i 53 B S HAEE 7 R

Sy,
58z) P * ; — b
LN o / ¥ lsy'{: =
24 ~ I X R/
0% % &g
"'u) &

\\

Institute for Interdisciplinary Information Sciences, Tsinghua University SHANGHAI QI ZHI INSTITUTE

NDPBridge: Enabling Cross-Bank
Coordination in Near-DRAM-Bank
Processing Architectures

Boyu Tian, Yiwei Li, Li Jiang, Shuangyu Cai, Mingyu Gao

Tsinghua University
Shanghai Qi Zhi Institute
Shanghai Jiao Tong University
Huawei Technologies Co., Ltd.

ISCA 2024

Tsinghua University

Near-Data Processing (NDP)

a Near-data processing (NDP): place compute logic near data memory

o Shorter distance = lower latency and energy

o Higher bandwidth

a Various memory technologies to realize NDP:

'.,. / / /
%i /LDRAM Dl% v

..................
H

Inter:-(‘ube."‘- :/ ,%/: ,/

‘ube g
Links E/%“fgglc i)iy/

(a) Logic-die NDP

Ml :l
DRAM] | Buffer
Banks || Chip

S

DRAM Chip

(b) DIMM-buffer NDP

Units

Buffer

DRAM-Bank NDP Systems

a Add computing logics inside/near DDR banks

a Fine granularity, high bandwidth, high parallelism
o Thousands of units R —

a Typical commercial products:
o UPMEM, Samsung’s HBM-PIM, SK Hynix’s AiM

JIVIRRN RSB e

UPMEM Chip

--

i DDR Interface
e B B ———— ¢
N i i 2
: =
el ‘ ¢ > ‘& 64-MB
|| R | B N R : et =
DS G e e
= o [<> Bank
T LLLEr 1272
... N:-I")-ﬁ.:[.j-l.l--l.tuu.u-..--...-..-............-’

(c) DRAM-bank NDP

Limitation 1: Lack of Communication Support

a Different DRAM banks cannot communicate directly.
a Applications of DRAM-Bank NDP follows data-local execution paradigm.
o Communication is done through expensive host CPU forwarding.

a Adding physical links between banks is prohibitively expensive.

7‘ \HOSt CPU f \ T\ Communication Overhead

A

/ DRA\/I Chan/el \ / \ " A
—_— ,7(,\WA in Computation Time
C}Mw* < y
O
t

1 _— ~

End-to-end Execution Time
J J _ J_ J

¢)

Example: Tree-Traversal

Limitation 2: Load Imbalance

a Thousands of NDP cores in DRAM-Bank NDP.
a Static assignment cannot suit applications generating tasks dynamically.

a Dynamic load balancing is not enabled, due to lack of communication.

o The data-local execution makes the scheduling more complex.

s

\

Host CPU

DRAM Channel

O~
b

. S

(

.

Y4 Y

[op |
o PO

J _ _J

Example: Tree-Traversal

Average Execution Time A

~—

Communication Overhead

~

Conm

putation Time

0

A\

1

4

V

End-to-end Execution Time

Our Contributions

a Enabling cross-bank communication without altering DRAM form factors.
o Enabling cross-bank load balancing compatible with communication.

1. Task-based message-passing programming model

2. Cross-bank communication scheme using “bridges”.

3. Data-transfer-aware scheduling policy.

Task-Based Programming Model

o A task is the basic unit for execution and scheduling.

a Tasks spawn child tasks dynamically.

a Each task is associated with one data element.

o Communication is done through pushing tasks by message passing

instead of pulling data.

A task processes
one tree node

Host CPU

DRAM Channel

-’. _

r N\()

1 1 /

unieFO| |
JLgJ”

The task for next node is
dynamic generated

NDPBridge Overview

Host CPU
H CHO H CH1 F
' L 7 Rank Buffer Chip
DIMM-0 | .~
‘Ranko Rank1l v v
Unit
[= o
DIMM-2 1B L =5
I ()
DIMM-3 DRAM Rank

NDPBridge Overview

o ldea: add bridges into each level of the memory hierarchy
o Bridges gather/scatter messages from child node mailboxes

o Existing physical links and DDR commands
o All modifications are within standalone modules

"""""" Level-2 Bridge (Host CPU) _ -7
HostCPU | .. = \
Teno Hent P = \
I I] -
Level-1 Bridge (Rank Buffer CNi \
DIMM-0 | . ve) . Bridge | Nip) \
I I // b N \ \
‘Ranko Rank1 ~ ¥ —.&7,- : |DRAM
. Unit S a e :
- S o Rank
DIMM-2 | ™, Band.0 % G
DIMM-3 DRAM Rank

Bridge-Based Communication

C/A ¢ DQ
Host CPU DDR PHY
{CHOHCHLF . .
| | Level-1 Bridge Mailbox Region
DIMM-0 | (Rank Buffer Chip) | Command Message
I — ' Generator Router
‘Ranko Rank1|| v v v v Scatter Buffers
=,]
DIMM-2 | ™. DRAM Rank e
DIMM_3I =l R e L C/A DQ

cmd 0 DRAM Bank

Access Arbiter BTask Queue

Unit Controller
(DMA Engine) Mailbox Region

[vOIP Core

SRAM

10

Bridge-Based Communication

C/A ¢ DQ

Host CPU DDR PHY
{CHOHCHLF . .

| | Level-1 Bridge Mailbox Region

DIMM-0 | (Rank Buffer Chip) | Command Message

I — | Generator Router
‘Ranko Rank1|| vV vV GATHER Scatter Buffers

..]
DIMM-2 | ™. DRAM Rank e
DIMM_3I =l R e L C/A DQ

cmd 0 DRAM Bank

Access Arbiter Task Queue

Unit Controller DA

o Commands:
o GATHER: DDR READ

VAVl NDP Core

« Messages from bank to bridge (DMA Engine) Mailbox Region
o SCATTER
o STATE-GATHER
11

o SCHEDULE

Bridge-Based Communication

C/A ¢ DQ
Host CPU DDR PHY
{CHOHCHLF . .
| | Level-1 Bridge Mailbox Region
DIMM-0 | (Rank Buffer Chip) | Command Message
I — | Generator Router
‘Ranko Rank1|| vV vV SCATTER Scatter Buffers
=,]
DIMM-2 | ™. DRAM Rank : """"""""""""""""
DIMM_3I =l R e L C/A DQ

cmd 0 DRAM Bank

Access Arbiter Task Queue

Unit Controller

a Commands:
o GATHER

VAVl NDP Core

o SCATTER: DDR WRITE (DMA Engine) Mailbox Region
* Messages from bridge to bank
o STATE-GATHER
12

o SCHEDULE

Bridge-Based Load Balancing

o Bridge commands scheduling

o Unit prepare tasks DDR PHY
o Bridge gathers tasks
o Bridge assigns & dispatches tasks

Mailbox Region

Command Message

Generator Router

GATHER Scatter Buffers

= cmd msg DRAM Bank g
]]
2 koo 2 PRAM
o Commands: = _ =
Unit Controller Bank
o GATHER = (DMA Engine) Mailbox Region =
o SCATTER & o
o STATE-GATHER
o SCHEDULE: DDR ACTIVATE Giver Receiver
13

* Messages: GATHER (bank->bridge) + SCATTER (bridge->bank)

Load Balance: Data-First Scheduling Problem

a Data-first scheduling problem
o Must move data to tasks

Bridge Bridge
: Task
of {-—--|{--> OB - 9¢--1-->
(@) : Data block Unit AL Need data
directly transfer
first
Shared-Memory Architecture NDP Architecture with Data-Local

Execution Paradigm

o Data transfer takes time

o We need data-transfer-aware load balancing
14

Load Balance: Data-Transfer-Aware Scheduling

o Hide transfer latency:

o Traditional scheduling steal tasks
when local queue is empty

o Schedule tasks in advance
o Overlap the transfer latency

Unit-0:

[
I
|
|
Unit-1: |
: : Execution time
I l : Transfer time
I [|
|
|
|
|
I

|
I
|
|
I
]

Load Balance: Data-Transfer-Aware Scheduling

o Hide transfer latency: a Avoid transfer congestion:
o Traditional scheduling steal tasks o Traditional work-stealing: steal
when local queue is empty half of the victim queue
o Schedule tasks in advance o Fine-grained scheduling

o Overlap the transfer latency

Unit-0:

[
I
|
|
Unit-1: |
: : Execution time
I l : Transfer time
I [|
|
|
|
|
I

=

|
I
|
|
I
]

Load Balance: Data-Transfer-Aware Scheduling

o Reduce transfer traffic:

o Traditional work stealing steals
tasks from task queue tail

o Scheduling hot data can reduce
data traffic.

Unit-0:

Data | Task | Data | Task | Data | Task

Unit-1:

Data [Task | Task} Task

Load Balance: Data-Transfer-Aware Scheduling

a Reduce transfer traffic:
o Traditional work stealing steals o We use sketch to filter hot data

tasks from task queue tail * Similar to HeavyGuardian

o Scheduling hot data can reduce * Tasks of hot data are stored separately
data traffic * Storage overhead: 2.2 KB in SRAM

e . ﬁ}— (addr, workload)

|

|

|
Hash(T.addr) :

¥

--

4=
!

Buckets Entries Reserved Task Queue
N e e e e e e e e e e M o >4 18

Methodology

a Simulated platform

o 2 channels x 4 ranks/ch x 8 chips x
8 banks, 512 units in total

o Simulated using zsim

o Workloads
o Linked list (II).
o Hash table (ht)
o Tree traversal (tree)
o SpMV (spmv)
o Page rank (pr).
o Breadth-first search (bfs)
o Single-source shortest path (sssp)
o Weakly-connected component (wcc)

a Baselines

Communication
CPU Forwarding

Bridge-based
Communication

Bridge-based
Communication

Bridge-based
Communication

Load Balancing

Work Stealing

Data-Transfer-
Aware Scheduling

19

Experiment Results

a Bridge-based communication: 1.51x speedup than CPU forwarding
o Due to reduced communication overhead ()
o Still suffers load imbalance

a Bridge + Work Stealing: 1.45x speedup than no scheduling

o More communication overhead(1.4% -> 18.6% idle wait time)

Lower is Lower is
GEJ better o 35% better
=g S 30%
g Q
§ 4 g § 25%
3 © = 20%
o 3 £ 5
5 5 g = 15%
g 9 10%
= 1 5%
g 0 0%
2 I ht tree spmv pr sssp bfs wcc geomean geomean

. . e . . 20
CPU Forwarding ' Bridge Communication Bridge + Work Stealing

Experiment Results

o NDPBridge: best performance, than CPU forwarding
o 1.35x against Bridge+Work Stealing,

Lower is Lower is
better 35% better

w
o
X

5%
0%
5%
10%
5%
0%

Normalized Execution Time
o o N w D (Op]
Percentage of Idle
Wait Time
= NN

geomean

21

I ht tree spmv pr Sssp bfs wcc geomean

CPU Forwarding ' Bridge Communication Bridge + Work Stealing " NDPBridge

Summary

o The lack of cross-bank communication and load balancing support
hinders the adoption of DRAM-bank NDP architectures.

a2 Our contributions:

o Bridge-based communication: supports cross-bank communication with
acceptable hardware cost

o Data-transfer-aware scheduling: supports cross-bank load balancing built upon
the communication scheme and with reduced data transfer overhead

o NDPBridge: promotes wider and easier adoption of DRAM-bank NDP architectures

22

