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ABSTRACT

Sparse matrix-matrix multiplication (SpGEMM) is widely used in
many scientific and deep learning applications. The highly irreg-
ular structures of SpGEMM limit its performance and efficiency
on conventional computation platforms, and thus motivate a large
body of specialized hardware designs. Existing SpGEMM accelera-
tors only support specific types of rigid execution dataflow such
as inner/output-product or row-based schemes. Each dataflow is
only optimized for certain sparse patterns and fails to generalize
with robust performance to the widely diverse SpGEMMworkloads
across various domains. We propose Spada, a combination of three
novel techniques for SpGEMM accelerators to efficiently adapt to
various sparse patterns. First, we describe a window-based adaptive
dataflow that can be flexibly adapted to different modes to best
match the data distributions and realize different reuse benefits.
Then, our hardware architecture efficiently supports this dataflow
template, with flexible, fast, and low-cost reconfigurability and ef-
fective load balancing features. Finally, we use a profiling-guided
approach to detect the sparse pattern and determine the optimized
dataflow mode to use, based on the key observations of sparse
pattern similarity in nearby matrix regions. Our evaluation results
demonstrate that Spada is able to match or exceed the best among
three state-of-the-art SpGEMM accelerators, and avoid the perfor-
mance degradation of the others if data distribution and dataflow
mismatch. It achieves an average 1.44× speedup across a wide range
of sparse matrices and compressed neural network models.
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1 INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is a vital compo-
nent in a wide range of important scientific computation fields, from
graph analytics [16, 35], linear algebra [30, 39], economic model-
ing [8], molecule dynamics [10, 18], to machine learning [5, 13, 25].
Compared to the counterpart dense matrix computations, sparse
matrices are able to effectively eliminate all ineffectual zero (and
sometimes also near-zero) elements to save substantial storage and
operation cost, especially when the matrix size is huge and the den-
sity is very low due to intrinsic sparse connectivity and interaction
in many real-world problems. In particular, the recent emergence
of sparse/compressed neural network models and large-scale graph
analytics raises increasing demands for higher performance and
better efficiency of SpGEMM.

However, actually realizing such high-performance and efficient
SpGEMM processing is known to be difficult due to the highly irreg-
ular structures, which lead to low utilization of both computation
resource and memory bandwidth. As Dennard scaling ends and
domain-specific acceleration becomes an increasingly appealing
approach to speed up challenging computation tasks, SpGEMM has

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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also been witnessing new architectural innovations to address the
inefficiencies in general-purpose platforms [27, 31, 36, 42, 44, 45].

In this work, we observe that, as SpGEMM is applied to more
and more application domains, the need for hardware accelerators
to efficiently support highly diverse sparse patterns is also increas-
ing. For example, real-world graph datasets are extremely sparse
and usually have only 0.0001% nonzeros, but could be as large as
1013. In contrast, neural network weight matrices are much smaller,
usually on the order of 104 in size; even after compressing out both
zero and near-zero values, they are still relatively dense with only
moderate sparsity around 10% to 90%. Even within one domain
or one dataset, different matrices or different sub-regions of a ma-
trix constantly exhibit various sparse patterns in nonzero density
and distribution. Unfortunately, existing SpGEMM accelerators are
mostly designed to perform efficiently only when data are within
certain sparsity ranges that best utilize their underlying hardware
architectures. The core reason is that each of these accelerators
only uses a fixed execution dataflow that optimizes for either input
or output data reuse, but sacrifices the other. Consequently, the
performance would suffer if the workload does not fit well with
this rigid design assumption.

Therefore, we propose Spada, a combination of hardware and
software innovations to efficiently accelerate SpGEMM applica-
tions across a widely diverse spectrum of sparse patterns. First, we
comprehensively study the tradeoffs between existing SpGEMM
dataflow schemes including inner-product [31, 45], outer-product [27,
44], and row-based [36, 42]. We then propose a window-based

adaptive dataflow (WA). WA supports a spectrum of execution
modes into which it can flexibly adapt, in order to realize the in-
put and output reuse benefits of each individual dataflow under
different data sparse patterns.

Second, we propose the Spada hardware architecture, which
supports WA as the dataflow template, and can be flexibly and
quickly reconfigured into different execution modes when using dif-
ferent WA configurations. The architecture uses specially designed
multiply processing elements, each of which contains multiple lanes
that can be dynamically partitioned into independent merge groups
to produce individual output partial sum results with minimum
hardware overheads. The key to supporting flexible WA schemes is
the efficient and fast reconfiguration of such lane groups through
specialized hardware components for sorting and reduction. We
also use dynamic load balancing within each lane group to reduce
idle cycles. In addition, the architecture uses dedicated comparator
trees and accumulators to further merge the partial sum results, as
well as a global cache with an optimized LRU replacement policy
to improve data reuse in the WA dataflow.

Third, we propose an effective yet simple window shape adap-

tion algorithm, implemented in the hardware Spada scheduler, to
detect the sparse pattern of a specific workload and dynamically
determine the best WA mode to use. The key insights are that the
sparse pattern remains similar within a local region of the matrix,
and that the complex pattern has a strong correlation with the
row length of nonzero values. We thus design a profiling-guided
approach to use the performance results of previous rows to deter-
mine the optimized configurations for future rows, which is quite
effective and only has a small hardware cost.
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(a) Matrix size and density. (b) Nonzero distribution.

Figure 1: Diverse sparse patterns across different workloads.

(a) The size and the nonzero density of sparse matrices from

compressed NNs using Distiller [47] (NN) and SuiteSparse [7]

(SS). (b) The nonzero distribution in two sparse matrices in

compressed NNs (top) and two from SuiteSparse (bottom).

We evaluate Spada against three state-of-the-art SpGEMM ac-
celerators, SIGMA [31] (optimized as in Section 6), SpArch [44],
and GAMMA [42], across a wide range of sparse matrices and com-
pressed neural network models with diverse sparse patterns. We
observe that Spada can successfully achieve similar or even better
performance compared to the best among the three baselines given
the same amount of multiplier resources, with average speedups of
38.04× over SIGMA, 1.44× over SpArch, and 1.46× over GAMMA.
Further considering the area cost brings the efficiency gains over
SpArch and GAMMA to 3.32× and 1.42×, respectively. When the
data distribution prefers a certain dataflow scheme, Spada can
quickly adapt to the corresponding mode and match the perfor-
mance of the baseline that is specifically optimized for that dataflow,
while avoiding the substantial degradation of the other designs.

2 BACKGROUND AND MOTIVATIONS

Sparse matrices are usually encoded into specific formats, with the
most commonly used two as compressed sparse row (CSR) and
compressed sparse column (CSC). The CSR format stores a matrix
row-by-row using a compressed encoding for only nonzeros in each
row. It keeps three arrays, containing the offsets of the beginning of
each row (offsets), the nonzero values (vals), and their column
indices (columns), respectively. CSC is similar to CSR except that
it encodes the matrix by columns. CSR is suitable for row-major
traversals while CSC is better for column-major.

2.1 Diverse Sparse Patterns

Sparse matrices are commonly used to model many real-world
problems from a wide variety of fields. The different intrinsic char-
acteristics of these domains lead to a drastically diverse spectrum of
sparse patterns, including the matrix size and the density and distri-
bution of nonzeros in the matrix. To study their sparse patterns, we
use real-world sparse matrices from the SuiteSparse collection [7]
and generate compressed neural network (NN) weight matrices
from ResNet50 [14]. Figure 1a shows that these sparse matrices ex-
hibit drastically different sizes and densities, spanning up to seven
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Input reuse (B) Poor Excellent Poor
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Psum granularity Scalar Matrix Vector

Figure 2: Comparison of three SpGEMM dataflow schemes:

InP, OutP, ROW. Modified from [42]. Different hardware

implementations may parallelize different for loops. E.g.,

both GAMMA [42] and MatRaptor [36] adopted ROW but

parallelized dimension k and m, respectively.

orders of magnitude. NN compression techniques [5, 13, 25] usu-
ally generate relatively small (104) matrices with moderate sparsity
(10% to 90%). In contrast, real-world graph structures such as so-
cial networks have much larger (1013) and highly sparse (1% to
0.0001%) matrices. Furthermore, as in Figure 1b, across domains or
even within a domain, the nonzero distributions could significantly
differ due to various connectivity and locality behaviors, implying
completely different sparse patterns.

2.2 Hardware Dataflow for SpGEMM

Similar to the large body of hardware dataflow proposals for dense
matrix/tensor computations [4, 11, 12, 19, 24], SpGEMM also ex-
hibits several possible dataflow choices that strongly impact perfor-
mance and efficiency when used on different sparse patterns. Previ-
ously proposed SpGEMM dataflow schemes mainly fall into three
categories: inner-product (InP) [31, 45], outer-product (OutP) [27, 44],
and row-based (ROW) [36, 42]. Assume in Figure 2 we multiply ma-
trices A and B to produce matrix C, with shapes of𝑀×𝐾 , 𝐾×𝑁 and
𝑀×𝑁 , respectively. InP sequentially computes each C[𝑚,𝑛] ele-
ment, as the inner-product of the corresponding pair of A[𝑚, :] row
and B[:, 𝑛] column. In contrast, OutP each time generates one of
the 𝐾 partial sum (psum) matrices of C, which is the outer-product
result of the corresponding A[:, 𝑘] column and B[𝑘, :] row. Finally,
as a middle-ground between the above two, ROW divides C into
rows, and computes one of the 𝐾 psum rows of C[𝑚, :] at a time
through a scalar-vector multiplication between an A[𝑚,𝑘] element

and the matching B[𝑘, :] row. Essentially, if we use loop transfor-
mations [28, 40] to analyze, the three dataflow schemes correspond
to three different loop orders as in Figure 2, with the reduction
dimension k at the innermost, the outermost, and the middle.

These dataflow schemes differ in several aspects [36, 42]. First,
they place different requirements on encoding formats: InP requires
A in CSR and B in CSC; OutP requires A in CSC and B in CSR; and
ROW requires both operand matrices in CSR and also generates
the output in CSR. This makes ROW a more preferred scheme
because the input and output matrix formats can be kept consistent
in one representation, allowing for convenient chaining of multiple
SpGEMM operations. Second, when the on-chip buffer capacity is
insufficient to trivially hold all data, the three dataflow schemes
would exhibit different data reuse behaviors (Figure 2). For example,
assume A is always streamed, either along the rows (dim m) in InP
and ROW, or the columns (dim k) in OutP. With InP, C achieves full
reuse as all psums to each element are immediately accumulated,
but each B column must be refetched multiple times, once for an A
row, resulting in poor reuse. OutP, in contrast, only fetches each B
row once to match with the correspondingA column. But the psums
of C, if cannot fit on-chip, must be written to off-chip memory and
read back later for accumulation, incurring significant traffic. Lastly,
ROW only produces and stores a small amount of psums at a time
for a single output row, which are easy to keep on-chip and achieve
good reuse of C similar to InP. On the other hand, the rows in B
are fetched irregularly based on the nonzero distribution of each A
row (the B row index k should match the A element column index),
leading to low reuse.

Third, OutP and ROW have another benefit of more efficient
index intersection between the two input matrices. With InP, after
fetching the entire arrays of A[𝑚, :] and B[:, 𝑛], only their nonzeros
with a matched k index could produce a psum to C[𝑚,𝑛]. When the
matrices are highly sparse, these effectual intersections are much
smaller than the total array size, resulting in excessive data fetch
that is useless. On the other hand, OutP fetches matched A[:, 𝑘]
and B[𝑘, :], and ROW fetches A[𝑚,𝑘] and B[𝑘, :], both of which are
already matched and contain effectual input pairs. Forth, the three
schemes produce psums in different granularities, which affect loop
blocking and parallelization when mapped to hardware.

2.3 Design Motivations

With the facts that different applications use sparse matrices with
largely diverse patterns, and that different dataflow choices exhibit
various tradeoffs, no single dataflow could always outperform the
others under all circumstances. For example, with OutP, the sparse
pattern would affect the resulting psum matrix size and thus how
critical it is to optimize for output data reuse. In ROW, the sparse
pattern (e.g., the nonzero distribution) also influences how much
the column indices overlap between neighboring rows of A, in
which case if two nonzeros A[𝑚,𝑘] and A[𝑚′, 𝑘] have the same
column index, they would reuse the same input row B[𝑘, :].

Therefore, for a hardware SpGEMM accelerator to efficiently
support all sparse matrices in different domains, it should be able
to exploit the workload sparse pattern and accordingly adjust the exe-
cution dataflow. To achieve this goal, we identify three key design
challenges. First, we need to design an adaptive dataflow that
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could be easily adjusted into different modes when processing input
matrices with different sparse patterns. Its different modes should
cover a sufficiently large space of input and output reuse tradeoffs.
Second, we need an efficient and flexibly reconfigurable archi-

tecture, which can support this adaptive dataflow and fast switch
among its modes, with minimum hardware overheads. Third, we
also need an effective and simple runtime algorithm to detect
the sparse pattern of a specific workload, and then dynamically
determine which mode to use. We address each of these challenges
in the following sections.

3 WINDOW-BASED ADAPTIVE DATAFLOW

We first propose a window-based adaptive dataflow (WA) that can
be adjusted into different modes to exploit the local sparse patterns
of the input matrix. WA simplifies our hardware architecture de-
sign (Section 4), while still allowing for flexible adaption between
different modes (Section 5).

A good adaptive dataflow should satisfy two conflicting goals. On
one hand, it should be flexible to cover diverse reuse characteristics,
so we could have a rich space for adaption. On the other hand, it
is preferred to have the different modes share similar execution
behaviors, so that we can keep hardware reconfiguration simple
and cheap. This means that a naive design that tries to directly
combine InP, OutP, and ROW is unlikely to work well, as they
have drastically different execution behaviors. For example, InP
traverses A and B by rows and columns, respectively, while the
case is exactly the opposite for OutP.

We take a different approach. Instead of precisely resembling the
exact execution behaviors of all dataflow schemes, we only aim to
capture their key benefits of data reuse on different sparse patterns.
We start from ROW, as its overall data reuse has been demonstrated
in prior work to be better than others in many cases [36, 42]. Its
key drawback is the poor locality to access B, whose row indices
are determined by the column indices of the randomly distributed
A nonzero elements. We then leverage loop blocking techniques,
an effective way to improve data reuse in dense linear algebra [40],
to fix this issue.

From Figure 2, we observe that OutP has the best input reuse
on B. The key difference is on how to traverse A, by rows in ROW
with a loop nest order k-m-n vs. by columns in OutP with m-k-n.
Therefore we block the outer two dimensions with a loop nest order
as mo-ko-ki-mi-n. By adjusting the block sizes, we can flexibly adapt
to the modes that optimize for input and output reuse, respectively.
Actually, if we set mi and ki to 1, it reduces to ROW; if we set mo
and ko to 1, it reduces to OutP. Algorithm 1 formalizes this WA
dataflow. Effectively, the inner two dimensions mi and ki form a 2D
window on A (see below). When mapped to hardware, we spatially
unroll this window on parallel processing units.

WA execution flow. WA fetches a small 2D window of A each
time as the basic execution unit, and calculates the product of this
window with their corresponding B rows. This is in contrast to
ROW which fetches a single element of A each time. The window
is defined directly on the compressed sparse rows (i.e., the CSR
representation) rather than the dense format, so it does not contain
zero values in a row or all-zero rows. As shown in Figure 3, we fetch
a 2×2 window from A with four nonzeros, 𝑎0,2, 𝑎0,3, 𝑎1,0, 𝑎1,2. They

Algorithm 1 Window-based adaptive dataflow (WA).
1: for each mo in 0 → 𝑀/𝛼 do

2: ⊲ One pass
3: for each ko in 0 → 𝐾/𝛽 do

4: ⊲ One window of shape mi × ki
5: for each ki in 0 → 𝛽 do ⊲ Spatially unrolled
6: for each mi in 0 → 𝛼 do ⊲ Spatially unrolled
7: Calculate m and k from mo, mi, ko, ki
8: for each n in 0 → 𝑁 do

9: C[m, n]+ = A[m, k] × B[k, n]
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Figure 3: Thewindow-based adaptive dataflow (WA) in Spada.

Matrices A and B are shown in their CSR forms. MPE and

APE are described in Section 4.

are processed in parallel through four scalar-vector multiplications,
with the corresponding B rows 𝒃2, 𝒃3, 𝒃0. Note that 𝑎0,2 and 𝑎1,2
reuse the same row 𝒃2. The products along the window width
dimension (k) are merged into one psum of a C row, e.g., 𝑎0,2×
𝒃2 + 𝑎0,3×𝒃3 = 𝒄 (0)0 , which is accumulated to 𝒄0. Essentially, with
a window of 𝛼×𝛽 , each row of 𝛽 nonzeros from A are multiplied
with the B rows matching with their column indices, and are then
merged into one psum of a C row. These generate 𝛼 psum rows.

Similar to ROW, the window itself first moves along dim k (not
sliding, but with stride equal to its width). We define a pass as the
window moves across the current rows of A along k, after which
the next pass starts by moving down along dim m. To be adaptive to
data sparse patterns, WA allows to change the window shape when
starting a new pass (Section 5). A pass contains multiple windows,
each generating 𝛼 psum rows. These psum rows need to be merged
into the final 𝛼 output rows of C, e.g., all 𝒄 (𝑡 )0 merge to 𝒄0 and all
𝒄 (𝑡 )1 merge to 𝒄1 as in Figure 3 bottom. The merge of each 𝒄𝑚 runs
independently from each other, as separate reduction trees.

WA fetches all the three matrices in memory-friendly manners
without random accesses. On matrix A, WA simultaneously fetches
𝛼 compressed rows sequentially as the windowmoves. All nonzeros
are fully utilized. Each row can also be prefetched in relatively large
chunks given a small buffer space, e.g., a few hudrends of bytes for
8 rows. The access patterns of B and C are the same as in ROW,
where a full compressed B row is fetched for each nonzero in A,
and generates a psum row sequentially.
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WA advantages. First, using a window with multiple A ele-
ments rather than a single one in ROW could naturally match the
parallelism offered by the underlying hardware. In Section 4 we
set the window size 𝛼×𝛽 to be equal to the number of multipliers
within a processing element.

Second and more importantly, by adjusting the window shape
of 𝛼×𝛽 , we can effectively achieve different modes with various
data reuse benefits. Specifically, setting 𝛼 = 1 (traversing along
k in A) realizes high output reuse, as the large window width 𝛽
allows more psum rows of C to be immediately merged into one,
resembling the behavior of ROW. On the other hand, setting 𝛽 = 1
(using a column of A) may achieve better input reuse of B. This is
because a large window height 𝛼 enables more reuse opportunities
of B rows across multiple A elements in the same column but
different rows (e.g., 𝑎0,2 and 𝑎1,2 reuse the same row 𝒃2 in Figure 3).
Moreover, between these two extremes, WA also enables many
more modes with different 𝛼 and 𝛽 values that exhibit potentially
better performance with more balanced tradeoffs between the input
and output reuse.

Finally, WA inherits many advantages from ROW, such as the
consistent CSR format across all matrices, the moderate granularity
for psum generation, and the avoidance of ineffectual index inter-
section in InP. In fact, by including ROW as one of the many modes,
WA has the potential to at least match ROW and further outper-
form it when input reuse is more critical, assuming low hardware
overheads from supporting adaption and accurate policies to select
modes, which we address next.

4 SPADA HARDWARE ARCHITECTURE

Having an adaptive dataflow WA, we next design the hardware
architecture of our SpGEMM accelerator, Spada. Instead of imple-
menting multiple individual dataflow schemes, Spada supports
WA as a dataflow template, and allows efficient, flexible, and fast
reconfiguration among different modes, to best exploit data reuse
opportunities on different sparse patterns.

Figure 4 top right shows the Spada architecture overview. Spada
consists of multiple multiplication and addition processing elements
(MPEs and APEs), a scheduler, and a global cache in front of the
off-chip memory. Each MPE executes the multiple scalar-vector
multiplications (between A elements and B rows) in one window
of WA, and conducts the first level of psum reduction within the
window (called a multiply task; Section 4.1). The APEs further
complete the inter-window reduction to produce the final output
rows (called merge tasks; Section 4.2). This division is illustrated in
Figure 3 bottom. The scheduler tracks the task execution on the two
types of PEs (Section 4.3), and also adaptively adjusts the window
shape for each new WA pass (Section 5). The global cache stores
and reuses B and C data using an improved replacement policy
(Section 4.4), while A is only streamed from memory.

4.1 Multiply Tasks on MPEs

The Spada accelerator contains multiple MPEs, and each MPE has
several multiplier lanes. The number of lanes per MPE is set to
match the supported WA window size, 𝛼×𝛽 = 8 in our design. The
bottom part of Figure 4 illustrates the internal MPE components.
Each lane has a multiplier, a B fetcher, and a P queue. Each pair of
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Figure 4: Spada hardware architecture. Top right: overall

design. Top left: addition PE (APE). Middle: multiplication

PE (MPE). Bottom left: sort array. Bottom middle: P queue.

Bottom right: bitonic network.

lanes use a sort array for load balancing. And all lanes are connected
to a final bitonic network [3] and a flexible reduction tree [31].

Each MPE is assigned a multiply task to execute, which corre-
sponds to one window inWA. The multiply task executes as follows.
❶ Load a window of 𝛼×𝛽 elements from A, and put each 𝑎𝑚,𝑘 into
each lane’s multiplier as well as its paired lane for load balancing.
❷ Each lane’s B fetcher uses the column index of its 𝑎𝑚,𝑘 to fetch
the corresponding B row 𝒃𝑘 from the global cache, and sequentially
feeds the nonzeros into the multiplier. ❸ Execute the scalar-vector
multiplications in parallel, one per lane with the scalar 𝑎𝑚,𝑘 and
the row 𝒃𝑘 . The sort array for each pair of lanes dynamically bal-
ances their progress by allowing both multipliers to temporarily
process the loads of the lagging-behind lane (discussed shortly). The
P queues are used to buffer the products before merging, further
tolerating mismatched progress across lanes. ❹ Merge the products
into 𝛼 psum rows of C. Such merge happens independently among
each 𝛽 lanes, so we call every 𝛽 lanes as a group, and there are 𝛼
groups in an MPE. Lane groups are dynamically reconfigurable
based on the window shape to flexibly support different WA modes.
This is realized with the bitonic network and the reduction tree.
The group size 𝛽 can be any power-of-two between 1 and all lanes.
❺ Finally, psum rows are written back to the global cache, and later
further merged by the APEs (Section 4.2).

Figure 4 shows the example of MPE execution with the window
in Figure 3. The four lanes form two groups, with 𝑎0,2, 𝑎0,3 to the
first two lanes and 𝑎1,0, 𝑎1,2 to the other two. Corresponding B rows
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are fetched by B fetchers. And the two groups respectively merge
into two psum rows 𝒄 (0)0 and 𝒄 (0)1 .

Dynamic lane grouping and merge within each group. We
notice that each lane produces a sorted psum row with ascending
column indices, buffered in the P queue. Multiple such psum rows
from different lanes in one group should be merged (and reduced
for those with the same column indices). The key to supporting
flexible WA window shapes in the MPE is through the dynamic
reconfiguration of lane groups. The grouping does not affect the
scalar-vector multiplications, but mainly changes how their prod-
ucts are merged. We use specialized P queues, a bitonic network [3],
and a flexible reduction tree [31] to achieve such reconfigurability.

The P queue (P for psum) in each lane buffers the sequentially
generated products from the multiplier. It acts similarly to a normal
FIFO, but with the following enhancement at its output port. To
correctly merge psum rows frommultiple P queues, we must ensure
no queue can output an index that is smaller than the outputs of any
queue in previous cycles, or equivalently, in each cycle, the smallest
set of indices across all queues (not just within each single queue)
are sent to the later stage for sorting and merging. For example,
if two P queues have their current smallest indices as 0 and 3, the
second queue cannot output 3 unless it knows the next smallest
index in the first queue is no less than 3. If that index is not available
now, the second queue output must stall.

To ensure the above requirement, we associate a threshold to
each P queue, as in Figure 4 bottom middle. At each cycle, only the
indices at the head of the queue that are smaller than the threshold
can output. For example, in the figure with the current threshold
(1, 2), only (1, 0) and (1, 1) can output, but not (1, 4). The multiplier
is usually able to constantly push one element into the queue per
cycle, but the threshold may result in no outputs in some cycles.
Therefore we design each P queue to be capable of popping out up
to two elements per cycle to compensate. We empirically find in
Section 7.4 that this slight over-provisioning tolerates most stalls
and achieves matched throughput on average.

Algorithm 2 Setting P queue threshold for a lane group.
Input: P queues in a lane group: p_queues[]
Output: threshold for the lane group: threshold

1: threshold = MAX
2: for each q in p_queues do

3: if q.len() ≥ 3 then
4: threshold = min{threshold, q[2].index}
5: else if not q.complete() then
6: threshold = min{threshold, q.tail().index}
7: return threshold

The threshold is maintained per group, i.e., the same threshold
applies to all lanes in a group, denoting an index that is guaranteed
to be smaller than any future P queue outputs. Algorithm 2 shows
how to update the threshold. Because each queue can pop out
up to two elements in each cycle, we set the threshold to be the
minimum index among either the third index or the tail of each
queue. If a lane has completed all elements in its psum row, it does
not restrict the group threshold anymore. Also because we only
pop out elements that are strictly smaller than the threshold, the
queue never becomes empty in the middle of the processing.

The outputs from all P queues, as an unordered set of elements
for each group, are next sent to the bitonic network. The P queues
and the bitonic network together form a two-phase sorting, where
the P queues guarantee the order between different cycles, and
the bitonic network ensures the order in the same cycle. With
up to two elements from each P queue, the width of the bitonic
network inputs is 2× of the number of lanes. As Figure 4 bottom
right shows, the bitonic network implements the hardware-friendly
bitonic sort algorithm [3], with a logarithmic number of block levels
and multiple sorting blocks per level. Each sorting block sorts its
inputs and produces ordered outputs. To accommodate flexible
lane grouping, we modify the original bitonic network to allow for
getting the outputs from any level. For example, to individually
sort each group of 2 lanes, we should retrieve outputs just after the
first block level and bypass the rest.

The outputs from the bitonic network have been sorted, but
those elements with the same column indices are not yet reduced.
We finally use a flexible reduction tree, similar to the forwarding
adder network in SIGMA [31]. It is designed to arbitrarily separate
its sub-trees to independentlymerge each variable-length sub-range.
In our case, these sub-ranges are split according to the column
indices. As in Figure 4 middle, the reduction tree merges the two
groups of sorted products {(0, 0), (0, 1), (0, 2), (0, 3)} and {(1, 0), (1,
0), (1, 1), (1, 1)} into {(0, 0), (0, 1), (0, 2), (0, 3)} and {(1, 0), (1, 1)}. The
reduced sums from the sub-trees are pipelined to the final stage
as the eventual result 𝒄 (𝑡 )𝑚 with ordered column indices, and are
written back to the global cache.

Dynamic load balancing. One potential bottleneck in this
design is the imbalance among lanes in a group. Because only
the smallest indices can be sent for merging in each cycle, if one
lane largely lags behind with many small indices, then the other
lanes must wait, eventually filling up the P queues and stalling the
multipliers. Note that the column index distribution of each lane’s
psum row depends on its input row 𝒃𝑘 , which could vary widely.

To alleviate this issue, Spada MPEs support dynamic load balanc-
ing between each pair of neighboring lanes, using their shared sort
array. If the two lanes are in the same group, the sort array com-
pares the next two column indices of 𝒃𝑘 elements from each lane’s
B fetcher, and selects the smallest two among the four to be sent
to the multipliers. For example, in Figure 4 bottom left, B fetcher 2
has (0, 0), (0, 1), and B fetcher 3 has (2, 0), (2, 1). The two with the
smallest column indices, i.e., (0, 0), (2, 0), are sent out in this cycle.
Recall that the A elements are loaded into both multipliers. The
row indices are used to select which 𝑎𝑚,𝑘 to use.

In Spada MPEs, the sort arrays only re-balance between each
two lanes, regardless of the group size. This is a tradeoff between
performance and cost. Each sort array needs 𝑂 (𝑛2) resources, and
would grow too large if covering too many lanes [44].

Impact of empty rows and imbalanced row lengths. Any
empty row inA, which can be detected from the CSR offsets array,
is simply skipped without being included in the WA window, and
would not occupy any resource or introduce any load imbalance.
However, if some compressed A rows in a pass are shorter than
the others, towards the end of the pass the window would contain
fewer elements and thus cannot fully occupy all multiplier lanes.
Besides, when encountering an empty row in B, the B fetcher gets
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Figure 5: MPE reconfiguration, which only affects the P

queues, the bitonic network, and the flexible reduction tree.

no element and the lane immediately finishes its work. In both
cases, load imbalance can be alleviated by the sort array, which
allows the idle lane to process the workload of its neighbor lane.

Reconfiguration and task pipelining. The MPEs support
differentWAwindow shapes 𝛼×𝛽 through the flexible lane grouping
mechanism described above. We allow the MPEs to be reconfigured
to a different window shape only after completing a pass, i.e., when
finishing the current set ofA/C rows and switching to the next rows.
So reconfiguration happens much less frequently than previous
work [31]. The new window shape is set by the window adapter
in the scheduler (Sections 4.3 and 5). Reconfiguration of an MPE
does not affect the first few stages, but only changes the P queue
threshold logic, the bitonic network output level, and the flexible
reduction tree. As an example in Figure 5, when the window shape
is changed from 1×4 to 2×2, the group size is updated from 4 to
2. The P queue threshold is updated to track the smallest index
among two lanes in each group. The bitonic network is configured
to sort only within each group, and to output at the second level.
The flexible reduction tree is also configured to only merge within
each group of two lanes. The two outputs from the two groups
become two psum rows for different C rows.

Across different tasks (of the same window shape) in one pass,
the different stages in MPE effectively form a pipeline, so the next
task can start immediately (e.g., multipliers load A elements, B
fetchers start fetching) after the end of the last task without fully
draining the pipeline. The P queues are aware of different tasks,
so the products belonging to different tasks are not popped in
the same cycle to ensure correct merging. For consecutive tasks
between passes (of different window shapes), additional stalls at the
P queue output ports are needed, in order to wait for reconfiguring
the later units. Specifically, we cannot let any element of the new
pass pop out of a P queue, until all the elements of the previous pass
completely leave all the P queues; the lanes that finish draining early
need to stall and wait. The reconfiguration itself also adds a few
pipeline stall cycles to change the configuration bits. Nevertheless,
during these stall cycles, the B fetchers can start prefetching the B
rows of the next task and reduce later cache misses.

4.2 Merge Tasks on APEs

While the psum rows from each WA window are fully merged
inside the MPE, those across windows in one pass are separately
written back to the global cache in different cycles and need further
merging. We use dedicated APEs in Spada for these merge tasks.
Each APE is a lightweight unit, as in Figure 4 top left, composed
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Figure 6: Psum tracker table structure in Spada scheduler.

of a comparator tree of radix 𝑅 and an accumulator [42]. It takes
𝑅 psum rows as input and streams them in, and in each cycle, it
outputs the element with the smallest column index among them.
The accumulator reduces the output elements with the same index.
If the number of psum rows is more than 𝑅, the output streams
would need further merge rounds, essentially as a tree of merge
tasks [42]. Our implementation uses 𝑅 = 8.

MPEs and APEs in Spada work in a macro-pipelined way, coor-
dinated by the scheduler (Section 4.3). They communicate the psum
rows through the shared global cache. To balance their throughput,
we provision MPEs and APEs by having enough numbers of APEs
to match the peak throughput of the MPEs. MPEs are the most
expensive resource so we would like to keep them fully utilized;
APEs consume much smaller area and power so using more APEs
has minor overheads. For example, in Figure 4 there are two MPEs
with four lanes each, so they produce up to eight psum elements
per cycle in the worst case (when group size is 1 and no reduc-
tion in each group happens). Hence we use eight APEs where each
consumes one psum element per cycle.

4.3 Scheduler

The Spada scheduler contains several components, for assigning
tasks to MPEs/APEs, tracking task execution states and psum rows,
as well as collecting performance information and reconfiguring
WA dataflow modes.

The task manager generates new multiply and merge tasks and
tracks their execution states. For each pass (i.e., fully traversing the
window along dim k), Spada uses a fixed window shape determined
as in Section 5. The task manager records the current pass, the
current window shape, and the current position of the window in
this pass; it generates new multiply tasks by moving the window.
In addition, it generates new merge tasks when enough psum rows
have been produced (e.g., fully utilizing the APE radix 𝑅) after
notified by the psum tracker (see below), or when all multiply tasks
in a pass are complete. It also keeps the states of ongoing tasks,
including the window shape, the MPE/APE ID, the input matrix
row addresses, and the input/output psum row addresses.

The psum tracker manages all intermediate psum rows using
a hardware table as illustrated in Figure 6. Each entry in the table
corresponds to a final output row 𝒄𝑚 , and contains a list of addresses
for the psum rows 𝒄 (𝑡 )𝑚 that should be merged into it. This address
list is managed as a circular buffer, where newly produced psum
rows (from either multiply tasks or merge tasks) are pushed in,
and existing ones are popped out to generate a merge task. When
all multiply tasks in this pass are complete and there is only one
psum row remaining in the entry, that psum row becomes the final
result. Both the number of table entries and the list length per
entry are design parameters that are well bounded in our design.
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Figure 7: Comparison of global cache replacement policies.

The figure shows the CSR format of the matrix A, where

numbers are the column indices of A nonzeros, which are

equal to the indices of B rows that are multiplied and also

cached. The global cache can store eight B rows. Currently

processing A rows or windows are highlighted in red boxes.

On average, the number of table entries should cover all 𝒄𝑚 rows
that are currently under processing, which is equal to the number
of MPEs times the rows per MPE (i.e., the window height 𝛼). The
address list needs to be long enough for all intermediate psum rows
for a specific output row. Because we use sufficient APEs, as long
as 𝑅 psum rows are produced, it should be quick to find an idle APE
to merge them. For both parameters, we further apply small factors
of over-provisioning. Consequently, a table with 16 entries and 10
psum rows per entry avoids almost all stalls.

Finally, the window adapter collects runtime information and
determines an optimized window shape for each pass. We defer to
Section 5 for its detailed algorithm.

4.4 Global Cache and Replacement Policy

Spada uses a unified global cache for input rows 𝒃𝑘 from B and
psum rows 𝒄 (𝑡 )𝑚 for C. Both are accessed in streaming manners. We
adopt the FiberCache design in GAMMA [42]. A shared cache could
exhibit better utilization than separate ones when the input and
output reuse trades off in different dataflow modes.

To better support WA, we also apply a small optimization on
the cache replacement policy. In the original ROW dataflow, a
simple LRU policy would effectively leverage sparse pattern locality
between neighboring rows. In Figure 7 top left, 𝒃1, 𝒃2, 𝒃3, etc. used
by the previous A row remain in the cache and can be reused by the
current row, while those fetched by the older A rows are evicted.
However, with WA that processes multiple A rows simultaneously,
the cache may not be large enough to cache all rows. As a result,
only the tail parts of these rows could remain in the cache, while
the head parts are completely evicted. When the current window
starts from the beginning of the following rows, few B rows could
be reused (Figure 7 top right).

To improve reuse, we use a RidxLRU policy, which associates
each B row in the global cache with the most recent A row index
that used it. When replacing, B rows with smaller A row indices are
prioritized for evicting (Figure 7 bottom). RidxLRU inWA effectively

Figure 8: Index distribution similarity and correlation with

row length. We sample 2000 contiguous rows from several

sparse matrices to plot the number of column index overlaps

between adjacent rows and the row length of nonzeros. The

sparse pattern of each matrix is shown on the right.

approaches the effects of LRU in ROW, allowing us to reuse more
B rows fetched by the previous A rows.

5 WINDOW SHAPE ADAPTION

As discussed in Section 3, the WA window height 𝛼 determines the
input reuse ofB rows across multipleA rows, and the windowwidth
𝛽 determines the number of intermediate psum rows for output
reuse. In Spada in Section 4, the total window size 𝛼×𝛽 is fixed to
the number of lanes in an MPE. Therefore, the runtime algorithm
for determining optimized window shapes should properly adjust
between 𝛼 and 𝛽 to best balance the reuse of both input and output.

However, accurately capturing these effects in an analytical
model is almost impossible. The reuse of B rows highly depends on
the index distribution between A rows. If neighboring A rows have
many overlapped column indices, these nonzeros could reuse the
same B rows. But such information cannot be extracted without ac-
tually scanning through each CSR row ofA, leading to unacceptable
overheads. Furthermore, even if we could somehow estimate such
similarity, the actually achievable reuse on hardware still depends
on the complex cache behaviors and the interference among MPEs.

Therefore, we design our window shape adaption algorithm in
a profiling-guided way. The key idea is that, within a local matrix
region, we can use the profiling performance results on the first few
rows to determine the optimized window shape for the following rows.
We rely on two key insights from empirical studies in Figure 8.
The first one, which we call index distribution similarity, says that
within a local region of contiguous rows, the overlapped column
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indices between adjacent rows1 are relatively stable. We call such a
region a band. Within a band, the similar index overlapping would
lead to similar reuse behaviors, and thus the same choice of the
optimized dataflow. Naturally, the band serves as the granularity
of our profiling-based method. The band size could be large, e.g.,
up to several hundred rows in EternityII_Etilde, or relatively
small, e.g., dozens of rows in dbir2.

The other insight further answers how we partition bands. In-
specting all column indices in each row is obviously impractical.
Instead, we observe strong correlation between index distribution and
row length, i.e., in a band with similar index distribution, the row
lengths also stay relatively stable. This can be seen from the similar
shapes between the two curves in Figure 8: when one curve sees
a sharp variation, the other curve follows. Note that their relative
ratios across bands are not necessarily constant; we only need the
sharp changes to detect the band boundaries. We suspect that such
behavior is due to the regular local patterns (e.g., diagonal bands,
local dense regions) that widely exist in sparse matrices. As a result,
we can partition a matrix into bands by only looking at the row
lengths, i.e., the CSR offsets array, which is much faster.

To determinewhat to profile, recall that each band contains multi-
ple rows and thus multiple WA passes. The end-to-end performance
of executing one pass is an intuitive candidate. However, due to
the asynchronous execution between multiply and merge tasks
(Section 4), the total runtime is difficult to accurately measure. In-
stead, we leverage the architectural features in Spada that there are
sufficient APEs to match the maximum throughput of MPEs and
the two phases form a macro-pipeline, so the overall performance
is mostly determined by the multiply tasks. Moreover, the index
distribution mostly affects the reuse of B rows which are the input
to multiply tasks. Therefore, we track average runtime of multiply
tasks in the Spada scheduler window adapter.

Finally, for how to profile, we further apply an optimization to
handle large and small bands separately. For a large band with
many rows, we divide its execution into a profiling phase, during
which we try different window shapes on the first few rows, and a
stable phase, during which we simply apply the best window shape
to the rest rows. However, for small bands, the profiling phase
may dominate the execution or even cannot finish due to too few
rows. So instead we use a more adaptive cost-descent approach.
When trying different window shapes, as soon as we realize a shape
results in decreased performance, we immediately stop profiling
and use the best window shape found so far. This method adapts
more rapidly, but may be sub-optimal due to insufficient profiling.

Put it all together. We summarize our window shape adaption
algorithm in Spada. (1) The window adapter loads the CSR offsets
array of A, and partitions the rows into bands. We empirically use
an absolute threshold 𝑇abs = 5 and a relative threshold 𝑇rel = 2. If
the difference (ratio, respectively) between len[𝑖] (i.e., offsets[𝑖]−
offsets[𝑖 − 1]) and len[𝑖 − 1] is larger than𝑇abs (𝑇rel, respectively),
we start a new band from row 𝑖 . (2) Each band is categorized as
large or small, using an empirical threshold of𝑇band = 128 rows. (3)
For a large band, we first execute four passes with window shapes
1×8, 2×4, 4×2, 8×1 in the profiling phase, and respectively track the
1Index overlap between two consecutive rows 𝑖, 𝑖 + 1 is defined as the number
of their identical column indices, |columns[offsets[𝑖 ] : offsets[𝑖 + 1] ] ∩
columns[offsets[𝑖 + 1] : offsets[𝑖 + 2] ] | .

Table 1: Hardware configurations of Spada.

MPEs 2 8-lane MPEs; 8-slot P queue; 16-width net/tree
APEs 16 APEs; 8-radix binary comparator tree

Global cache 1.5MB, 16 banks, 16-way associative
Crossbars 16×16 and 16×16, swizzle-switch based

Main memory 128GB/s over 16 64-bit HBM channels

Table 2: Area breakdown of Spada and one MPE.

Components Area (mm2
) MPE components Area (mm2

)

2 MPEs 0.86 (14%) 8 B fetchers & SAs 0.11 (26%)
16 APEs 0.40 ( 6%) 8 Multipliers 0.05 (12%)
Scheduler 0.07 ( 1%) 8 P queues 0.09 (21%)

Global cache 4.80 (76%) Bitonic network 0.07 (16%)
Crossbars 0.19 ( 3%) Reduction tree 0.11 (25%)

Total 6.32 MPE total 0.43

number of multiply tasks and their runtime sum in each pass. Then
we use the window shape with the best average runtime for the
rest passes in this band in the stable phase. (4) For a small band, we
start with a 1×8 window, and then 2×4, etc. When a new window
shape causes decreased performance, we stop trying new ones and
use the currently obtained best. We keep tracking and updating the
performance of the most recently executed pass for each window
shape, and change the applied one to always use the best.

6 METHODOLOGY

Configurations. We evaluate Spada with the default configura-
tions shown in Table 1. We use 2 MPEs each with 8 lanes, 16 APEs,
and a 1.5MB global cache. We implement the key components, i.e.,
MPE, APE, and scheduler, in RTL, and synthesize them using Syn-
opsys DC on the TSMC 28 nm technology. The Spada chip runs at
1 GHz, and is connected to a 128GB/s High-Bandwidth Memory
(HBM) module. We use CACTI 7.0 [2] to model the global cache and
use the swizzle-switch network for the crossbars [33]. To measure
performance and memory traffic, we further build a cycle-accurate
simulator of Spada in Rust. The simulator carefully models the
interactions between hardware components and implements the
window shape adaption algorithm in Section 5. The simulator is
open-sourced at https://github.com/tsinghua-ideal/spada-sim.

Workloads. We use 27 sparse matrices with a large variation of
sparse patterns, from both the SuiteSparse collection [7] and several
compressed NN models, as summarized in Table 3. We select 18
matrices from SuiteSparse, with the goal of having their densities
cover the full range in Figure 1a, i.e., 10−7 to 10−1 (sorted in Table 3).
Besides, their nonzeros per row vary widely from 4 to 5162, further
ensuring diversity and validating the need for flexibly supporting
different dataflow schemes. To construct SpGEMM workloads, we
follow the same method in GAMMA [42], where a square matrix is
multiplied with itself and a non-square matrix is multiplied with
its transpose. To include compressed NNs, we train and compress
ResNet50 [14] and AlexNet [21] using open-source toolchains [47].
Furthermore, a pruned BERT-Base is trained as in [32]. We select
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Table 3: Characteristics of evaluated workloads.

Workload Density Workload Density

hugetrace-0010 2.48e-07 msc10848 1.04e-02
cit-Patents 1.16e-06 lpi_forest6 2.85e-02
kkt_power 3.00e-06 cari 3.18e-01
web-Google 6.08e-06 lp_fit2d 4.90e-01
Hardesty2 1.42e-05 — —

ldoor 4.69e-05 alexnetfc2 2.49e-01
email-Enron 2.73e-04 resnet50fc 1.13e-01
ca-CondMat 3.35e-04 resnet50b3_c1 3.38e-01

EternityII_Etilde 5.70e-04 resnet50b4_c3 3.16e-01
dbir2 1.33e-03 resnet50b2_c1 4.17e-01

poisson-3Da 1.93e-03 resnet50b1_c2 6.76e-01
ship_001 3.20e-03 bertl0_key 6.25e-02
raefsky3 3.31e-03 bertl0_query 7.14e-02
nemsemm1 3.54e-03 bertl0_ffn 7.22e-02

representative convolutional and fully-connected layers from dif-
ferent residual blocks of ResNet50, the second fully-connected layer
of AlexNet, and the query, key, and feed-forward network from
layer 0 of BERT-Base.

Baselines. We use three state-of-the-art SpGEMM accelera-
tors that use InP, OutP, and ROW, respectively, i.e., SIGMA [31],
SpArch [44], and GAMMA [42]. Tomake fair comparisons, we set all
designs to have the same number of multipliers, i.e., sixteen. SpArch
and Spada are already in such a size, while we scale down GAMMA
by half, e.g., using half of its original 32 PEs, and correspondingly
half the size and banks for the original 3MB FiberCache which is
now at the same capacity as Spada (1.5MB). For SIGMA, we scale a
Flex-DPE down to thewidth of 16, shrink the SRAMbuffer to 1.5MB,
and increase its frequency to 1GHz. Since its original bitmap format
scales poorly to very sparse workloads, we modify it to use the CSR
format and adopt the content-addressable-memory implemented
in ExTensor [15] to accelerate index matching. We also evaluate
scaled-up versions of these designs in Figure 14. All designs use
the same off-chip HBM module as Spada. All designs use the 64-
bit double-precision data type that is commonly used in scientific
computing, following the same setting as SpArch and GAMMA
for fair comparisons. A common practice of compressed NNs is to
use lower precision for inference. We leave such flexible precision
support as future work, which is similar to how GPUs support both
workload types [6, 9] and other academic proposals [20, 22, 34].
Finally, we also compare with CPU and GPU platforms. For CPU,
we use mkl_sparse_spmm in Intel MKL [17], on a server with dual
Xeon 6240 processors (each has 36 hyper-threads and a 24.75MB
last-level cache) and 8 DDR4-2933 channels. For GPU, we mea-
sure cusparseXcsrgemm2Nnz followed by cusparseDcsrgemm2 in
cuSPARSE [26] on one NVIDIA RTX 3090 card.

7 EVALUATION

7.1 Area and Power

Table 2 shows the area breakdown of Spada with the configurations
in Table 1. Same as previous work [42, 44], most of the chip area
in Spada is used by the large 1.5MB global cache, as SpGEMM is
mostly memory-bound and requires large caches to alleviate the

off-chip data transfer bottleneck. Among the logic components, the
MPEs dominate the area. The buffers for input and output data (B
fetchers and P queues) as well as the merge network and reduction
tree consume most of the space in each MPE. All the APEs, despite
being 8× more in numbers, occupy 2.2× less area than the MPEs.
These small area overheads justify the choice of using dedicated
APEs for the merge tasks and making MPEs exclusively focus on
the critical multiply tasks. The scheduler only introduces a minor
extra area to the chip.

Compared to the baselines, if both (scaled) GAMMA and SpArch
are scaled from 45 nm to 28 nm as Spada, we see that GAMMA and
Spada have similar areas (6.13mm2 and 6.32mm2), while SpArch is
about 2× larger (13.96mm2). Notice the three designs have the same
number of multipliers, therefore Spada and GAMMA are more area-
efficient. We exclude concrete area comparison with SIGMA. Its
reported area was under 500MHz with much more resources [31],
and thus it is hard to accurately estimate the scaled-down area.

We also report the power consumption of Spada from the syn-
thesize results. The MPEs, APEs, and scheduler together consume
1.66W. The whole Spada chip power is about 4.84W, dominated
by the global cache.

7.2 Performance

Figure 9 uses different workloads to compare the four accelerators:
SIGMA, SpArch, GAMMA, and Spada. We see that performance
varies a lot across workloads due to their diverse sparse patterns,
and no single accelerator always achieves the best performance for
all workloads. This result validates our motivation that different
SpGEMM workloads exhibit different sparse patterns that prefer
different execution dataflow choices.

Specifically, for the sparse workloads from SuiteSparse towards
the left, InP has poor performance in most cases, which is mainly
affected by the inefficient index intersection even if we applied extra
optimizations [15]. InP performs relatively well on lpi_forest6,
cari, and lp_fit2d, as they are either small enough to fit in the
cache or significantly denser than other workloads. For the other
two baselines, SpArch (OutP) outperforms GAMMA (ROW) on 4
SuiteSparse workloads lpi_forest6, dbir2, cari, and lp_fit2d,
with nearly 20× difference on cari. ROW performs particularly
bad with cari, because the many long rows in A and B thrash the
cache. ROW is better on the rest SuiteSparse workloads with up
to 6.2× on email-Enron. email-Enron is most efficient with ROW
due to limited overlapped column indices across A rows and thus
limited input reuse opportunities in OutP.

With the denser NN workloads on the right side, though still
inefficient on many workloads, SIGMA has more comparable per-
formance and achieves an 8.2× speedup on resnetb4_c3. SpArch
outperforms GAMMA on the two compressed fully-connected lay-
ers resnet50fc and alexnetfc2, while GAMMA is better on the
rest convolutional and self-attention layers.

In contrast, due to the capability of flexibly adapting its WA
dataflow mode between exploiting input or output reuse to dy-
namically match the sparse pattern, Spada is able to outperform
(e.g., kkt_power and bertl0_ffn) or perform close to the best
among the baselines on almost all evaluated workloads. The two
fully-connected layers are exceptions, where there remains a gap
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Figure 9: Performance comparison among SIGMA, SpArch, GAMMA, and Spada.
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Figure 10: Performance comparison among CPU (MKL), GPU (cuSPARSE), and Spada.

between WA and the optimal OutP. This is because there are few A
rows (e.g., 16) that are insufficient to profile to get optimized win-
dow shapes. Spada could achieve even higher performance than
the baselines which are specifically optimized for one dataflow,
because those workloads have diverse sparse patterns even within
one matrix, and prefer different schemes when processing different
regions. Spada is able to dynamically adapt in these cases.

Overall, the WA-based Spada accelerator significantly improves
the performance of SpGEMM across diverse sparse patterns, on
average 38.04×, 1.44×, and 1.46× faster than SIGMA, SpArch, and
GAMMA, respectively. On performance/area, Spada outperforms
SpArch and GAMMA by 3.32× and 1.42×, respectively.

Figure 10 compares Spada with the CPU and GPU baselines.
MKL is the slowest in almost all workloads despite using a high-
end CPU. In contrast, cuSPARSE is faster than MKL with an average
2.84× speedup. Finally, Spada achieves 12.52GFLOPS on average,
13.10× and 4.61× faster than the CPU and the GPU, respectively.
Note that the GPU is able to slightly outperform Spada on a few
workloads, e.g., raefsky3, but this performance gain is at the cost
of much higher power and area.

7.3 Detailed Analysis

We next explain the high performance gains of Spada. Figure 11
shows for the four accelerators on different workloads, the off-chip
memory traffic of four types of data: A, B, psum, and C. Different
workloads exhibit different dominant memory traffic types. Since
OutP used by SpArch has better input reuse and ROW used by
GAMMA mostly reuses outputs (Figure 2), GAMMA performs bet-
ter onworkloads dominated by psum andC traffic, e.g., ca-CondMat
and email-Enron, while SpArch performs better onworkloads dom-
inated by B traffic, e.g., cari and resnet50fc. In some cases like
nemsemm1 and resnetb4_c3, though B traffic dominates, GAMMA
still has lower B traffic than SpArch. This is because the sparse

patterns provide few B reuse chances only in small local regions, in
which OutP fetches too many B rows and thus thrashes the cache.
InP-based SIGMA has good output reuse, but its input memory
traffic is huge on very sparse workloads, due to significant index
intersection inefficiency. Spada is capable of better balancing both
types of reuse and thus achieves similarly low total memory traffic
to the best of the three baselines. Overall, Spada on average saves
about 21.9× memory traffic over SIGMA, 1.69× over SpArch, and
1.39× over GAMMA.

Figure 12 further compares the multiplier utilization among the
four accelerators. Overall, Spada has multiplier utilization on av-
erage 50.7×, 1.41×, and 1.42× better than that of SIGMA, SpArch,
and GAMMA, respectively. The multiplier utilization improvement
closely correlates to the traffic reduction in Figure 11 as most work-
loads are memory-bound. In some cases like poisson-3Da, Spada
has slightly higher multiplier utilization than GAMMA, though
the two have similar traffic. This is because due to the variation
of local sparse patterns, some parts of the workloads are actually
compute-bound if the data are well reused from the cache. To better
understand the underlying reasons, we also include two hypothet-
ical designs in Figure 12, Spada with an ideal memory (infinite
bandwidth and zero latency), and Spada with an ideal memory
and no pipeline stalls. We see that an ideal memory brings on av-
erage 36% utilization improvements and an ideal pipeline brings
another 13%, validating that the utilization is mostly hindered by
memory stalls. A few workloads suffer from significant pipeline
stalls: EternityII_Etilde has short B rows that cause frequent
pass switching; lpi_forest6 is a small matrix on which pipeline
draining/filling dominates.

The remaining loss on multiplier utilization of Spada when
excluding memory and pipeline stalls can be attributed mainly
to load imbalance among multiplier lanes. This loss is only 12%
on average, indicating that Spada has a reasonable load balance
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Figure 11: Memory traffic comparison among SIGMA, SpArch, GAMMA, and Spada.
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Figure 12: Multiplier utilization comparison among SIGMA, SpArch, GAMMA, Spada.

behavior with the help of the sort arrays. Among all workloads,
ca-CondMat has the biggest remaining utilization loss. Its average
A row length is around 9, only a little larger than the number
of lanes, 8. Each pass thus includes two windows with 8 and 1
nonzeros, respectively, where the hardware resources are severely
underutilized during the second window.

To illustrate the effectiveness of our window adaption algorithm
in Section 5, Figure 13 compares the performance of Spada with
static WA schemes, where we fix the window height at 1, 2, 4, and
8. Different window heights represent different tradeoff points be-
tween the reuse of B andC. Again due to the diverse sparse patterns,
ca-CondMat, dbir2, and resnetb4_c3 prefer shorter windows,
while raefsky3, cari, and lpi_forest6 prefer taller windows.
In many cases like Hardesty2, email-Enron, and resnet50fc, the
performance even varies non-monotonically. Spada is able to adapt
to the preferred window shapes and achieves close to the best static
or even better performance, by exploiting index distribution simi-
larities. The profiling-based approach additionally helps Spada to
quickly converge, even in non-monotonic cases.

7.4 Sensitivity and Scalability Studies

Table 4 conducts sensitivity studies on several key configuration
parameters in Spada. We first investigate different configurations
between the numbers of MPEs and lanes per MPE. Having more
lanes in an MPE enlarges the window size of WA and thus its
flexibility, but increases the overheads of merge/reduction at the
end of the pipeline and also decreases the lane utilization. Our
default setting of two 8-lane MPEs achieves a good tradeoff. Second,
inside an MPE, we explore the detailed P queue design, including its
length and the maximum number of elements popped out per cycle.
Longer P queues can tolerate more index distribution imbalance and
eliminate stalls, at the cost of additional area. A P queue of length 8 is
sufficient. Supportingmore elements popped out per cycle improves

Table 4: Sensitivity studies of Spada configurations.

Configurations (Default)

# MPEs × # lanes 4 × 4 2 × 8 1 × 16
Performance vs. default 0.92 1.00 0.72

P queue length 4 8 16
Performance vs. default 0.83 1.00 1.01

P queue max pops/cycle 1 2 4
Performance vs. default 0.72 1.00 1.02

Large/small band threshold 64 128 256
Performance vs. default 0.79 1.00 0.84

Sort arrays Without With
Performance vs. default 0.91 1.00

the throughput because it quickly drains the queue after a stall,
but also requires larger bitonic networks and reduction trees. We
find a design with maximum 2 pops per cycle is reasonable. Third,
for window adoption, we empirically find 128 as a good threshold
for categorizing large and small bands. Finally, we evaluate the
effectiveness of the sort array, which brings an average 9% speedup.

Figure 14 scales up the four accelerators and evaluates their
performance at different scales, from 16 multipliers with 1.5MB of
SRAM, to 128 multipliers with 12MB. All accelerators are scalable
as the available hardware resource increases, while Spada keeps
achieving the best performance at all scales. The speedup of SpArch
from 64 multipliers to 128 is higher than that from 32 to 64. This is
because at the largest configuration the dominant psum data start
to fit in the on-chip cache. SIGMA actually has the highest scaling
factor among the four, but the absolute performance is quite low
due to the inefficiencies described before.
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Figure 13: Performance comparison between static window heights and Spada dynamic adaption.
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Figure 14: Scalability of SIGMA, SpArch, GAMMA, and Spada.

Both the number of multipliers and the SRAM cache capac-

ity are scaled together, from 16 multipliers, 1.5 MB to 128

multipliers, 12 MB.

8 OTHER RELATEDWORK

Performance optimization of SpGEMM has been well studied on
CPUs and GPUs [17, 23, 26, 38]. For example, Intel MKL [17] is the
most commonly used library for SpGEMM on their CPUs, and cuS-
PARSE [26] is widely adopted on GPUs. Applying WA in software
on CPUs and GPUs may enjoy some but not all the benefits of using
specialized hardware. Software-based profiling and monitoring for
adaptation may incur non-negligible overheads; thread initializa-
tion and load balancing are expensive; and general-purpose caches
lack optimizations for sparse rows.

Recent work has used domain-specific hardware to accelerate
SpGEMM in the machine learning, graph analysis, and linear alge-
bra domains [15, 27, 31, 36, 42, 44]. Different from Spada, most of
these accelerators supported only a fixed dataflow to match their
specific target applications. For example, as categorized in Sec-
tion 2.2, ExTensor [15] and SIGMA [31] used InP, OuterSPACE [27]
and SpArch [44] used OutP, and MatRaptor [36] and GAMMA [42]
used ROW. Another army of accelerators [1, 29, 37, 43, 45, 46] tar-
geted specific SpGEMM in compressed deep learning models. Some
of them were designed for unstructured SpGEMM [1, 29, 43], which
were agnostic to nonzero value distribution and skipped unneces-
sary computations dynamically. For example, SCNN [29] skipped
computations when either model weights or feature map values are
zero. On the other hand, structured sparse accelerators [37, 45, 46]
required regular sparse patterns generated by the co-designed prun-
ing algorithms. For example, Cambricon-S [45] relied on a specially
designed pruning algorithm and an encoding format to improve
over its unstructured predecessor, Cambricon-X [43].

Nevertheless, few prior designs have considered different spar-
sity levels or sparsity distribution diversity within and across work-
loads. In contrast, Spada is able to adapt to the sparse pattern and
reconfigure the hardware accordingly. STICKER [41] was designed
to be aware of the sparsity distribution and encoded matrices into
different sparse formats. It mostly focused on the metadata bene-
fits of different encoding formats, and restricted to deep learning
models without considering the much sparser scientific computing
datasets. Furthermore, it did not exploit the data reuse tradeoffs
provided by different sparse patterns for higher performance.

9 CONCLUSIONS

We proposed Spada, a hardware-software co-design to accelerate
SpGEMM through adaptive reconfiguration based on the diverse
sparse patterns across different scientific computing and deep learn-
ing applications. The key innovations of Spada include a window-
based adaptive dataflow template, an efficient and reconfigurable
hardware architecture to realize data reuse benefits under different
data distributions, and an effective yet simple dynamic window
shape adaption algorithm to determine the best configuration to
use. Spada is able to match or exceed the performance of three op-
timized baseline designs and achieves 1.44× speedups on average.
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