “Database
management as a service: Challenges and opportunities,” in Proc. IEEE
25th Int. Conf. Data Eng., 2009, pp. 1709–1716.

[3] J. Aguilar-Saborit et al., “POLARIS: The distributed SQL engine in azure
synapse,” Proc. VLDB Endowment, vol. 13, no. 12, pp. 3204–3216, 2020.

[4] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in
Proc. ACM Int. Conf. Manage. Data, 2017, pp. 1009–1024.

[5] Amazon Web Service, “Amazon Web Services,” 2023. [Online]. Avail-
able: https://aws.amazon.com/

[6] Amazon Web Service, “Aurora Serverless,” 2023. [Online]. Available:
https://aws.amazon.com/rds/aurora/serverless/

[7] Amazon Web Service, “Aurora Serverless V2,” 2023. [Online]. Available:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
aurora-serverless-v2.html

[8] Amazon Web Service, “AWS CloudHSM,” 2023. [Online]. Available:
https://aws.amazon.com/cloudhsm/

[9] Amazon Web Service, “AWS Lambda,” 2023. [Online]. Available: https:
//aws.amazon.com/lambda/

[10] P. Antonopoulos et al., “Azure SQL database always encrypted,” in Proc.
ACM Int. Conf. Manage. Data, 2020, pp. 1511–1525.

[11] P. Antonopoulos et al., “Azure SQL database always encrypted,” in Proc.
ACM Int. Conf. Manage. Data, 2020, pp. 1511–1525.

[12] P. Antonopoulos et al., “Socrates: The new SQL server in the cloud,” in
Proc. ACM Int. Conf. Manage. Data, 2019, pp. 1743–1756.

[13] M. Armbrust et al., “Delta lake: High-performance ACID table storage
over cloud object stores,” Proc. VLDB Endowment, vol. 13, no. 12,
pp. 3411–3424, 2020.

[14] M. Armbrust et al., “Spark SQL: Relational data processing in spark,” in
Proc. ACM Int. Conf. Manage. Data, 2015, pp. 1383–1394.

[15] N. Armenatzoglou et al., “Amazon redshift re-invented,” in Proc. ACM
Int. Conf. Manage. Data, 2022, pp. 2205–2217.

[16] AWS, “Severless interactive query service,” 2023. [Online]. Available:
https://aws.amazon.com/athena/

[17] Azure, “Azure cloud,” 2023. [Online]. Available: https://azure.microsoft.
com/en-us

[18] A. Behm et al., “Photon: A fast query engine for lakehouse systems,” in
Proc. ACM Int. Conf. Manage. Data, 2022, pp. 2326–2339.

[19] B. Cai et al., “HUNTER: An online cloud database hybrid tuning system
for personalized requirements,” in Proc. ACM Int. Conf. Manage. Data,
2022, pp. 646–659.

[20] W. Cao et al., “POLARDB meets computational storage: Efficiently
support analytical workloads in cloud-native relational database,” in Proc.
18th USENIX Conf. File Storage Technol., 2020, pp. 29–41.

[21] W. Cao et al., “PolarFS: An ultra-low latency and failure resilient dis-
tributed file system for shared storage cloud database,” Proc. VLDB
Endowment, vol. 11, no. 12, pp. 1849–1862, 2018.

[22] W. Cao et al., “PolarDB serverless: A cloud native database for disag-
gregated data centers,” in Proc. ACM Int. Conf. Manage. Data, 2021,
pp. 2477–2489.

[23] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, B.
Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R.
Rastogi, Eds., 2016, pp. 785–794.

[24] T. Clarkson, D. Gorse, J. Taylor, and C. Ng, “Epidemic algorithms
for replicated database management,” IEEE Trans. Comput., vol. 1,
pp. 1552–1561, 1992.

[25] B. Dageville et al., “The snowflake elastic data warehouse,” in Proc. ACM
Int. Conf. Manage. Data, 2016, pp. 215–226.

[26] P. Das et al., “Amazon SageMaker autopilot: A white box AutoML
solution at scale,” in Proc. 4th Int. Workshop Data Manage. End-to-End
Mach. Learn., 2020, pp. 2:1–2:7.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/
https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/athena/
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us

7790 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

[27] A. Depoutovitch et al., “Taurus database: How to be fast, available,
and frugal in the cloud,” in Proc. ACM Int. Conf. Manage. Data, 2020,
pp. 1463–1478.

[28] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya,
“AI meets AI: Leveraging query executions to improve index recommen-
dations,” in Proc. ACM Int. Conf. Manage. Data, 2019, pp. 1241–1258.

[29] M. Dreseler, M. Boissier, T. Rabl, and M. Uflacker, “Quantifying TPC-H
choke points and their optimizations,” Proc. VLDB Endowment, vol. 13,
no. 8, pp. 1206–1220, 2020.

[30] Google, “What is BigQuery ML?” 2020. [Online]. Available: https://
cloud.google.com/bigquery-ml/docs/introduction

[31] Google, “A peek behind colossus,” 2021. [Online]. Available:
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system

[32] Google, “Google cloud,” 2023. [Online]. Available: https://cloud.google.
com/

[33] Google, “Google function,” 2023. [Online]. Available: https://cloud.
google.com/functions/

[34] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud:
Research problems in data center networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 39, pp. 68–73, 2008.

[35] A. Gutmans, “Introducing AlloyDB for PostgreSQL: Free yourself
from expensive, legacy databases,” 2022. [Online]. Available:
https://cloud.google.com/blog/products/databases/introducing-alloydb-
for-postgresql

[36] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, 1983.

[37] B. Hilprecht, C. Binnig, and U. Röhm, “Learning a partitioning advisor
for cloud databases,” in Proc. ACM Int. Conf. Manage. Data, D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020,
pp. 143–157.

[38] D. Huang et al., “TiDB: A raft-based HTAP database,” Proc. VLDB
Endowment, vol. 13, no. 12, pp. 3072–3084, 2020.

[39] P. Jain, S. Kumar, S. Wooders, S. G. Patil, J. E. Gonzalez, and I. Stoica,
“Skyplane: Optimizing transfer cost and throughput using cloud-aware
overlays,” 2022, arXiv:2210.07259.

[40] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared
logs,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ., R. van
Renesse and N. Zeldovich, Eds., 2021, pp. 691–707.

[41] Z. Jia and E. Witchel, “Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices,” in Proc. 26th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2021, pp. 152–166.

[42] A. V. Joshi, “Amazon’s machine learning toolkit: Sagemaker,” in Machine
Learning and Artificial Intelligence, Berlin, Germany: Springer, 2020,
pp. 233–243.

[43] S. Kassing, I. Müller, and G. Alonso, “Resource allocation in serverless
query processing,” 2022, arXiv:2208.09519.

[44] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica, “Jiffy:
Elastic far-memory for stateful serverless analytics,” in Proc. 17th Eur.
Conf. Comput. Syst., 2022, pp. 697–713.

[45] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C.
Kozyrakis, “Pocket: Elastic ephemeral storage for serverless analytics,”
in Proc. 13th USENIX Conf. Operating Syst. Des. Implementation, 2018,
pp. 427–444.

[46] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[47] L. Lamport et al., “Paxos made simple,” ACM SIGACT News, vol. 32,
no. 4, pp. 18–25, 2001.

[48] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R. Wang, “High
performance transactions in deuteronomy,” in Proc. Conf. Innov. Data
Syst. Res., 2015.

[49] F. Li, “Cloud native database systems at alibaba: Opportunities and
challenges,” Proc. VLDB Endowment, vol. 12, no. 12, pp. 2263–2272,
2019.

[50] G. Li, H. Dong, and C. Zhang, “Cloud databases: New techniques,
challenges, and opportunities,” Proc. VLDB Endowment, vol. 15, no. 12,
pp. 3758–3761, 2022.

[51] G. Li and C. Zhang, “HTAP databases: What is new and what is next,”
in Proc. ACM Int. Conf. Manage. Data, 2022, pp. 2483–2488.

[52] G. Li, X. Zhou, and L. Cao, “AI meets database: AI4DB and DB4AI,” in
Proc. ACM Int. Conf. Manage. Data, 2021, pp. 2859–2866.

[53] G. Li, X. Zhou, and L. Cao, “Machine learning for databases,” Proc.
VLDB Endowment, vol. 14, no. 12, pp. 3190–3193, 2021.

[54] G. Li, X. Zhou, S. Li, and B. Gao, “QTune: A query-aware database tuning
system with deep reinforcement learning,” Proc. VLDB Endowment,
vol. 12, no. 12, pp. 2118–2130, 2019.

[55] E. Liberty et al., “Elastic machine learning algorithms in Amazon Sage-
Maker,” in Proc. ACM Int. Conf. Manage. Data, 2020, pp. 731–737.

[56] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Learn. Representations, 2016.

[57] N. Makrynioti, R. Ley-Wild, and V. Vassalos, “Machine learning in SQL
by translation to tensorflow,” in Proc. ACM Int. Conf. Manage. Data,
2021, pp. 2:1–2:11.

[58] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage management
in cloud environments: Taxonomy, survey, and future directions,” ACM
Comput. Surveys, vol. 50, no. 6, pp. 91:1–91:51, 2018.

[59] S. Melnik et al., “Dremel: A decade of interactive SQL analysis at web
scale,” Proc. VLDB Endowment, vol. 13, no. 12, pp. 3461–3472, 2020.

[60] S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”
Proc. VLDB Endowment, vol. 3, no. 1, pp. 330–339, 2010.

[61] Microsoft, “Azure Cosmos DB Serverless,” 2023. [Online]. Available:
https://azure.microsoft.com/en-us/blog/build-apps-of-any-size-or-
scale-with-azure-cosmos-db/

[62] Microsoft, “Azure function,” 2023. [Online]. Available: https://learn.
microsoft.com/en-us/azure/azure-functions/functions-overview

[63] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “ARIES:
A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Trans. Database Syst.,
vol. 17, no. 1, pp. 94–162, 1992.

[64] I. Müller, R. Marroquín, and G. Alonso, “Lambada: Interactive data
analytics on cold data using serverless cloud infrastructure,” in Proc.
ACM Int. Conf. Manage. Data, 2020, pp. 115–130.

[65] V. R. Narasayya and S. Chaudhuri, “Cloud data services: Workloads,
architectures and multi-tenancy,” Found. Trends Databases, vol. 10, no. 1,
pp. 1–107, 2021.

[66] V. R. Narasayya and S. Chaudhuri, “Multi-tenant cloud data services:
State-of-the-art, challenges and opportunities,” in Proc. ACM Int. Conf.
Manage. Data, 2022, pp. 2465–2473.

[67] V. R. Narasayya et al., “Sharing buffer pool memory in multi-tenant
relational database-as-a-service,” Proc. VLDB Endowment, vol. 8, no. 7,
pp. 726–737, 2015.

[68] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf., 2014,
pp. 305–319.

[69] Oracle, “Oracle RAC,” 2021. [Online]. Available: https://www.oracle.
com/de/database/real-application-clusters/

[70] I. Pandis, “The evolution of Amazon redshift,” Proc. VLDB Endowment,
vol. 14, no. 12, pp. 3162–3163, 2021.

[71] P. Parchas, Y. Naamad, P. V. Bouwel, C. Faloutsos, and M. Petropoulos,
“Fast and effective distribution-key recommendation for Amazon red-
shift,” Proc. VLDB Endowment, vol. 13, no. 11, pp. 2411–2423, 2020.

[72] J. Paul, B. He, and C. T. Lau, “Query processing on OpenCL-based
FPGAs: Challenges and opportunities,” in Proc. IEEE 24th Int. Conf.
Parallel Distrib. Syst., 2018, pp. 937–945.

[73] M. Perron, R. C. Fernandez, D. J. DeWitt, and S. Madden, “Starling:
A scalable query engine on cloud functions,” in Proc. ACM Int. Conf.
Manage. Data, 2020, pp. 131–141.

[74] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali, “Hybrid transac-
tion/analytical processing will foster opportunities for dramatic business
innovation,” Gartner, pp. 4–20, 2014.

[75] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali, “Magic quadrant for
cloud database management systems,” Gartner, pp. 1–37, 2021.

[76] O. Poppe et al., “Seagull: An infrastructure for load prediction and
optimized resource allocation,” Proc. VLDB Endowment, vol. 14, no. 2,
pp. 154–162, 2020.

[77] O. Poppe et al., “Moneyball: Proactive auto-scaling in Microsoft azure
SQL database serverless,” Proc. VLDB Endowment, vol. 15, no. 6,
pp. 1279–1287, 2022.

[78] A. Prout et al., “Cloud-native transactions and analytics in singlestore,”
in Proc. ACM Int. Conf. Manage. Data, 2022, pp. 2340–2352.

[79] X. Qiu et al., “Real-time constrained cycle detection in large dynamic
graphs,” Proc. VLDB Endowment, vol. 11, no. 12, pp. 1876–1888, 2018.

[80] Randall Hunt, “S3 select and glacier select retrieving subsets of ob-
jects,” 2018. [Online]. Available: https://aws.amazon.com/blogs/aws/s3-
glacier-select/

[81] S. Sakr, “Cloud-hosted databases: Technologies, challenges and oppor-
tunities,” Clust. Comput., vol. 17, no. 2, pp. 487–502, 2014.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com/bigquery-ml/docs/introduction
https://cloud.google.com/bigquery-ml/docs/introduction
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://azure.microsoft.com/en-us/blog/build-apps-of-any-size-or-scale-with-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/build-apps-of-any-size-or-scale-with-azure-cosmos-db/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://www.oracle.com/de/database/real-application-clusters/
https://www.oracle.com/de/database/real-application-clusters/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://aws.amazon.com/blogs/aws/s3-glacier-select/

DONG et al.: CLOUD-NATIVE DATABASES: A SURVEY 7791

[82] S. K. K. Santu, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and K. Veera-
machaneni, “AutoML to date and beyond: Challenges and opportunities,”
ACM Comput. Surv., vol. 54, no. 8, pp. 175:1–175:36, 2022.

[83] J. Schleier-Smith, “Serverless foundations for elastic database systems,”
in Proc. Conf. Innov. Data Syst. Res., 2019.

[84] J. Schleier-Smith et al., “What serverless computing is and should be-
come: The next phase of cloud computing,” Commun. ACM, vol. 64,
no. 5, pp. 76–84, 2021.

[85] R. Sen, A. Roy, and A. Jindal, “Predictive price-performance optimiza-
tion for serverless query processing,” in Proc. Int. Conf. Extending
Database Technol., 2023, pp. 118–130.

[86] N. Shamgunov, “The MemSQL in-memory database system,” in Proc.
IMDM, VLDB, 2014, pp. 106.

[87] R. M. Sheshadri Ranganath, “AlloyDB for PostgreSQL under the hood:
Columnar engine,” 2022. [Online]. Available: https://cloud.google.com/
blog/products/databases/alloydb-for-postgresql-columnar-engine

[88] S. Sivasubramanian, “Amazon dynamoDB: A seamlessly scalable non-
relational database service,” in Proc. ACM Int. Conf. Manage. Data, 2012,
pp. 729–730.

[89] D. Skeen, “A quorum-based commit protocol,” Tech. Rep., Cornell Univ.,
Ithaca, NY, 1982.

[90] SkyPilot Team, “SkyPilot: Run jobs on any cloud, easily and cost ef-
fectively,” 2023. [Online]. Available: https://skypilot.readthedocs.io/en/
latest/

[91] V. Sreekanti et al., “Cloudburst: Stateful functions-as-a-service,” Proc.
VLDB Endowment, vol. 13, no. 11, pp. 2438–2452, 2020.

[92] I. Stoica and S. Shenker, “From cloud computing to sky computing,” in
Proc. Workshop Hot Topics Operating Syst., 2021, pp. 26–32.

[93] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang, “Learned cardinality
estimation: A design space exploration and A comparative evaluation,”
Proc. VLDB Endowment, vol. 15, no. 1, pp. 85–97, 2021.

[94] A. Verbitski et al., “Amazon aurora: Design considerations for high
throughput cloud-native relational databases,” in Proc. ACM Int. Conf.
Manage. Data, 2017, pp. 1041–1052.

[95] A. Verbitski et al., “Amazon aurora: On avoiding distributed consensus
for I/OS, commits, and membership changes,” in Proc. ACM Int. Conf.
Manage. Data, 2018, pp. 789–796.

[96] M. Vuppalapati et al., “Building an elastic query engine on disaggregated
storage,” in Proc. 17th Usenix Conf. Netw. Syst. Des. Implementation,
2020, pp. 449–462.

[97] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed b
tree index on disaggregated memory,” in Proc. ACM Int. Conf. Manage.
Data, 2022, pp. 1033–1048.

[98] R. Wang, J. Wang, S. Idreos, M. T. Özsu, and W. G. Aref, “The case
for distributed shared-memory databases with RDMA-enabled memory
disaggregation,” 2022, arXiv:2207.03027.

[99] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling tiered cloud
storage in anna,” Proc. VLDB Endowment, vol. 12, no. 6, pp. 624–638,
2019.

[100] W. Wu et al., “Budget-aware index tuning with reinforcement learning,”
in Proc. ACM Int. Conf. Manage. Data, Z. Ives, A. Bonifati, and A. E.
Abbadi, Eds., 2022, pp. 1528–1541.

[101] A. Yakovlev et al., “Oracle AutoML: A fast and predictive automl
pipeline,” Proc. VLDB Endowment, vol. 13, no. 12, pp. 3166–3180, 2020.

[102] Y. Yang et al., “FlexPushdownDB: Hybrid pushdown and caching in a
cloud DBMS,” Proc. VLDB Endowment, vol. 14, no. 11, pp. 2101–2113,
2021.

[103] X. Yu et al., “PushdownDB: Accelerating a DBMS using S3 computa-
tion,” in Proc. IEEE Int. Conf. Data Eng., 2020, pp. 1802–1805.

[104] M. Zaharia, A. Ghodsi, R. Xin, and M. Armbrust, “Lakehouse: A new
generation of open platforms that unify data warehousing and advanced
analytics,” in Proc. Conf. Innov. Data Syst. Res., 2021.

[105] E. Zamanian, C. Binnig, T. Kraska, and T. Harris, “The end of a myth:
Distributed transaction can scale,” Proc. VLDB Endowment, vol. 10, no. 6,
pp. 685–696, 2017.

[106] C. Zhan et al., “AnalyticDB: Real-time OLAP database system at alibaba
cloud,” Proc. VLDB Endowment, vol. 12, no. 12, pp. 2059–2070, 2019.

[107] C. Zhang, G. Li, and T. Lv, “HyBench: A new benchmark for HTAP
databases,” Proc. VLDB Endowment, vol. 17, no. 5, pp. 939–951, 2024.

[108] C. Zhang, G. Li, J. Zhang, X. Zhang, and J. Feng, “HTAP databases:
A survey,” IEEE Trans. Knowl. Data Eng., early access, Apr. 19, 2024,
doi: 10.1109/TKDE.2024.3389693.

[109] C. Zhang and J. Lu, “Selectivity estimation for relation-tree joins,” in
Proc. 32nd Int. Conf. Sci. Stat. Database Manage., 2020, pp. 1–12.

[110] C. Zhang and J. Lu, “Holistic evaluation in multi-model databases bench-
marking,” Distrib. Parallel Databases, vol. 39, no. 1, pp. 1–33, 2021.

[111] C. Zhang, J. Lu, P. Xu, and Y. Chen, “UniBench: A benchmark for multi-
model database management systems,” in Proc. Technol. Conf. Perform.
Eval. Benchmarking, Springer, 2018, pp. 7–23.

[112] J. Zhang et al., “An end-to-end automatic cloud database tuning system
using deep reinforcement learning,” in Proc. ACM Int. Conf. Manage.
Data, 2019, pp. 415–432.

[113] J. Zhang, C. Zhang, G. Li, and C. Chai, “AutoCE: An accurate and
efficient model advisor for learned cardinality estimation,” in Proc. IEEE
39th Int. Conf. Data Eng., 2023, pp. 2621–2633.

[114] J. Zhang, C. Zhang, G. Li, and C. Chai, “PACE: Poisoning attacks on
learned cardinality estimation,” Proc. ACM Manage. Data, vol. 2, no. 1,
pp. 1–27, 2024.

[115] Y. Zhang et al., “Towards cost-effective and elastic cloud database de-
ployment via memory disaggregation,” Proc. VLDB Endowment, vol. 14,
no. 10, pp. 1900–1912, 2021.

[116] T. Ziegler, P. A. Bernstein, V. Leis, and C. Binnig, “Is scalable OLTP in
the cloud a solved problem?,” in Proc. Conf. Innov. Data Syst. Res., 2023.

Haowen Dong received the bachelor’s degree in
computer science from Tsinghua University. He is
currently working toward the PhD degree with Ts-
inghua University. His research interests focus on
cloud-native databases.

Chao Zhang received the PhD degree in computer
science from the University of Helsinki, Finland. He
is a postdoctoral researcher with Tsinghua University.
He has given a tutorial on HTAP databases in SIG-
MOD 2022 and gave a tutorial on cloud databases in
VLDB 2022. He serves as a PC member of SIGMOD
2024-2025, VLDB 2023-2024 Tutorial, and ICDE
2023. His research interests focus on heterogeneous
database management systems.

Guoliang Li (Fellow, IEEE) is a full professor with
the Department of Computer Science, Tsinghua Uni-
versity. His research interests include database sys-
tems, large-scale data cleaning and integration. He re-
ceived VLDB 2017 early research contribution award,
TCDE 2014 early career award, Best of SIGMOD
2023, SIGMOD Research Highlight Award, VLDB
2023 Industry Best Paper Runner-up, DASFAA 2023
Best Paper Award, CIKM 2017 best paper award, and
ICDE 2018 best papers. He served as a general chair
of SIGMOD 2021, a demo chair of VLDB 2021, and
an industry chair of ICDE 2022.

Huanchen Zhang received the PhD degree from
Computer Science Department, Carnegie Mellon
University. He is an assistant professor in the IIIS (Yao
Class) with Tsinghua University. His research interest
is in database management systems with particular in-
terests in indexing data structures, data compression,
and cloud databases. He is the recipient of the 2021
SIGMOD Jim Gray Dissertation Award.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2024 at 09:49:17 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
https://skypilot.readthedocs.io/en/latest/
https://skypilot.readthedocs.io/en/latest/
https://dx.doi.org/10.1109/TKDE.2024.3389693

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

