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Abstract
Zero-knowledge proof (ZKP) is an important cryptographic
tool that seeswide applications in real-world scenarioswhere
privacy must be protected, including privacy-preserving
blockchains and zero-knowledge machine learning. Existing
ZKP acceleration approaches using GPUs, FPGAs, and ASICs
focus only on classic protocols that rely on expensive elliptic
curve arithmetics. Emerging ZKP protocols based on hash
functions can greatly reduce the algorithmic complexity, but
they also introduce much more diverse computation kernels
that cannot be efficiently handled by a single accelerator chip
if dedicated units for each kernel are used. Our approach
is to leverage a unified hardware architecture that is able
to efficiently support the common primitives in ZKP, and
then use smart mapping strategies to flexibly map various
kernels to such hardware while ensuring high resource uti-
lization. We design UniZK as such a ZKP accelerator, with a
systolic-array-based hardware architecture enhanced with
extra local links and a new vector processing mode. We pro-
pose novel mapping strategies to support diverse kernels
including number theoretic transforms, hash functions, and
general polynomial computations. UniZK provides 97× and
46× speedups on average compared to the CPU and GPU im-
plementations of the same protocols, and is also 840× faster
than previous ZKP accelerators using different protocols.

CCS Concepts: • Hardware→ Hardware accelerators; •
Theory of computation→ Cryptographic protocols.

Keywords: domain-specific acceleration, zero-knowledge
proof, mapping
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1 Introduction
Given a function 𝐹 (𝑥,𝑤) and a public input𝑥 , zero-knowledge
proof (ZKP) protocols enable a prover to convince a veri-
fier that she possesses a secret input𝑤 (a.k.a., witness) that
satisfies 𝐹 (𝑥,𝑤) = 0, without revealing any information
about the value of𝑤 . The capability of ZKP to validate state-
ments without revealing any potentially sensitive informa-
tion is particularly important in a variety of fields, includ-
ing blockchains, financial transactions, authentication proto-
cols, electronic voting systems, and zero-knowledge machine
learning (ZKML). Consequently, ZKP has recently become
a powerful cryptographic tool with numerous applications
when it is critical to protect privacy.

The protocol of ZKP involves two parties, the prover who
generates a proof, and the verifier who verifies the proof.
Because one generated proof may be potentially verified by
many individual verifiers, most ZKP protocols are designed
to have very fast and low-cost verification processes, but the
proof generation is usually complicated and takes substan-
tial time when proving real-world statements. For example,
generating a consensus proof of the finalized header for the
Ethereum blockchain using an AWS r6a.8xlarge machine
takes about 300 seconds [18]. This makes proof generation
an interesting target for specialized hardware and software
acceleration in the computer architecture and system com-
munity [4, 19, 40, 41, 43, 56, 68, 69, 72], with various hardware
choices ranging from GPUs, FPGAs, to ASICs.

Nevertheless, almost all existing ZKP acceleration systems
focus on the classic protocols based on elliptic curves [27],
which only contain two computation kernels in the proof
generation process. Modern ZKP protocols [16, 17, 51, 62,
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70, 71] now start to use hash functions instead of elliptic-
curve operations, and offer many highly desired features
including elimination of trusted setup, removal of expensive
elliptic curve cryptography, as well as flexible tradeoff be-
tween proving time, verification time, and proof size. These
new protocols are also being increasingly widely adopted in
real-world applications like blockchains [15, 49, 50, 57] and
ZKML [66]. However, these hash-based protocols have much
more diverse computation kernels, not only including the
conventional ones like number theoretic transforms (NTTs)
and Merkle trees, but also incorporating emerging hash func-
tions like Poseidon [26] as well as miscellaneous polynomial
operations such as additions, multiplications, and partial
products on their quotient polynomials. Designing separate
and dedicated hardware units for each kernel and putting
them on one chip would result in a large chip area and low
resource utilization. If new kernels that cannot be supported
by the current accelerator are introduced, we have to fall
back to the host CPU with back-and-forth data transfers.

In this paper, we aim to design a general ZKP accelerator
that is able to accelerate as many kernels as possible involved
in modern hash-based protocols such as Plonky2 [51] and
Starky [52]. Our key philosophy is to leverage a unified hard-
ware architecture not overly customized to any specific ker-
nel, but still able to efficiently support the common primitives
of ZKP cryptography like modular arithmetic operations and
typical data access patterns. Then, we propose novel kernel
mapping strategies to flexibly map various computation ker-
nels to such hardware, while ensuring high utilization of
hardware resources. Actually, the widely successful neural
network accelerators have followed exactly the same para-
digm, using relatively general architectures to support fast
evolving operators such as convolution, matrix multiplica-
tion, and self-attention [10, 23, 32–34, 39].

More specifically, we propose an accelerator named UniZK
following the above philosophy. Our hardware architecture
contains a global SRAM buffer and multiple tiles of process-
ing element (PE) arrays, where each PE contains several
modular add/multiply units and a register file. The inter-PE
connection within each array follows the efficient systolic
manner [33, 37], but is slightly enhanced with the addition
of a few additional local links and the support of a vector
processing mode. Our kernel mapping strategies can success-
fully map a diverse set of kernels. These include (1) variable-
length NTTs with several variants like coset and bit-reverse
orders, (2) hash functions with irregular computation pat-
terns, e.g., Poseidon, (3) Merkle tree construction, and (4)
polynomial additions, multiplications, and various other op-
erations. Most of these kernels exhibit high utilization on
both on-chip logic and off-chip memory bandwidth.

When evaluated against highly optimized CPU and GPU
baselines using the Plonky2 protocol, UniZK is 97× and 46×
faster on average, and up to 147× and 104×, respectively.

The individual kernels of NTT, hash function, and polyno-
mial computation see speedups ranging from 92× to 191×.
When using the more efficient protocol of Starky-enhanced
Plonky2, UniZK is up to 267× faster than the CPU. Compared
to the previous accelerator PipeZK [72] for classic elliptic-
curve-based protocols, UniZK achieves an 840× speedup
with both algorithmic and architectural advantages.

2 Background
In this section, we first review the recent development of
zero-knowledge proof (ZKP) techniques (Section 2.1), and
introduce the specific protocols, Plonky2 and Starky, as the
representatives for our accelerator design (Section 2.2). We
then break down their execution time of proof generation,
to motivate our architectural innovations (Section 2.3).

2.1 Zero-Knowledge Proof Protocols
ZKP is a fundamental primitive in modern cryptography and
has evolved rapidly in recent years. Early implementations of
ZKP were mainly based on elliptic curve (EC) cryptography.
While they provide strong security, these early ZKP proto-
cols require complex mathematical operations over large
integer fields, resulting in significant computational over-
heads. For example, Groth16 [27] generates succinct proofs
that are within hundreds of bytes and can be verified quickly.
However, proof generation in Groth16 involves number the-
oretic transforms and EC-based multi-scalar multiplications
on integers as wide as 256 to 768 bits. Both the wide integer
arithmetic and the EC-based operations are highly expen-
sive on modern hardware, limiting the performance of these
protocols in many real-world applications.
Recent advancements have introduced hash-based ZKP

protocols [16, 17, 51, 62, 70, 71] that operate over smaller
integer fields. Hash functions are faster and consume fewer
resources, making them a more cost-efficient alternative to
EC operations. These changes greatly reduce the computa-
tional cost of proof generation. But on the other hand, these
protocols may result in somewhat larger proof sizes and
higher verification cost compared to EC-based ones.
While various modern ZKP protocols exhibit different

tradeoffs among proof size, proof generation time, and veri-
fication time, usually the proof generation phase is always
the most time-consuming part and thus the target for most
performance optimizations. Proof generation in modern pro-
tocols is typically constructed in three generic steps [8, 11]:
Arithmetization, Polynomial Interactive Oracle Proof (PIOP),
and Polynomial Commitment Scheme (PCS). First, the state-
ment to be proved is converted into an arithmetic circuit
(Arithmetization). Then, the prover uses its own secret wit-
ness as well as some randomness from the verifier to build a
set of polynomial equations (PIOP). Finally, the prover sends
the cryptographic commitment of these polynomials to the
verifier (PCS). The interactive parts in the above steps, such
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as the randomness sent from the verifier to the prover, could
be all eliminated by the Fiat-Shamir transform [20], thus
constructing a non-interactive protocol.

Plonky2 [51] is one of the most popular implementations
of hash-based ZKPs. Its three components are Plonkish,
Plonk [22], and Fast Reed-Solomon IOP of Proximity (FRI) [5],
which together provide numerous beneficial features, includ-
ing not requiring a trusted setup, high performance due to
the use of small algebraic fields and not relying on expen-
sive elliptic curves, as well as support for proof aggregation
by recursive proving [7] to reduce storage and communi-
cation overheads. Plonky2 can be further enhanced with
another protocol called Starky [52]. Starky is much less
expensive than Plonky2, but it has large proof sizes (sev-
eral MBs) and does not support zero knowledge. We can
use Starky to prove non-recursive statements and then use
Plonky2 to compress and aggregate the Starky proofs. This
combination yields a quite efficient ZKP scheme. Plonky2
is now widely used in many application domains such as
blockchains [15, 49, 50, 57], electronic voting [13], zero-
knowledge virtual machines [38], and zero-knowledge ma-
chine learning [66]. Consequently, we use it as a representa-
tive to design our accelerator.

2.2 Example Protocols: Plonky2 and Starky
Nowwe describe the algorithm details of Plonky2 and Starky.
Figure 1 illustrates the proof generation flow of Plonky2 [51],
where a prover aims to prove that she knows a set of private
values (𝑥0, 𝑥1, 𝑥2, 𝑥3) that satisfy (𝑥0+𝑥1) ∗ (𝑥2 ∗𝑥3) = 99. We
first follow this example to explain the key steps of Plonky2.
We omit the Arithmetization part that converts a statement
into an arithmetic circuit, because it does not depend on
the prover’s input secret data, and thus can be done fully
offline. At the end, we discuss Starky, focusing on the key
differences compared to Plonky2. We mainly describe the
high-level algorithm flow of the protocols here, and defer
the details of their computation kernels to Section 5.

Plonk for PIOP. The process of converting an arithmetic
circuit to a set of polynomial equations involves two types
of constraints: gate constraints and copy constraints. Gate
constraints represent rules for computing arithmetic gates
in the circuit, while copy constraints ensure that gates in the
circuit are properly connected through wires. As Figure 1
left shows, the arithmetic circuit of the statement (𝑥0 + 𝑥1) ∗
(𝑥2 ∗𝑥3) = 99 is represented by the matrix𝑄 . Each of its first
three rows represents a gate in the circuit, and the fourth row
explicitly indicates that the output is 99. The matrix𝑊 keeps
the secret witness data filled by the prover, where each row is
the input and output values of each gate. Each column of𝑄 is
the coefficients for linear, quadratic, or constant constraints
with respect to the variables in𝑊 .𝑊 and𝑄 should satisfy the
gate constraints at the bottomwhen combined using element-
wise multiplications (“·”). For example, for gate 𝑖 = 2, only
the quadratic coefficient 𝑞𝑀,2 is effectual for the product of

𝑤𝑎,2 = 𝑥2 and𝑤𝑏,2 = 𝑥3, which enforces 𝑥2 ∗𝑥3 = 𝑞𝑂,2 ·𝑤𝑐,2 =

𝑥5, i.e., the bottom right gate in the circuit.
To ensure a correct𝑊 , the elements in the same color in

𝑊 must have the same value, meaning that the output of one
gate is connected to the input of another gate. The protocol
thus constructs an index matrix 𝑖𝑑 , and a permutation matrix
𝜎 with the values in the same color in 𝑖𝑑 being permuted.
With the random numbers 𝛽 and 𝛾 from the verifier, (𝑊, 𝑖𝑑)
and (𝑊,𝜎) are used to form 𝑓 and 𝑔, respectively, where
they should be equal as required by the copy constraints in
Figure 1 left bottom. This is because the permuted values in
𝑖𝑑 and 𝜎 correspond to the same values in𝑊 .

It is worth noting that, in the actual implementation, the
above computations on scalar values are transformed by
interpolating the scalars into polynomials and then comput-
ing on the polynomials, which improves parallelization and
efficiency. The polynomial computations involve not only
element-wise additions and multiplications, but also a small
number of number theoretic transforms (NTTs) and their
variant coset-NTTs [6] for polynomial multiplications, as
well as some accumulations on partial products.

FRI for PCS. FRI is a protocol for verifying the degree of
a given polynomial is within a certain bound. The protocol
has three main steps as illustrated in Figure 1 right.
Step ① applies the natural-input-natural-output inverse

NTTs (iNTTNN) on the polynomials to convert the value rep-
resentation into the coefficient representation. For security
reasons, in step ②, these polynomials must be evaluated by
low degree extension (LDE), where the coefficient vectors
are expanded to 𝑘 times of their original length through zero
padding. Here 𝑘 is referred to as the blowup factor, which
is at least 8 in Plonky2. Then, the natural-input-bit-reverse-
output NTTs (NTTNR) are performed in the LDE domain.
Step ③ is the construction of the Merkle tree, starting

from the leaf nodes and moving upwards. The input data to
each leaf node are formed by taking values from the same
position of all the polynomials and concatenating them. A
hash function is applied on them to determine the leaf node
value. Then, the Merkle tree is built as a binary tree where
the parent node value is the hash result of the concatenated
value of the two children. In Plonky2, the Poseidon hash
function [26] is used. Finally, the prover sends the root of the
Merkle tree as a commitment to the verifier. The verifier may
query a random leaf node, for which the prover provides to
the verifier the corresponding authentication path from this
leaf to the root for verification.

Starky. Starky [52] adopts different Arithmetization and
PIOP components from Plonky2. It still uses FRI as its PCS,
except that the blowup factor 𝑘 is set to a different value of
2. In Starky, the computation is represented by an Algebraic
Execution Trace (AET), which is essentially a table with each
entry describing the state at a specific time step, and adjacent
entries adhering to the transition constraints. The protocol
also supports input and output constraints to enforce certain
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Plonk

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf

Query Leaf Authentication Path

③ 

0 0 0 1 0 1
1 1 1 0 0 1
2 0 0 1 0 1
3 0 0 0 99 1

0 0 4 8
1 1 5 9
2 2 6 10
3 3 7 11

0 9 10 11
1 1 5 0
2 2 6 4
3 3 7 8

0
1
2
3 0 0

PolyValue 0
PolyValue 1
PolyValue 2
PolyValue 3
①  ② 

PolyCoeff 3                             Padding
PolyCoeff 2                             Padding
PolyCoeff 1                             Padding
PolyCoeff 0                             Padding

FRI

Gate Constraints

Copy Constraints

Figure 1. Steps of Plonk and FRI during proof generation in Plonky2, with an example statement of (𝑥0 + 𝑥1) ∗ (𝑥2 ∗ 𝑥3) = 99.

0 1 1 2 3
1 1 2 3 5

Transition
Constraints

Input and Output
Constraints

Figure 2. An example AET for proving the 5th Fibonacci
sequence number is 5. The constraints should be equal to 0.

input and output values. Figure 2 shows an example AET for
proving the Fibonacci sequence.
Despite the significant differences between Plonky2 and

Starky in Arithmetization and PIOP, the underlying computa-
tional operations are highly similar, both involving element-
wise polynomial computations, polynomial multiplications,
etc. In addition, their FRI steps follow the same procedure
with only different parameters. Thus, it is feasible to design
a single accelerator to support both protocols.

2.3 Performance Breakdown Analysis
As we can see from Section 2.2, the proof generation pro-
cesses in Plonky2 and Starky contain many intensive com-
putations including polynomial operations during Plonk,
NTTs, and Merkle tree construction during FRI, as well as
various data layout transformations such as transpose. To
further understand the main time consumers in Plonky2,
we run several proof generation workloads with a single-
threaded CPU implementation (see Section 6 for workload
and hardware details). We use a single thread to simplify

Table 1. Plonky2 proof generation time breakdown.

Time Poly- NTT Merkle Other Layout
(s) nomial Tree Hash Transform

Factorial 580 13.4% 21.8% 62.4% 0.0% 2.4%
Fibonacci 34 12.1% 20.0% 65.8% 0.1% 2.0%
ECDSA 101 24.9% 15.7% 57.2% 0.2% 2.0%
SHA-256 673 11.5% 19.0% 67.0% 0.0% 2.5%
Image Crop 333 11.5% 17.1% 68.8% 0.3% 2.3%
MVM 512 13.7% 15.9% 65.7% 0.1% 4.6%

time breakdown; our final evaluation uses multi-threaded
baselines. The measured time includes Plonk and FRI but ex-
cludes Arithmetization. Table 1 shows the results. The other
hash operations are needed in Fiat-Shamir transforms and
proof-of-work computations outside the Merkle tree phase.
They also use the same Poseidon hash function.

From the breakdown results we can see that, usually the
Merkle tree construction accounts for the majority (about
60%) of the execution time. This is mainly due to the large
number of Poseidon hash computations involved. The NTT
and various polynomial operations rank the second and third
in terms of computation time, together contributing to about
35% of the overall time. The remaining hash operations and
the data layout transformations exhibit small portions.

3 Design Philosophy
From the performance analysis in Section 2.3 we see that,
modern ZKP protocols usually contain multiple diverse ker-
nels that each contributes a non-negligible portion to the
overall execution time. In particular, the polynomial oper-
ations, though shown as a single category in Table 1, ac-
tually include multiple diverse kernels. This observation
puts several new challenges to the hardware acceleration.
First, existing ZKP accelerators targeting EC-based ZKPs,
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e.g., PipeZK [72], extracted two dominant kernels from the
protocol, and designed dedicated hardware modules for them
separately. When it comes to our case like Plonky2, from
Table 1 we can quickly see that only capturing the top-2 ker-
nels (e.g., Merkle tree and NTT) will at most give us less than
7× speedup according to Amdahl’s law. Second, because the
time portions of different kernels could vary significantly
across different proof generation workloads (e.g., 11% to 25%
for polynomial operations), having multiple dedicated mod-
ules with rigid static resource provisioning would likely face
the issue of unbalanced throughput when running different
workloads. One kernel may run too long due to insufficient
resources, while other kernels finish quickly and leave their
modules idle. Third, some of the kernels use specific crypto-
graphic primitives, e.g., Poseidon hash, which requires highly
specialized dedicated units that may easily become out-dated
if the next version switches to another hash choice. Finally,
being able to accelerate all the kernels can also reduce data
movement. If some kernels cannot run on the accelerator
and are left to the host CPU, the intermediate data must be
transferred to the CPU and then back over the slow PCIe
connections, dwarfing the performance gains.

As a result, our goal is to design a general ZKP accelerator
that is able to accelerate as many kernels as possible involved
in modern ZKP protocols such as Plonky2 and Starky, by
leveraging a unified hardware architecture that can flexi-
bly map diverse kernels. Our design philosophy is to keep
the hardware architecture simple and general (Section 4), not
overly customized to any specific kernels, while still offering
sufficient efficiency by capturing the common characteristics
of ZKP algorithms, such as the modular arithmetic compu-
tations and the common data access patterns and layout
transformations. On the other hand, we rely on novel kernel
mapping strategies (Section 5), in order to realize the diverse
kernels efficiently on the general hardware and ensure high
computational utilization. This approach is akin to the phi-
losophy of modern neural network accelerators that use
the same hardware for various tensor operations like matrix
multiplication, convolution, and self-attention [10, 21, 23, 32–
34, 39, 48, 63]. In the next sections, we respectively introduce
the hardware architecture and the kernel mapping strategies.

4 Hardware Architecture
Figure 3a illustrates the overall architecture of UniZK. The
central compute engine is the multiple homogeneous vector-
systolic arrays [44] (VSAs), each of which is an array of
processing elements (PEs) interconnected with customized
networks. Recall that UniZK aims to provide a unified ar-
chitecture for diverse ZKP kernels. Therefore the VSAs are
homogeneous and not specialized to any kernels. In addi-
tion, UniZK utilizes a double-buffered scratchpad between
the VSAs and the off-chip DRAM, hiding memory access

DRAM

Transpose Buffer

Scratchpad

VSA VSA VSA VSA

Twiddle Factor Generator

C
ontroller

(a) Overall architecture.

PE

PE

PE

PE

PE

PE

PE

PE

Transpose B
uffer

PE

PE

PE

PE

PE

PE

PE

PE

Scratchpad

Mod Mul

Constant Buffer

Register File

Mod Add/Sub

Mod Add/Sub

PEVector Unit

(b) Vector-systolic array (VSA) and processing element (PE).

Figure 3. Hardware architecture of UniZK.

latencies and maximizing on-chip data reuse. We also in-
corporate a global transpose buffer to perform data trans-
pose operations on-chip, implicitly when fetching data from
memory [59, 72]. Finally, a twiddle factor generator is imple-
mented on-chip, which consists of several modular multipli-
ers and a set of buffers to support on-the-fly twiddle factor
generation during NTT computations [36, 65].
The structures of the VSA and the PE are further shown

in Figure 3b. The VSA resembles a classic systolic array [37]
widely used in neural network accelerators [10, 31–33, 46].
The input and output data are transferred to and from the
VSA from its boundaries, and the data communication within
the VSA is restricted to neighbor PEs. UniZK instantiates
each VSA with 12 × 12 PEs. This size is decided to match
the ZKP kernels, specifically the Poseidon hash, as explained
in Section 5.2. Each PE is connected to its right and bot-
tom neighbors in the standard systolic way, plus several
additional links described shortly. Standard matrix multi-
plications can thus be mapped to the VSA. For example, a
constant matrix can be loaded to the array and multiplied
with the input matrix, in a weight stationary manner [25, 58].

Each PE in the VSA contains a 64-bit modular multiplier,
two 64-bit modular adders/subtractors, and a register file of
64 × 64 bits. All operations in UniZK are performed on 64-
bit data elements in the Goldilocks field [51]. The simplified
Goldilocks field operations reduce the complexity of the hard-
ware modular adders and modular multipliers. In Plonky2,
there are also a small number of computations based on the
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extension field [12] for soundness [64]. Each extension field
element consists of𝐷 elements from the base Goldilocks field,
and thus requires 64𝐷 bits of storage. Usually a quadratic
extension with 𝐷 = 2 is employed. Nevertheless, the arith-
metic operations can still execute on the base field, treating
each 64 bits as a limb, albeit with more steps.

To efficiently support the diverse kernels in modern ZKP
protocols, UniZK further enhances the VSA with an addi-
tional vector mode and a few additional links between PEs. In
the vector mode, each column of the VSA can be considered
as an individual vector unit. The entire chip thus contains
many independent vector units for parallel data processing.
The vector mode is particularly suitable for the large amount
of polynomial operations in ZKP. Interestingly, the systolic
links between neighbor PEs still provide some data reuse,
such as directly forwarding a vector from one unit to another,
and accumulating vector elements to a scalar. We will show
concrete examples in Section 5 about how to make use of
these links to efficiently map various ZKP kernels.

Nevertheless, for more complex and irregular kernels such
as the Poseidon hash, the rigid systolic links are insufficient.
Hence we add a limited amount of new links to the VSA.
Specifically, we add reverse links that go bottom up in certain
columns in the array, shown as the red arrows in Figure 3b.
Their specific usage will be explained in Section 5. These new
links still connect only neighbor PEs and avoid long global
wires, in order to minimize the impact on the placement and
routing complexity and thus the overall area cost.

5 Kernel Mapping
In this section, we describe how UniZK maps each kernel
in the ZKP protocol (Sections 5.1 to 5.4) onto the general
hardware architecture in the last section. UniZK follows a
static scheduling approach. Given the specific arithmetic
circuit to prove, the kernels to execute are all known before
execution. Thus we employ a compiler to map each kernel
(Section 5.5), following the schemes described below.

5.1 NTT
NTT is a widely used primitive in cryptography, and has
been extensively studied in previous accelerators for fully
homomorphic encryption and EC-based ZKP algorithms [35,
36, 59, 60, 65, 72]. An NTT applied to the 𝑁 coefficients of
a polynomial consists of log𝑁 stages, where the 𝑖th stage
conducts 𝑁 /2 butterfly operations between all pairs of co-
efficients with a strided distance of 𝑁 /2𝑖 . Each butterfly
operation also needs a constant twiddle factor that is a cer-
tain power of the 𝑁 th root of unity in the finite integer field.
This pattern is similar to the well-known fast Fourier trans-
form (FFT), but conducted on the integer field rather than
the complex numbers. The result of an NTT is also a size-𝑁
vector representing the 𝑁 values of the polynomial evalu-
ated at the roots of unity. It can be converted back to the

coefficients using an inverse NTT (iNTT), which follows the
same computation pattern but uses different twiddle factors.
Nevertheless, the NTT operations in our ZKP protocols

pose several new challenges. First, the NTT size, i.e., the
polynomial length, depends on the size of the arithmetic
circuit to prove. Also, the LDE step in FRI would change
the polynomial length. Thus we must efficiently support
variable-length NTTs. Second, instead of using specialized
datapaths in previous NTT designs, we need to map the
irregular NTT dataflow onto our general hardware archi-
tecture. This is challenging because we need to realize the
variable-strided butterfly operations only with the limited
neighbor-connected links in our PE array. Third, NTTs could
happen at various phases during the protocol, in which the
input and output polynomials could have varying layouts
in memory, such as polynomial-major (i.e., all elements in a
polynomial are stored continuously) and index-major (i.e.,
the elements in the same position of all polynomials are
stored continuously). Our NTT mapping should support
efficient memory accesses to both layouts. Fourth, several
variants of NTTs, such as coset-(i)NTTs and (i)NTTs with
both natural and bit-reverse data orders (NN, NR, etc.), are
needed, and should be handled seamlessly in the hardware.

Mapping variable-length NTTs to unified hardware.
To efficiently support variable-length NTTs with fixed hard-
ware, we adopt the multi-dimensional NTT decomposition
approach in SAM [65], which decomposes an NTT kernel of
variable size𝑁 into multiple smaller NTTs of fixed size𝑛 that
matches the hardware size. The decomposed fixed-length
small NTTs can then fully utilize the hardware. Element-wise
twiddle factor multiplications are also needed between the
groups of small NTTs when switching between the decom-
posed dimensions. We next describe how to map these two
sub-kernels, i.e., size-𝑛 NTTs and inter-dimension twiddle
multiplications, onto our VSA structure.
First, for the small fixed-size NTTs, we follow the MDC

(multi-path delay commutator) pipelined structure [24]. Fig-
ure 4a shows how to map a DIF NTT to a linear sequence
of PEs using the MDC pipeline. Each pipeline stage has a
throughput of 2 elements per cycle. We use the modular
multiplier/adder/subtractor in one PE to implement a stage.
The corresponding twiddle factors are stored in the register
file. Each stage also needs to shuffle the elements to realize
the desired strides for butterfly operations. For example, in
the first stage, we pair 0 and 4, 1 and 5, . . . , for a stride of 4.
Their outputs are buffered, and element 0 needs to wait for
element 2 for the next stage. We use the register file of each
PE to realize such data buffering. Specifically, the results of
0, 1 in the first stage are buffered locally, and sent to the
next stage along with the results of 2, 3 generated later. The
required register capacity is bound by the fixed NTT size
𝑛. Although such data buffering delays the processing of
the next stages, the overall throughput does not decrease,
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and the pipeline delays can be tolerated when there are suf-
ficient data waiting for NTT processing. Note that UniZK
supports both DIT and DIF dataflows to support different
NTT variants. Compared with DIF, DIT just has reversed
element orders and different twiddle factors across all of the
stages. We just need to change the corresponding PE register
file contents and how they are accessed.
Second, the inter-dimension twiddle multiplications are

simple element-wise operations, so they can be easilymapped
to a PE and chained with the above NTT pipeline either at
the beginning or at the end. The twiddle factors needed in
this phase are generated on-the-fly [36, 65] using the twid-
dle factor generator in Figure 3a rather than stored on-chip.
However, if we want to maintain the same throughput of 2
elements per cycle, we now need two multipliers, one per
each element, instead of one multiplier per each pair in the
butterfly operations. Fortunately, we notice one of the NTT
stages (e.g., the last stage of DIF in Figure 4a) always multi-
plies with a twiddle factor of 1 = 𝜔0

𝑛 . Thus we reuse this PE,
and only one extra PE is added to the pipeline. In Figure 4a,
the last two PEs multiply with 𝑁 −1𝑔−𝑖 , which is the twiddle
factor in the last round of a coset-iNTT (more details below).

In summary, wemap a size-𝑛 NTT to a sequence of log𝑛+1
PEs in a pipelined manner. Recall that each VSA row/column
has 12 PEs. Using the entire row/column as a single pipeline
would set 𝑛 = 211, requiring too much register space in each
PE for data buffering and twiddle storage. We thus split a
row of PEs into two pipelines with 6 PEs each for 𝑛 = 25.
The register usage is now bound to 25 64-bit elements per PE.
With such a split, we can further pipeline the NTTs along
two decomposed dimensions on the two half-arrays, with a
transpose buffer in between, as in Figure 4b. This reduces
the bandwidth requirement on the global scratchpad by 2×.

Data layouts. Our NTT pipeline design described above
accepts/generates data elements consecutively from/to mem-
ory if data are in the polynomial-major layout. To also sup-
port the index-major layout, we conduct batched NTTs and
transpose the data layout using the global transpose buffer.
Specifically, we process 𝑏 polynomials in parallel as a batch,
where the transpose buffer can store 𝑏 ×𝑏 elements in its ca-
pacity. When data are in index-major, we fetch 𝑏 consecutive
elements each time from memory, which are the elements at
the same position of the polynomials in the batch. These ele-
ments are transposed in the buffer to polynomial-major, and
then fed into the VSAs. Writing data back in the index-major
order is performed similarly. In practice, we use 𝑏 = 16, so
the memory accesses are sufficiently consecutive while the
transpose buffer capacity is still acceptable.

NTT variants. Recall that we need to support both NTT
and iNTT, as well as their coset variants [6]. Also the input
and output data orders could be either natural or bit-reverse
(NN, NR, etc.). For the variants that require modular multi-
plying with a constant after the standard NTT, e.g., 𝑁 −1 for
iNTT and 𝑁 −1𝑔−𝑖 for coset-iNTT, we use the PEs reserved

PE PE PE PE

0246

7 5 3 1

5 4 1 0

7 6 3 2

3 2 1 0

7 6 5 4

Mul

0246

MDC Pipeline

(a) A size-8 DIF NTT mapped to the MDC pipeline. Numbers indicate element
indices. The last two stages conduct inter-dimension twiddle multiplications.

Transpose B
uffer

VSA

Pipelines Pipelines

Dataflow

(b)Mapping NTT onto VSA, with data transpose between two pipelines.

Figure 4. NTT mapping strategies. We show the example of
using an 8 × 8 PE array for a size-512 coset-iNTT, which is
decomposed into 3D size-8 DIF NTTs.

for inter-dimension twiddle multiplications in the last round,
which are idle otherwise. This is because for 𝑘 dimensions of
decomposed NTTs, inter-dimension twiddle multiplications
are only performed between dimensions for 𝑘 − 1 times. In
these situations, the DIF dataflow is used, so the pipeline
begins with the NTT and ends with inter-dimension twiddle
multiplications. Similarly, the constant multiplications before
the standard NTT, e.g., 𝑔𝑖 for coset-NTT, reuse the idle PEs
in the DIT pipeline of the first round.

To efficiently perform NTTNR, the output elements should
be written back to memory in the bit-reverse order, while
still keeping sufficient continuity in these memory accesses.
We leverage the multi-dimensional NTT decomposition in-
herently supported by our hardware to naturally realize this
requirement. Using the example in Figure 4b, a size-512 NTT
is decomposed into 8 × 8 × 8. The input side accesses data
consecutively along the innermost (first) dimension (of stride
1), while the output side finishes the outermost (last) dimen-
sion (of stride 64). From the element index perspective, the
first/last dimensions correspond to the lowest/highest 3 bits
in the index; e.g., 0, 64, . . . , 384, 448 have their highest 3 bits
as 0002, 0012, . . . , 1102, 1112, and their rest lower bits are all
0. When they are bit-reversed, the highest bits become the
lowest ones, so these indices become 0, 4, 2, 6, 1, 5, 3, 7. After a
local shuffle among this short list of elements in the on-chip
global scratchpad buffer, off-chip memory access continuity
could be realized.
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5.2 Poseidon Hash

Algorithm 1: Poseidon Permutation in Plonky2
Input/output : state[12]

1 function FullRound(state, 𝑟):
2 for 𝑖 ← 0 to 11 do
3 state[𝑖] ← state[𝑖] + RoundConst[𝑟 ] [𝑖];
4 state[𝑖] ← state[𝑖]7;
5 state← state ×MDSMatrix;
6 return state;

7 function PartialRound(state, 𝑟):
8 state[0] ← state[0]7;
9 state[0] ← state[0] + PartialRoundConst[𝑟 ];

10 state← state × SparseMDSMatrix;
11 return state;

12 function PrePartialRound(state):
13 state← state + PrePartialRoundConst;
14 state← state × PreMDSMatrix;
15 return state;

16 for 𝑟 ← 0 to 3 do state← FullRound(state, 𝑟 ) ;
17 state← PrePartialRound(state)
18 for 𝑟 ← 0 to 21 do state← PartialRound(state, 𝑟 ) ;
19 for 𝑟 ← 4 to 7 do state← FullRound(state, 𝑟 ) ;

In Plonky2 and Starky, the Poseidon hash function is used
in many places, such as Merkle tree construction, generating
verifier randomness with Fiat-Shamir transforms, and proof-
of-work computations. As shown in Algorithm 1, this hash
function processes 12 64-bit Goldilocks elements as the state,
and uses 𝑥7 as the S-box. It consists of 8 full rounds and 22
partial rounds to ensure 128-bit security.
Despite of the various irregular processing rounds in Po-

seidon hash, we are able to map it onto our general hardware
structure. We design three schemes for FullRound, Partial-
Round, and PrePartialRound, respectively. The key is to effi-
ciently use only the limited neighbor PE links in the VSA.
Full round. The first step in a full round is to add a con-

stant value to each element in state and raise to the 7th
power (Lines 2 to 4 in Algorithm 1). We use a row of 4 PEs to
compute this step, where data are transmitted horizontally.
Then, the state vector is multiplied with a matrix MDSMatrix
(Line 5). When there are many individual Poseidon hashes
to compute, this becomes a matrix multiplication, and is nat-
urally mapped to a systolic array of 12 × 12. In total the full
round needs 12 rows × 16 columns. We fold the computation
by performing two consecutive operations on one PE, and
map it to a 12 × 8 region of the VSA, as in Figure 5a.
Pre-processing of partial round. Similar to the full

round, the pre-processing of a partial round consists of adding
a constant vector to state and performing a matrix multipli-
cation. Since each PE in the VSA has a modular adder besides

PE PE PE

PE PE PE

PE PE PE
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PE

PE
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(a) Full round of Poseidon hash, using 12 × 8 PEs.
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(b) Partial round of Poseidon hash, using 12 × 3 PEs.

Figure 5. Poseidon hash mapping strategies.

the multiplier, we can merge the constant addition to the first
column of the matrix multiplication, and the whole round is
mapped to the 12 × 12 systolic array, without folding.

Partial round. The partial round is the most complex one.
First, we need to operate on a single element state[0] (Lines 8
to 9 in Algorithm 1). Then, the multiplication is with a sparse
matrix (Line 10), with non-zero values only in the first row,
the first column, and the diagonal, i.e., SparseMDSMatrix is
decomposed into 𝑢, 𝑣 , and 𝐸 as in Figure 5b.

We first use the first column of PEs to perform the scalar
operations on state[0] in a pipelined way, with data flowing
from top to bottom vertically. Then, we use the newly added
reverse links of the second PE column to distribute the result
to all rows. At the same time, we transmit each element of
state to each of the 12 rows, and perform the dot product
between the two vectors state and𝑢 in the second PE column.
The result of this dot product, as a scalar that is added to
the result of state[0], is accumulated vertically from bottom
to top also using the reversed links, and received at the top
PE. We use the third column to compute the scalar-vector
multiply-add, i.e., state[0]×𝑣+state, where the scalar state[0]
has been distributed to all rows as described above. Register
file space is used to buffer data and match their arrival timing
at each PE throughout the process. The final result comes
out at the right boundary. In summary, we use 12 × 3 PEs to
compute one partial round, and the entire VSA can process
four consecutive partial rounds together. The total latency of
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four partial rounds is 145 cycles, but with systolic pipelining,
the array can accept one 12-element state every cycle.

5.3 Merkle Tree
A Merkle tree [45] is usually a binary tree. The data blocks
are assigned to the leaf nodes, each of which stores the result
of applying the specific hash function to its own block. Then,
each parent node in the tree stores the hash result of the
concatenated content of both its child nodes. In this way, the
root hash becomes a summary of all the data blocks. Updating
or verifying any single block only involves computations
along the path from this block to the root.
To construct the Merkle tree, each time we load a sub-

tree whose size fits in the scratchpad, and fully process the
subtree on-chip. The data of the lower tree levels are read,
and our hardware computes the data of the higher levels in
the bottom-up order. The hash computations at the same
tree level are independent, and performed either in paral-
lel on different VSAs, or in a pipelined manner to one VSA
(Section 5.2). The memory layout of the Merkle tree nodes
follows the level order, which ensures long sequential mem-
ory accesses as well as efficient data caching on-chip when
going from one level to the next.

Since the length of the leaf nodes (e.g., 135) may be longer
than the length of the Poseidon state, Plonky2 uses the absorb
method [51]. At the leaf level, we pop the first 8 elements
of the leaf and use them as state[0 : 8], one at a time, until
the leaf is used up. For the other nodes, a Poseidon state is
created by combining 4 elements from each of its left and
right children, and padding with 4 zeros to get 12 elements.

5.4 Polynomial Operations
With NTTs, both polynomial additions and multiplications
can be transformed into element-wise vector additions and
multiplications. These element-wise operations are naturally
supported by the vector mode of our VSAs. The operand vec-
tors are fetched from the global scratchpad to the PE register
files, and maximally reused inside the PE. Given the multi-
ple functional units (modular adder/subtractor/multiplier)
in one PE, we also support chained operations to reduce
register access pressure [60].
Element-wise operations. Element-wise vector opera-

tions are known for their low computational intensity, and
can be easily bound by off-chip memory accesses. We apply
several techniques to improve their on-chip data reuse. First,
we use the standard LRU cache replacement policy as our
basic approach. Second, we adopt vector tiling, which splits
each vector into many tiles, and fully processes the same
tiles of many operand vectors that fit on-chip, before moving
to the next tile. Our compiler statically analyzes the vector
computation graph and determines the number of vectors to
buffer as well as their proper tile sizes. Note that compared
to the batch parallelization in the CPU implementation of
Plonky2 [51], our tiling is more aggressive and can use much

Register File

(a) Quotient chunk products.

PE 0 PE 1 PE 2
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(b) Partial products.

Figure 6.Mapping strategies for partial products of quotient
polynomial chunks.

larger batch sizes. Finally, in addition to the LRU policy, our
compiler also incorporates hand-crafted replacement poli-
cies for certain critical code regions to further maximize
data reuse. For example, the evaluation of gate constraints in
Plonky2 processes the polynomials of all gates in the circuits
on the same wire data. To better reuse the wire data, we
prioritize them on-chip and try to replace other data.

Partial products. Besides element-wise operations, there
is another critical vector computation during the verifica-
tion of copy constraints in the Plonk phase. Specifically, the
polynomials 𝑓 (𝑥) and 𝑔(𝑥) in the copy constraints (Figure 1)
are divided to obtain a quotient polynomial 𝑞(𝑥). Then we
use the quotient chunk product 𝑃𝑃 to reduce the degree of
the quotient polynomial. Specifically,

ℎ[𝑖] =
8𝑖+7∏
𝑗=8𝑖

𝑞 [ 𝑗] =
8𝑖+7∏
𝑗=8𝑖

𝑓 [ 𝑗]/𝑔[ 𝑗] (1)

𝑃𝑃 [𝑖] =
𝑖∏
𝑗=0

ℎ[ 𝑗] = 𝑃𝑃 [𝑖 − 1] × ℎ[𝑖] (2)

where ℎ is the product of each 8-element chunk of 𝑞(𝑥), and
the partial products 𝑃𝑃 are obtained by accumulating these
quotient chunk products. While Equation (1) can be easily
processed in parallel, Equation (2) exhibits a long sequential
dependency chain between 𝑃𝑃 [𝑖] and 𝑃𝑃 [𝑖 − 1].

To efficiently map the above computations, we first make
each PE compute 16 quotient polynomials 𝑞 [𝑖] and accu-
mulate them into 2 chunks ℎ[𝑖], as in Figure 6a. This is
constrained by the available register file capacity. Then we
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reorganize ℎ[𝑖] into groups through the global scratchpad,
where the 𝑘th group 𝑧𝑘 contains 𝑛 = 32 chunks of 𝑧𝑘 [𝑖] =
ℎ[𝑘𝑛 + 𝑖], 𝑖 = 0, 1, . . . , 𝑛 − 1, and is stored to one PE’s register
file. The partial product then proceeds in three steps as in
Figure 6b. First, each PE locally computes the partial prod-
ucts within its group 𝑧𝑘 , i.e., 𝑍𝑘 [ 𝑗] =

∏𝑗

𝑖=0 𝑧𝑘 [𝑖]. Then, the
PEs propagate their last products, i.e., 𝑍𝑘 [𝑛 − 1], to the next
neighbors and compute their partial products. Finally, each
PE uses the received partial product from the previous neigh-
bor, and multiplies it with each of the previous calculated
𝑍𝑘 [ 𝑗], to obtain the final results.

5.5 Implementation
The above mapping strategies of the various ZKP kernels
are implemented with a customized compiler in our design.
Currently, the frontend of our compiler is done manually, i.e.,
converting functions in standard ZKP libraries into specially-
defined computation graphs. Figure 7 illustrates an example.
The execution starts with theWires Commitment function,
which is parsed into three steps: iNTT, NTT, and Merkle tree.
The Get Challenges function is part of the Fiat-Shamir trans-
form, and only requires hash computations. The computation
graph also executes many other functions, and eventually
ends with the Prove Openings function that involves hash
and polynomial kernels.
Our backend implementation takes such computation

graphs as input, and maps each kernel to our hardware in a
fully automated way, incorporating the proposed novel tech-
niques. The backend outputs detailed schedules that describe
how the kernels execute on the hardware, including how to
fetch the data from memory, parallelize the computations
on multiple PEs in the VSAs, and dictate the on-chip data
communication between PEs.

6 Methodology
We have developed comprehensive RTL implementations
for the key components in UniZK, including the VSA, the
transpose unit, and the twiddle factor generator. We have
extensively verified their functionality correctness. We syn-
thesize these modules using the ASAP 7 nm technology. Ad-
ditionally, we use FN-CACTI [55] to model the scratchpad
and transpose buffers. Our default configuration has 32 VSAs
and an 8MB scratchpad. We equip the chip with two HBM2e
PHYs [29, 47], achieving peak bandwidth of approximately
1 TB/s. The overall chip operates at 1 GHz, with power con-
sumption of 64W to the logic and 32W to the HBM PHYs.
Table 2 shows the detailed area and power breakdown per
component in UniZK.
We also build a cycle-accurate simulator for UniZK to

evaluate its performance on complex workloads. We use Ra-
mulator2 [42] tomodel the off-chip DRAMaccess timing. The
simulator is validated against our RTL implementations. It is
open-sourced at https://github.com/tsinghua-ideal/UniZK.

Table 2. Area and power breakdown of UniZK.

Component Area (mm2) Power (W)

32 VSAs 21.3 58.0
8MB scratchpad 5.0 1.0
Twiddle factor generator 0.8 2.6
Transpose buffer 0.9 3.1
2 HBM PHYs 29.8 31.7

Total 57.8 96.4

Baselines. We mainly compare UniZK with CPU and
GPU baselines for hash-based ZKPs, as well as a previous
accelerator, PipeZK [72], which targets EC-based ZKPs. For
CPU solutions, we use a server with two 20-core Intel Xeon
Gold 5218R processors operating at 2.1 GHz, with 8 chan-
nels of DDR4 memory of 32GB capacity and approximately
200GB/s bandwidth. We use all the 80 threads to run parallel
Plonky2 programs.
The GPU baseline runs a Plonky2 CUDA implementa-

tion [54] on an NVIDIA A100 GPU. The A100 GPU features
80GB memory and 2 TB/s bandwidth. The GPU code primar-
ily focuses on accelerating NTT, Merkle tree, and element-
wise polynomial computations. The other kernels are still
executed on the host CPU.
Applications. We use a variety of typical ZKP applica-

tions to measure the performance improvement of UniZK.
(1) Factorial [51]. The prover demonstrates the correct cal-
culation of the factorial of 220 using ZKP. (2) Fibonacci [51].
The prover generates a proof of knowing the 220-th num-
ber in the Fibonacci sequence. (3) ECDSA [1] is a digital
signature algorithm based on elliptic curve cryptography.
The authenticity of the prover’s signature is ensured using
ZKP. We test it on a task of signing a 256-bit random file
hash. (4) SHA-256 [53] is a cryptographic hash function. The
prover uses ZKP to demonstrate the possession of a message
corresponding to a specific hash. We evaluate SHA-256 on
a 8000 B message with 126 blocks. (5) Image Crop [2]. The
prover generates a proof of cropping a 512 × 512 block from
a 1024 × 1024 RGBA PNG image at the left-top corner. (6)
MVM [67] (matrix-vector multiplication) is extensively used
in scientific computing and neural networks. We test with a
3000 × 3000 16-bit matrix. In all workloads, we use typical
configurations of Plonky2 and Starky aimed at achieving
approximately 100 bits of conjectured security [51, 64].

7 Evaluation
7.1 Performance Comparison
Table 3 shows the overall performance comparison between
UniZK and the CPU and GPU baselines. For each applica-
tion, we report the end-to-end proof generation time and
the speedup over the CPU. The GPU solution cannot gen-
erate an entire proof on itself but must rely on the CPU for
certain kernels, which causes back-and-forth data transfers.
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Figure 7. An example of the static computation graph in our compiler implementation.

Table 3. Overall performance comparison between UniZK
and the CPU and GPU baselines for Plonky2.

Application CPU GPU UniZK
Time (s) Time (s) Speedup Time (s) Speedup

Factorial 57.561 26.673 2.2× 0.828 70×
Fibonacci 3.373 0.736 4.6× 0.023 147×
ECDSA 7.463 2.063 3.6× 0.065 115×
SHA-256 55.445 26.845 2.1× 0.908 61×
Image Crop 23.765 16.182 1.5× 0.373 64×
MVM 39.669 33.383 1.2× 0.320 124×
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Figure 8. Performance breakdown by kernel types in UniZK.

Figure 9. Speedups by kernel types in UniZK.

Even for the GPU running kernels, operations such as NTTs
require irregular memory accesses that are not friendly to
GPUs. Overall, the GPU speedups are limited to up to 4.6×.
In contrast, UniZK achieves much more significant improve-
ments, from 61× to 147×, and on average 97× over the CPU.
Compared to the GPU, UniZK is still 46× faster on average.
In Figure 8, we further break down the execution time

of UniZK by kernel types, into three major components:
NTTs, element-wise polynomial computations, and hash
computations (including Merkle tree and other hashes). Note
that unlike the CPU, in UniZK the global transpose buffer
manages data transpose and other layout transformations
implicitly and in parallel with one of the computation kernels

Table 4. Memory and VSA utilization breakdown in UniZK.

Application NTT Poly Hash
Memory VSA Memory VSA Memory VSA

Factorial 47.6% 4.3% 15.7% 2.0% 20.6% 96.9%
Fibonacci 55.5% 5.0% 17.9% 5.8% 20.6% 96.7%
ECDSA 56.4% 5.0% 15.4% 9.2% 20.6% 96.1%
SHA-256 47.4% 4.3% 13.6% 1.9% 20.7% 97.2%
Image Crop 54.0% 4.8% 13.5% 2.2% 20.7% 97.1%
MVM 53.0% 4.8% 24.5% 5.9% 21.7% 95.3%

running, so this cost is eliminated in UniZK and not shown
in the breakdown. We see that after efficient acceleration of
the NTT and hash functions, the miscellaneous polynomial
operations now account for the majority of the execution
time, and become the bottleneck. Figure 9 also confirms this
observation, where the speedup of the polynomial kernels is
relatively lower than the other two kernel types. The NTT
speedup is also generally lower than that of hashes, because
NTT is mainly memory-bound.
While the above results demonstrate the effectiveness

of our NTT and hash mapping strategies with up to 191×
speedups, we also want to investigate why the polynomial
kernels are not so efficient, with only moderate speedups of
20× to 92×. We find that during gate evaluation, we usually
have pseudo-randomly data accesses where the accessed
indices are determined by, e.g., bit-reversed operations. The
access data size is constrained by the width and some other
parameters of the arithmetic circuit. Usually the circuit width
is not very large, e.g., 135, and the other parameters could
be as low as 2. Therefore these random memory accesses
have limited size, and underutilize the memory bandwidth.
An exception is MVM, whose circuit width is as high as
400, thereby improving bandwidth utilization and offering a
higher speedup for polynomial computations in Figure 9.

7.2 Resource Utilization
Table 4 summarizes the utilization of memory bandwidth
and VSAs, respectively, for each application. NTTs exhibit
the highest bandwidth utilization but low VSA utilization,
due to their memory-bound nature. In contrast, hash compu-
tations demonstrate the highest VSA utilization, with mod-
erate bandwidth usage. The Poseidon hash function involves
several on-chip matrix-vector multiplications after fetching
a single input state, making it mostly compute-bound. Poly-
nomial computations, on the other hand, show relatively low
utilization on both memory bandwidth and VSA logic. This
matches the previous results of their lower speedups.
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Figure 10. Performance sensitivity of UniZK when scaling
different hardware configurations. With MVM.

Table 5. Overall performance comparison between UniZK
and the CPU baseline for Starky + Plonky2.

Application Stage CPU UniZK Speedup Size (kB)Time (s) Time (ms)

Factorial Base 2.8 42 67× 261
Recursive 1.7 12 142× 155

Fibonacci Base 2.3 26 88× 259
Recursive 1.9 12 158× 155

SHA-256 Base 0.8 3 267× 778
Recursive 2.0 12 167× 187

7.3 Design Space Exploration
Figure 10 illustrates the normalized performance of UniZK on
the MVM task, when various hardware resources are scaled
up and down. We individually adjust the SRAM scratchpad
size, the number of VSAs, and the memory bandwidth, to
investigate their impact on UniZK. Reducing the scratchpad
size or memory bandwidth affects the NTT and polynomial
operations due to their memory bottlenecks. Additionally,
the Merkle tree’s performance is primarily dependent on the
number of VSAs, which facilitates high parallelization.

7.4 Performance of Starky
To demonstrate the generality of supporting different ZKP
protocols, we combine Starky and Plonky2 in the way de-
scribed in Section 2.1, i.e., using Starky for the base proofs,
followed by Plonky2 to aggregate the proofs to compress
the proof size. The total execution time is the sum of the
two stages. We select three applications that have existing
Starky implementations [3, 52], using the same parameter
set as those on Plonky2. Table 5 shows that, compared to
the CPU, UniZK achieves the maximum speedup of 267×.
Compared with running the same application with Plonky2
on UniZK (Table 3), running with Starky could achieve about
61× performance improvements.

Table 6. Performance comparison on the CPU and the ASIC
accelerators (UniZK and PipeZK [72]) with two ZKP proto-
cols of Starky + Plonky2 and Groth16.

CPU Time (s) ASIC Time (ms) Speedup

Groth16 Starky + PipeZK UniZK PipeZK UniZKPlonky2

SHA-256 1.5 2.0 102 12.6 15× 159×

AES-128 1.1 3.4 97 27.7 12× 123×

7.5 Comparison with Previous ZKP Accelerators
PipeZK [72] is a state-of-the-art ZKP accelerator that targets
the Groth16 protocol. We conduct a preliminary comparison
between UniZK and PipeZK. Since the hardware architecture
and the protocol algorithm are both different, a direct fair
comparison is difficult. We thus evaluate both the CPU and
the ASIC accelerator to gain better insights. We use two ap-
plications, SHA-256 and AES-128, both processing one data
block, as in the original PipeZK paper [72]. This allows us to
directly compare with their reported performance numbers.

We can see from Table 6 that, when running on the CPU,
Starky + Plonky2 is slower than Groth16. This is because
Starky + Plonky2 is dominated by the time of recursively
compressing the proof, while the base proof generation part
is short due to the small number of (a single) block being
processed. If we use the corresponding ASIC designs to ac-
celerate the two protocols, respectively, UniZK’s speedup
over the CPU baseline is 10.6× higher than PipeZK’s. PipeZK
leaves some work to the CPU, while UniZK supports end-to-
end proof generation thanks to its general unified hardware
design. But even if we look at the ASIC-only portion of
PipeZK, which is about 1/4 to 1/3 of the end-to-end time,
UniZK’s speedup is still higher. This result implies that the
hardware accelerator design of UniZK is more efficient than
PipeZK. If we directly compare the two accelerators, we see
3.5× to 8.1× speedups.
Actually, the above applications of processing a single

data block are not the best way to use Starky + Plonky2. If
we can generate the proofs for multiple blocks at once, as in
Table 5, only the base proof time increases, while the cost
of the recursive compression can be amortized. UniZK can
achieve over 8400 blocks per second for SHA-256. Compared
to PipeZK, which processes 10 blocks per second for SHA-
256, UniZK achieves a 840× speedup.

8 Related Work and Further Discussion
PipeZK [72] is an ASIC designed for the Groth16 proto-
col [27]. It incorporates two modules to accelerate the two
most expensive kernels, NTT and MSM. However, it requires
collaboration with the host CPU and thus cannot achieve
full end-to-end acceleration. The nature of the EC-based al-
gorithm also constrains its performance. SZKP [14], on the
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other hand, is a ZKP accelerator framework for end-to-end
Groth16 proof generation. It adds support for sparse MSM
which is handled by the CPU in PipeZK. SZKP uses high-
level synthesis to generate accelerators in a scalable way,
offering options from large, highly parallel designs to small
cores. Finally, a concurrent work, NoCap [61], proposes an
accelerator designed for hash-based ZKP protocols, specif-
ically Spartan [62] and Orion [70]. It integrates a variety
of functional units targeting different kernels, such as NTT,
hashing, sparse matrix-vector multiplications, etc. Compared
to NoCap, UniZK has a different design philosophy, mapping
variable kernels onto unified hardware, resulting in more
area-efficient architectural designs.
On GPUs, cuZK [40], an efficient GPU implementation

to accelerate ZKP, achieves significant speedups by paral-
lelizing operations and reducing CPU-GPU data transfers.
GZKP [43] leverages GPU acceleration for ZKP, with special
focuses on optimizing memory access patterns and paralleliz-
ing computational tasks. Ji et al. propose DistMSM [30], a
highly optimized algorithm for the MSM task on multi-GPU
systems. They leverage GPU shared memories to alleviate
register pressures and utilize tensor cores to accelerate large
integer multiplications on elliptic curves. On the other hand,
Huang et al. [28] propose a CPU-GPU collaborative acceler-
ation approach for the bulletproofs protocol [9].

Several works have utilized FPGAs to accelerate EC-based
ZKPs, with a particular focus on the MSM kernel [4, 41, 56,
69]. The state-of-the-art solution for FPGA-based MSM is
BSTMSM [73], which introduces a dedicated RAM to track
the state of buckets in the Pippenger algorithm, thereby elim-
inating bucket collisions and improving hardware utilization.
On CPUs and distributed clusters, DIZK [68] utilizes a

computer cluster to enable proof generation for large arith-
metic circuits with up to billions of gates, which overcomes
the resource limitation on a single server. ZENO [19] focuses
on optimizing the proof generation for neural network infer-
ences in the ZKML domain. It integrates a framework that
maintains the semantics of neural networks, and enables
more parallelization opportunities through techniques such
as data encoding and tensor-level and layer-level scheduling.

8.1 Generality to Other Protocols
The novelty of UniZK lies in its ability to map various kernels
onto the VSAs. This adaptability makes the design partic-
ularly suitable for the emerging hash-based ZKP protocols
that have diverse kernels. The concrete design of UniZK pre-
sented in this paper particularly focuses on Plonky2, and has
several specialized design choices like the 64-bit Goldilocks
field, the Poseidon hash function, etc. Nevertheless, we be-
lieve that the same design philosophy can be adapted to
other ZKP protocols, by making minor hardware changes in
a similar architecture, and proposing new kernel mapping
strategies. This is because, in modern cryptography, a key
data structure is polynomials, often organized as vectors or

matrices. Such matrix and tensor computations are inher-
ently suitable for systolic arrays [33]. Thus it is promising
to unify the diverse kernels on the common data structure
to the same architecture.
To see how UniZK may generalize, we examine several

recent ZKP protocols including Spartan [62], Binius [16, 17],
and Basefold [71]. Most of their components match well with
what we have already considered when designing UniZK,
such as sparse matrix-vector multiplications and polynomial
computations. Nevertheless, they also introduce a few new
primitives. A challenging one is the sum-check function
shown in Algorithm 2, following a dynamic programming
computation flow. Its main loop body contains two parts:
summing up the updated vector elements, and updating the
vector itself. An accelerator similar to UniZK can efficiently
execute the vector update operation similarly to element-
wise polynomial operations. The data paths between PEs
can be utilized to compute the vector sum, similar to how
partial sums are accumulated in matrix multiplications. A
more detailed evaluation is beyond the scope of this paper.

Algorithm 2: Sum-Check
Input :An initial vector 𝐴[2𝑛], random numbers 𝑟 [𝑛].
Output :Results 𝑦 [𝑛] [2].

1 for 𝑖 ← 1 to 𝑛 do
2 𝑦 [𝑖] ← [0, 0];
3 for 𝑏 ← 0 to 2𝑛−𝑖 − 1 do

/* Sum up vector elements */
4 𝑦 [𝑖] [0] ← 𝑦 [𝑖] [0] +𝐴[𝑏];
5 𝑦 [𝑖] [1] ← 𝑦 [𝑖] [1] +𝐴[𝑏 + 2𝑛−𝑖 ];

/* Update vector (element-wise polynomial operations) */
6 𝐴[𝑏] ← (1 − 𝑟 [𝑖]) · 𝐴[𝑏] + 𝑟 [𝑖] · 𝐴[𝑏 + 2𝑛−𝑖 ];

9 Conclusions
In this paper, we propose UniZK, a general ZKP architecture
to accelerate emerging hash-based ZKP protocols beyond
classic EC-based ZKP schemes. UniZK uses a unified hard-
ware architecture with systolic arrays of modular arithmetic
units to offer hardware efficiency. It then maps diverse ZKP
kernels onto such a generic template using novel mapping
strategies, while ensuring high resource utilization. UniZK
is significantly faster than the CPU and GPU baselines when
executing the Plonky2 and Starky protocols, and also sub-
stantially outperforms previous ZKP accelerators.
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A Artifact Appendix
A.1 Abstract
The source code for the simulator used in this work is avail-
able at https://github.com/tsinghua-ideal/UniZK. All the ex-
periments described in this paper can be reproduced using
the provided running scripts. The implementations of the
evaluated applications are in the examples directory.
We have included necessary third-party libraries in the

repository. The installation and build instructions are pro-
vided in the README.md file in the repository.

A.2 Artifact check-list (meta-information)
• Compilation: Rust 1.8, g++ 11.4.
• Run-time environment: Ubuntu 22.04.
• Hardware: Intel Xeon Gold 5218R.
• Output: The number of cycles in the log files.
• How much disk space required (approximately)?:
1 TB for temporary trace file.
• How much time is needed to prepare workflow
(approximately)?: 30 minutes.
• How much time is needed to complete experi-
ments (approximately)?: < 1 day for each experi-
ment.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: BSD-3.

A.3 Description
A.3.1 How to access.
• Source code: https://github.com/tsinghua-ideal/UniZK.

A.3.2 Hardware dependencies.
• The code is tested on a server with two Intel Xeon Gold
5218R CPUs, 256GB memory, and 4 TB disk space.
• Most experiments can run on a computer with an Intel
or AMD CPU, 32GB memory, and 1 TB disk space.

A.3.3 Software dependencies.
• A recent Linux distribution.
• Rust 1.8.
• g++ 11.4.
• CMake 3.22.

A.4 Installation
• Use a nightly toolchain for Plonky2.

rustup override set nightly

• Build RamSim.

cd thirdparty/ramsim

mkdir build

cd build

cmake ..

make -j

RamSim is an enhanced version of Ramulator2 [42].
We add support for simulating the computation latency
and properly handling the data dependencies between
computations and memory accesses.

A.5 Experiment workflow
• To reproduce the performance results of the CPU base-
line in Table 3, run the script:

./ run_cpu_test.sh

• To reproduce UniZK’s simulation results in Table 3,
run the tests for applications using Plonky2:

./ run_plonky2_test.sh

Run the tests for Starky and recursive proofs in Table 5
and Table 6:

./ run_starky_test.sh

These scripts will set up the required third-party libraries
and execute the experiments in the examples directory.

A.6 Evaluation and expected results
CPU baseline. When running the applications in Table 3
with Plonky2 on the CPU baseline, performance results are
logged to files prefixed with cpu_, e.g., cpu_ecdsa.log:

Number of CPUs: 80
. . .

prove_with_partition_witness took: 7 463 553 us

This output indicates that the proof was generated in 7.46 s
using 80 threads.
Similarly, when running the applications in Table 5 and

Table 6 with Starky + Plonky2 on the CPU baseline, per-
formance results are logged to files prefixed with cpu_ and
suffixed with _starky, e.g., cpu_factorial_starky.log:

Number of CPUs: 80
. . .

prove took: 2 792 781 us
Proof size: 260 688 bytes
. . .

prove_with_partition_witness took: 1 684 995 us
Recursive proof size: 155 380 bytes

This shows that the base proof generation took 2.8 s and
the recursive proof generation took 1.7 s. The corresponding
proof sizes are 261 kB and 155 kB, respectively.
UniZK. The experiment for each application in Table 3,

Table 5, and Table 6 creates a log file named after the appli-
cation (e.g., sha256.log or sha256_starky.log).

total_num_write_requests: 11704733
total_num_read_requests: 11946930
memory_system_cycles: 4207818
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This indicates that UniZK performed 11704733 write re-
quests and 11946930 read requests, each involving 64 bytes
of data. The reported cycles of 4207818, at a clock speed of
1GHz, translate to an execution time of 4.2ms.

A.7 Experiment customization
For each application in Table 3, the provided command in
run_plonky2_test.sh could be customized in several ways
using command-line arguments, as shown in the following
example:

cargo run --release --example ecdsa \

-- -r 8 -t 32 -e 0

These arguments have the following meanings:
• -r: the scratchpad capacity in MB.
• -t: the number of VSAs.
• -e: the target kernel for simulation during proof gen-
eration, 0 for NTTs only, 1 for hash computations only.
Omitting -e simulates the entire proof generation.

These arguments can be used to reproduce the results
presented in Figure 8 and Figure 10.

A.8 Note
• The current simulator is built entirely on a single-
threaded implementation, which results in relatively
long simulation time. This long simulation duration is
not related to UniZK’s performance.
• The GPU performance in Table 3 can be evaluated us-
ing the GPU implementation of Plonky2 [54] with our
CPU-based application code located in the examples
directory.
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