
Trimma: Trimming Metadata Storage and Latency for Hybrid
Memory Systems

Yiwei Li
Tsinghua University

China
liyw19@mails.tsinghua.edu.cn

Boyu Tian
Tsinghua University

China
tby20@mails.tsinghua.edu.cn

Mingyu Gao
Tsinghua University

China
Shanghai Qi Zhi Institute

China
gaomy@tsinghua.edu.cn

Abstract
Hybrid main memory systems combine both performance and ca-
pacity advantages from heterogeneous memory technologies. With
larger capacities, higher associativities, and finer granularities, hy-
brid memory systems currently exhibit significant metadata storage
and lookup overheads for flexibly remapping data blocks between
the two memory tiers. To alleviate the inefficiencies of existing
designs, we propose Trimma, the combination of a multi-level meta-
data structure and an efficient metadata cache design. Trimma uses
a multi-level metadata table to only track truly necessary address
remap entries. The saved memory space is effectively utilized as
extra DRAM cache capacity to improve performance. Trimma also
uses separate formats to store the entries with non-identity and
identity address mappings. This improves the overall remap cache
hit rate, further boosting the performance. Trimma is transparent
to software and compatible with various types of hybrid memory
systems. When evaluated on a representative hybrid memory sys-
tem with HBM3 and DDR5, Trimma achieves up to 1.68× and on
average 1.33× speedup benefits, compared to state-of-the-art hy-
brid memory designs. These results show that Trimma effectively
addresses metadata management overheads, especially for future
scalable large-scale hybrid memory architectures.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems; • Hardware → Memory and dense storage.

Keywords
hybrid memory, DRAM cache, high-bandwidth memory, metadata

ACM Reference Format:
Yiwei Li, Boyu Tian, and Mingyu Gao. 2024. Trimma: Trimming Metadata
Storage and Latency for Hybrid Memory Systems. In International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT ’24), October
14–16, 2024, Long Beach, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3656019.3689612

This work is licensed under a Creative Commons Attribution International
4.0 License.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3689612

1 Introduction
Main memory now performs an increasingly critical role in com-
puter systems, especially when executing data-intensive applica-
tions with massive amounts of data [51]. Both fast access speed
and large capacity are desired for main memory, but these two
goals exhibit fundamental conflicts under any existing individual
memory technology. Fortunately, hybrid memory systems [7, 9,
24, 29, 30, 50, 52, 60–62, 66, 69, 79], which integrate two or more
memory tiers with different characteristics, have the potential to
overcome such a tradeoff and achieve both performance and ca-
pacity advantages over traditional architectures. Typically, a slow
memory tier provides a sufficiently large capacity to hold the entire
dataset, while a fast memory tier delivers lower latency and higher
bandwidth for the most frequently accessed data.

With new technologies such as non-volatilememories (NVMs) [22,
44] and new interconnection techniques such as Compute Express
Link (CXL) [10], the slow memory capacity is able to keep increas-
ing, while the fast memory chooses to maintain its small size for
sufficiently fast access speed. Furthermore, to improve performance,
hybrid memory systems start to adopt higher associativities for
address mapping between the two tiers [46, 60, 73, 74], and also
use more fine-grained data blocks for migration [7, 30, 50, 66, 74].
These trends inevitably require highly flexible address remapping
schemes covering the entire memory space, so that the most critical
data can be effectively identified and moved to the fast memory.

Consequently, in future hybrid memory systems, not only do
we need to store a large amount of metadata for address remap-
ping, but also these metadata must support sufficiently fast lookup
to avoid being a performance bottleneck. Unfortunately, existing
metadata designs fail to alleviate these storage and lookup over-
heads when hybrid memory systems scale to large capacities, high
associativities, and fine-grained data blocks. For example, cache-
style tag matching schemes [29, 50, 61, 66, 79] store address tags
only for data blocks in the fast memory, thus exhibiting moderate
metadata storage cost. However, associative tag matching cannot
support high-associativity designs due to the significant latency to
search through the many tags inside a cache set. Alternatively, the
address remapping information can be kept using a simple linear
table [39, 60, 69, 74], where metadata access only requires a single
lookup. Dedicated on-chip caches can further alleviate this access
latency [20, 39, 60, 69, 74]. But on the other hand, because the remap
table needs to have an entry for every data block, it has a huge size
that proportionally grows with the total memory capacity. Such a
huge table needs to be stored in the fast memory, occupying the
available high-performance capacity for the actual data. Moreover,

108

https://orcid.org/0009-0000-7598-5025
https://orcid.org/0000-0001-9482-1026
https://orcid.org/0000-0001-8433-7281
https://doi.org/10.1145/3656019.3689612
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3656019.3689612


PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

the SRAM metadata cache also incurs on-chip area cost and may
not scale to effectively buffer the increasingly larger metadata.

To alleviate such metadata overheads, in this work we propose
Trimma, the combination of a multi-level metadata structure and
an efficient metadata cache design for hybrid memory systems.
Trimma is compatible with both cache and flat use modes of the fast
memory. It is a hardware-only design that is completely transparent
to application and system software. These features make Trimma
an easy-to-adopt and widely applicable architecture.

To reduce the metadata storage cost, Trimma uses an indirection-
based remap table (iRT), similar to the multi-level OS page table, to
only store the truly necessary metadata. iRT is a scalable structure
as its size is proportional to only the fast memory capacity instead
of the overall memory size under most cases. To achieve this, iRT
eliminates the entries for unallocated and uncached/unmigrated data
blocks, whose mappings are always the identity function. With a
simple yet efficient memory management scheme, iRT can easily
allocate/deallocate entries in hardware. Despite being constantly
varying and highly fragmented with irregular distribution, the
saved fast memory spaces for the unnecessary metadata entries are
effectively utilized by Trimma as extra DRAM cache slots to deliver
performance gains to the system.

In addition, to reduce the metadata lookup latency, especially the
even more expensive multi-level traversals in iRT, Trimma uses an
identity-mapping-aware remap cache (iRC), with separate formats
to store the entries with non-identity and identity mappings. The
non-identity mappings use the same conventional remap cache
design, but with a slightly smaller capacity to save some space
for storing identity mappings. The identity-mapping part of iRC
instead uses a different and more compact format to store more
entries within the same amount of SRAM. This is because we only
need to know which addresses exhibit identity mappings, without
the need to store the remapped pointers.

With these two key techniques, Trimma is able to offer significant
performance improvements. We compare Trimma to state-of-the-
art designs under different hybrid memory technology combina-
tions. Trimma achieves up to 1.68× and on average 1.33× speedups
on an HBM3 + DDR5 system, and up to 1.80× and on average
1.34× speedups on a DDR5 + NVM system. The reasons for such
improvements are twofold. First, there is a large extra DRAM cache
area due to metadata savings, from uncached/unmigrated data with
identity address mappings. Data accesses missed from the fast mem-
ory in Trimma are therefore reduced by 7.9% and migration traf-
fic is reduced by 23%. Second, the identity-mapping-aware remap
cache effectively increases the coverage of the remap cache, and
reduces metadata access misses. The overall remap cache hit rate
has increased from 54% to 67%. Overall, our findings indicate that
Trimma effectively improves the scalability of hybrid memory sys-
tems by tackling the challenges associated with metadata storage
and lookup overheads, particularly suitable for upcoming large-
scale hybrid memory architectures.

In summary, we make the following contributions in this paper.

• We identify that the metadata storage and lookup over-
heads would become potential bottlenecks in hybrid memory
systems, given the recent trends towards larger capacities,
higher associativities, and more fine-grained block sizes.

• We propose an indirection-based remap table structure, iRT,
that only keeps truly necessary remap entries. The memory
space for unnecessary remap entries is retrofitted as extra
DRAM caching space, hence improving performance.

• Wepropose an efficient identity-mapping-aware remap cache
design, iRC, that uses separate formats and storage for non-
identity and identity addressmappings. Particularly, the iden-
tity mappings use a more compact scheme to improve the
remap cache coverage and thus the hit rate.

• We integrate the two techniques in Trimma, a scalable hy-
brid memory metadata management scheme. Our evaluation
shows that Trimma achieves significant performance ben-
efits on various hybrid memory systems over the state-of-
the-art designs.

2 Background and Motivations
Hybrid memory systems typically have multiple memory tiers,
either by integrating two or more heterogeneous memory technolo-
gies, such as 3D-stacked DRAM [21, 27, 28], DDR4/5 DRAM [25, 26],
and/or byte-addressable non-volatile memories (NVMs) [22], or
extending beyond local memory to remote memory through ad-
vanced interconnection technologies like Compute Express Link
(CXL) [10]. The fast memory tier usually has lower access latency
and higher bandwidth, but comes with smaller capacity. In con-
trast, the slow memory tier offers much larger capacity to extend
the system main memory at lower cost, while its access speed is
inferior. Hybrid memory systems can either use the fast memory as
a cache in front of the slow memory [9, 24, 29, 30, 50, 61, 77, 79], or
treat the two as a horizontally flat organization both visible to the
OS [7, 52, 60, 62, 66, 69]. Data are cached or migrated between the
two tiers to let the most critical subset reside in the fast memory. A
large volume of recent research has been focusing on specific cache
management and flat migration policies [1, 8, 9, 18, 52, 62, 65, 79],
in order to exploit the technology heterogeneity and achieve both
performance and capacity advantages over traditional architectures.

2.1 Trends of Hybrid Memory Systems
With technology advances and system development, hybrid mem-
ory systems are currently observing several architectural trends.
First, the typical memory capacities of the fast and slow memories
keep diverging, resulting in increasingly higher slow-to-fast ca-
pacity ratios. Memory-intensive big-data applications like neural
networks [32, 40, 42, 43], genome alignment [3, 19, 34], and graph
analytics [14, 56, 59, 68, 70] have been continuously driving the
growth of main memory capacity. The emerging NVM technolo-
gies, such as phase-change memories [44] and Intel 3D XPoint [22],
promise to handily extend the byte-addressable memory in a system
to TB scales. Similarly, advanced interconnection technologies like
CXL 3.0 switches could also extend the system’s remote memory ca-
pacity to several TBs [11, 54]. In contrast, fast memory technologies,
primarily the in-package 3D-stacked HBM modules, are limited in
their capacity due to physical area cost, vertical integration diffi-
culty, and thermal dissipation requirements. Currently even the
most recent HBM3 only offers a maximum of 24GB per stack [27],
two orders of magnitude smaller than an NVM-based slow memory.
As a concrete example, the Intel Sapphire Rapids processors [23]

109



Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

integrate four HBM2E stacks and eight DDR5 channels, theoreti-
cally capable to scale to 64GB HBM and 4 TB DRAM, resulting in
a slow-to-fast capacity ratio as high as 64:1.

Second, the increasing slow-to-fast capacity ratio necessitates
hybrid memory systems to adopt higher associativities for map-
ping between fast and slowmemories. Early hybridmemory sys-
tems use very low associativities, usually partitioning the two mem-
ories into many small sets with only one fast block per set which
several slow blocks can map to [7, 39, 61, 69]. With increasing capac-
ity divergence, many slow blocks will compete for the single slot in
the fast memory, incurring significant conflict misses and frequent
replacements. To relieve the rigid mapping bottleneck, systems with
higher associativities are recently proposed [46, 60, 73, 74], and re-
sult in higher hit rates in the fast memory. As shown in Figure 1, we
run PageRank in a 16-core system with hybrid memory of DDR5
and HBM3, under a capacity ratio of 32:1 (detailed configurations
are in Section 4). If we do not consider the metadata overheads
(discussed in Section 2.2), increasing the associativity from 1 to
1024 could bring a significant speedup of 1.5× in the ideal case.

Third, hybridmemory systemswould preferfine-grained blocks.
Previous designs have demonstrated the tradeoff regarding data
block granularities [15, 60, 65, 69, 74]. In general, coarse-grained
blocks exploit spatial locality, but also result in over-fetching that
wastes significant memory bandwidth. A larger granularity also
leads to fewer blocks under a fixed capacity, and incurs more ca-
pacity and conflict misses. On the other hand, fine-grained blocks
increase both capacity and bandwidth utilization, but the large
number of blocks may result in substantial management over-
heads such as metadata storage. Several designs have used sub-
blocking techniques to balance bandwidth utilization and meta-
data overheads [30, 63, 66, 74], i.e., use a coarse-grained block size
but only fetch the demanded fine-grained sub-blocks. In summary,
most hardware hybrid memory systems prefer block granularities
smaller than the OS page size, from a few hundreds of bytes (64 B
or 256 B) [7, 30, 50, 66, 74] to the DRAM page size (2 kB) [69, 74].

2.2 Challenges of Metadata
In this work, we focus on hardware-only hybrid memory manage-
ment that is completely transparent to software. Because any data
block could potentially be moved across memory tiers, every data
access request to a physical address must first lookup a hardware-
based metadata structure to determine the actual location of this
data block, i.e., the device address on the fast or slow memory tiers.
As a result, the metadata design is particularly vital in terms of both
performance and system cost. We discuss several existing metadata
schemes below, and show how they would become a new potential
bottleneck, especially in future hybrid memory systems that are
scaling to large slow-to-fast capacity ratios, high associativities,
and fine block granularities, following the trends in Section 2.1.

One popular metadata structure is the cache-style tag matching
scheme, used by many prior systems, especially DRAM cache de-
signs [8, 17, 29, 50, 61, 66, 79]. Within a specific cache set in the
fast memory (DRAM cache), all tags must be compared against
the access request. Upon finding a matched tag, the corresponding
fast memory address is the remapped location, while no match
indicates the data block is in the original slow memory address, i.e.,

1 8 32 256 1024
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Ideal Tag Matching Linear Table

Figure 1: Performance comparison among various metadata
management schemes for the PageRankworkload. Simulation
details are in Section 4. “Ideal” represents the theoretical
scenario without metadata storage and lookup overheads.
Normalized to the ideal case at an associativity of 1.

an identity mapping between the physical and device addresses.
This metadata structure only needs to track the blocks in the fast
memory, so its storage cost is moderate.

However, tag matching is viable only at low associativities. This
is not only constrained by the hardware cost of associative search,
but also due to the extra latency to access the tags from the memory.
Usually the tag storage is too large to be kept on-chip, but they
are accessed from off-chip memory. Assuming each tag is 4 B, each
64-byte access can only retrieve 16 tags. Thus, for designs with as-
sociativities higher than 16, multiple metadata lookups are needed,
incurring significant extra overheads. Figure 1 shows that although
tag matching approaches the ideal efficiency at low associativities,
its performance quickly drops at high-associativity cases.

An alternative approach involves a linear table metadata for-
mat [39, 60, 69, 74], a.k.a., a remap table that tracks every data
block in both the fast and slow memory tiers. Each access request
uses the physical address to look up the remap table to find out
the actual device address. Even at high associativities, the remap
table lookup only needs a single memory access, more efficient
than tag matching. Previous designs have proposed to use a simple
on-chip remap cache to further filter these off-chip remap table
accesses [20, 39, 60, 69, 74]. While a remap cache could achieve
over 90% hit rates, its scalability is limited considering the limited
on-chip area vs. the increasing fast and slow memory capacities.

Furthermore, a more severe issue with linear remap tables is the
storage cost. The remap table is stored in the fast memory, but it
needs to cover all data blocks across both memory tiers and thus
has a size growing with the slow memory capacity. At large slow-
to-fast capacity ratios, the remap table would consume a substantial
fraction of the fast memory, constraining the available space for
actual data and hence degrading the performance. For instance, a
16GB HBM paired with a 512GB DRAM at the 256 B granularity
mandates over two billion entries. Assuming each entry is 4 B, half
of the fast memory would be spent on metadata storage. Finer data
block granularities, as proposed in certain studies [7, 50, 61], further
enlarge the remap table size and exacerbate the storage overhead.

In summary, the metadata lookup and storage overheads are be-
coming increasingly challenging and must be effectively addressed
for future hybrid memory systems that have large slow-to-fast ca-
pacity ratios, high associativities, and finer block granularities. This
is the focus of our work.

110



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

Processor LLC

Cache Area Flat Area
Remap Table

(iRT)

Flat Area

Fast Memory

Slow Memory

Metadata Lookup Path Data Access Path Added by Trimma

Remap Cache
(iRC)

Memory Controller

Figure 2: The overview architecture of Trimma. Designs dif-
ferent from the baseline hybrid memory system are high-
lighted. The saved capacity from iRT can be flexibly used as
extra cache space.

Lookup remap cache

Cache miss

Cache hit

Access data Access data
In fast flat

In slow memoryIn fast cache

In fast cache In fast flat

❶Locate 
remapped address

❷Data access

❸Off-critical 
data eviction

❹Off-critical 
metadata update

Update remap table

Lookup remap table

Access data

Replace victim

Writeback if dirty Swap

Figure 3: The overall access flow of Trimma. Changes beyond
the baseline hybrid memory system are highlighted.

3 Design
We propose Trimma, a multi-level metadata structure for hybrid
memory systems with efficient storage and caching approaches.
Trimma is compatible with both cache and flat use modes of the
fast memory, or even a hybrid of the two [2, 22, 39, 74]. It is also
completely transparent to application and system software. Trimma
adopts an indirection-based remap table (iRT) to effectively elim-
inate the need to store unnecessary metadata entries. It uses the
saved fast memory space from the significantly reduced remap
table size (up to 93%) as an extra DRAM cache area to improve the
performance. In addition, to overcome the extra latency overhead
of looking up the multi-level table, Trimma also incorporates an
efficient identity-mapping-aware remap cache (iRC). By storing iden-
tity and non-identity address mappings with different cache entry
formats, the overall hit rate of the remap cache increases, which
further enhances the system performance.

3.1 Design Overview
Figure 2 illustrates the overall architecture of Trimma. Trimma is
built on top of a basic hybrid memory design that uses the fast
memory as either a DRAM cache or a part of the flat memory space,

Set 0
Metadata Fast Cache Fast Flat Slow

…

❶Locate
remapped address

❸ Off-critical 
data replacement

Index

❹Off-critical
metadata update

❷Data
access

Set 1

Set 2

Set k
…

Leaf entries
(used in Trimma)

Figure 4: The set-associative memory layout in Trimma, with
the access flow actions in Figure 3 performed upon. iRT en-
ables some unused metadata blocks to be used as extra cache
space (shown in blue in the metadata area).

or even a combination of the two modes, such as Chameleon [39]
and Hybrid2 [74]. Both the fast and slowmemory spaces are divided
into blocks, as the granularity of caching/migration between the
two tiers. To translate physical addresses to device addresses during
data accesses, Trimma uses a forward-direction remap table as its
metadata, similar to traditional linear remap tables but using a
different data structure described later. This remap table is stored in
the fast memory, and consumes its precious capacity which could
have been used for the actual data. All blocks in both memories
are partitioned into disjoint sets as a set-associative organization in
Figure 4. Blocks are cached/migrated between the two tiers only
within each set, so each set tracks the metadata separately. Trimma
is particularly efficient for high-associative configurations.

Figure 3 illustrates the overall access flow of accessing a physical
address in the OS-visible flat area in either the fast or slow memory,
and Figure 4 shows the corresponding actions on the memory
layout. As data could be cached in or migrated to another place, we
first determine the actual device address, by looking up the remap
entry in the on-chip remap cache or from the remap table in the
fast memory (❶). If the remap entry indicates that the data are in
the fast memory (either the cache or flat area), we directly access it.
Otherwise we fetch the data from the slow memory (❷), return it
to the processor, and handle replacement off the critical path (❸❹).
The exact replacement policy choice is orthogonal to our design
and discussed in Section 3.3.

Figure 3 also highlights the changes in Trimma that adopt novel
remap table and remap cache designs, which are merely in the
metadata lookup and update phases (❶❹) without affecting the
rest data access/eviction. Hence innovations including replacement
policies [1, 18, 52, 62, 65], selective migration [8, 9, 79], and cache-
flat dual modes [2, 13, 39] can be orthogonally integrated with the
remap table and remap cache designs in Trimma.

Indirection-based remap table. Rather than the conventional
linear remap table, Trimma uses an indirection-based remap table
(iRT, Figure 5), inspired by the multi-level OS page tables in the
x86-64 architecture. Essentially iRT resembles a generic radix tree
structure, but is completely managed by hardware. Unnecessary
remap entries in iRT are not allocated, in order to save the fast
memory space used bymetadata.We identify and exploit two saving
opportunities: (1) unallocated data blocks are never accessed and
do not need metadata [39]; (2) data blocks that stay at their original

111



Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

locations without being cached/migrated do not need to be translated,
since they have identity address mappings (physical address ==
device address). While the first one is trivial and already leveraged
by OS page tables, the second source is particularly effective and
novel for hybrid memory systems. Specifically, with a high slow-to-
fast capacity ratio, only a small subset of the slow memory blocks
can be cached or migrated to the fast memory; the rest majority
must stay in their original places due to the slow swap policy [66,
69]. As a result, the total number of entries in iRT is proportional
to only the fast memory capacity, instead of the overall capacity.

iRT is amuchmore scalable metadata design, as the slowmemory
capacity will be rapidly growing in the foreseeable future, while
the fast memory size changes much slower due to the physical
difficulties. The saved fast memory spaces from the smaller iRT can
be effectively utilized as extra caching slots that extend the existing
ones, increasing the DRAM cache hit rate for higher performance.

Nevertheless, as a more complex structure than linear tables,
iRT faces several design challenges, calling for unique optimiza-
tions that set it apart from OS page tables. First, as iRT is managed
by hardware, its entry allocations/deallocations and updates must
remain sufficiently simple and efficient while keeping the saving op-
portunities. Second, with frequent data block movements between
the two memory tiers, the saved remap entries may scatter into
a highly fragmented layout, and continuously come and go. It is
hence quite difficult to effectively utilize these irregular spaces, and
quickly reclaim them when needed by newly allocated metadata.
Finally, we need to identify the optimized detailed configurations,
including the number of levels and the tag bit width for each level.
We address these issues in Sections 3.2 and 3.3.

Identity-mapping-aware remap cache. One other major con-
cern of using a multi-level table is the increased lookup latency. An
𝐿-level remap table may introduce up to 𝐿 + 1 additional off-chip
accesses in the worst case. Just like TLBs for page tables, a better
caching approach is desired.

We observe that, we not only could skip storing an identity map-
ping in the remap table, we also do not need to look it up if we could
know it is an identity mapping, i.e., we simply use the original phys-
ical address as the device address to access the data. This motivates
us to design our remap cache in an identity-mapping-aware manner,
saving cache spaces by not storing redundant (identity) remapped
addresses, and improving cache coverage and utilization.

However, a naive design of completely skipping identity map-
pings in the remap cache will not work. The key difficulty is that
if we do not find an entry in the remap cache, we have no way
to distinguish between whether it is due to a miss to an actually
valid remap entry, or because the entry is an identity mapping and
thus skipped by the remap cache. Therefore, if we think of a remap
entry as a key (physical address) value (device address) pair, we still
need to store the keys though the values can be saved. As a result,
we split the original single remap cache into two components in
our identity-mapping-aware remap cache (iRC): a NonIdCache for
valid remap entries as before, and an IdCache to filter the skipped
remap entries with better SRAM space utilization. Specifically, the
IdCache uses a similar design as a sector cache [63], and groups
many entries into one cacheline to save space. Each entry only uses
a single bit to indicate whether it is an identity mapping or not. We
discuss the detailed design in Section 3.4.

Tag 0 Tag 1 Index Block Offset

Physical Address

1

Device 
address

Tag 2

⊕

Tag
Root 10

Unused

Unused

10

Remapped Block IdFor caching

Figure 5: The indirection-based remap table structure and its
lookup flow.

3.2 Indirection-Based Remap Table
Figure 5 illustrates the structure of iRT. To support set-associative
hybrid memory systems, iRT uses separate trees for different sets.
iRT is compatible with any associativity, and is particularly effective
for high associativities when each set has more entries and thus
more saving opportunities. Given a physical address, the index bits
first select the tag root for its set, which points to the root of the
corresponding table. The tag bits in the physical address are divided
into multiple parts, which are used to traverse the multi-level table,
until locating a leaf entry that stores the remapped block ID to
concatenate with the block offset to get the device address.

Different from OS page tables that are managed by kernel soft-
ware, iRT is searched and updated purely in hardware. To simplify
the management, we reserve a continuous space in the fast memory.
The table of each set, which is a complete radix tree assuming all in-
termediate and leaf entries are allocated, is linearized to a standard
linear layout in its breadth-first order. Because the tables of all sets
are contiguously stored and have the equal allocated size, the tag
root of a set can be directly located without using a lookup table.
Furthermore, the address of any entry in a tree can also be inferred
from the tag bits without being explicitly stored. Essentially, each
entry, when present, always resides at its own reserved and fixed
location. Thus the intermediate entries of iRT just use bit vectors
to indicate whether the next-level entries are allocated or not, and
only the leaf entries store the remapped block IDs.

iRT does not populate all entries in the table, and eliminates as
many unnecessary entries as possible to reduce the table size in the
fast memory. If the lookup misses in any level of the iRT, we assume
an identity mapping with the device address equal to the physical
address, as if the block has not been moved. Such a default also
covers unallocated data blocks, which should be never accessed.
However, the unused entries in iRT could be highly fragmented
and scattered randomly in the fast memory. We describe how we
effectively utilize them as cache spaces in Section 3.3.

Example. Figure 4 illustrates an example access to a 2-level iRT.
We perform one access to the intermediate level and the other to the
leaf entry (❶). These accesses can happen in parallel as the entries
are always in their fixed locations. If the intermediate-level bit is
0 meaning that the leaf entry is unallocated (as in this example),
the block is in the original location (❷). After the accessed block is
cached/migrated into the fast memory (❸), we also need to update
the remap table (❹), by allocating the previously missing leaf entry
and setting the corresponding upper-level bit (described below).

112



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

This metadata block may have cached another data block, which
must be evicted as described in Section 3.3.

Table update. When a block is moved due to either caching,
migration, eviction, or swap-out, its iRT entry should be accord-
ingly updated. If the block is moved from its original location to
another place, we allocate entries down to the leaf level; if it is
restored back to its original slot, we clear the existing entry, and
also free the upper levels if the entire block becomes empty. Such
allocation/deallocation is simple because the iRT’s linearized layout
requires the entries to be at fixed locations. However, updates may
involve changes in multiple levels. We reduce the cost by always
buffering the intermediate-level entries in the on-chip controller
when conducting the iRT lookup, so no backtracing is needed when
these entries are later updated. In Trimma, a block will never be
moved between two non-original locations; if it is evicted, it must go
back to its initial place. This follows the slow swap policy [66, 69].

Detailed configuration selection. In iRT, we use 4-byte leaf
entries to store the remapped block IDs. With a typical block size
of 256 B [74], iRT can support up to 232 × 256 B = 1 TB memory per
set. We can freely use multiple sets to support even higher capacity,
e.g., using 1024 sets to cover 1 PB. This is more than enough for
hybrid main memories even considering future scaling.

Regarding the level division in iRT, more levels provide more
metadata space saving opportunities, but also increase the overall
lookup latency. In order to conveniently utilize the saved metadata
spaces without internal fragmentation, we require all iRT entries
to be allocated/deallocated in a unit no smaller than the block size.
This follows the same idea as the x86-64 page table which makes
its intermediate levels always 4 kB aligned. With 256-byte blocks,
each leaf metadata block in iRT would store 64 individual entries.
Because the intermediate index levels store a single bit for each
child instead of the address, each index block can hold 2048 children,
corresponding to 11 bits for a tag chunk. Larger granularities than a
single block bring limited benefits (see Section 5.3), while requiring
more complex multi-block eviction. So Trimma uses 11-bit tag
chunks for all iRT levels. This effectively realizes a 2048-ary radix
tree. Because of the huge fanout, in this setting a simple 2-level iRT
would be sufficient and more levels do not enable much additional
space savings (Section 5.3). However, for even finer granularities
such as 64 B data blocks, deeper iRTs would be useful.

Metadata storage savings. iRT saves significant metadata stor-
age to be used as extra cache spaces. Assuming the above con-
figurations of 4 B remap entries, 256 B blocks, and a 32:1 slow-to-
fast capacity ratio (recall from Section 2.1 that real-world systems
may have a ratio up to 64:1 [23]), a linear remap table occupies
(32 + 1) × 4/256 = 52% of the fast memory capacity, which further
grows when the slow-to-fast ratio increases. If we apply a 2-level
iRT design, the extra intermediate level has negligible storage over-
heads (worst-case 1/2048 = 0.05%) due to the use of valid bits rather
than full addresses. The number of valid leaf blocks depends on the
specific workload. In the best case, all remapped entries (equal to
the number of fast data blocks) are densely packed into a contigu-
ous set of leaf metadata blocks, and we only consume 4/256 = 1.6%
of the fast memory, plus the intermediate level storage. In the aver-
age cases, the leaf metadata blocks may be only partially occupied,
and result in larger total occupation of metadata. On average, iRT
reduces the metadata size to 11.0% of the fast memory.

Novelty beyond OS page tables. While iRT shares a similar
structure as OS page tables, it has several key unique novel features.
First, iRT is specially optimized for hardware, with predetermined
and fixed addresses assigned to all the entries at different levels.
This enables fast and parallel lookups, as well as efficient alloca-
tions/deallocations and updates, as described above. Second, iRT
exhibits a unique opportunity that avoids storing the metadata for
uncached/unmigrated data blocks, which OS page tables are not
able to do so. Finally, iRT also could effectively utilize the saved
fast memory spaces as extra cache spaces to hold more data and
improve performance. We describe it next.

3.3 Using Saved Spaces for Caching
While iRT has a high potential to significantly reduce the meta-
data storage overhead and free up considerable fast memory ca-
pacity, it is not easy to effectively utilize the saved spaces. Avail-
able metadata blocks rapidly come and go when data blocks are
cached/migrated/evicted, and they are highly scattered and frag-
mented in the fast memory with irregular distribution. Some prior
hybrid memory designs such as Chameleon [39] rely on the OS to
manage the varying memory usage when it allocates/deallocates
data. This approach will not work well when we additionally con-
sider data blocks with identity mappings, whose states change with
caching and migration, much more frequently than memory alloca-
tion. The software overheads would then become unacceptable.

Instead, in Trimma we keep the saved metadata spaces invisible
to software, and use them as extra DRAM cache spaces managed
completely in hardware. This allows us to adapt much faster to
the quickly varying metadata size and timely exploit the short-
term performance opportunities. Notice that in order to cache a
slow memory block into such an unused metadata slot, we use the
same iRT to store the bidirectional mappings. The forward mapping
(from the slow memory block to the DRAM cache block) is used for
the look up process, which is illustrated in Figure 5. The inverted
mapping (from the DRAM cache block to the slow memory block)
is used at eviction. In other words, to utilize one 256-byte unused
block, we need to insert two 4-byte entries into the same iRT.

To track the availability of each metadata block and determine
whether it can be used for caching, we reuse the iRT intermediate
levels. For example, in a 2-level iRT, each leaf metadata block has
a corresponding index bit, where “1” means it is used as metadata
and “0” means it is unused. For a multi-level iRT, the availability
of an intermediate-level block is recorded in its upper level. We
describe how to use these bits for cache replacement below.

Cache replacement ofmetadata and data. In order to simplify
metadata allocation in hardware, the rigid iRT memory layout en-
forces each entry, if allocated, must reside in a certain fast memory
block (Section 3.2). As a result, the metadata have higher priorities
to use the block than the data. When an iRT update needs an entry,
we directly evict the current data block cached in that location
if there is one, regardless of its hotness. This data block could be
refetched if needed and replace another less critical data block.

On the other hand, the replacement policy among data blocks
should take into account the extra metadata slots if they are free to
use. We distribute all reserved metadata blocks in the fast memory
across all sets of the hybrid memory system, so each metadata block

113



Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Access Address

Way 0

Tag V Pointer

Set a
Way 5…

NonIdCache
2K sets in total

Way 0

Set b

Tag V Id Bits 1

IdCache
256 sets in total

Way 15…

Super-Block ID
47 7

Offset
0

Block
12

hash

Tag
47 7

Offset
0

Set
18

Figure 6: The identity-mapping-aware remap cache design.

is dedicated to a certain set. If the corresponding index bit of this
block is “0”, it contributes to the set capacity. The difficulty is that
the effective set associativity keeps varying over time, and also
differs across different sets. We need to accordingly adapt the scope
of data replacement policies.

Because Trimma is especially beneficial for highly associative
systems, we extend popular replacement policies under high asso-
ciativities to the extra cache space. Due to the high cost of tracking
LRU information under high associativities, recent hybrid memory
systems choose simple FIFO or random replacements [17, 74, 79],
or use area-efficient access counting [60], in order to quickly locate
an acceptable victim. A FIFO policy simply skips blocks with index
bits equal to “1”. For a random policy, we check the index bit after
randomly selecting a candidate, and resample if needed. Note that
we can always evict a non-metadata block in the original cache
area after a few times of retries.

More complex policies, such as LRU [29, 66], CLOCK [45], and
MEA in MemPod [60], can also be applied. We provision enough
replacement information storage for the maximum associativity
including all metadata blocks. This is a small overhead because
the metadata area is usually smaller than or comparable to the
basic cache area, and replacement information is a small portion
compared to other data storage. The hardware tracks the access
behaviors for all blocks in the set as usual. When an eviction is
demanded, we use the index bits to skip actual metadata blocks,
and find the best candidate in the remaining slots.

Trimma chooses to use the FIFO policy, which can further adopt a
simple optimization to reduce the cost of off-chip index bit accesses
when selecting victims. Specifically, due to the FIFO ordering, we
can prefetch the next chunk of index bits to a small on-chip buffer (a
few bytes would hide most latency). We tried other more complex
policies, e.g., an ideal LRU, but found only less than 1% hit rate
improvements (possibly because of the high associativity), while
incurring huge off-chip update traffic [78].

3.4 Identity-Mapping-Aware Remap Cache
The iRT in Trimma allows us to save the metadata storage, but
exacerbates the metadata lookup latency and consumes more fast
memory bandwidth by introducing multiple metadata accesses for
each data block. Therefore we further propose an identity-mapping-
aware remap cache (iRC) to alleviate these issues.

Under roughly the same SRAM capacity budget, we split the
conventional remap cache into two components: a NonIdCache
that stores the valid (i.e., allocated) remap entries with non-identity

mappings, and a special IdCache that is organized similar to a sector
cache [63] and stores bit vectors to indicate whether the entries
associated with the data blocks in a larger super-block use identity
mappings or not. Assuming the same SRAM capacity, the IdCache
is able to store more entries due to the compressed format, thus
improving the overall iRC coverage and runtime performance.

Figure 6 shows the cacheline formats of the NonIdCache and
IdCache respectively. The NonIdCache operates in the same way
as the conventional remap cache. In the IdCache, each cacheline
uses the original space of a 4 B remap pointer to store 32 bits that
indicate whether the corresponding super-block of 32 contiguous
data blocks (8 kB) exhibits identity mappings or not. Each bit asso-
ciates with one 256 B block in this super-block. Due to the different
granularities (block vs. super-block) in the two parts, they use dif-
ferent index and tag schemes. For the IdCache, the lower address
bits for the offset within the super-block are used to select one bit.
Moreover, we utilize a hash-based index scheme [33] and a higher
associativity in the IdCache to reduce conflict misses from the large
number of identity mappings. We empirically select the proper
associativities to balance the access latencies of both caches. To
summarize, the NonIdCache has 2048 sets of 6 ways each, and the
IdCache has 256 sets of 16 ways each (Table 1). The total capacity
is equal to a 64 kB conventional remap cache.

Each metadata data lookup would access the two caches in par-
allel, and either the IdCache or the NonIdCache would hit, or both
miss. If hit in the IdCache, which means that a matched bit vector
is found and the corresponding bit is 1, we directly use the original
physical address as the device address. If hit in the NonIdCache,
we use the pointer stored in the cache. If both are misses, we go
to the off-chip remap table (i.e., iRT) to retrieve the entry. If the
entry is valid, it is inserted into the NonIdCache. If the entry is not
allocated, it is inserted into the IdCache.

Note that when iRT gets updated because of data block caching
and migration, the corresponding iRC entries should also be up-
dated for consistency. We simply invalidate the entries from iRC.

Bloom filters as an alternative? At the first glance, the iRC
could use Bloom filters [6] as compressed storage. The physical
block addresses with identity or non-identity mappings essentially
form two sets, and the purpose of the iRC is to test whether a request
address is in each set or not. However, due to the false positives in
Bloom filters, we cannot use them to store the identity-mapping
set; doing so may incorrectly classify an address with non-identity
mapping into the identity-mapping set. On the other hand, storing
the non-identity-mapping set in Bloom filters has limited benefits;
we still need to store their original remap entries in the cache.

3.5 Discussion
More saving opportunities. Trimma saves remap table entries for
unallocated and uncached/unmigrated data blocks with identical
physical-to-device address mappings, using a simple hardware-only
solution. If we further leverage software support, there could be
more opportunities. For example, when a data block is deallocated
by the workload, it would never be accessed again and its remap en-
try can be recycled. Hardware alone cannot know this information,
unless told by the software through a well-defined interface [39].
We leave a detailed design as future work.

114



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

Table 1: System configurations.

Cores x86-64, 3.2 GHz, 16 cores
L1I 32 kB per core, 4-way, 64 B cachelines, LRU
L1D 64 kB per core, 8-way, 64 B cachelines, LRU
L2 1MB per core, 8-way, 14-cycle latency, LRU
LLC 32MB shared, 16-way, 60-cycle latency, LRU

SRAM Conventional remap cache: 2048-set, 8-way, 3-cycle
iRC: 2048-set, 6-way (NonIdCache) + 256-set, 16-way (IdCache)

HBM3 + DDR5 HBM 3.0, 1600MHz, 16 channels; RCD-CAS-RP: 48-48-48
DDR5-4800, 1 channel, 2 ranks, 16 banks; RCD-CAS-RP: 40-40-40

DDR5 + NVM DDR5-4800, 2 channels, 2 ranks, 16 banks; RCD-CAS-RP: 40-40-40
NVM, 1333MHz, 2 channels, 1 rank, 8 banks; RD 77 ns, WR 231 ns

Another source of saving is to apply huge physical pages, so
that only one remap entry can be used for many data blocks. This
is similar to huge OS pages that reduce virtual-to-physical map-
ping overheads [16, 41, 55, 58, 81]. While the current iRT structure
naturally supports this, we find that without a co-designed OS to
organize the physical page layout, the chances of contiguous data
blocks together migrating between the fast and slow memories are
quite low. We plan to explore this opportunity in the future.

Fast swap policy. Trimma assumes the slow swap policy [69],
which provides more opportunities of identical mapping. Alter-
natively, a fast swap policy does not require an evicted block to
go back to its initial location, so it avoids cascaded migration and
potentially offers higher performance. In order to apply iRT to fast
swap, we can adopt proactive migration in the background that
exchanges slow memory blocks and restores their original loca-
tions, similar to Chameleon-Opt [39]. However, this complicates
the overall system and we do not further discuss it.

4 Experimental Setup
System configurations. We use zsim [67], a Pin-based simulator,
to evaluate our designs. Table 1 summarizes our detailed system
configurations. We model two types of hybrid memory systems,
HBM3 + DDR5, and DDR5 + NVM, both with a 32:1 slow-to-fast ca-
pacity ratio according to Section 2.1. The default block size is 256 B.
Other memory configurations are also considered in Section 5.3.
The specifications of HBM3, DDR5, and NVM are extracted from re-
cent literature and open-source implementations [26, 27, 36, 75, 80].
We use CACTI [4] to model the SRAM-based iRC. We select the
overall system capacity to be larger than the workload memory
footprints (details below), so no application suffers from page faults.

Workloads. We use the memory-intensive subset of SPEC-
CPU 2017 [57] for multi-program workloads, similar to previous
work [39, 66, 69]. The others are insensitive tomemory performance
and Trimma has negligible impact on them. For multi-threaded
applications, we use the GAP benchmarks [5], the in-memory data-
base silo [71] with the TPC-C workload, and the memcached key-
value store [13] with two workloads YCSB-A and YCSB-B [12]. We
run each SPEC benchmark in the rate mode with 16 copies, and
use 16 threads for the multi-threaded workloads. For SPEC, we
fast-forward over the initialization phase and simulate 5 billion
instructions. For each GAP workload, we manually mark and only
simulate the 2nd to 5th iterations. For database workloads, we skip
data loading and only simulate query execution. We use weighted
speedup as the performance metric for multi-program workloads.

The original benchmarks have diverse memory footprints, rang-
ing from 6GB (16 processes of 519.lbm_r) to 18GB (twitter in
GAP). Thus we set the slow memory capacity to 20GB to match
the maximum footprint, and the fast memory to be 1/32 of it. Then,
in the simulation we scale up each workload’s footprint to reach
the full memory capacity, so roughly each workload can put 1/32
of its data in the fast memory. This ensures that our workloads
touch large footprints and stress memory. Note that although the
total memory footprint exceeds the fast memory capacity, many ap-
plications still exhibit locality and an optimized high-associativity
design is necessary to efficiently capture the active working set in
the fast memory.

Baselines. We evaluate our design under both the cache mode
(Trimma-C) and the flat mode (Trimma-F) to show its general
benefits. We compare Trimma-C with Alloy Cache [61] and Loh-
Hill Cache [50] as the cachemode baselines. Although Alloy Cache
and Loh-Hill Cache utilize different formats to embed tags with
the data or within the same DRAM row to optimize metadata ac-
cesses, they essentially adopt the tag matching strategy illustrated
in Section 2 and are limited to low associativities. In Alloy Cache,
metadata and data are accessed in a single burst, so we do not
simulate extra metadata access cost. However, it is limited to the
direct-mapped organization. For Loh-Hill Cache, we set the asso-
ciativity to 30, i.e., 30 256 B blocks together with their metadata in
one 8 kB DRAM row. We access metadata as DDR accesses with
DRAM row buffer hits. Furthermore, we apply the RRIP replace-
ment policy to Loh-Hill Cache, which offers a 2.1% speedup over
LRU. In contrast, Trimma-C can scale to fully associative. We as-
sume a perfect Memory Access Predictor in Alloy Cache and a
perfect MissMap structure in Loh-Hill Cache, ignoring some of the
metadata overheads to optimistically estimate their performance.
For flat mode designs, we compare Trimma-F withMemPod [60].
For both designs we use 4 sets with high associativities, as in Mem-
Pod. Both systems adopt the first-touch policy as in current NUMA
systems [37, 48], i.e., greedily allocating the workload data in the
fast memory first, until its capacity is exhausted.

5 Evaluation
5.1 Overall Performance Comparison
Figure 7 presents the overall performance of different designs under
different memory technology combinations. All workloads we eval-
uate can benefit from the Trimma design. For the HBM3 + DDR5
system, on average, Trimma-C achieves 1.33× speedup over Al-
loy Cache while Trimma-F obtains 1.30× speedup over MemPod.
Because Trimma can provide more available fast memory spaces
and scale to high associativities, it provides higher improvements
for workloads with high memory footprint or high associativity
requirements. Take 557.xz as an example. The low-associativity
cache-mode baseline designs suffer from conflict misses in the fast
memory and high migration traffic. In contrast, Trimma-C is 1.51×
faster than Alloy Cache, by providing a higher associativity and
more fast memory spaces. Trimma also excels if the workload ex-
hibits more metadata savings, providing more extra caching spaces
from the iRT design. This is the case for 507.cactuBSSN_r, where
iRT reduces the metadata size by over 75% and Trimma-C is 1.68×
faster than Alloy Cache.

115



Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(a) HBM3 + DDR5 Hybrid Memory

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 S
pe

ed
up

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(b) DDR5 + NVM Hybrid Memory

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 S
pe

ed
up 1.80

Alloy Cache L-H Cache Trimma-C MemPod Trimma-F

Figure 7: Performance comparison between Trimma and the baselines on (a) HBM3 + DDR5 and (b) DDR5 + NVM. Performance
of cache mode designs (Alloy Cache, L-H Cache, Trimma-C) is normalized to Alloy Cache. Performance of flat mode designs
(MemPod, Trimma-F) is normalized to MemPod.

A similar trend can also be observed with DDR5 + NVM. Overall
Trimma-C achieves 1.34× speedup over Alloy Cache while Trimma-
F obtains 1.32× speedup over MemPod. For workloads with higher
memory footprints, e.g., sssp with up to 16GB, Trimma shows
higher speedup on DDR5 + NVM, because the saved metadata space
reduces the writeback traffic as in Figure 10(b), which significantly
saves the limited slow memory bandwidth.

To further analyze the speedup sources, we break down the
average memory access time into three parts: metadata lookup, fast
memory data access, and slow memory data access, as shown in
Figure 8. Generally, Trimma-C effectively reduces the slow memory
access time by over 50% compared to Alloy Cache, where these
accesses become hits in the fast memory, and increase the fast
memory access time by 22%. The metadata lookup cost is generally
small over all designs, but Trimma-C increases this overhead by
4.6%, due to more remap table accesses in iRT. Metadata lookups
are insignificant because they are handled by the fast memory with
low latency and high bandwidth, and many of them are filtered by
the on-chip remap cache.

5.2 Effectiveness Analysis of iRC and iRT
Next we use the flat mode designs (Trimma-F and MemPod) under
the HBM3 + DDR5 configuration as a representative example, to
explain the performance improvements from iRT and iRC.

iRT. Figure 9 compares the metadata sizes of iRT and the base-
line linear table. We capture the metadata sizes at the end of our
simulation as it represents the most fragmented state of the mem-
ory. Trimma iRT could effectively eliminate unnecessary identity
mapping entries to save the metadata space by 43% on average and

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(a) Cache Mode Designs

0.00
0.25
0.50
0.75
1.00

ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT ALT

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(b) Flat Mode Designs

0.00
0.25
0.50
0.75
1.00

MT MT MT MT MT MT MT MT MT MT MT MT MT MT MT MT MT MT

Metadata Fast Memory Data Slow Memory Data

Figure 8: Memory access latency breakdown on HBM3 +
DDR5, for (a) the cache mode, including Alloy Cache (A),
L-H Cache (L), and Trimma-C (T), and (b) the flat mode, in-
cluding MemPod (M) and Trimma-F (T).

up to 85%. Higher spatial locality in the workload leads to higher
savings. The saved spaces are used as extra caching spaces to im-
prove performance. Similar to previous work [7, 66], we use the
fast memory serve rate, i.e., the percentage of accesses handled by
the fast memory, and the bandwidth bloat factor [8], i.e. the ratio

116



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

0%
25%
50%
75%

100%

N
or

m
. M

et
ad

at
a 

Si
ze MemPod with Linear Table Trimma with iRT

Figure 9: Metadata size comparison between Trimma using
iRT and MemPod using a linear table. The metadata size is
obtained at the end of simulation.

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(b) Bandwidth Bloat Factor

0
1
2
3
4
5

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

(a) Fast Memory Serve Rate

0%
25%
50%
75%

100%
MemPod Trimma

Figure 10: Detailed performance analysis between Trimma
and MemPod, with (a) the percentage of memory accesses
served by the fast memory (higher is better); (b) the ratio
between total fast memory traffic and useful data traffic to
the processor [8] (lower is better).

between total fast memory traffic (including migration/swapping
with the slow memory) and useful data traffic to the processor, to
quantify the caching benefits and the migration overheads, respec-
tively, as shown in Figure 10. On average Trimma improves the
fast memory serve rate by 7.9%. Generally speaking, higher fast
memory serve rate increases lead to more performance gains, e.g.,
519.lbm_r, 557.xz_r, and tc. Particularly, workloads with rela-
tively low serve rates initially, e.g., 557.xz_r, have higher demands
for fast memory spaces, which are exactly what Trimma provides
by reducing the metadata space. On the other hand, Trimma also
reduces 23% memory migration traffic because of reduced conflict
misses from larger available fast memory spaces. This is especially
critical to the bandwidth-limited NVM-based slow memory.

On the other hand, iRT also incurs some overheads, as it requires
multiple metadata accesses, rather than one access in a conven-
tional linear table. However, these accesses in iRT are parallelized
rather than serial (Section 3.2). Our experiments show that iRT only
introduces at most 8.6% extra latency cost (without a remap cache)

50
2

50
3

50
5

50
7

51
9

52
0

54
9

55
4

55
7

bf
s pr cc tc

ss
sp si
lo

Y
C

SB
-A

Y
C

SB
-B

G
eo

m
ea

n

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0%
25%
50%
75%
100%

R
em

ap
 C

ac
he

 H
it 

R
at

eTrimma with conventional remap cache Trimma with iRC

Figure 11: Performance (bars) and remap cache hit rate (lines)
comparison between the conventional remap cache and iRC.

8 16 24 32 48 64
(a) Slow-to-Fast Capacity Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

64 256 4096
(b) Block Size

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ceMemPod Trimma

Figure 12: Performance comparison between (a) different
slow-to-fast capacity ratios (default is 32); and (b) different
block sizes (default is 256 B). Performance is the geomean
across all workloads.

and an average of 1% (with iRC) compared to the single-probe case.
For updates, as in Section 3.2, all updates are buffered on-chip and
written back to iRT together. This writeback occurs off the critical
path and has negligible performance impact.

iRC. Figure 11 shows the benefits of our iRC design that sepa-
rates the identity and non-identity mappings in the remap cache,
compared to a conventional non-split remap cache. The overall
remap cache hit rate increases from 54% to 67% on average, and the
performance improves by 6.4%.We find that the conventional remap
cache achieves good hit rates for non-identity mappings, while the
hit rates are as low as 6% for identity mappings. This is perhaps due
to the relatively low hotness of identical mappings (otherwise these
data blocks would be cached/migrated and become non-identity
mappings). Using a dedicated iRC IdCache significantly increases
the identity mapping hit rate to 32%. Meanwhile, the non-identity
part is not sensitive to the capacity loss because of the good locality
of these hot entries [69, 73].

5.3 Sensitivity Studies
Slow-to-fast memory capacity ratios. Figure 12(a) evaluates
the speedups offered by Trimma under different capacity ratios
between the slow and fast memories, from 8:1 to 64:1. Note that
when the ratio reaches 64:1, the baseline linear remap table would
occupy the entire fast memory capacity and all data are stored in the
slow memory, rendering substantial performance degradation. On
average, the speedup of Trimma increases roughly proportionally to
the capacity ratio, varying from 1.07× at 8:1 to 3.19× at 64:1. Higher
capacity ratios result in larger linear remap tables in the baseline,
while the iRT size does not changemuch. Therefore Trimma enables

117



Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

1:3 2:2 3:1
(b) iRC Capacity Partitioning

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0%

25%

50%

75%

100%

R
em

ap
 C

ac
he

 H
it 

R
at

e

1 2 3 4
(a) iRT Levels

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

IdCache Hit Rate
NonIdCache Hit Rate

Figure 13: Performance comparison between (a) different
iRT schemes (default is 2-level iRT); and (b) different iRC
capacity ratios between NonIdCache and IdCache (default is
1:3). Performance is the geomean across all workloads.

more metadata space savings and thus allows more fast memory
blocks to be used for application data.

Block sizes. In Trimma we use 256 B blocks as previous hy-
brid memory designs [74]. We also test other granularities and
Figure 12(b) shows the relative performance over 256 B. The reason
for low performance at 64 B is that it fails to effectively exploit the
spatial locality in the evaluated workloads and thus achieves lower
hit rates. This result is validated by previous work [74]. When using
the 4 kB granularity as the OS page size, it generally has similar or
even higher hit rates compared to 256 B, but the data over-fetching
bandwidth consumption offsets the hit rate improvements, decreas-
ing the overall performance by over 60%.

iRT configurations. Figure 13(a) shows the performance with
more multi-level schemes of iRT normalized to the default 2-level
design in Trimma, including one level of bit vector and one level
of the original remap table (organized in blocks). The single-level
design simply falls back to the basic linear remap table, without
the bit vector. The four-level design is similar to Tag Tables [15],
which slices the address tag part into four 6-bit chunks under 256 B
blocks. While Tag Tables did not use the saved space for caching,
we exploit this opportunity in this comparison. Even so, its perfor-
mance is worse than Trimma. Although more levels provide more
opportunities to use the intermediate level blocks for caching, we
find that the increased metadata lookup cost and the additional
complexity do not compensate for the metadata saving benefits, so
the performance does not improve.

iRC capacity partition.We evaluate several iRC capacity parti-
tioning schemes and the results are shown in Figure 13(b). Although
storing some identity mapping entries helps the overall hit rate
and system performance, borrowing too much space from the non-
identity-mapping cache would hurt. As mentioned in Section 5.2,
identity mapping entries tend to be cold, so we do not need a large
space to cache too many of them. Eventually we adopt 25% space
for identity mappings because it shows a high overall hit rate.

6 Related Work
Hybrid memory use modes. Flat-mode hybrid memory systems
have larger OS-visible physical memory capacities to reduce page
faults [7, 52, 60, 62, 66, 69, 73], while cache-mode systems provide
cheaper data migration for better performance [9, 17, 20, 24, 29, 30,

50, 61, 72, 79]. This tradeoff inspires researchers to consider combin-
ing both modes. Chameleon [39] was the first design with flexible
dual-mode support. It reused the unused space for caching, but
required OS hints about data allocation. Trimma is instead software
transparent and also exploits additional space saving opportuni-
ties. Hybrid2 [74] used a fixed caching space as a staging area
for better migration. Baryon [47] supported data compression and
sub-blocking for better capacity and bandwidth utilization. Stealth-
persist [2] proposed user-defined cache/flat area, but it focused on
persistence rather than performance.

Remap table design.Most hybrid memory systems managed
by hardware use simple linear remap tables [39, 60, 69, 74]. Several
DRAM cache designs [17, 29, 50, 53, 61] make the metadata inlined
together with the data, e.g., in the same cacheline or DRAM row, so
that a single access can fetch both. Such inlinedmetadata techniques
are only applicable to direct-mapped or low-associativity systems,
as prediction is required to decide a location before knowing the
accurate metadata. Also, inlined metadata only hide the metadata
lookup overhead but do not reduce their size.

Another line of work eliminates the metadata cost by integrating
the physical-to-device address translation with the OS virtual-to-
physical address mapping [1, 31, 35, 38, 49, 52, 62, 64, 76]. These
designs require OS-level co-design and are less portable. Their per-
formance is also limited in several aspects. First, the block size is re-
stricted to coarse-grained 4 kB OS pages. Second, they only support
epoch-based migration which cannot quickly adapt to program
phase changes. Third, migration requires software involvement
with significant interrupt and TLB shootdown overheads.

Tag Tables [15] also adopted a multi-level remap table. Trimma
is different from it. First, Tag Tables worked only for DRAM caches
while Trimma supports both modes. Second, Tag Tables did not
make use of the saved metadata space as Trimma does to improve
performance. Third, Trimma simplifies metadata management by
fixing their locations, while Tag Tables followed the complicated
OS allocation. Nevertheless, many strategies in Tag Tables like lazy
expansion and compressed entries can also be applied to Trimma.

7 Conclusions
We propose Trimma, an indirection-based metadata structure and
an efficient metadata cache design for hybrid main memory sys-
tems. Trimma integrates two techniques to address the metadata
storage cost and lookup latency challenges. A multi-level remap
table eliminates identical address mappings to save the metadata
size in the fast memory. Performance is also improved when we
utilize the saved space for extra data caching. We also propose a
remap cache design that uses separate formats for non-identity and
identity mapping entries, in order to increase the coverage and the
hit rate. Overall, Trimma realizes scalable metadata management
for future large-scale hybrid memory architectures.

Acknowledgments
The authors thank the anonymous reviewers and shepherd for their
valuable suggestions, and the Tsinghua IDEAL group members for
constructive discussion. This work was supported by the National
Natural Science Foundation of China (62072262). Mingyu Gao is
the corresponding author.

118



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Yiwei Li, Boyu Tian, and Mingyu Gao

References
[1] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-

Transparent Page Management for Two-tiered Main Memory. In 22nd Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). ACM, 631–644. https://doi.org/10.1145/3037697.3037706

[2] Mazen Al-Wadi, Vamsee Reddy Kommareddy, Clayton Hughes, Simon David
Hammond, and Amro Awad. 2021. Stealth-Persist: Architectural Support for
Persistent Applications in Hybrid Memory Systems. In 27th International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE, 139–152.
https://doi.org/10.1109/HPCA51647.2021.00022

[3] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology
215, 3 (1990), 403–410.

[4] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 14:1–14:25. https://doi.org/10.1145/3085572

[5] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark
Suite. arXiv preprint arXiv:1508.03619 (Aug. 2015).

[6] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426.

[7] Chia-Chen Chou, Aamer Jaleel, andMoinuddin K. Qureshi. 2014. CAMEO: A Two-
Level Memory Organization with Capacity of Main Memory and Flexibility of
Hardware-Managed Cache. In 47th International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 1–12. https://doi.org/10.1109/MICRO.2014.63

[8] Chia-Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2015. BEAR:
Techniques for Mitigating Bandwidth Bloat in Gigascale DRAM Caches. In
42nd International Symposium on Computer Architecture (ISCA). ACM, 198–210.
https://doi.org/10.1145/2749469.2750387

[9] Chia-Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2017. BATMAN:
Techniques for Maximizing System Bandwidth of Memory Systems with Stacked-
DRAM. In 3rd Internatinoal Symposium on Memory Systems (MEMSYS). ACM,
268–280. https://doi.org/10.1145/3132402.3132404

[10] CXL Consortium. 2020. Compute Express Link Specification. https://www.
computeexpresslink.org.

[11] CXL Consortium. 2022. Compute Express Link 3.0 White Pa-
per. https://www.computeexpresslink.org/_files/ugd/0c1418_
1798ce97c1e6438fba818d760905e43a.pdf.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In 1st ACM
Symposium on Cloud Computing (SoCC). ACM, 143–154. https://doi.org/10.1145/
1807128.1807152

[13] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux Journal
2004, 124 (2004), 5.

[14] Alex Fornito, Andrew Zalesky, and Michael Breakspear. 2013. Graph Analysis of
the Human Connectome: Promise, Progress, and Pitfalls. NeuroImage 80 (2013),
426–444. https://doi.org/10.1016/J.NEUROIMAGE.2013.04.087

[15] Sean Franey and Mikko H. Lipasti. 2015. Tag Tables. In 21st International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE Computer Society,
514–525.

[16] Mel Gorman and Patrick Healy. 2008. Supporting Superpage Allocation with-
out Additional Hardware Support. In 7th International Symposium on Memory
Management (ISMM). ACM, 41–50. https://doi.org/10.1145/1375634.1375641

[17] Nagendra Dwarakanath Gulur, Mahesh Mehendale, R. Manikantan, and R. Govin-
darajan. 2014. Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and
Bandwidth. In 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 38–50. https://doi.org/10.1109/MICRO.2014.36

[18] David Gureya, João Neto, Reza Karimi, João Barreto, Pramod Bhatotia, Vivien
Quéma, Rodrigo Rodrigues, Paolo Romano, and Vladimir Vlassov. 2020.
Bandwidth-Aware Page Placement in NUMA. In 34th IEEE International Par-
allel & Distributed Processing Symposium (IPDPS). IEEE, 546–556. https://doi.org/
10.1109/IPDPS47924.2020.00063

[19] Robert S Harris. 2007. Improved Pairwise Alignment of Genomic DNA. The
Pennsylvania State University, USA.

[20] Cheng-Chieh Huang and Vijay Nagarajan. 2014. ATCache: Reducing DRAM
Cache Latency via a Small SRAM Tag Cache. In 23rd International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM, 51–60. https:
//doi.org/10.1145/2628071.2628089

[21] Hybrid Memory Cube Consortium. 2013. Hybrid Memory Cube Specification
1.0.

[22] Intel. 2020. Intel Optane DC Persistent Memory. https://builders.intel.com/
docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-
workloads.pdf.

[23] Intel. 2023. 4th Gen Intel Xeon Processor Scalable Family, Sapphire
Rapids. https://www.intel.com/content/www/us/en/developer/articles/technical/
fourth-generation-xeon-scalable-family-overview.html.

[24] Hakbeom Jang, Yongjun Lee, Jongwon Kim, Youngsok Kim, Jangwoo Kim, Jinkyu
Jeong, and JaeW. Lee. 2016. Efficient Footprint Caching for Tagless DRAMCaches.

In 22nd International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 237–248. https://doi.org/10.1109/HPCA.2016.
7446068

[25] JEDEC. 2021. DDR4 SDRAM Standard. https://www.jedec.org/standards-
documents/docs/jesd-79-4a.

[26] JEDEC. 2022. DDR5 SDRAM Standard. https://www.jedec.org/standards-
documents/docs/jesd-79-5b.

[27] JEDEC. 2023. High Bandwidth Memory (HBM3) DRAM. https://www.jedec.org/
standards-documents/docs/jesd238a.

[28] JEDEC Solid State Technology Association. 2013. High Bandwidth Memory
(HBM) DRAM. JESD235.

[29] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison
Cache: A Scalable and Effective Die-Stacked DRAM Cache. In 47th International
Symposium on Microarchitecture (MICRO). IEEE Computer Society, 25–37. https:
//doi.org/10.1109/MICRO.2014.51

[30] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-Stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache. In 40th International Symposium on Computer Architecture (ISCA). ACM,
404–415. https://doi.org/10.1145/2485922.2485957

[31] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenter. In
44th International Symposium on Computer Architecture (ISCA). ACM, 521–534.

[32] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE Computer Society, 1725–1732.

[33] Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin Lee. 2004. Using Prime
Numbers for Cache Indexing to Eliminate Conflict Misses. In 10th International
Symposium on High Performance Computer Architecture (HPCA). IEEE Computer
Society, 288–299. https://doi.org/10.1109/HPCA.2004.10015

[34] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L
Salzberg. 2019. Graph-Based Genome Alignment and Genotyping with HISAT2
and HISAT-Genotype. Nature Biotechnology 37, 8 (2019), 907–915.

[35] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems. In 2021 USENIX
Annual Technical Conference (ATC). USENIX Association, 715–728. https://www.
usenix.org/conference/atc21/presentation/kim-jonghyeon

[36] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letter 15, 1 (2016),
45–49. https://doi.org/10.1109/LCA.2015.2414456

[37] Andi Kleen. 2005. A NUMA API for Linux. Novel Inc (2005).
[38] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. 2019. PageSeer:

Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems. In 25th
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 596–608. https://doi.org/10.1109/HPCA.2019.00012

[39] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilkerson, and Mah-
mut T. Kandemir. 2018. CHAMELEON: A Dynamically Reconfigurable Hetero-
geneous Memory System. In 49th International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 533–545. https://doi.org/10.1109/MICRO.2018.
00050

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In 26th Annual Conference
on Neural Information Processing Systems (NIPS). 1106–1114.

[41] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, 705–721.

[42] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep Learning.
Nature 521, 7553 (2015), 436–444.

[43] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[44] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory as a Scalable DRAM Alternative. In 36th International
Symposium on Computer Architecture (ISCA). ACM, 2–13. https://doi.org/10.
1145/1555754.1555758

[45] Soyoon Lee, Hyokyung Bahn, and Sam H. Noh. 2014. CLOCK-DWF: A Write-
History-Aware Page Replacement Algorithm for Hybrid PCM and DRAM Mem-
ory Architectures. IEEE Trans. Comput. 63, 9 (2014), 2187–2200. https:
//doi.org/10.1109/TC.2013.98

[46] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo Kim,
Jinkyu Jeong, and Jae W. Lee. 2015. A Fully Associative, Tagless DRAM Cache. In
42nd International Symposium on Computer Architecture (ISCA). ACM, 211–222.
https://doi.org/10.1145/2749469.2750383

[47] Yiwei Li and Mingyu Gao. 2023. Baryon: Efficient Hybrid Memory Management
with Compression and Sub-Blocking. In 29th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 137–151. https://doi.org/10.
1109/HPCA56546.2023.10071115

119

https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1109/HPCA51647.2021.00022
https://doi.org/10.1145/3085572
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1145/3132402.3132404
https://ww w.computeexpresslink.org
https://ww w.computeexpresslink.org
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1016/J.NEUROIMAGE.2013.04.087
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1109/MICRO.2014.36
https://doi.org/10.1109/IPDPS47924.2020.00063
https://doi.org/10.1109/IPDPS47924.2020.00063
https://doi.org/10.1145/2628071.2628089
https://doi.org/10.1145/2628071.2628089
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf 
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf 
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf 
https://www.intel.com/content/www/us/en/developer/articles/ technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/ technical/fourth-generation-xeon-scalable-family-overview.html
https://doi.org/10.1109/HPCA.2016.7446068
https://doi.org/10.1109/HPCA.2016.7446068
https://www.jedec.org/standards-documents/docs/jesd-79-4a
https://www.jedec.org/standards-documents/docs/jesd-79-4a
https://www.jedec.org/standards-documents/docs/jesd-79-5b
https://www.jedec.org/standards-documents/docs/jesd-79-5b
https://www.jedec.org/standards-documents/docs/jesd238a
https://www.jedec.org/standards-documents/docs/jesd238a
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1109/HPCA.2004.10015
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/HPCA.2019.00012
https://doi.org/10.1109/MICRO.2018.00050
https://doi.org/10.1109/MICRO.2018.00050
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1145/2749469.2750383
https://doi.org/10.1109/HPCA56546.2023.10071115
https://doi.org/10.1109/HPCA56546.2023.10071115


Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems PACT ’24, October 14–16, 2024, Long Beach, CA, USA

[48] Linux Kernel Development Team. [n. d.]. NUMA-aware Allocation. https:
//www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt.

[49] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long Zheng,
and Rentong Guo. 2017. Hardware/Software Cooperative Caching for Hybrid
DRAM/NVM Memory Architectures. In 31st International Conference on Super-
computing (ICS). ACM, 26:1–26:10.

[50] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently Enabling Conventional Block
Sizes for Very Large Die-Stacked DRAM Caches. In 44th International Symposium
on Microarchitecture (MICRO). ACM, 454–464. https://doi.org/10.1145/2155620.
2155673

[51] Sally A. McKee. 2004. Reflections on the Memory Wall. In 1st Conference on
Computing Frontiers (CF). ACM, 162.

[52] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H. Loh. 2015. Heterogeneous Memory Architectures: A
HW/SW Approach for Mixing Die-Stacked and Off-Package Memories. In 21st
International Symposium on High Performance Computer Architecture (HPCA).
IEEE Computer Society, 126–136. https://doi.org/10.1109/HPCA.2015.7056027

[53] Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ran-
ganathan. 2012. Enabling Efficient and Scalable Hybrid Memories Using Fine-
Granularity DRAM Cache Management. IEEE Computer Architecture Letter 11, 2
(2012), 61–64. https://doi.org/10.1109/L-CA.2012.2

[54] Micron. 2023. Micron Launches Memory Expansion Module Portfolio to Acceler-
ate CXL 2.0 Adoption. https://investors.micron.com/news-releases/news-release-
details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl.

[55] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. 2002. Practical,
Transparent Operating System Support for Superpages. In 5th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association.
http://www.usenix.org/events/osdi02/tech/navarro.html

[56] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In 24th ACM Symposium on Operating Systems
Principles (SOSP). ACM, 456–471.

[57] Reena Panda, Shuang Song, Joseph Dean, and Lizy K. John. 2018. Wait of a Decade:
Did SPEC CPU 2017 Broaden the Performance Horizon?. In 24th International
Symposium on High Performance Computer Architecture (HPCA). IEEE Computer
Society, 271–282. https://doi.org/10.1109/HPCA.2018.00032

[58] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Efficient Fine-
grained OS Support for Huge Pages. In 24th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
ACM, 347–360. https://doi.org/10.1145/3297858.3304064

[59] Yonathan Perez, Rok Sosic, Arijit Banerjee, Rohan Puttagunta, Martin Raison,
Pararth Shah, and Jure Leskovec. 2015. Ringo: Interactive Graph Analytics on
Big-Memory Machines. In 2015 ACM International Conference on Management of
Data (SIGMOD). ACM, 1105–1110. https://doi.org/10.1145/2723372.2735369

[60] Andreas Prodromou, Mitesh R. Meswani, Nuwan Jayasena, Gabriel H. Loh, and
Dean M. Tullsen. 2017. MemPod: A Clustered Architecture for Efficient and Scal-
able Migration in Flat Address Space Multi-Level Memories. In 23rd International
Symposium on High Performance Computer Architecture (HPCA). IEEE Computer
Society, 433–444. https://doi.org/10.1109/HPCA.2017.39

[61] Moinuddin K. Qureshi and Gabriel H. Loh. 2012. Fundamental Latency Trade-off
in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with a
Simple and Practical Design. In 45th International Symposium onMicroarchitecture
(MICRO). IEEE Computer Society, 235–246. https://doi.org/10.1109/MICRO.2012.
30

[62] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In 25th International Conference on Supercomputing
(ICS). ACM, 85–95. https://doi.org/10.1145/1995896.1995911

[63] Jeffrey B. Rothman and Alan Jay Smith. 2000. Sector Cache Design and Perfor-
mance. In 8th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE Computer Society,
124–133. https://doi.org/10.1109/MASCOT.2000.876437

[64] Marta Rybczyńska. 2021. Top-Tier Memory Management. https://lwn.net/
Articles/857133/.

[65] Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. 2018. A Case for Granularity
Aware Page Migration. In 32nd International Conference on Supercomputing (ICS).

ACM, 352–362.
[66] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and Lizy K. John. 2017.

SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory Organization. In 23rd
International Symposium on High Performance Computer Architecture (HPCA).
IEEE Computer Society, 349–360. https://doi.org/10.1109/HPCA.2017.20

[67] Daniel Sánchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-Core Systems. In 40th International
Symposium on Computer Architecture (ISCA). ACM, 475–486. https://doi.org/10.
1145/2485922.2485963

[68] Julian Shun and Guy E. Blelloch. 2013. Ligra: a Lightweight Graph Processing
Framework for Shared Memory. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, 135–146.

[69] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hye-
soon Kim. 2014. Transparent Hardware Management of Stacked DRAM as Part
of Memory. In 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 13–24. https://doi.org/10.1109/MICRO.2014.56

[70] Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Subramanya
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[71] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In 24th ACM
Symposium on Operating Systems Principles (SOSP). ACM, 18–32. https://doi.org/
10.1145/2517349.2522713

[72] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioannis Sourdis.
2019. Decoupled Fused Cache: Fusing a Decoupled LLC with a DRAM Cache.
ACM Transactions on Architecture and Code Optimization (TACO) 15, 4 (2019),
65:1–65:23. https://doi.org/10.1145/3293447

[73] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioannis Sourdis.
2019. LLC-Guided Data Migration in Hybrid Memory Systems. In 33rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS). IEEE, 932–942.
https://doi.org/10.1109/IPDPS.2019.00101

[74] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioannis Sourdis.
2020. Hybrid2: Combining Caching and Migration in Hybrid Memory Systems. In
26th International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 649–662. https://doi.org/10.1109/HPCA47549.2020.00059

[75] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile Memory Systems.
In 53rd International Symposium on Microarchitecture (MICRO). IEEE, 496–508.
https://doi.org/10.1109/MICRO50266.2020.00049

[76] Zi Yan, Daniel Lustig, David W. Nellans, and Abhishek Bhattacharjee. 2019.
Nimble Page Management for Tiered Memory Systems. In 24th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 331–345. https://doi.org/10.1145/3297858.3304024

[77] Vinson Young, Chia-Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2018.
ACCORD: Enabling Associativity for Gigascale DRAM Caches by Coordinating
Way-Install and Way-Prediction. In 45th International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, 328–339. https://doi.org/10.1109/
ISCA.2018.00036

[78] Vinson Young and Moinuddin K. Qureshi. 2019. To Update or Not To Update?:
Bandwidth-Efficient Intelligent Replacement Policies for DRAM Caches. In 37th
IEEE International Conference on Computer Design (ICCD). IEEE, 119–128.

[79] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srini-
vas Devadas. 2017. Banshee: Bandwidth-Efficient DRAM Caching via Soft-
ware/Hardware Cooperation. In 50th International Symposium on Microarchitec-
ture (MICRO). ACM, 1–14. https://doi.org/10.1145/3123939.3124555

[80] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A Durable and En-
ergy Efficient Main Memory Using Phase Change Memory Technology. In
36th International Symposium on Computer Architecture (ISCA). ACM, 14–23.
https://doi.org/10.1145/1555754.1555759

[81] Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis
of Superpage Management Mechanisms and Policies. In 2020 USENIX Annual
Technical Conference (ATC). USENIX Association, 829–842.

120

https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://doi.org/10.1145/2155620.2155673
https://doi.org/10.1145/2155620.2155673
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/L-CA.2012.2
https://investors.micron.com/news-releases/news-release-details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl
https://investors.micron.com/news-releases/news-release-details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl
http://www.usenix.org/events/osdi02/tech/navarro.html
https://doi.org/10.1109/HPCA.2018.00032
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/2723372.2735369
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1109/MASCOT.2000.876437
https://lwn.net/Articles/857133/
https://lwn.net/Articles/857133/
https://doi.org/10.1109/HPCA.2017.20
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1109/MICRO.2014.56
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/3293447
https://doi.org/10.1109/IPDPS.2019.00101
https://doi.org/10.1109/HPCA47549.2020.00059
https://doi.org/10.1109/MICRO50266.2020.00049
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1109/ISCA.2018.00036
https://doi.org/10.1109/ISCA.2018.00036
https://doi.org/10.1145/3123939.3124555
https://doi.org/10.1145/1555754.1555759

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Trends of Hybrid Memory Systems
	2.2 Challenges of Metadata

	3 Design
	3.1 Design Overview
	3.2 Indirection-Based Remap Table
	3.3 Using Saved Spaces for Caching
	3.4 Identity-Mapping-Aware Remap Cache
	3.5 Discussion

	4 Experimental Setup
	5 Evaluation
	5.1 Overall Performance Comparison
	5.2 Effectiveness Analysis of iRC and iRT
	5.3 Sensitivity Studies

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

