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Abstract. Key-value (KV) stores are one of the most prominent data
storage engines in many cloud services, including those that keep sensi-
tive user information and must be protected against privileged attackers
in public clouds. While modern hardware processors could offer isolated
execution environments during processing, existing secure KV stores still
need to use software-based protection to ensure confidentiality, integrity,
and freshness for external data I/O to disks. The recent development of
hardware-based trusted I/O and disks provides a new way to implement
secure KV stores and obviate software encryption. However, we find that
although trusted I/O simplifies freshness enforcement, directly putting
all data to the trusted disk is not optimal due to the repetitive encryption
agnostic to the application behaviors. We thus propose TwinStore to
combine the benefits of the software and hardware, by only storing the
metadata associated with freshness in the trusted disks to minimize the
performance overheads. With our prototypes on two KV store structures,
TwinStore outperforms the software-only and hardware-only designs,
by 18.5× and 1.1×, respectively.
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1 Introduction

As cloud computing advances rapidly, commercial workloads have been moving
from on-premise servers to public clouds. Many cloud services leverage persistent
key-value (KV) stores as their underlying data storage engines. Besides perfor-
mance and cost, a new design goal of security emerges for such KV stores as they
may keep sensitive information such as user credentials and medical records in
the untrusted and unsafe cloud environment.

Trusted execution environments (TEEs) offered in modern Intel, AMD, and
ARM processors [1,4,13,14,17] provide a promising way to protect sensitive data.
Prior research [5,18–20,40,41,45] has built secure KV stores with TEEs like Intel
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SGX [13], incorporating software-based protection when data move outside the
TEE protection regime, e.g., disk I/O. Recently, the scope of TEEs has enlarged
to the virtual machine (VM) level [4, 14, 17], which can naturally include the
I/O devices, particularly with the new TEE-IO specifications [2,15] and trusted
storage (Section 2.2) that can transparently perform hardware-based protection
on all I/O data transfers. This motivates us to rethink how to implement efficient
and secure KV stores with the best choices of data protection methods.

To our surprise, we find that the hardware-based approach is not necessarily
always better than the software one. Each option has its own drawbacks (Sec-
tion 3). If we directly put all KV store data into the TEE-IO-capable trusted
storage, although it facilitates efficient freshness protection, repetitive encryp-
tion and decryption occur along the I/O path when transferring data from the
memory along the PCIe bus to the disk. This is because different hardware com-
ponents use different encryption keys that must be managed in different ways
to match their specific requirements. The software-based method might be more
efficient and flexible here, as it can leverage the multiple CPU cores and the
AES-NI instruction extension [10], and can easily saturate the I/O bandwidth.
Nevertheless, to ensure data freshness and prevent replay and rollback attacks,
software methods need to rely on some kinds of trusted counters, which are not
available in many TEEs or have significant performance overheads.

In this work, we propose an efficient and secure KV store design, Twin-
Store, which combines the advantages of both hardware- and software-based
implementations. TwinStore identifies the minimal components for freshness
guarantee in the secure KV store, and only puts their data into the hardware-
based trusted disks, while using normal untrusted disks with software-based au-
thenticated encryption for the rest majority of data. This approach allows us to
minimize the amount of data suffering the repetitive encryption overheads, while
also relieving the design from the difficulty of maintaining trusted counters for
freshness enforcement. Note that such identification and separation are straight-
forward given an existing secure KV store design, and in most cases even simplify
the original design as we can now rely on hardware for freshness protection.

We have demonstrated the feasibility and benefits of TwinStore on two KV
stores, RocksDB [30] and LotusDB [24], based on log-structured merge (LSM)
trees [34] and B+ trees, respectively. The software-only implementation suffers
from significant overheads for trusted counter management due to the limitation
of current TEEs, while leveraging trusted disks alleviates this issue. Overall, by
combining the two approaches, TwinStore achieves 3.4× and 1.1× speedups
for RocksDB, and 18.5× and 1.06× for LotusDB, over the two baselines. Twin-
Store is open sourced at https://github.com/tsinghua-ideal/twinstore.

2 Background and Related Work

2.1 Trusted Execution Environments

Trusted execution environments (TEEs) provide isolated execution regions in-
side untrusted servers [1, 4, 14, 17, 27]. A remote client can connect to the TEE
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and verify its status through remote attestation [3] to establish trust, and then
securely offload computations to it. The confidentiality and integrity of data and
code in the TEE are guaranteed even against a privileged attacker on the server.

The CPU is the root of trust in building the isolated hardware region. Besides
isolation against the concurrently running contexts inside the CPU, the content
in the TEE is transparently encrypted by a memory encryption engine when
leaving the CPU to the off-chip memory. The logical scope of the trusted region
varies in different TEEs. While Intel SGX provides in-process isolated regions,
AMD SEV [17], Intel TDX [14], and ARM CCA [4] choose to protect a whole
virtual machine (VM). Nowadays, the industry prefers TEEs with VM-level iso-
lation, known as confidential VMs (CVMs), because they have a clear security
boundary consistent with the management scope of cloud servers. Even if the
hypervisor is compromised, the security of CVMs is still guaranteed.

Previously, data should be encrypted and authenticated by software before
leaving TEEs for persistence. With the prosperity of CVMs, it is natural to
consider also covering the I/O devices in the trusted domain of the VM. The
PCIe-5 specification introduces integrity and data encryption (IDE) [35], which
guarantees confidentiality, integrity, and freshness for PCIe packets against at-
tackers with physical access to the I/O bus. Some device manufacturers have
released hardware security modules for IDE [46]. However, IDE is not originally
designed for a threat model with untrusted hypervisors [42]. Therefore, TEE-IO
specifications, such as SEV-TIO [2] and TDX-TEE-IO [15], are being proposed.
TEE-IO formulates the device attestation model and describes the necessary
capabilities that trusted devices should have to establish secure packet channels
between PCIe stubs. When transferring data across the I/O bus and devices,
each hardware component adopts hand-over-hand authenticated encryption, to
ensure data confidentiality, integrity, and freshness even with adversarial hy-
pervisors (Section 3). After the attestation between the device and an attested
TEE instance, the client knows it is communicating with the correct instance of
the device. Although there are not yet commercial storage devices supporting
TEE-IO, TEE-IO is promising and expected to appear soon.

2.2 Hardware-Based Trusted Storage

Although TEE-IO protects the physical channel (i.e., PCIe) between the host
processor and the storage device, the storage device still requires additional
protection mechanisms against both internal (software) attacks and external
physical (hardware) attacks. Therefore, trusted storage devices should feature
self-encrypting disk drives [31, 36] for fine-grained access control. Concretely,
after connecting to the device, the user should set the password originally set
by the device manufacturer [43]. Then only the user can unlock and access
the device with the password. The TCG Opal specification [44] allows multiple
passwords to be set, and hence a storage device can be divided into multiple
parts. Each part is encrypted with a different disk encryption key (DEK) and
can be erased independently of the others. The DEKs should be derived from
the passwords [28]. When combined with TEEs, it is the TEE instance that sets
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the password for its part, after which even a privileged attacker cannot reset the
password. The device then encrypts each part with the corresponding DEK [44].
However, self-encrypting is insufficient to defend against physical attacks that
undermine data freshness. Hence, trusted storage devices should also incorporate
hardware defenses for end-to-end security [48].

2.3 Secure Key-Value Stores

Key-value (KV) store is an important data service that has been integrated
with TEEs [5, 18–20, 40, 41, 45]. Previous designs mainly targeted the defects
in conventional TEEs like Intel SGX, including limited trusted memory capac-
ity [18, 19, 40, 45], high domain switch overheads [19], slow Merkle-tree verifica-
tion [29], and fragile trusted counters (if existing) for data freshness [6, 18]. In
this work, we focus on secure KV stores on persistent storage, whose structures
rely on log-structured merge (LSM) trees [34], B+ trees, etc.
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Fig. 1: An LSM-tree-based KV store (RocksDB [30]).

A normal (insecure) LSM-tree-based KV store [9, 30] contains in-memory
tables (MemTables), sorted strings tables (SSTables) on disks, write-ahead log
(WALs) files, and a Manifest, as shown in Figure 1. For put requests, the items
are sequentially logged to the WAL for crash recovery and temporarily stored in
memory using the MemTable. As the MemTable fills up, the content is first made
immutable (to avoid blocking future requests), then converted into a SSTable,
and dumped to the disks. SSTables are hierarchically organized in multiple levels.
When the size of a level grows over a threshold, background compaction merges
several files into a larger one to the next level. For get requests, the KV store
first searches the MemTable, and then the SSTables level by level, for the key.
The version changes of SSTables are recorded in the Manifest.

TWEEZER [18] and Speicher [5] are representative secure KV stores based
on LSM trees. Take TWEEZER as an example. It encrypts and authenticates the
KV pairs in the SSTables for confidentiality and integrity. It further uses different
cryptographic keys (held in TEE memory) for each SSTable to defend against
rollback attacks, which is secure because SSTables are immutable and each index
key is unique in each SSTable. To protect WAL files, TWEEZER utilizes classic
hash chains [37, 38] and lets the client keep the latest cryptographic key that is
the same as the one in the trusted memory.
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Apart from LSM trees, KV stores can be built with other structures like
B+ trees [24,49]. B+ trees have more stable read performance, while LSM trees
have higher write throughput. To combine the best of both, similar to [16], Lo-
tusDB [24] replaces SSTables with value log files, and uses B+ trees to index
values in the files. If we put a B+tree-based KV store into a TEE, besides en-
cryption and authentication when data leave the TEE, Merkle trees are typically
needed for data freshness when doing in-place update [41].

2.4 Threat Model

We assume a group of clients outsourcing their data to a remote KV store ser-
vice in a CVM on an untrusted server. The TEE-capable hardware processor and
trusted storage on the server are trusted, which means they contain no internal
bugs and defend against physical attacks (e.g., physically rolling back the data).
The clients share a password, which is used by the TEE instance to access the
trusted storage. The guest OS and the KV store inside the CVM are also trusted.
We do not need the clients to manage metadata for storage encryption (e.g.,
counters for defending against rollback attacks). We do not assume the avail-
ability of distributed trusted counter services. We assume a powerful malicious
attacker, who controls all privileged software on the server including the hypervi-
sor, and wants to steal sensitive information or fool the clients with incorrect or
stale results. The attacker can arbitrarily observe and tamper with the code and
data in untrusted devices, including memories, disks, and networking. However,
any curiously or maliciously adversarial behaviors to the trusted CVM will fail.
Moreover, the attacker cannot directly query the KV store due to the lack of
access permission (e.g., passwords). Alleviation of side channels [8,11,21,22,25]
for CVMs is considered orthogonal. Although our system supports secure crash
recovery, denial-of-service attacks are also out of scope.

3 Motivation

The development of TEE-IO-capable trusted storage offers an alternative way of
building secure KV stores. We could put a standard KV store system into CVMs
and trusted storage, instead of relying on software-based encryption, authenti-
cation, and freshness enforcement. It becomes a natural question to consider
which approach is better, adopting TEE-IO hardware or using pure software
implementations. Our study reveals that neither one is ideal, but there is an
opportunity to combine the two methods to achieve the best of both worlds.

Issue of trusted storage: repetitive encryption and decryption. In-
tuitively, the CVM, TEE-IO, and trusted storage respectively protect the data
in the processor and memory, along the PCIe links, and inside the disks. As
the data flow from the CVM memory to the I/O storage, data confidentiality
and integrity are naturally guaranteed through hardware-based encryption and
authentication. Data freshness protection is ensured by the use of temporary ses-
sion keys and counters during I/O transfers, as well as by the access control and
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physical protection when data are stored in trusted storage (Section 2.2). How-
ever, there would be repetitive encryption and decryption as shown in Figure 2.
Data are first decrypted by the encryption engine in the memory controller,
and then encrypted before arriving at one PCIe endpoint. After transferred over
PCIe, they are decrypted again at the other endpoint, and finally encrypted by
the disk controller encryption engine to store in the disk.
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Memory Controller

Encryption Engine

Main Memory
DDR

PCI Interface

Encryption Engine

Disk

PCIe

Ciphertext

Ciphertext
Plaintext

Controller

Encryption 
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Storage 

Unit

Fig. 2: Encryption/decryption as data flow between the memory and the disk.
Green denotes the trusted parts.

The root cause of such repetitive encryption and decryption is the differ-
ent keys used in different phases and managed by different components. We
believe this is a more fundamental limitation rather than suboptimal implemen-
tation, because of the inconsistent characteristics across the phases that hinder
the unification of the keys. According to the TEE-IO specification, PCIe keys
are negotiated per session, which means that as the device boots, a new pair
of keys are used and they cannot be programmed by users. However, for disk
encryption, the same key should be used per user without changing across ses-
sions. As for memory encryption, the key is generated by the CPU through a
hardware digital random number generator (HW-DRNG), and is lost once the
CPU resets [14]; thus it is not user-programmable, either. Unifying these keys is
hence non-trivial without significantly changing the entire system architecture.

Issue of software: difficulty of freshness enforcement. If we fully rely
on software-based security techniques without utilizing TEE-IO and trusted stor-
age, guaranteeing freshness is the most tricky thing. Previous designs rely on sev-
eral methods. Some use in-TEE trusted counters [5], which take 60 to 250 ms for
every increment and are easy to wear out [7, 26]. Others implement distributed
secure counter services, which are complicated and also have high overheads [26].
Another way is to let the remote client manage the cryptographic keys used to
encrypt and authenticate the WAL (Section 2.3). This is impractical considering
the synchronization needed when log truncation occurs or multiple clients collab-
oratively access the KV store. If Merkle trees are used to protect freshness [5,41],
there would be even more significant performance overheads.

Opportunity: software is not necessarily worse than hardware if
freshness is not considered. We observe that, in terms of encryption and
authentication, software-based solutions are not definitely worse than hardware-
based ones. First, software can also utilize hardware acceleration instructions
like AES-NI [12], reaching throughput of several GB/s per core on AES-GCM-
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256 [10]. Second, modern servers are typically equipped with tens to hundreds of
cores, so encryption and authentication can be fully parallelized at the data-block
granularity. In contrast, the number of hardware encryption engines is typically
limited. A PCIe 5.0 device with 32 lanes, even not considering the encryption
engine limit and repetitive encryption overheads, has 128GB/s bandwidth [33].
The encryption and authentication throughput required to saturate this band-
width can be easily satisfied by parallel software with multiple cores. Third, gen-
erally speaking, the higher in the system stack we apply encryption, the more
flexibility we have. With application-level encryption, the application developers
and users can apply any encryption code (e.g., choosing a specific cryptographic
algorithm) to any particular data they need. Therefore, the software approach
may be combined with the hardware method to achieve both ones’ advantages.

4 TwinStore Design

To fix the thorny freshness issue in the software method and mitigate the repet-
itive encryption issue in the hardware method, we propose TwinStore to com-
bine the best of both worlds. The key idea is that, with a KV store, we identify
the minimal components associated with freshness enforcement and put them to
the hardware-based trusted storage, while the other components are directed to
the normal untrusted storage protected by software encryption and authentica-
tion. The minimization reduces the amount of data that suffer from repetitive
encryption and decryption in hardware, while the difficulty of ensuring freshness
in software is avoided. We illustrate how we instantiate the idea on an LSM-
tree-based KV (i.e., RocksDB [30]) in Section 4.1 and a B+tree-based KV (i.e.,
LotusDB [24]) in Section 4.2.

4.1 LSM-Tree-Based TwinStore

To secure an LSM-tree-based KV store, we follow the design of TWEEZER [18]
(Section 2.3). The minimal part for freshness enforcement includes the WAL
and the Manifest files, as well as the Current file that points to the Manifest
of the latest version of SSTables. Hence, as shown in Figure 3, we assign the
above components to the trusted disks, while the other components, including
the SSTables, are stored in the untrusted storage with software-based protection.
Like TWEEZER, we use a KeyMatrix to hold the cryptographic keys correspond-
ing to each SSTable. All volatile states including the KeyMatrix are stored in
the CVM trusted memory. The Manifest files are responsible for persisting the
cryptographic keys in the KeyMatrix, delegating protection to trusted storage.

For a put request, the WAL sequentially saves the log entry for the request
and the MemTable stores the KV pair. As we flush the log entry to the WAL,
there is no need for software-based encryption, authentication, or using hash
chains [18]. Instead, the log entry stays in plaintext from the software perspective,
and the hardware, i.e., trusted storage, would transparently protect the entry
when transferred along the PCIe bus and stored in the trusted disk. On the
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Fig. 3: Applying TwinStore to RocksDB [30].

other hand, when the MemTable is flushed to the untrusted disk as an SSTable,
it needs software-based protection of encryption and authentication, associated
with a unique key in the KeyMatrix. A get request follows the same process
that first searches the MemTable and then the encrypted SSTables. Given that
the keys in the KeyMatrix are organized in the same way as the SSTables, we
can easily get the corresponding key to decrypt each SSTable during search.

As shown in Figure 4, an SSTable contains various types of blocks. The footer
is used to locate the index block and the meta index block that points to the
filter block (for bloom filters). Each entry in the index block refers to a data
block by the offset. The encryption granularity in the SSTable is a block rather
than a KV pair [18]. We use AES-GCM-256 to encrypt each block except for the
footer, where the MACs are stored. In particular, the MAC computation needs
to involve the data block offset, to prevent attackers from substituting another
(MAC validated) data block in the same SSTable.
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Encrypted &
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Max key 1
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Max key n

Offset 1
⋯

Offset n
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Fig. 4: The structure of an encrypted SSTable.

When SSTables undergo compaction, they are first loaded into the CVM
trusted memory and decrypted. The compaction is done on plaintext KV pairs
as usual. The compacted output SSTables are associated with new cryptographic
keys, which requires updates of the KeyMatrix, Manifests, and Current.

For crash recovery, the trusted disks first perform mutual attestation with
the CVM to build a secure channel. After that, only the CVM having the correct
password can access the (part of) trusted storage. Given that the freshness of
WAL, Manifests, and Current is well protected, the rest of recovery is similar to
the normal one, except that a KeyMatrix should be built from the Manifest.

Security analysis. The states in the trusted storage are protected by the
CVM, TEE-IO, and trusted disks, with data confidentiality, integrity, and fresh-
ness (i.e., no replay or rollback) ensured by the end-to-end flow of TEE-IO (Sec-
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tion 2.1). The only attack point is the SSTables in the untrusted storage outside
the CVM and TEE-IO region. Any snooping and tampering is prevented by
authenticated encryption (i.e., AES-GCM-256), so the attacker can only try to
(1) replace one SSTable as a whole with another, (2) deceive TwinStore into
believing the SSTable does not exist, (3) replace one block with another, or
(4) deceive TwinStore into believing the SSTable does not contain a certain
block. To defend against (1) and (2), TwinStore detects the attacks using the
KeyMatrix when it obtains an SSTable and verifies its block through MAC com-
putation. Since the code in the CVM knows which SSTable to search on, it uses
the right key to decrypt and verify the block. If the attacker provides a block
from another SSTable, the verification will fail. For (3) and (4), although we do
not conduct an HMAC computation on the entire SSTable as in TWEEZER [18],
our block-level protection is sufficient. In an SSTable, there is only one block of
each type except for data blocks. The attacker cannot, for example, replace an
index block with a meta index block. Otherwise, the CVM code will fail to decode
the block. For data blocks, since we involve the offset in the MAC computation,
the attacker can neither replace a data block with another nor delete the block
without modifying the index block, which is also impossible.

4.2 B+Tree-Based TwinStore

Instead of searching on multiple SSTables, LotusDB [24] supports using the B+
tree to index the values in the files called value logs, and thus improves the
read performance. We identify that the minimal part for freshness enforcement
in LotusDB includes the WAL and the B+ tree indexes. Hence, as in Figure 5,
we assign these components to the trusted TEE-IO disks, and the value logs are
stored in the untrusted storage. All volatile states are in the CVM memory.
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Enc & Flush

Trusted Untrusted

Immutable

MemTable

B+ Tree

B+ Tree

B+ Tree

Value Log Value Log

Value Log Value Log

Value Log Value Log

Partition

Index

Rotate

Fig. 5: Applying TwinStore to LotusDB [24].

For a put request, similar to Section 4.1, the WAL persists a log entry to
the trusted storage without software encryption and authentication. LotusDB
partitions the filled-up MemTable by hashing the keys, so each partition can
easily be indexed using a B+ tree and written to disks in parallel. The position
in the B+ tree indicates which value log and at what offset in this log the KV
pair resides, since there are multiple value logs in one partition. In TwinStore,
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we use AES-GCM-256 to encrypt the value logs at the granularity of each KV
pair. The computed MAC tags are stored along with the positions in the B+
trees. For a get request, TwinStore first searches the MemTable, and then
the value logs through the B+ tree indexes. Similar to SSTables, value logs may
also contain duplicated keys and need compaction, which happens similarly to
Section 4.1 in plaintext in the CVM trusted memory. Crash recovery is simple
based on the fully protected WAL and B+ tree indexes.

Security analysis. Similar to Section 4.1, the only possible attack is replac-
ing the requested block with another block. This attempt can be easily detected
as the MAC tags are stored in the trusted storage.

Discussion. We provide guidelines for identifying critical components in
other KV stores. First, the WAL, which is commonly used, should be stored in
trusted disks, as it is typically the ground truth for crash recovery. Second, the
structures holding the data should be assigned to untrusted disks due to the
large volume. Finally, the persistent index should go to trusted disks, such as
the Manifests (and Current) in RocksDB and the B+ trees in LotusDB.

5 Evaluation

5.1 Experimental Setup

Platform. We evaluate TwinStore on a server equipped with an AMD EPYC
Milan processor (64 cores) which supports AMD SEV-SNP CVMs [39], 256 GB
RAM, and a 1.6TB NVMe SSD.

Workloads. We evaluate both RocksDB and LotusDB. For RocksDB, we use
db_bench, a benchmark tool with rich configurations. Unless otherwise specified,
the default configurations are: number of client threads = 48, (random) read-
write ratio = 9:1, block size = 32 kB, key size = 16 B, value size = 1 kB, block
cache size = 512 MB, and number of requests per client = 5×106. For LotusDB,
we directly evaluate sequential/random put/get since it does not provide an off-
the-shelf benchmark tool. The default configurations are: key size = 16B, value
size = 32B, read-write ratio = 1:1, number of partitions = 92, and number of
requests per client = 4.8× 106.

Baselines. We compare TwinStore to the software-only (SW-only) and
hardware-only (HW-only) approaches. SW-only is similar to TWEEZER [18],
but now puts the KV store into a CVM instead of the legacy Intel SGX TEE,
therefore many of the optimizations in TWEEZER can be simplified due to the
larger trusted memory capacity. However, this approach suffers from the diffi-
culty of managing freshness counters. SEV does not have non-volatile trusted
counters. Based on [26], we simulate a conservative 1ms latency of counter up-
date when persisting each log entry. We do not compare with previous secure
KV designs (Section 2.3) due to their different target platform, i.e., Intel SGX.
HW-only directly puts the KV store into a CVM with TEE-IO-capable trusted
disks. However, to our best knowledge, no commercial storage currently sup-
ports trusted disks. Therefore, we conservatively simulate this system. We utilize
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dm-crypt in the cryptsetup tool [47] in the Linux kernel to transparently en-
crypt and authenticate persistent data, configuring it with AES-GCM-256. This
is reasonable because: (1) authenticated encryption of cryptsetup is also trans-
parent to applications; (2) the granularity of encryption can be set to 4 kB as
the disk block size; (3) decrypted data blocks also utilize OS-level caching (i.e.,
Linux page cache), avoiding redundant decryption; (4) the transparent authen-
ticated encryption runs in parallel and fully utilizes multi-core [32] and AES-NI
acceleration, thus matching or even exceeding the speed of the hardware encryp-
tion engines. We remark that if using an ASIC/FPGA to simulate the encrypted
PCIe bus, the latency would be higher since in this case both PCIe endpoints
involve encryption/decryption. The client does not manage cryptographic keys.

5.2 Results
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Fig. 6: Performance of RocksDB as the value/block sizes vary.
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Fig. 7: Performance of RocksDB as the read-write ratio varies.

RocksDB result analysis. Figure 6 shows the comparison among SW-
only, HW-only, and TwinStore, with various value sizes and SSTable block
sizes. When the value size increases, the improvement of TwinStore over HW-
only ranges from 6% to 16%. Smaller value sizes have less improvement, because
the page cache in the baseline can keep more KV pairs, while we encrypt at
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the block granularity without optimizing for block-level caching. On the other
hand, as the block size increases, the improvement grows from −2% (worse)
to 19%. For software encryption/decryption in TwinStore, larger blocks can
amortize the overheads of each cryptographic routine invocation and result in
better cache utilization [23]. Besides, because the SW-only design increments the
trusted counter for each new log entry, it incurs significant slowdown from 3.8× to
3.2× compared to TwinStore, as the value size grows. The slowdown decreases
due to the reduced frequency of writing logs when the value size becomes larger.
However, as the block size increases, the slowdown of SW-only over TwinStore
is relatively stable around 3.4×.

Besides, different numbers of client threads from 1 to 64 affect the speedup of
TwinStore over HW-only from 10% worse to 18% better. Our current imple-
mentation of software encryption/decryption has less parallelism than dm-crypt
in HW-only. More request-level parallelism helps fully utilize the multiple cores
for TwinStore, while dm-crypt suffers from more parallel scheduling cost [32].

Figure 7 shows the comparison as the read-write ratio varies. With more
writes, the speedups of TwinStore over both HW-only and SW-only become
slightly better. This is because TwinStore does not optimize for caching de-
crypted blocks, while HW-only benefits from the Linux page cache when serving
reads. On the other hand, SW-only will write logs more frequently if there are
more writes, exacerbating the slowdown over TwinStore.
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Fig. 8: Performance of LotusDB as the value size varies.

LotusDB result analysis. The encryption granularity is a KV pair now, so
for both sequential and random get, we see significant speedups of TwinStore
over HW-only as the value size shrinks in Figure 8, which are 3% to 22% for
sequential get and up to 28% for random get, showing the necessity of flexi-
bility in the encryption granularity. However, for both sequential and random
put, TwinStore and HW-only have comparable performance, because put is
performed in a batched manner, and dm-crypt can encrypt a batch at once.
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The speedup of TwinStore over SW-only is larger for LotusDB because
SW-only additionally uses Merkle trees to protect the freshness of the B+ trees,
while for RocksDB SW-only uses the KeyMatrix to store the latest keys in
the trusted memory. For sequential/random put, TwinStore achieves about
20× speedup over SW-only. For sequential/random get, the speedup slightly
decreases to about 18× because writing logs is not needed for SW-only.

6 Conclusions

In this paper, we comprehensively compare two approaches to implementing
secure KV stores, through using software encryption and authentication, or re-
lying on hardware-based protection offered by recent trusted I/O and disks. The
software methods are inefficient to guarantee data freshness, while the hardware
methods suffer from repetitive encryption and decryption cost. We thus propose
TwinStore to combine the best of both worlds. We evaluate TwinStore in
various configurations and show it improves over the two baseline designs.
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