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Near-Data Processing (NDP)

a Near-data processing (NDP): place compute logic near data memory

o Shorter distance = lower latency and energy

o Higher bandwidth

a Various memory technologies to realize NDP:
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DRAM-Bank NDP Systems

a Add computing logics inside/near DDR banks

a Fine granularity, high bandwidth, high parallelism
o Thousands of units R —

a Typical commercial products:
o UPMEM, Samsung’s HBM-PIM, SK Hynix’s AiM
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Limitation 1: Lack of Communication Support

a Different DRAM banks cannot communicate directly.
a Applications of DRAM-Bank NDP follows data-local execution paradigm.
o Communication is done through expensive host CPU forwarding.

a Adding physical links between banks is prohibitively expensive.
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Limitation 2: Load Imbalance

a Thousands of NDP cores in DRAM-Bank NDP.
a Static assignment cannot suit applications generating tasks dynamically.

a Dynamic load balancing is not enabled, due to lack of communication.

o The data-local execution makes the scheduling more complex.
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Our Contributions

a Enabling cross-bank communication without altering DRAM form factors.
o Enabling cross-bank load balancing compatible with communication.

1. Task-based message-passing programming model

2. Cross-bank communication scheme using “bridges”.

3. Data-transfer-aware scheduling policy.



Task-Based Programming Model

o A task is the basic unit for execution and scheduling.

a Tasks spawn child tasks dynamically.

a Each task is associated with one data element.

o Communication is done through pushing tasks by message passing

instead of pulling data.
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NDPBridge Overview
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NDPBridge Overview

o ldea: add bridges into each level of the memory hierarchy
o Bridges gather/scatter messages from child node mailboxes

o Existing physical links and DDR commands
o All modifications are within standalone modules
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Bridge-Based Communication
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Bridge-Based Communication
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Bridge-Based Communication
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Bridge-Based Load Balancing

o Bridge commands scheduling

o Unit prepare tasks DDR PHY
o Bridge gathers tasks
o Bridge assigns & dispatches tasks
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Load Balance: Data-First Scheduling Problem

a Data-first scheduling problem
o Must move data to tasks

Bridge Bridge
: Task
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Shared-Memory Architecture NDP Architecture with Data-Local

Execution Paradigm

o Data transfer takes time

o We need data-transfer-aware load balancing
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Load Balance: Data-Transfer-Aware Scheduling

o Hide transfer latency:

o Traditional scheduling steal tasks
when local queue is empty

o Schedule tasks in advance
o Overlap the transfer latency
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Load Balance: Data-Transfer-Aware Scheduling

o Hide transfer latency: a Avoid transfer congestion:
o Traditional scheduling steal tasks o Traditional work-stealing: steal
when local queue is empty half of the victim queue
o Schedule tasks in advance o Fine-grained scheduling

o Overlap the transfer latency
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Load Balance: Data-Transfer-Aware Scheduling

o Reduce transfer traffic:

o Traditional work stealing steals
tasks from task queue tail

o Scheduling hot data can reduce
data traffic.

Unit-0:
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Load Balance: Data-Transfer-Aware Scheduling

a Reduce transfer traffic:
o Traditional work stealing steals o We use sketch to filter hot data

tasks from task queue tail * Similar to HeavyGuardian

o Scheduling hot data can reduce * Tasks of hot data are stored separately
data traffic * Storage overhead: 2.2 KB in SRAM
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Methodology

a Simulated platform

o 2 channels x 4 ranks/ch x 8 chips x
8 banks, 512 units in total

o Simulated using zsim

o Workloads
o Linked list (II).
o Hash table (ht)
o Tree traversal (tree)
o SpMV (spmv)
o Page rank (pr).
o Breadth-first search (bfs)
o Single-source shortest path (sssp)
o Weakly-connected component (wcc)

a Baselines
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Aware Scheduling
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Experiment Results

a Bridge-based communication: 1.51x speedup than CPU forwarding
o Due to reduced communication overhead ( )
o Still suffers load imbalance

a Bridge + Work Stealing: 1.45x speedup than no scheduling

o More communication overhead(1.4% -> 18.6% idle wait time)
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Experiment Results

o NDPBridge: best performance, than CPU forwarding
o 1.35x against Bridge+Work Stealing,
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Summary

o The lack of cross-bank communication and load balancing support
hinders the adoption of DRAM-bank NDP architectures.

a2 Our contributions:

o Bridge-based communication: supports cross-bank communication with
acceptable hardware cost

o Data-transfer-aware scheduling: supports cross-bank load balancing built upon
the communication scheme and with reduced data transfer overhead

o NDPBridge: promotes wider and easier adoption of DRAM-bank NDP architectures
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