
PPMLAC: High Performance Chipset Architecture for Secure
Multi-Party Computation

Xing Zhou
zhouxing@msn.cn

Shanghai ZiXian Technology
Shanghai, China

Zhilei Xu∗†
timxu@sjtu.edu.cn

Qing Yuan Research Institute, School of Electronic
Information and Electrical Engineering

Shanghai Jiao Tong University
Shanghai, China

Cong Wang
wcon006@gmail.com

Shanghai ZiXian Technology
Shanghai, China

Mingyu Gao
gaomy@tsinghua.edu.cn

Institute for Interdisciplinary Information Sciences
Tsinghua University

Beijing, China

ABSTRACT
Privacy issue is a main concern restricting data sharing and cross-
organization collaborations. While Privacy-Preserving Machine
Learning techniques such as Multi-Party Computations (MPC), Ho-
momorphic Encryption, and Federated Learning are proposed to
solve this problem, no solution exists with both strong security and
high performance to run large-scale, complex machine learning
models. This paper presents PPMLAC, a novel chipset architecture
to accelerate MPC, which combines MPC’s strong security and
hardware’s high performance, eliminates the communication bot-
tleneck fromMPC, and achieves several orders of magnitudes speed
up over software-based MPC. It is carefully designed to only rely
on a minimum set of simple hardware components in the trusted
domain, thus is robust against side-channel attacks and malicious
adversaries. Our FPGA prototype can run mainstream large-scale
ML models like ResNet in near real-time under a practical network
environment with non-negligible latency, which is impossible for
existing MPC solutions.

CCS CONCEPTS
•Hardware→Hardware accelerators; • Security and privacy
→Hardware-based security protocols;Privacy-preserving pro-
tocols.

KEYWORDS
MPC, Secret Sharing, Security, Privacy, Privacy-preservingMachine
Learning, Hardware Accelerator, Side-channel Protection
∗Zhilei Xu is the corresponding author.
†Also with Shanghai ZiXian Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527392

ACM Reference Format:
Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao. 2022. PPMLAC: High
Performance Chipset Architecture for Secure Multi-Party Computation. In
The 49th Annual International Symposium on Computer Architecture (ISCA
’22), June 18–22, 2022, New York, NY, USA.ACM,NewYork, NY, USA, 15 pages.
https://doi.org/10.1145/3470496.3527392

1 INTRODUCTION
Machine learning (ML) and big data technologies have profoundly
changed the world, but also bring about unprecedented threats
to people’s privacy. Privacy computing are techniques that allow
multiple parties to collectively compute the result of a function
that depends on all parties’ input while still keeping each party’s
own data private (not leaked to any other party), thus relieve peo-
ple’s concerns over privacy, and foster data collaborations cross
organization boundaries [30, 49]. When applied to ML scenarios,
privacy computing becomes privacy-preserving machine learning
(PPML), which gains trending interest in both academia and indus-
try [1, 2, 16, 46, 68]. Of the various privacy computing techniques,
secure Multi-Party Computation (MPC) is known for its strong se-
curity guarantee and versatility, but its high performance overhead
makes it unacceptable to many mainstream ML models that usually
exhibit excessive computation and data amounts, thus thwarting
the wider adoption of MPC in PPML use cases. In this paper, we
present a novel chipset architecture called PPMLAC that performs
MPC protocol without incurring its high communication and perfor-
mance overhead. It combines MPC’s high strength of security and
hardware’s high performance, and achieves orders of magnitudes
speedup over software-based MPC implementations, resulting in
an MPC system capable of practical ML tasks that are impossible
for traditional PPML solutions. Our main contributions are:
• We invent a novel chipset architecture PPMLAC that runs
secret-sharing based MPC protocol safely and efficiently.
The efficiency improvement comes majorly from eliminat-
ing the communication bottleneck in MPC, so our FPGA
prototype running at a low clock rate (150MHz) already
achieves thousands of times speedup over traditional soft-
ware MPC running on modern 40-core CPU at 2.5GHz, and
tens to hundreds of times speedup over a state-of-the-art

87

https://doi.org/10.1145/3470496.3527392
https://doi.org/10.1145/3470496.3527392

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

MPC framework based on trusted third party running on
NVidia V100 GPUs with 7 Trillion FLOPS performance. To
our knowledge, PPMLAC is the first MPC solution that runs
large neural networks like ResNet [40] within seconds under
practical cross-data-center network latency.
• PPMLAC builds upon an interesting mix shift of hardware-
based and algorithm-based security measures, which is novel.
Like Trusted Execution Environment (TEE), we rely on chipset’s
non-modifiability to provide a trust root for software. But
unlike TEE, our system’s security comes majorly from the
MPC protocol itself. The hardware-provided trust is only
used for a few primitive operations such as multiplications,
so the whole system exposes a much narrower attack sur-
face, and is free from common side-channel attacks and safe
against dishonest majority (even 𝑛 − 1 colluding adversaries).
• PPMLAC significantly relaxes both the network latency and
throughput requirements.Most communications are removed
from the critical path of the secure computation and can be
done asynchronously, so PPMLAC does not require low-
latency network. To its extreme, packing the messages into
hard drives and sending them over a truck is doable [77].
This is in stark contrast to traditional MPC solutions that
are extremely sensitive to network latency.
• To illustrate the flexibility of our new architecture, we have
created two lines of prototype chips: a RISC-V CPU with ex-
tended instructions, and a specialized MPC accelerator. They
are both FPGA products that runs real-world applications
and ML models, and we evaluate the performance of the
latter in §5.

We organize the rest of the paper as follows: §2 describes necessary
background for our work, including general privacy computing
and MPC concepts. §3 presents our key innovative ideas. §4 ex-
pounds the design and implementation of PPMLAC, and explains
in detail how it performs MPC efficiently and securely. §5 evaluates
PPMLAC’s performance.

2 BACKGROUND
In this section, we first present the algorithm details of a typical
MPC scheme based on additive secret sharing (§2.1, §2.2), and then
compare MPC with alternative privacy-preserving computing prim-
itives from the perspectives of system bottlenecks and hardware
acceleration potentials (§2.3).

2.1 MPC: Additive Secret Sharing
A widely-used MPC scheme (e.g. [9, 24, 25, 46, 53, 60, 61, 90]) is
secret sharing, and we particularly focus on additive secret sharing
[25] here. We abstractly represent the function to compute as a
circuit – a directed acyclic graph (DAG), with mainly three types
of nodes: input (𝐼𝑛𝑝𝑢𝑡𝑖), addition (+), and multiplication (∗). Other
types of lightweight nodes, e.g. multiplied/added by a public num-
ber can also be used. Each node represents a value (input/output or
intermediate) over a finite field (e.g. F264 , the usual 64-bit integers),
and the directed edges among nodes represent data dependencies.
An input node 𝐼𝑛𝑝𝑢𝑡𝑖 is the private input from party 𝑖 . Without
loss of generality, we assume each circuit has only one node for the
final output. Fig. 1 shows an example circuit for a 2-party MPC. The

circuit is topologically sorted (shown in Fig. 1 alphabetically), so
computing the value of each node can be done sequentially. Addi-
tion and multiplication nodes are considered functionally complete
in MPC schemes, and are used to approximate almost all functions
using methods like Newton-Raphson [87]. In particular, most ML
algorithms are dominated by additions and multiplications. We
discuss non-linear operations in §4.3.

A: Input0

B: Input1

C: *

D: Input1 E: +

F: Input0

G: *

Figure 1: A simple example circuit for MPC computation
with final output 𝐺 .

The structure of the circuit is publicly known to all parties;
however, the𝑛 parties must perform the computation while keeping
all values secret, including the final output that is only selectively
revealed to certain parties at the end. This is solved by secret sharing:
for 𝑛-party MPC, every node value 𝑥 is split into 𝑛 random numbers
[𝑥]0, . . . , [𝑥]𝑛−1 such that 𝑥 =

∑𝑛−1
𝑖=0 [𝑥]𝑖 , and any 𝑛 − 1 of those

random numbers are jointly independent. For party 𝑖’s private
input 𝑥 , we let [𝑥]𝑖 = 𝑥 and [𝑥] 𝑗 = 0 for 𝑗 ≠ 𝑖 . Each [𝑥]𝑖 is a
secret share held by party 𝑖 and never exposed to others. Such joint-
independence offers strong security: even if 𝑛 − 1 parties collude,
they cannot learn anything about the secret share of the honest
party, or the original 𝑥 . To reveal an output to a party 𝑗 , all parties
simply send their shares to party 𝑗 who then adds them up.

Without exposing secret shares, MPC allows the parties to per-
form arithmetic computations together. With additive secret shar-
ing, a “+” node is trivial; 𝑛-parties can compute 𝑧 = 𝑥 + 𝑦 purely
locally — just adding their own shares of [𝑥]𝑖 and [𝑦]𝑖 so [𝑧]𝑖 =
[𝑥]𝑖 + [𝑦]𝑖 becomes the secret share of 𝑧. Similarly, subtracting
secret-shared values and multiplied/added/divided by a public num-
ber can also be handled purely locally.

However, multiplying two secret-shared values 𝑥 and 𝑦 cannot
be done locally, thus “∗” nodes are expensive and require inter-
party communication. The de facto standard approach is Beaver’s
protocol [6]. Each secure multiplication 𝑧 = 𝑥 ∗ 𝑦 requires and
consumes a one-time table of triples (𝑎, 𝑏, 𝑐), such that 𝑎 and 𝑏 are
independent random numbers and 𝑐 = 𝑎 ∗ 𝑏 (also called a Beaver
triple). The triple must be generated afresh and secretly shared
among all parties before the multiplication can be done (e.g., offline
pre-processing, §2.2): party 𝑖 only holds [𝑎]𝑖 , [𝑏]𝑖 and [𝑐]𝑖 and
cannot know anything about other parties’ shares. Then 𝑥 ∗ 𝑦 can
be computed in two steps:

Step 1: Each party computes [𝑑]𝑖 = [𝑥]𝑖−[𝑎]𝑖 , [𝑒]𝑖 = [𝑦]𝑖−[𝑏]𝑖
locally; then broadcast their [𝑑]𝑖 and [𝑒]𝑖 to all parties.

Step 2: Each party receives all shares [𝑑] 𝑗 and [𝑒] 𝑗 and adds the
shares up to reveal their true values 𝑑 and 𝑒 . Although 𝑑 = 𝑥 − 𝑎,
𝑒 = 𝑦−𝑏, random numbers𝑎 and𝑏 serve as one-time pad and ensures
no info about 𝑥 or 𝑦 is leaked. Finally, each party 𝑖 computes its
own secret share of the product as

[𝑧]𝑖 = [𝑥 ∗ 𝑦]𝑖 =
{[𝑐]𝑖 + 𝑒 ∗ [𝑥]𝑖 + 𝑑 ∗ [𝑦]𝑖 − 𝑒 ∗ 𝑑, 𝑖 = 0
[𝑐]𝑖 + 𝑒 ∗ [𝑥]𝑖 + 𝑑 ∗ [𝑦]𝑖 , 𝑖 > 0

88

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

It is easy to verify that
∑𝑛−1
𝑖=0 [𝑧]𝑖 = 𝑧 = 𝑥 ∗ 𝑦 so [𝑧]𝑖 ’s are valid

secret shares. We can also rigorously prove that all [𝑧]𝑖 ’s satisfy
joint-independence, and this entire process does not leak anything
about 𝑥 , 𝑦, or 𝑧 (see [6]).

The communication cost of the above protocol includes each
party sending [𝑑]𝑖 and [𝑒]𝑖 to every other party, requiring at least
one network latency. Furthermore, this communication introduces
dependency between the two steps and acts as a global barrier: only
after all parties finish Step 1 and the communication completes,
all shares of [𝑑]𝑖 and [𝑒]𝑖 can be received to compute 𝑑 and 𝑒
in Step 2. Any compute units are idle waiting during network
transmission. This may cause significant performance overheads
up to 108× slower than a plain-text multiplication, if the network
connection among 𝑛-parties has a non-negligible latency or limited
bandwidth.

To the best of our knowledge, existing ways to implement MPC
multiplication under secret-sharing scheme all require at least one
network latency added to the critical path of every multiplication.
This is the core reason why MPC is hard to speed up in practice:
GPUs and heterogeneous accelerators can help optimize local com-
putation, but the overall time spent is lower-bounded by network
latency times the depth of the longest multiplication chain (and
comparisons, see §4.3).

2.2 One-time Table (Beaver Triple) Generation
In addition to expensive online multiplications mentioned above,
generating one-time tables (Beaver triples) and delivering their
secret shares to each party also adds significant overheads. Though
it can be done offline as pre-processing to hide latency, in large
ML computations the cost (e.g., energy consumption and server
resource occupation) is still substantial because we need a fresh
triple for every multiplication. Therefore, we argue that one-time
table generation also has to be efficient to realize practical privacy-
preserving ML.

Complete MPC implementations usually use other cryptographic
techniques such as homomorphic encryption [34] or oblivious
transfer [44] for Beaver triple generation, but they are extremely
expensive in terms of computation and communication: the state-
of-the-art implementation takes 0.1ms to 1ms to generate a single
Beaver triple [44], around 105× to 106× slower than a plaintext
multiplication. A more realistic approach widely used in practice
(e.g. [24, 27, 46, 67]) is to introduce a trusted third party (TTP), who
securely generates Beaver triples and delivers secret shares to all
parties. In practice, TTP is usually provided by some entity inde-
pendent of all parties involved in MPC, and the trust is based on
such entity’s credibility and neutrality.

For example, in a 2-party scenario, Alice (party 0) and Bob
(party 1) perform a secure multiplication with the help of a TTP. As
shown in Fig. 2(a), the TTP uses a pseudo random number generator
(PRNG) to generate 5 random numbers [𝑎]0, [𝑎]1, [𝑏]0, [𝑏]1, [𝑐]0,
and then computes [𝑐]1 = ([𝑎]0+ [𝑎]1) ∗ ([𝑏]0+ [𝑏]1)− [𝑐]0 to build
the Beaver triple. Finally it securely delivers [𝑎]0, [𝑏]0, [𝑐]0 to Alice,
and [𝑎]1, [𝑏]1, [𝑐]1 to Bob. To guarantee security, the TTP must
satisfy both integrity (i.e., performing the designated operations to
generate valid Beaver triples) and confidentiality (i.e., never leaking
any information or colluding with any party).

2.3 Comparison with Alternatives and Related
Work

MPC is one of the earliest cryptographic primitives to support
privacy-preserving computing [85]. Securely computing Boolean
circuit can be done by the Garbled Circuit based MPC [7, 35], but
representing general fields (like integers) with Boolean circuits in-
troduces unbearable overheads, making secret-sharing based MPC
more favorable. There’s a plethora ofMPC schemes (e.g., [13, 22, 23])
with different security assumptions, some requiring honest major-
ity or even 𝑡 < 𝑛/3 (dishonest parties fewer than 1/3 of all parties),
whereas PPMLAC implements security against up to𝑛−1 corrupted
adversaries.

From a system perspective, many software frameworks have
been proposed to more efficiently realize MPC in real-world ap-
plications. Various MPC frameworks (e.g. [28, 43, 53, 90]) are in-
vented, some for ML specifically (e.g. [60, 61, 84]), and some recent
ones [46, 48, 76] utilize GPUs.

The more recent federated learning [10, 57, 86] is also a form of
privacy computing, allowing multiple parties to together train an
ML model without sharing data with each other. But it is limited
to model training scenarios and usually requires a large number of
users.

Modern cryptography also provides other alternative primitives
that can be used for privacy-preserving computing. For example,
homomorphic encryption (HE) allows a party to encrypt her data
and send to another party, who can then conduct computations us-
ing only the cipher-text without knowing the plain-text inputs [34].
Unfortunately, HE is extremely compute-intensive, usually caus-
ing over 106× slowdown [69]; not only the cipher-texts have to
be several times larger than the original data, their computations
are also orders of magnitude more expensive. Hence there have
been several architectural efforts to accelerate various HE protocols
using specialized hardware [66, 69, 74]. In contrast, MPC involves
simple data formats and computations almost as cheap as plain-text
processing, and does not require costly specific accelerated designs.
However, the key bottleneck of MPC is communication, which we
address in this work by reducing and tolerating its impacts.

Another approach is to build trusted execution environments
(TEEs) in hardware. TEEs provide secure enclaves to remote parties
on untrusted systems, so that plain-text data and computation
can happen in such enclaves without leaking information. TEE
examples include commercial products like Intel SGX [20] and
ARM TrustZone [4], and academic prototypes like Sanctum [21],
Komodo [32], Keystone [50], and Penglai [31]. While TEEs exhibit
much lower performance overheads than crypto-based protocols,
their security guarantees are widely criticized; plain-text data, even
in the enclave, opens the door to a large body of side-channel
attacks [14, 17, 47, 51, 54, 71, 75, 81–83]. In contrast, our proposal
leverages rigorous MPC protocols to protect plain-text data and
only relies on a minimum set of trusted hardware components, so
it’s much more robust to side channels (see §4.4).

3 KEY INNOVATIVE IDEAS
From §2 we see that the main performance bottlenecks of MPC are
the communication overheads on the critical path of every multi-
plication, and the generation and distribution of a large number of

89

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

TTP

[a]0=PRNG.next()

[a]1=PRNG.next()

[b]0=PRNG.next()

[b]1=PRNG.next()

[c]0=PRNG.next()

[c]1=([a]0+[a]1)*([b]0+[b]1)-[c]0

Alice

[x]0, [y]0

Bob

[x]1, [y]1

[a]0, [b]0, [c]0 [a]1, [b]1, [c]1

[d]0=[x]0-[a]0

[e]0=[y]0-[b]0

[d]1=[x]1-[a]1

[e]1=[y]1-[b]1

[d]0, [e]0 [d]1, [e]1

d=[d]0+[d]1

e=[e]0+[e]1

d=[d]0+[d]1

e=[e]0+[e]1

[x*y]0=... [x*y]1=...

Time Time

Communication

Trusted Chip

[a]0=PRNG.next()

[a]1=PRNG.next()

[b]0=PRNG.next()

[b]1=PRNG.next()

[c]0=PRNG.next()

[c]1=([a]0+[a]1)*

([b]0+[b]1)-[c]0

Alice

[x]0, [y]0

Bob

[x]1, [y]1

[a]0,

[b]0,

[c]0

[a]1,

[b]1,

[c]1

[d]0, [e]0 [d]1, [e]1

Time Time

Communication

Trusted Chip

[a]0=PRNG.next()

[a]1=PRNG.next()

[b]0=PRNG.next()

[b]1=PRNG.next()

[c]0=PRNG.next()

[c]1=([a]0+[a]1)*

([b]0+[b]1)-[c]0

PRNG

Seed

[x*y]1=...[x*y]0=...

Trusted Chip

r1=PRNG.next()

r2=PRNG.next()

q1=PRNG.next()

Alice

[x]0, [y]0

Bob

[x]1, [y]1

r1,

r2,

q1

[x*y]1d, e

Time Time

Communication

Trusted Chip

r1=PRNG.next()

r2=PRNG.next()

q1=PRNG.next()

[x*y]1=f(r1,r2,q1,

d, e, [x]1, [y]1)

PRNG

Seed

[x*y]1=...[x*y]0=...

(a) existing TTP widely used in practice (b) chip-based TTP (c) better use of TTP in PPMLAC

Figure 2: Multiplication in 2-party MPC: (a) Use a trusted third party (TTP) to generate Beaver triples and deliver secret shares
to each party; (b) When each party has a trusted chip with the same PRNG seed, Beaver triples can be generated and delivered
locally; (c) We propose to make communication uni-direction: only Alice needs to send Bob data. Solid arrows denote remote
communication via network; dashed arrows denote local data delivery with the trusted chip.

Beaver triples, one per multiplication. To address these inefficiencies,
we propose a novel architecture named PPMLAC, which relies on
a minimum set of trusted hardware units on a specially designed
chip. If we trust the chip vendor, and assume the “hardened” chip
cannot be broken into and only expose limited interface not leaking
internal secret data, then the chip naturally offers strong integrity
and confidentiality guarantees. The key idea of PPMLAC is that,
such a trusted chip can act as a trusted third party (TTP), who can
securely handle initialization and execute computations more effi-
ciently. Furthermore, the trust chip also contains storage used as a
secure cache for data that must be kept secret to each party, thus
allowing for data reuse to save communication traffic.

More specifically, the trusted chips in PPMLAC are used in three
ways. First, the trusted chips act as the TTP for one-time table
generation and distribution, similar to [27]. Fig. 2(b) shows that, if
each party involved in the MPC has a trusted chip that is initialized
with the same seed (see details in §4.2), then their local PRNGs
could deterministically generate the same sequence of random
numbers ([𝑎]0, [𝑎]1, [𝑏]0, [𝑏]1, [𝑐]0), and also calculate [𝑐]1. The
trusted chip only outputs the corresponding shares to the local party
and discards the rest. Our actual design in §4.1 uses a modified form
of one-time tables with three random numbers, as shown in Fig. 2(c).
Using local trusted chips completely eliminates the communication
with remote TTP, and the random numbers can be generated as
needed as the computation goes rather than all at the beginning.
Note that although the trusted chip knows all random numbers, it
does not expose any interface for accessing these secrets to even
the party who owns this chip.

Second, the trusted chip of a chosen party, say Bob, can also be
used as a TTP to do the actual multiplication, after all other parties
send their one-time-padded secret shares to him. If we keep all
trusted chips always synchronized, Bob’s trusted chip could exactly

Alice

[x]0, [y]0, [z]0

Bob

[x]1, [y]1, [z]1

[x*y]0 [x*y]1

[x*y*z]0 [x*y*z]1

Communication
latency

Communication
latency

Computation time

Computation time

Alice

[x]0, [y]0, [z]0

Bob

[x]1, [y]1, [z]1

[x*y]0

[x*y]1

[x*y*z]0

[x*y*z]1

Computation

Communication

(a) (b)

Figure 3: From (a) bi-directional communication that blocks
computations, to (b) one-way communication in PPMLAC
that is off the critical path and can be pipelined with com-
putations.

emulate all random number generation happening in other trusted
chips. This allows it to use the encrypted shares received from
other parties and the random numbers generated locally to do
multiplication with its own shares without further communication
(§4.1). The resulting one-way communication (i.e., from other parties
to Bob) is illustrated in Fig. 3(b). Alice now does not need to wait
for the first multiplication 𝑥 ∗ 𝑦 to complete, and can immediately
start the next multiplication with 𝑧. The messages to be sent to Bob
for all multiplications can even be batched and transferred together,
further improving communication efficiency. Using TTP this way
to remove communication bottlenecks is novel.

Third, the local trusted chip also offers secure caching capabilities
to reuse previous multiplicands without redundant data transfers
(§4.5). For example, Alice may have previously sent her encrypted
share of 𝑥 to Bob’s trusted chip to compute a multiplication. If later

90

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

𝑥 is needed again in another multiplication, as long as the previous
𝑥 share is still cached in Bob’s trusted chip, Alice does not need to
send it again. Such data reuse can significantly reduce the data traffic
needed to complete a large number of multiplications, e.g., in matrix
multiplication and convolutions in ML workloads. Some software-
based MPC systems extend beaver triples to matrix multiplication
triples to exploit similar re-use opportunities [18, 19, 61, 84], but they
require heavy offline phase or non-conventional powerful TTP [46],
whereas PPMLAC only relies on standard caching algorithms.

Finally, our trusted chip design only requires standard and simple
logic units (e.g., registers, random number generators, multipliers)
in the trusted domain; all of them can be implemented in a security-
aware manner. All operations happen deterministically and are
oblivious to any secret data. Therefore, the minimum set of hard-
ware makes the architecture much more robust to side channels
and other attacks (§4.4).

To summarize, PPMLAC (1) uses lightweight remote attestation
and initialization to set up all parties’ trusted chips in a synchro-
nized state (§4.2), allowing them to locally generate pseudo random
numbers rather than relying on expensive Beaver triple genera-
tion and distribution; (2) eliminates the all-to-all communication
barrier that blocks the critical path of every multiplication, and
replaces with one-way communication (§4.1), which can be fully
pipelined with computations to hide the long communication
latency; (3) equips with secure cache storage for secret data inside
the trusted domain (§4.5), which enables data reuse to save com-
munication bandwidth; (4) only uses a minimum set of hardware
units for simple operations in the trusted domain, thus allowing for
easy implementations free from various side channels and other
attacks (§4.4).

4 DESIGN AND IMPLEMENTATION
This section illustrates the design details of PPMLAC. §4.1 and §4.2
describe the secure multiplication and initialization protocols as
well as their implementations in the trusted chip. §4.3 extends the
basic design to support more operations, more data types, and many
parties. §4.4 discusses the security arguments of our trusted chip,
and §4.5 elaborates the caching optimization to reduce communica-
tion traffic. Finally §4.6 puts everything together to summarize the
overall architecture of PPMLAC.

4.1 Architectural Support for Secure
Multiplications

We first describe how the (simplified) PPMLAC architecture accel-
erates secure multiplications, under a 2-party scenario for ease of
explanation. Suppose Alice (party 0) and Bob (party 1) each has a
trusted chip, in addition to their normal CPUs, memory hierarchies,
and network stacks. The trusted chip has three operand registers
reg[1,2,3] and three random registers rnd[1,2,3], each hold-
ing one 64-bit word. The chip also has a cryptographically-secure
pseudo-random number generator (CSPRNG) that can determinis-
tically generate a stream of random numbers from an initial seed.
Assume for now a mechanism (detailed in §4.2) exists to securely
initialize both Alice’s and Bob’s chips with the same seed, and no in-
formation about the seed is leaked to Bob so Bob can never know or
predict the random numbers. Conceptually, each chip generates two

independent streams of random numbers 𝑞1, 𝑞2, . . . and 𝑟1, 𝑟2, . . . ;
this is emulated by deterministically splitting the stream generated
by a CSPRNG into two, e.g., force every third number to be stream
𝑞 and the rest to be 𝑟 .

ld 𝑟𝑒𝑔, 𝑎𝑑𝑑𝑟 Load a word from memory to operand register
st 𝑟𝑒𝑔, 𝑎𝑑𝑑𝑟 Store a word from operand register to memory
setRnd 𝑟𝑛𝑑 Let the CSPRNG generate a new random number 𝑟 𝑗
(from stream 𝑟); set random register 𝑟𝑛𝑑 to be 𝑟 𝑗

outRnd 𝑚𝑒𝑚𝐴𝑑𝑑𝑟 Let CSPRNG generate a new random number
𝑟 𝑗 ; copy 𝑟 𝑗 to memory memAddr. outRnd is disabled for Bob.

outQnd 𝑚𝑒𝑚𝐴𝑑𝑑𝑟 Let CSPRNG generate a new random number
𝑞𝑘 ; copy 𝑞𝑘 to memory memAddr. outQnd is disabled for Bob.

mul 𝑟𝑒𝑔1, 𝑟𝑛𝑑1, 𝑟𝑒𝑔2, 𝑟𝑛𝑑2, 𝑟𝑒𝑔3 Let the CSPRNG generate a new
random number 𝑞𝑘 ; set 𝑟𝑒𝑔3 to (𝑟𝑒𝑔1 + 𝑟𝑛𝑑1) ∗ (𝑟𝑒𝑔2 + 𝑟𝑛𝑑2) − 𝑞𝑘

Listing 1: Trusted chip ISA and instruction semantics (for
computation).

Listing 1 shows the trusted chip’s instructions to support mul-
tiplications on secret-shared values. It uses normal ld and st for
data transfers between operand registers and memory, but has no
way to load or store the random registers by design. The setRnd
instruction asks the CSPRNG to generate the next random number
𝑟 𝑗 from stream 𝑟 and put it into the designated random register
rnd (inaccessible from outside). The outRnd or outQnd instruction
lets the CSPRNG generate the next random number 𝑟 𝑗 or 𝑞𝑘 from
stream 𝑟 or 𝑞, but stores the number to the memory. These two
instructions expose the random numbers and thus violate the se-
curity of MPC, so they are disabled for Bob (see §4.2 for details).
Because Alice never receives any information from Bob with our
one-way communication protocol, she cannot learn anything even
she knows about these random numbers.

The mul instruction actually does a multiplication. Its semantic1
is best illustrated by how it is used in Protocol 1, which is the key
algorithm of PPMLAC. Inline comments starting with “;” follow each
step in Protocol 1. Note: steps like assignment (←) and send/receive
do not involve either operand registers or random registers, so they
are purely performed by the normal CPU. The protocol’s correctness
is trivial to see: if the precondition holds, it is easy to verify that
the output [𝑧]0 on Alice and [𝑧]1 on Bob add up to 𝑧 = 𝑥 ∗ 𝑦, and
they constitute a valid secret sharing of 𝑧. Also, both Alice and
Bob invoke their CSPRNGs for the same times (twice for 𝑟 stream,
once for 𝑞 stream), so the CSPRNGs on both sides move in tandem,
generating the same sequence of random numbers and ending up in
the same states. Thus the postcondition holds. We also emphasize
that this multiplication protocol only uses one round of one-way
communication from Alice to Bob.

We next show Protocol 1 is indeed secure: neither party should
know anything about the other party’s secret share. This is trivially
ensured for Alice, as she never receives anything and thus cannot
learn information of Bob. For Bob, we need to prove anything he
receives or may infer from Alice is indistinguishable from pure
random numbers. Note that Bob gets information from two sources:
network messages from Alice, and instruction results from his local
trusted chip. Below we explain all interesting points (highlighted
in Protocol 1).

Step 3.Bob receives𝑑 = [𝑥]0−𝑟1 (the same argument holds for 𝑒).
Here the random number 𝑟1 plays as a one-time pad encryption for

1The real mul instruction uses even more complex formula, see §4.4

91

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

Protocol 1 Multiply two secret-shared numbers 𝑥 ∗ 𝑦 → 𝑧

Notation: For a variable 𝑣𝑎𝑟 stored in memory, ⟨𝑣𝑎𝑟 ⟩ denotes the
memory address of 𝑣𝑎𝑟 .
Precondition: The CSPRNGs’ states on both parties’ chips are the
same. {[𝑥]0, [𝑥]1} form a valid secret sharing of value 𝑥 ;
{[𝑦]0, [𝑦]1} form a valid secret sharing of value 𝑦.
Postcondition: {[𝑧]0, [𝑧]1} form a valid secret sharing of value
𝑧 = 𝑥 ∗ 𝑦. The CSPRNGs’ states are still the same.
Alice’s procedure:
Variables in memory: two inputs [𝑥]0, [𝑦]0, the output [𝑧]0,
four temporary variables 𝑎, 𝑏, 𝑑, 𝑒 .
Steps:
(1) outRnd ⟨𝑎⟩ ; so 𝑎 = 𝑟1, a new random number
(2) outRnd ⟨𝑏⟩ ; so 𝑏 = 𝑟2, a new random number
(3) 𝑑 ← [𝑥]0 − 𝑎 ; so 𝑑 = [𝑥]0 − 𝑟1
(4) 𝑒 ← [𝑦]0 − 𝑏 ; so 𝑒 = [𝑦]0 − 𝑟2
(5) Send (𝑑, 𝑒) to Bob ; one-way communication.
(6) outQnd ⟨[𝑧]0⟩ ; so [𝑧]0 = 𝑞1, a new random number.

Bob’s procedure:
Variables in memory: two inputs [𝑥]1, [𝑦]1, the output [𝑧]1,
four temporary variables 𝑑, 𝑒,𝑢, 𝑣 .
Steps:
(1) setRnd 𝑟𝑛𝑑1 ; so 𝑟𝑛𝑑1 = 𝑟1, a new random number. Note

that this 𝑟1 is exactly the same 𝑟1 as in Alice’s procedure,
because Bob’s CSPRNG is synchronized with Alice’s. Same
for 𝑟2 and 𝑞1 in the steps below.

(2) setRnd 𝑟𝑛𝑑2 ; so 𝑟𝑛𝑑2 = 𝑟2, a new random number.
(3) Receive (𝑑, 𝑒) from Alice. Note that (𝑑, 𝑒) here have the same

values as (𝑑, 𝑒) in Alice’s procedure, because they come from
Alice, so 𝑑 = [𝑥]0 − 𝑟1, 𝑒 = [𝑦]0 − 𝑟2

(4) 𝑢 ← [𝑥]1 + 𝑑 ; so 𝑢 = [𝑥]1 + ([𝑥]0 − 𝑟1) = 𝑥 − 𝑟1
(5) 𝑣 ← [𝑦]1 + 𝑒 ; so 𝑣 = [𝑦]1 + ([𝑦]0 − 𝑟2) = 𝑦 − 𝑟2
(6) ld 𝑟𝑒𝑔1, ⟨𝑢⟩ ; so 𝑟𝑒𝑔1 = 𝑢 = 𝑥 − 𝑟1
(7) ld 𝑟𝑒𝑔2, ⟨𝑣⟩ ; so 𝑟𝑒𝑔2 = 𝑣 = 𝑦 − 𝑟2
(8) mul 𝑟𝑒𝑔1, 𝑟𝑛𝑑1, 𝑟𝑒𝑔2, 𝑟𝑛𝑑2, 𝑟𝑒𝑔3 ; so

𝑟𝑒𝑔3 = (𝑟𝑒𝑔1 + 𝑟𝑛𝑑1) ∗ (𝑟𝑒𝑔2 + 𝑟𝑛𝑑2) − 𝑞1 =
(𝑥 − 𝑟1 + 𝑟1) ∗ (𝑦 − 𝑟2 + 𝑟2) − 𝑞1 = 𝑥 ∗ 𝑦 − 𝑞1; 𝑞1 is a new
random number.

(9) st 𝑟𝑒𝑔3, ⟨[𝑧]1⟩ ; so the output is [𝑧]1 = 𝑥 ∗ 𝑦 − 𝑞1

[𝑥]0 to mask any information Bob might infer about Alice’s secret
share, and makes 𝑑 indistinguishable from a random number [72].
The key point is that 𝑟1 is confined inside Bob’s trusted chip and
cannot be read out in any way.

Steps 4 and 5. Bob calculates𝑢 ← [𝑥]1 +𝑑 using its normal CPU
and memory. The two input values are Bob’s own value [𝑥]1, and 𝑑
which we already proved to leak no information about Alice. The
output result, 𝑢, equals to 𝑥 − 𝑟1, which is again masked by 𝑟1’s
randomness and indistinguishable from a random number to Bob.
So Bob cannot infer anything from 𝑢, either. The same argument
holds for 𝑣 .

Step 9 transfers data from 𝑟𝑒𝑔3 inside the trusted chip to [𝑧]1 in
the normal memory accessible by Bob. We argue that [𝑧]1 does not
leak any information about 𝑥 or 𝑦. This follows from the fact that

[𝑧]1 = 𝑥 ∗𝑦 − 𝑞1, and the freshly generated random number 𝑞1 acts
as a one-time pad mask. [𝑧]1 is indistinguishable from a random
number to Bob.

So far we have proved Protocol 1 is secure in a semi-honest
setting (i.e., all plays strictly follow the protocol but only try to
learn secrets). In §4.4 we further show it is secure even if Bob
deviates from the protocol and calls arbitrary instructions to hack
on the messages received from Alice.

4.2 Secure Initialization and Remote
Attestation

Protocol 1 heavily relies on the fact that both parties’ CSPRNGs
are synchronized, i.e., moving in tandem with always the same
states. Note that we only need to ensure that the CSPRNGs are
initialized with the same seed into the same states before the MPC
begins. By induction, the postcondition of Protocol 1 guarantees the
CSPRNGs would stay synchronized across multiplications. Other
operators (e.g., additions) in MPC are performed locally without
involving CSPRNGs. However, such initialization cannot be done
directly. Bob must be kept from knowing anything about the seed;
otherwise he can predict the generated random numbers and thus
recover secrets from messages received from Alice.

To address the challenge, we design a protocol based on asym-
metric cryptography. Each party 𝑖’s trusted chip has a pair of public
key 𝑃𝐾𝑖 and hidden (a.k.a. private) key𝐻𝐾𝑖 . 𝑃𝐾𝑖 is public while𝐻𝐾𝑖
is hidden inside the trusted chip, not exposed to outside including
the host CPU [3, 92].

With the public/hidden key pair, there seems to be a simple and
standard initialization method: we let Alice choose a seed, encrypt
it with Bob’s public key 𝑃𝐾1, and send to Bob. Bob receives the
encrypted seed, and passes it to his trusted chip, which uses the
hidden key 𝐻𝐾1 to decrypt and retrieve the seed inside the chip.
Because 𝐻𝐾1 is inaccessible to Bob, he would not be able to learn
the seed.

However, the above simple approach actually has a serious vul-
nerability that allows Bob to perform replay attacks to learn Alice’s
secrets even without knowing the seed. To illustrate the attack,
suppose Alice has two private numbers 𝑥,𝑦, Bob has two private
numbers 𝑎, 𝑏, and they want to jointly compute 𝑐 = 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦
and reveal 𝑐 to Bob. Note that 𝑥,𝑦, 𝑎, 𝑏 here are the original private
inputs that are to be secret shared by the two parties (e.g., 𝑥 is split
into [𝑥]0 and [𝑥]1). MPC should guarantee that eventually Bob
only knows information that can be deduced from his own private
inputs and the revealed final result 𝑐 , i.e., 𝑎,𝑏, and 𝑐 . This means that
Bob knows only that 𝑥 and 𝑦 satisfy the equation 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 = 𝑐

(a line in the 2D Cartesian space) but not their concrete values.
Recall that our MPC protocol only requires Alice to send one-way
messages to Bob, and Bob computes his part of the protocol from
the received messages using his trusted chip. Now Bob can save
all the messages from Alice, and replay the entire protocol without
Alice’s awareness, but this time feed a different pair of 𝑎′, 𝑏 ′ values,
to obtain another line 𝑎′ ∗ 𝑥 +𝑏 ′ ∗𝑦 = 𝑐 ′. From these two equations
Bob can solve the values of 𝑥,𝑦 and thus learn Alice’s secret inputs.

The key vulnerability that enables Bob’s replay attack is that Bob
can reuse the same (encrypted) seed for multiple times and thus re-
do the protocol with the same inputs from Alice but different inputs

92

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

of himself. To break this, we choose a seed 𝑠 =𝑚 +𝑇𝑅 consisting of
two parts: a number𝑚 chosen by Alice, and an unpredictable truly
random number 𝑇𝑅 generated by Bob’s trusted chip each time. To
do that, the trusted chip must also contain a true random number
generator (TRNG) that makes use of physical noises [12, 41, 58, 79].
In order for Alice to initialize her CSPRNG with the same seed,
Bob must send out the true random number 𝑇𝑅 to Alice in the
initialization phase.

trueRnd 𝑚𝐴𝑑𝑑𝑟 Generate the next true random number ,
and copy its value to the memory 𝑚𝐴𝑑𝑑𝑟 .

initA 𝑚𝐴𝑑𝑑𝑟, 𝑦𝐴𝑑𝑑𝑟 Read from memory 𝑚𝐴𝑑𝑑𝑟 to get a
value 𝑚; read memory 𝑦𝐴𝑑𝑑𝑟 to get a value 𝑦; use
my hidden key to decrypt 𝑦, get 𝑇𝑅 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝐻𝐾, 𝑦)
and initialize my 𝐺𝑒𝑛𝐴 with seed 𝑚 +𝑇𝑅.

initB 𝑥𝐴𝑑𝑑𝑟, 𝑦𝐴𝑑𝑑𝑟 Read from memory 𝑥𝐴𝑑𝑑𝑟 to get a
ciphered message 𝑥; use my hidden key to decrypt
𝑥 and get the original message 𝑥′ = {𝑚,𝑃 } where 𝑃

is a public key; generate the next true random
number 𝑇𝑅; initialize 𝐺𝑒𝑛𝐵 with seed 𝑚 +𝑇𝑅; use
𝑃 to encrypt 𝑇𝑅 and get 𝑦; copy 𝑦 to memory 𝑦𝐴𝑑𝑑𝑟 .

To generate random numbers , outRnd and outQnd always
use 𝐺𝑒𝑛𝐴, while setRnd and mul always use 𝐺𝑒𝑛𝐵.

Listing 2: Trusted chip ISA and instruction semantics (for
secure initialization).

Listing 2 shows the trusted chip’s instructions related to ini-
tialization, and Protocol 2 formalizes the initialization procedure
discussed above. Each chip has a true random number generator
TRNG and two CSPRNGs 𝐺𝑒𝑛𝐴 and 𝐺𝑒𝑛𝐵: Alice only uses 𝐺𝑒𝑛𝐴,
Bob only uses 𝐺𝑒𝑛𝐵. They correspond to the limitations in §4.1,
where outRnd and outQnd are disabled for Bob. In our current set-
tings, outRnd and outQnd only use 𝐺𝑒𝑛𝐴, and Bob has no way to
get a correct 𝐺𝑒𝑛𝐴 — he could call 𝑖𝑛𝑖𝑡𝐴, but he knows neither the
value𝑚 (chosen by Alice) nor 𝑇𝑅 (encrypted) to make his 𝐺𝑒𝑛𝐴
match Alice’s, therefore his outRnd and outQnd are useless. We
could have used one CSPRNG with a single bit to select different
“modes”, e.g., 0 for Alice and 1 for Bob; but using separate CSPRNGs
is more secure in practice, in case a physical attack or a random
failure may flip the bit. Other implementations, e.g., using more bits
or more complex logic to encode the chip mode, are also possible.

One may argue that the seed can be just the true random number
𝑇𝑅 without an Alice-chosen part𝑚, which already ensures unpre-
dictability and is protected by the trusted chips. This is theoretically
correct, but we let Alice also contribute a part to implement remote
attestation: Alice needs to first verify Bob’s public key (and thus
his trusted chip) is authenticated and trusted, only after which she
participates in the MPC. Only the intended recipient (a trusted
chip) can decrypt Alice’s seed contribution with the corresponding
hidden key.

4.3 Extensions
Binary secret sharing is essentially additive secret sharing on
field F2 so each value is just 0 or 1 [35]. Now, addition becomes XOR
(⊕), and multiplication becomes AND. We group𝑊 = 64 bits into a
word. A binary-secret-sharedword𝑥 satisfies𝑥 = [𝑥]0⊕· · ·⊕[𝑥]𝑛−1
where each party 𝑖 holds [𝑥]𝑖 . XOR and bit shift operators can be

Protocol 2 Securely initialize CSPRNGs on both sides
Notation: For a variable 𝑣𝑎𝑟 stored in memory, ⟨𝑣𝑎𝑟 ⟩ denotes the
memory address of 𝑣𝑎𝑟 .
Precondition: Alice has a public key 𝑃𝐾0 in memory and a hidden
key 𝐻𝐾0 inside her trusted chip, and temporary variables𝑚, 𝑥 , 𝑥 ′,
𝑦, 𝑃𝐾1 in memory. Bob has a public key 𝑃𝐾1 in memory and a
hidden key 𝐻𝐾1 inside his trusted chip, and temporary variables 𝑥 ,
𝑦 in memory.
Postcondition: If succeeded, Alice’s CSPRNG 𝐺𝑒𝑛𝐴 and Bob’s
CSPRNG 𝐺𝑒𝑛𝐵 are initialized with the same seed.
Procedure (Alice and Bob steps interleaved):
(1) Bob sends 𝑃𝐾1 (his public key) to Alice. Alice receives.
(2) Alice does remote attestation to verify 𝑃𝐾1 is a trusted public

key, and fails the whole protocol if it is not.
(3) Alice calls trueRnd ⟨𝑚⟩ ;𝑚 is set to a random number.
(4) Alice packs𝑚, 𝑃𝐾0 (her public key) into a message

𝑥 ′ = {𝑚, 𝑃𝐾0} and encrypts 𝑥 ′ with 𝑃𝐾1 (Bob’s public key) to
get ciphertext 𝑥 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃𝐾1, {𝑚, 𝑃𝐾0})

(5) Alice sends message 𝑥 to Bob. Bob receives 𝑥 .
(6) Bob calls initB ⟨𝑥⟩, ⟨𝑦⟩ ; refer to initB semantics: internally,

Bob’s trusted chip decrypts 𝑥 to get 𝑥 ′ = {𝑚, 𝑃𝐾0} (𝑃𝐾0 is
Alice’s public key), its TRNG generates a new true random
number 𝑇𝑅, its 𝐺𝑒𝑛𝐵 is initialized with seed𝑚 +𝑇𝑅, and 𝑦 is
set to 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃𝐾0,𝑇𝑅).

(7) Bob sends message 𝑦 to Alice. Alice receives 𝑦.
(8) Alice calls initA ⟨𝑚⟩, ⟨𝑦⟩ ; refer to initA semantics:

internally, Alice’s trusted chip decrypts 𝑦 to get
𝑇𝑅 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝐻𝐾0, 𝑦), and her 𝐺𝑒𝑛𝐴 is initialized with seed
𝑚 +𝑇𝑅, same as Bob’s 𝐺𝑒𝑛𝐵.

done locally, but AND needs communication almost identical to
Protocol 1 (multiplication).

We convert between additive and binary secret sharing schemes
(with algorithm similar to [28, 46]) to conduct comparisons on ad-
ditive secret shared values. To test if 𝑥 < 0, we (1) convert 𝑥 to a
binary shared value 𝑦; (2) right shift 𝑦 by 63 bits to get the original
sign bit; (3) convert the sign bit back to an additive shared value 𝑧,
so 𝑧 = 1 if 𝑥 < 0 and 0 otherwise. Note that 𝑧 is also secret shared, so
no party can directly inspect its actual value; but 𝑧 can participate in
further computations, for example 𝑥 ∗ (1− 𝑧) is how we implement
ReLU in neural networks — it equals 𝑥 when 𝑥 ≥ 0 and 0 otherwise.
To compare two secret shared values, we first obtain their difference
and use the above protocol. Like other MPC tools [53, 55, 90], we do
not support branching on a secret condition, but it can be emulated
by executing both branches to get both results, and multiplying
them with the 0-1 branch condition value to select the final output.
Techniques like Oblivious RAM [36, 73, 88] can be combined with
MPC to efficiently emulate certain secret-value-dependent control
flows, which we leave as future work.

Beyond integers. It is easy to extend integers to fixed-point
numbers. Only eachmultiplication needs to be followed by a divided-
by-2𝑓 , where 𝑓 is the number of fractional bits. This divide-by-
constant operation can be performed locally at each party, thus
incurring negligible overheads. Our prototype PPMLAC chip uses
1 bit for sign, 31 bits for integer part, and 32 bits for fractional.

93

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

Fixed-point arithmetics are sufficient for our ML workloads, while
general floating-point support is quite expensive using MPC and
left as future work.

Beyond two parties. Many-party MPC can be supported by
treating party 0 as Bob, and all other 𝑛 − 1 parties act as individual
Alice. Each Alice only sends messages to Bob, and only Bob receives
messages, so this is still one-way communication. Each Alice𝑖 -Bob
pair has its own synchronized CSPRNG pair, so different Alices are
mutually distrusted. The hardware overhead is actually acceptable
in most practical situations as there are not too many parties. An
optimization is to time-multiplex the CSPRNG in Bob-side chip,
by storing internal states for each Alice separately and doing con-
text switches. Different Alices do not share seeds or states. More
implementation care is needed to ensure security.

For a multiplication 𝑧 = 𝑥 ∗ 𝑦, each Alice𝑖 generates random
numbers 𝑟𝑖,1 and 𝑟𝑖,2, sends 𝑑𝑖 = [𝑥]𝑖 − 𝑟𝑖,1 and 𝑒𝑖 = [𝑦]𝑖 − 𝑟𝑖,2
to Bob. Bob calculates 𝑢 = [𝑥]0 +

∑𝑛−1
𝑖=1 𝑑𝑖 = 𝑥 − ∑𝑛−1

𝑖=1 𝑟𝑖,1 and
𝑣 = [𝑦]0 +

∑𝑛−1
𝑖=1 𝑒𝑖 = 𝑦 −

∑𝑛−1
𝑖=1 𝑟𝑖,2. Note that Bob’s trusted chip

can generate all 𝑟𝑖,1’s and 𝑟𝑖,2’s. Here
∑𝑛−1
𝑖=1 𝑟𝑖,1 is just like 𝑟1 in

Protocol 1 and
∑𝑛−1
𝑖=1 𝑟𝑖,2 is like 𝑟2, and the multiplication can be

done accordingly. For security, we guarantee that as long as at least
one party is honest, even if all other parties collude, they cannot
recover the honest party’s secret, which is sent out as 𝑥 − 𝑟𝑖 and 𝑟𝑖
is never exposed.

4.4 Security Guarantees
Malicious adversaries. A malicious adversary may deviate from
the protocols and call arbitrary instructions. It is trivial to see that
Alice does not receive any information from Bob so her malicity
does not break security. We next prove a malicious Bob still cannot
infer anything about Alice’s data. In Protocol 1, every message that
Bob receives is just Alice’s secret share minus a random number
(e.g., [𝑥]0 − 𝑟1). As long as the random number does not leak to
Bob, the whole message is indistinguishable from a pure random
number, and leak nothing to Bob (this argument is the foundation of
Beaver’s protocol [6] and one-time pad in general). These random
numbers (e.g., 𝑟1) are only present inside the trusted chip’s ran-
dom registers (generated by setRnd instructions on Bob’s CSPRNG),
which are inaccessible from outside. The only instruction that trans-
fers information from random registers to operand registers is mul;
but the result of mul is in the form of Φ − 𝑞 where 𝑞 is a freshly
generated random number from a different stream than 𝑟1, thus
information from 𝑟𝑛𝑑 to Φ is securely masked by the randomness
of 𝑞. More protections like MAC ([8, 25, 26, 38, 39, 45, 62]) can be
added to achieve active security, left as future work.

Side-channel attacks. It is straightforward to see that our ini-
tialization, local operations, and mul all only involve determinis-
tic control flow and memory accesses independent of secret data.
Higher-level control flow across operators are realized as in §4.3. All
branches are obliviously executed regardless of data values, and the
final result selection is a deterministic sequence of MPC operations.
Thus our design is free from control flow and memory access side
channels.

Most instructions are random number generation (Listing 1) and
encryption/decryption (Listing 2), which are well studied security-
sensitive operations that can benefit from a large body of side-
channel-resist hardware implementations [52, 78, 80, 89]. The most
critical one would be the mul instruction. Instead of the simplified
version discussed in §4.1, the real mul generates three new random
numbers 𝑞1, 𝑞2, 𝑞3 on Bob side, and sets 𝑟𝑒𝑔3 (Line 8 of Protocol
1) as 𝑟𝑒𝑔3 = 𝑞3 + (𝑟𝑒𝑔1 − 𝑞1) ∗ (𝑟𝑛𝑑2 + 𝑞2) + (𝑟𝑒𝑔2 − 𝑞2) ∗ (𝑟𝑛𝑑1 +
𝑞1) + (𝑟𝑒𝑔1 − 𝑞1) ∗ (𝑟𝑒𝑔2 − 𝑞2) = 𝑞3 + 𝑥 ∗ 𝑦 − (𝑟1 + 𝑞1) ∗ (𝑟2 + 𝑞2).
Correspondingly, Alice also calls three outQnd to get 𝑞1, 𝑞2, 𝑞3, and
sets [𝑧]0 (Line 6) to [𝑧]0 = (𝑎 +𝑞1) ∗ (𝑏 +𝑞2) −𝑞3 = (𝑟1 +𝑞1) ∗ (𝑟2 +
𝑞2) − 𝑞3. One can easily verify its correctness. This more complex
mul ensures that every intermediate term is fully random (always
masked with a new random number), so the plain-text values of 𝑥
and 𝑦 never exist physically. Such a design prevents most physical
side channels including power consumption and electromagnetic
signal analysis [33, 70, 91].

Forward security. Our design supports an even stronger guar-
antee known as forward security: secure conversations are protected
against future key leaks [11]. While the hidden key 𝐻𝐾 embedded
in the trusted chip is assumed to be extremely difficult to retrieve,
there may exist methods (despite being expensive) to break it, e.g.,
by freezing the chip to ultra low temperature and using some fu-
turistic device to get 𝐻𝐾 . We reasonably assume that one cannot
break into a trusted chip while the chip is powered on and work-
ing normally. So, we can additionally require the trusted chip to
communicate with some central attestation server periodically, by
signing a timestamp message with its hidden key. If the attestation
server fails to receive an up-to-date timestamp, it marks the chip
as “broken” and fails its future remote attestations. Thus all other
MPC participants will refuse to talk to that chip.

Nevertheless, amalicious Bob can still record all historymessages
from previous MPC sessions, and then break the chip to retrieve
the hidden key, trying to discover the historical secrets. The secure
initialization (Protocol 2) is carefully designed to protect against
this issue. 𝑇𝑅 generated by Bob’s trusted chip is sent out not as
plain-text, but encrypted under Alice’s public key 𝑃𝐾0. Even if Bob
is able to retrieve his chip’s hidden key 𝐻𝐾1 as described above,
and use it to decrypt and obtain the𝑚 values received from Alice,
Bob is unable to know 𝑇𝑅 as he cannot know Alice’s chip’s hidden
key 𝐻𝐾0. Thus Bob still cannot replay the history MPC sessions to
sniff out anything without the seeds𝑚 +𝑇𝑅.

Man-in-the-middle attacks. We also need to ensure Bob can-
not play any man-in-the-middle attack between Alice and his own
trusted chip. The initB instruction (used in Protocol 2) is carefully
designed to read a packed cipher-text message 𝑥 from 𝑥𝐴𝑑𝑑𝑟 and
decrypt 𝑥 to 𝑥 ′ = {𝑚, 𝑃𝐾0} where 𝑃𝐾0 is Alice’s public key. Other-
wise, if initB takes 𝑃𝐾0 separately, Bobmay replace it with another
fake public key 𝑃𝐾2 whose hidden key 𝐻𝐾2 is known to Bob. The
initB instruction would thus use 𝑃𝐾2 to encrypt 𝑇𝑅 and return it
to Bob. Bob decrypts it using 𝐻𝐾2 and learns𝑇𝑅, and re-encrypts it
using 𝑃𝐾0 before sending back to Alice. Alice would not be aware
of anything in this case, but Bob can now break the aforementioned
forward security protection. Combining and encrypting {𝑚, 𝑃𝐾0}
together in our design prevents Bob from replacing the associated
public key.

94

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

[x]0 r1 d

left side: Alice

1st Mul:
x*y → z

outRnd

- =

[y]0 r2 e- =
outRnd

[z]0 = q1

outQnd

No need to compute or send d

[x]1d + reg1
ldsend rnd1 = r1

setRnd
u = x-r1=

[y]1e + reg2
ld

rnd2 = r2

setRnd

v = y-r2=

reg3 = x*y-q1[z]1 = z-q1
st

mul

2nd Mul:
x*s → t

send

[s]0 r3 e'- =
outRnd

[t]0 = q2

outQnd

[x]1d + reg1
ld

rnd1 = r1u = x-r1=

[s]1e' + reg2
ld

rnd2 = r3

setRnd

w = s-r3=

reg3 = x*s-q2[t]1 = t – q2
st

mul

send

re-use random register rnd1

right side: Bob

re-use d (saved message)

Figure 4: Cache multiplicands to save communication.
Dashed arrows indicate data flow for chip-executed instruc-
tions; blue curvy solid arrows indicate reusing numbers; red
straight solid arrows indicate network transmissions.

4.5 Reducing Communication by Caching
Multiplicands

The basic PPMLAC architecture in §4.1 eliminates the communi-
cation latency bottleneck with one-way communication. We next
present an optimization that further reduce the communication
bandwidth consumption, through caching and reusing previous
multiplicands inside the trusted chip.

In the basic Protocol 1, each multiplication requires Alice to send
two numbers to Bob, but actually one or both of them can be saved.
As shown in Fig. 4 top, suppose the two parties have just jointly
computed a multiplication 𝑧 = 𝑥 ∗ 𝑦. Alice sent 𝑑 = [𝑥]0 − 𝑟1 and
𝑒 = [𝑦]0 −𝑟2 to Bob, and Bob called setRnd 𝑟𝑛𝑑1 and setRnd 𝑟𝑛𝑑2
so the random registers 𝑟𝑛𝑑1 = 𝑟1, 𝑟𝑛𝑑2 = 𝑟2, where 𝑟1, 𝑟2 are the
two random numbers generated by both sides’ CSPRNGs. Bob also
computed 𝑢 = [𝑥]1 + 𝑑 and 𝑣 = [𝑦]1 + 𝑒 in the operand registers
𝑟𝑒𝑔1 and 𝑟𝑒𝑔2. Note that 𝑟𝑒𝑔1 + 𝑟𝑛𝑑1 = 𝑥 and 𝑟𝑒𝑔2 + 𝑟𝑛𝑑2 = 𝑦 —
this is actually an invariant in our design: 𝑟𝑒𝑔𝑖 + 𝑟𝑛𝑑𝑖 equals to an
multiplicand.

Now if they want to compute another multiplication 𝑡 = 𝑥 ∗ 𝑠 ,
Alice does not need to generate a new random number for [𝑥]0
and send their difference again, because Bob has already saved
𝑑 = [𝑥]0 − 𝑟1, which this second multiplication can reuse. This is
illustrated in Fig. 4 bottom. Alice only needs to call outRnd ⟨𝑏 ′⟩
to generate one random number 𝑟3 and send 𝑒 ′ = [𝑠]0 − 𝑟3 to Bob.
Once Bob receives 𝑒 ′, he treats (𝑑, 𝑒 ′) as the message that should
be received, and follows the rest of Protocol 1. This includes calling
setRnd 𝑟𝑛𝑑2 (step 2) so random register 𝑟𝑛𝑑2 = 𝑟3, computing𝑤 =

[𝑠]1+𝑒 ′ (step 5) and calling ld 𝑟𝑒𝑔2, ⟨𝑤⟩ (step 7) so operand register
𝑟𝑒𝑔2 = 𝑤 = 𝑠−𝑟3. These steps ensure the invariant that 𝑟𝑒𝑔2+𝑟𝑛𝑑2 =
𝑠 for the new multiplicand. For the other multiplicand, random
register 𝑟𝑛𝑑1 still equals to 𝑟1, and operand register 𝑟𝑒𝑔1 = [𝑥]1+𝑑 =

𝑥 −𝑟1 can be re-produced from Bob’s own secret share [𝑥]1 and the
saved message 𝑑 . Therefore, these states satisfy all requirements
for mul and calling mul now would result in the correct output
[𝑡]1 = 𝑥 ∗ 𝑠 −𝑞2 for Bob; Alice just calls outQnd ⟨[𝑡]0⟩ so [𝑡]0 = 𝑞2.

This caching optimization does not exhibit any security issue. 𝑠
and 𝑡 are protected using newly generated random numbers 𝑟3 and
𝑞2. 𝑥 is protected by the same 𝑟1 from the previous multiplication,

but this does not break the one-time pad requirement, as 𝑟1 is never
used to mask different plain-texts.

Clearly, the potential communication saving depends on how
many multiplicands we can cache, i.e., the size of the register files in
the trusted chip. In the previous example we only have three pairs
of operand and random registers, limiting reuse opportunities. For
example, if next the two parties want to compute a third multipli-
cation 𝑞 = 𝑦 ∗ 𝑝 , they cannot reuse the previous data of 𝑦, because
𝑟2 has already been overwritten, and there is no way to restore
it (cannot be stored anywhere outside, and CSPRNGs cannot roll
back). So now the two parties have to follow the complete protocol
to transfer two numbers. In general, as long as a previously used
random register associated with a multiplicand is not overwritten,
this multiplicand can directly participate in new multiplications
without requiring communication. But once a random register has
been overwritten, its associated multiplicand cannot be reused fur-
ther. This is a lot like the cache eviction problem, where evicted
data must be fetched again from the remote side. The actual PPM-
LAC chip builds more (e.g. 384) random registers that is allowed by
available hardware resource.

We currently leverage a compiler-based, modified LRU policy to
statically optimize the register usage and minimize evictions. Specif-
ically, our compiler book-keeps the usages of all random registers to
perform standard LRU evictions, but provides a soft pinning facility
to programmers, who can soft pin critical multiplicands such that
their random registers can only be evicted by other soft-pinned
multiplicands. Non-pinnedmultiplicands can only evict non-pinned
random registers. Such a policy works well for our main target –
ML and statistics workloads, which use matrices and tensors heav-
ily; the programmer can pin a small block in one matrix that is
multiplied by hundreds of blocks in the other matrix, so their ran-
dom registers are always cached and re-used, saving over 99% of
total data transfer (see §5 for quantitative evaluation). We leave
fully-automated pinning support as future work.

Recall that MPC programs are always deterministic, without
any control flow depending on secret data. Therefore static com-
piler analysis can be used. This property also eases soft pinning
heuristics specified by programmers, because all tensor sizes are
pre-determined public numbers. Note that Alice never uses random
registers, yet the compiler also has to generate her local instructions
to be consistent with Bob’s operations, and to determine which
multiplicands need message transfers. The compiler guarantees
Alice and Bob always use the same register allocation/eviction.

4.6 Put It Altogether: The PPMLAC
Architecture

Fig. 5 summarize the overall PPMLAC architecture for Bob side only.
The incoming initial𝑚 is decrypted by the trusted chip’s hidden
key, and combined with 𝑇𝑅 generated from TRNG to get the final
seed, to initialize the CSPRNG. At runtime, the generated random
number sequences are put into the random registers to be used
by mul instructions in the secret multipliers, or added to mask the
multiplier output.

95

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

CSPRNGCSPRNGCSPRNG(GenB)Public

Key PK0

Secret

MultiplierSecret

Multiplier

Secret

Bitwise ANDerBitwise ANDerSecret

Bitwise ANDer

Random Register Bank rndi

Random
Number

Sequence

Decrypt

PPMLAC Trusted DomainExternal Memory

Encrypted
Remote

Message
{m, PK0}

Seed

Input
Secret Share

Result
Secret Share Fresh Random Number

TRNG
Encrypted

TR

ri

qi

TR

Hidden

Key HK1

Encrypt

m

Figure 5: The overall PPMLAC architecture (focus on Bob’s
side).

Vectorization. To better support ML workloads, PPMLAC is in-
herently vectorized to exploit batched transfers and data-parallel ex-
ecution.Multiple secret multipliers work on a vector of operand/ran-
dom registers simultaneously, accessed from/to the banked register
files. In our prototype, we use 24 lanes.

System integration. We discuss several potential integrations
of our trusted chip with the host system. One is to build a discrete
heterogeneous device, similar to accelerators like GPUs [63] and
TPUs [42]. Besides the central components, we also add an on-
device memory hierarchy to locally store data and avoid frequent
transfers with the host CPU. This includes a small instruction buffer
for the MPC program, a FIFO to buffer messages that are sent to
or received from the other party (through the proxy of host CPU
network stack), and data caches and global memory to hold the
working data set. The host CPU initially loads the input data into the
chip’s global memory, and all intermediate data uses the on-device
memory hierarchy rather than the host CPU memory whenever
possible. Any remaining necessary data transfers are maximally
batched by software to reduce overheads, similar to conventional
CPU-GPU interactions. The entire memory hierarchy is not in the
trusted domain; attackers can freely access them without violating
security. Therefore although operand registers are backed up by
the data caches/memory, random registers can never be spilled to
the public memory.

We also enhance the chip with minimum functionalities to sup-
port other MPC computations besides the central multiplication
and initialization protocols. These include normal arithmetic opera-
tions on operand registers (e.g., add, multiply/divide by a constant)
and instructions to access memory and communication FIFO. This
way, a complete MPC program (a DAG in Fig. 1) can run on-device
as locally as possible. Note that all these components are not in the
trusted domain, and their implementations are security-insensitive.

Alternatively, PPMLAC can be tightly integrated with the CPU
as an ISA extension. The additional components would be TRNGs
and CSPRNGs, attestation logic and public/hidden keys, random
registers, and dedicated multiplier logic to support mul. Other parts,
including operand registers, loads/stores, secret-sharing adds, mes-
sage send/receive, can simply reuse the existing CPU functionalities.
We implemented such an extension to the RISC-V CPU on an FPGA

as a proof-of-concept, but we do not further evaluate its perfor-
mance.

Programming model. The PPMLAC architecture is easy to
use. It has a simple and well defined ISA (Listings 1 and 2). For
discrete device integration, a separate MPC program is generated
and loaded to the chip; for CPU extension, the MPC instructions are
embedded into the original CPU program. We can let programmers
manually write short code pieces or leverage existing MPC program
compilers (e.g., [5, 37, 53, 90]) and add our multiplicand caching
optimization (§4.5).

Security assumptions fromwhole-system perspective.We
only consider the PPMLAC chip to be in trusted domain. The host
CPU, memory, and software running outside the trusted domain
are all untrusted. The stand-alone trusted chip does not share com-
ponents like internal buffers and caches with host CPU, so it is
protected from microarchitectural attacks from host CPU threads.
The random numbers inside the chip are never exposed to outside,
so they are safe against memory bus snooping. When extending ex-
isting ISA with PPMLAC, there’s a PPMLAC core (trusted domain)
and a host core (untrusted domain) on the same CPU, so extra
care is needed to avoid microarchitectural sharing between the
two, to prevent cross-core side-channel attacks like CrossTalk [65].
We do assume attackers cannot directly and physically break into
the trusted chip to read its random numbers. Periodic timestamp
messages (see §4.4 “Forward Security”) can be used to detect such
attacks. Nevertheless, PPMLAC is still resilient to many known
indirect approaches (including side channels), explained as follows.
PPMLAC’s random numbers only participate in simple operations
like multiplications. It is much easier to make such simple opera-
tions resilient against time-based and power-based analysis. Each
multiplication is constant-time, and involves fresh random numbers
that randomize per-operation power consumption. We can further
improve side-channel protection by using redundant randomized
operations, active power fences, etc. PPMLAC forbids replay, thus
prevents attacks that rely on re-running programs multiple times.
Fault-injection attacks may skip certain branching instructions to
bypass guards. PPMLAC ISA has no branching instructions. If Alice
or Bob skips some PPMLAC instructions, they are simply treated
as malicious adversaries as §4.4, and still gain nothing. All these
make PPMLAC safer than TEE.

Comparison with TEE. TEE adds enclave-related features to
a full-fledged CPU that has complex microarchitecture like spec-
ulation. The complexity of the CPU brings a wide attack surface
to TEE. In comparison, PPMLAC is designed just for the purpose
of MPC multiplications, so it has a much narrower attack surface.
To some extent, PPMLAC can be viewed as a minimal enclave that
supports secure multiplications for MPC, which is more robust
against side-channel and other attacks.

5 EVALUATION
We evaluate the performance of a PPMLAC prototype as a discrete
accelerator implemented in FPGA with 256 banks of random reg-
isters (24 lanes per bank) and 100KB fast local memory cache. It
is implemented using the High-Level Synthesis development envi-
ronment, and runs on a Xilinx Virtex UltraScale+ VU9P FPGA of

96

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

an AWS F1 instance. It runs at only 150MHz clock rate due to the
limitation of AWS.

We evaluate the scenario of 2-Party MPC under 3 different set-
tings: (1) 1-DC: Alice and Bob are two nodes in one data center,
with network round-trip latency less than 0.3ms. This is unsafe
and unrealistic, given that the main motivation of MPC is for cross-
organization data collaboration. Nevertheless, this setup allows us
to see the ideal MPC performance at minimal network latency. (2)
Cross-DC: We use tc command to add 65ms round-trip latency
between Alice and Bob to emulate a connection between two data
centers [59]. This is a realistic setting. (3) Trans-Pacific: We add
200ms round-trip latency to emulate a connection from East Asia
to the US. This is also realistic, simulating cross-country data col-
laboration.

We compare with two state-of-the-art software MPC frame-
works: MP-SPDZ [43] and CrypTen [46]. MP-SPDZ extends the
classical SPDZ [25] protocol. We use its “semi-honest, 264 ring”
mode and run it on a server with 80-core Intel Xeon Gold 6145 CPU
at 2.5GHz and 192GB RAM. Two MP-SPDZ processes communicate
through a loopback network device, allowing tremendous network
bandwidth, and each party still has 40 cores for data parallellism.
CrypTen leverages the matrix multiplication optimizations [18, 61]
to reduce communication and exploits GPU acceleration aggres-
sively, but uses a very sophisticated TTP that is assumed to handle
the heavy matrix multiplications and convolutions, instead of pure
algorithmic safety measures like Oblivious Transfers. Therefore
CrypTen improves performance significantly at the cost of more
expensive hardware and more relaxed security setting. We run
CrypTen on 3 servers (Alice, Bob, TTP) each with NVidia V100 GPU
(16GB RAM) and Intel Xeon E5-2686 CPU at 2.30GHz. We exclude
the initialization phases before the actual MPC from measurements,
which favors the baselines as they need heavier initialization than
PPMLAC.

Micro-benchmarks. Fig. 6-(a)(b)(c)(d) show how long it takes
to run 10 million basic operations (multiply, comparison, bit-AND,
exponential) by PPMLAC (P) versus CrypTen (C) and MP-SPDZ (M).
The 10M operations are carefully written to allow full vectorization.
Two factors favor the software-based MPC greatly: (1) CrypTen
runs on V100 GPUs with 7.8 Trillion-OPS (64-bit operations per
second) performance, and MP-SPDZ leverages multithreading and
AVX512 instructions to utilize the many-core CPU, providing at
least 100 GOPS. PPMLAC only has 3.6 GOPS peak throughput; (2)
there is no data-dependence among operations, so software MPC
is less impacted by the communication bottleneck.

Even under such unfair conditions, PPMLAC is still the fastest,
even in the unrealistic 1-DC setting that dwarfs the communica-
tion latency issue. Note that PPMLAC does not focus on improving
computations and thus this is the worst case for it. Under the more
realistic cross-DC and Trans-Pac settings, PPMLAC achieves 14×
to 280× speedup over CrypTen and 100× to 300000× speedup over
MP-SPDZ. These results demonstrate the effectiveness of the opti-
mizations in PPMLAC that eliminate the communication bottleneck
and result in higher speedups with longer network latencies.

Real-world applications. We also evaluate four widely used
real-world applications: (1) LR: inference for a Logistic Regression
model with input dimension 106 and a Sigmoid layer, batching 24
samples per inference — a standard statistics task; (2) SVM: train

a linear Support Vector Machine model with 1000 examples, 1000
features, and 100 training epochs — a classic machine learning
training task; (3)MLP: inference for a Multilayer Perceptron model
with five linear layers (dimensions 1024 × 512, 512 × 256, 256 × 128,
128 × 64, 64 × 32) and four ReLU layers in between, batching 24
samples per inference — a typical neural network used in recom-
mendation systems; (4) ResNet: inference for the ResNet18 model
[40] with deep architecture and residual blocks — a mainstream
deep learning model for object recognition.

For SVM, Alice and Bob each has part of the training dataset,
and they collectively train the model parameters; for other cases,
Bob has the model parameters, Alice has the input data, and they
collectively compute model inference results. MPC is flexible re-
garding data partitioning schemes and other partitioning schemes
are also supported.

Fig. 6-(e)(f)(g)(h) compare the running times of PPMLAC (P)
with CrypTen (C) and MP-SPDZ (M): under realistic settings (Cross-
DC and Trans-Pac), PPMLAC achieves 40× to 40000× speedups
over the software-based MPC implementations. Even under the
unrealistic setting (1-DC), PPMLAC still exhibits performance im-
provements. We highlight the case with the heaviest workload
ResNet over long-latency network Trans-Pac, where PPMLAC
just runs for less than 4 seconds, which is close to interactive and
can be acceptable for meaningful real-world use cases like financial
Know-Your-Client checking or physical access control, whereas the
fastest software-based MPC runs over two minutes cross-DC. More-
over, it is worth mentioning that PPMLAC exhibits the above great
advantages despite using much weaker hardware (3.6 GOPS) than
CrypTen (7.8 TOPS) and MP-SPDZ (100 GOPS). If we were build-
ing a real PPMLAC ASIC chip, another 10× performance would
be possible, and further brings down the runtime for ResNet to
within 0.5 seconds. In contrast, software-based MPC is restricted
by the communication bottleneck and cannot benefit much from
increasing computational capabilities.

We also ran the four ML models with plain-text computations
on Intel Xeon 6145 (2.5GHz) CPU, just to see how much slowdown
PPMLAC (under Cross-DC setting) causes against plain-text com-
putation. The results are listed in Fig. 7. We can see that PPMLAC
still brings some slowdown over plain-text computation, but they
are all smaller than 100×, and much better than software-based
MPC by far.

Model accuracy. Converting floating point numbers to fixed
point used in MPC (§4.3) inherently loses precision and may af-
fect model accuracy, so we verify the accuracy of our ResNet-18
model inference against PyTorch [64] with plain-text, floating-point
computations, using the same pre-trained model and the ImageNet
dataset [29]. We ran 1000 images and compare the Top-1 and Top-5
accuracy, shown in Fig. 8. The differences are tiny. Improving model
accuracy in MPC is itself an interesting topic [15, 56]. We plan to
incorporate techniques in the literature as our future work.

Impacts of multiplicand caching optimization (§4.5) are in-
vestigated in Fig. 9. For applications like MLP and ResNet that are
dominated by matrix/tensor multiplications, the optimization saves
96% and 99% traffic. For vector-dominant cases, there are still over
45% savings.

97

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

Latency: 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac

(a) Multiply ∗ (b) Comparison < (c) Bitwise AND (d) Exponential 𝑒𝑥

Latency: 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac 1-DC Cross-DC Trans-Pac

(e) LR (f) SVM (g) MLP (h) ResNet

Figure 6: Running time in seconds by each MPC system with different latency setups: 1-DC, Cross-DC and Trans-Pac. MPC
systems evaluated: P - PPMLAC; C - CrypTen; M - MP-SPDZ. (a) - (d) show micro-benchmarks, each performing 107 basic
operations. (e) - (h) show results of four real-world applications.

LR SVM MLP ResNet
Plain-text computation on CPU 0.02s 0.09s 0.001s 0.09s

MPC on PPMLAC 0.46s 1.05s 0.09s 3.64s
Slowdown 23× 12× 90× 40×

Figure 7: Compare PPMLAC’s MPC performance against
plain-text computations on CPU.

Framework Top-1 accuracy Top-5 accuracy
PPMLAC 84.6% 95.3%
PyTorch 84.8% 95.9%

Figure 8: Model inference accuracy comparison: PPMLAC
v.s. PyTorch

LR SVM MLP ResNet
with caching 210 MB 161 MB 10 MB 921 MB

without caching 384 MB 321 MB 276 MB 106 GB
savings percent 45.3% 49.8% 96.4% 99.1%

Figure 9: Effect of multiplicand caching: communication
amount, run with v.s. without caching.

Generality. Our benchmark applications range from classical
statistics to state-of-the-art deep learning models, and exercise var-
ious non-linear functions like Sigmoid, Exponential, ReLU, and
Hinge Loss. PPMLAC, like other MPC tools, is suitable for general
computation tasks instead of being restricted to training-only case
like Federated Learning. Nevertheless, training needs higher pro-
gramming efforts than inference. We manually implemented the
training algorithm for SVM here to show PPMLAC can do both

training and inference, but it is natural to adapt existing secure ML
frameworks like [46, 53, 61] to use PPMLAC as the backend and get
a full-fledged high-performance system. We leave such integration
as our future work.

6 CONCLUSION
We have shown that Multi-Party Computation can be implemented
with high performance and strong security by adding a minimum
hardware trust root. Our chipset (PPMLAC) runs the secret-sharing
based MPC protocol while eliminating its communication bottle-
necks, thus achieves several orders of magnitude speed-up over
software-based MPC. PPMLAC uses a minimum set of hardware
units for simple operations in the trusted domain, allowing for
easy implementations free from various side channels and other
attacks. It is safe against dishonest majority (up to 𝑛 − 1 corrupted
parties), and runs large-scale complex machine learning models
with unprecedented high performance under realistic network en-
vironments.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of ISCA 2022 for their insightful
comments and suggestions on our paper. The authors are grateful
to Zhiyao Li and Jiangbin Dong who have helped us with test server
setup. We also want to thank Yan Huang, who have discussed with
us and helped us gain clearer understanding on many MPC topics.
Mingyu Gao is partially supported by the National Natural Science
Foundation of China (62072262).

REFERENCES
[1] ACM CCS. 2021. PRIVACY PRESERVING MACHINE LEARNING, an ACM CCS

2021 Workshop. https://ppml-workshop.github.io/

98

https://ppml-workshop.github.io/

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

[2] Mohammad Al-Rubaie and J. Morris Chang. 2019. Privacy-Preserving Machine
Learning: Threats and Solutions. IEEE Security and Privacy 17, 2 (2019), 49–58.
https://doi.org/10.1109/MSEC.2018.2888775

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA, 7.

[4] ARM. 2022. TrustZone. https://www.arm.com/technologies/trustzone-for-
cortex-a. Accessed: 2022-04-10.

[5] Yuyan Bao, Kirshanthan Sundararajah, Raghav Malik, Qianchuan Ye, Christopher
Wagner, Fei Wang, Mohammad Hassan Ameri, Donghang Lu, Alexander Seto,
Benjamin Delaware, Roopsha Samanta, Aniket Kate, Christina Garman, Jeremiah
Blocki, Pierre-David Letourneau, Benoît Meister, Jonathan Springer, Tiark Rompf,
and Milind Kulkarni. 2020. HACCLE: An Ecosystem for Building Secure Multi-
Party Computations. CoRR abs/2009.01489 (2020). arXiv:2009.01489 https:
//arxiv.org/abs/2009.01489

[6] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology — CRYPTO ’91, Joan Feigenbaum (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 420–432.

[7] D. Beaver, S. Micali, and P. Rogaway. 1990. The Round Complexity of Secure
Protocols. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory
of Computing (Baltimore, Maryland, USA) (STOC ’90). Association for Computing
Machinery, New York, NY, USA, 503–513. https://doi.org/10.1145/100216.100287

[8] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-
homomorphic Encryption and Multiparty Computation. In Advances in Cryptol-
ogy – EUROCRYPT 2011, Kenneth G. Paterson (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 169–188.

[9] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In Computer Security - ESORICS 2008,
Sushil Jajodia and Javier Lopez (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 192–206.

[10] K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2016. Practi-
cal Secure Aggregation for Federated Learning on User-Held Data. In NIPS Work-
shop on Private Multi-Party Machine Learning. https://arxiv.org/abs/1611.04482

[11] Colin Boyd and Kai Gellert. 2019. A Modern View on Forward Security. Cryptol-
ogy ePrint Archive, Report 2019/1362. https://ia.cr/2019/1362.

[12] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes. 2006. A low-power true
random number generator using random telegraph noise of single oxide-traps. In
2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.
1666–1675. https://doi.org/10.1109/ISSCC.2006.1696222

[13] Ernest F. Brickell. 1990. Some Ideal Secret Sharing Schemes. In Advances in
Cryptology — EUROCRYPT ’89, Jean-Jacques Quisquater and Joos Vandewalle
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 468–475.

[14] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In Proceedings of the ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). ACM.

[15] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-
Point Numbers. In Financial Cryptography and Data Security, Radu Sion (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 35–50.

[16] J.M. Chang, D. Zhuang, and G.D. Samaraweera. 2022. Privacy-Preserving Machine
Learning. Manning.

[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2018. SgxPectre Attacks: Leaking Enclave Secrets via Speculative
Execution. CoRR abs/1802.09085 (2018). arXiv:1802.09085 http://arxiv.org/abs/
1802.09085

[18] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and
Sameer Wagh. 2020. Maliciously Secure Matrix Multiplication with Applications
to Private Deep Learning. In Advances in Cryptology – ASIACRYPT 2020, Shiho
Moriai and Huaxiong Wang (Eds.). Springer International Publishing, Cham,
31–59.

[19] Martine de Cock, Rafael Dowsley, Anderson C.A. Nascimento, and Stacey C.
Newman. 2015. Fast, Privacy Preserving Linear Regression over Distributed
Datasets Based on Pre-Distributed Data. In Proceedings of the 8th ACM Work-
shop on Artificial Intelligence and Security (Denver, Colorado, USA) (AISec ’15).
Association for Computing Machinery, New York, NY, USA, 3–14. https:
//doi.org/10.1145/2808769.2808774

[20] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086. https://eprint.iacr.org/2016/086.

[21] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In Proceedings of the 25th
USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16). USENIX
Association, USA, 857–874.

[22] Ronald Cramer, Ivan Damgård, and Yuval Ishai. 2005. Share Conversion, Pseudo-
random Secret-Sharing and Applications to Secure Computation. In Theory of
Cryptography, Joe Kilian (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

342–362.
[23] Ronald Cramer, Ivan Damgård, and Ueli Maurer. 2000. General Secure Multi-

party Computation from any Linear Secret-Sharing Scheme. In Advances in
Cryptology — EUROCRYPT 2000, Bart Preneel (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 316–334.

[24] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian
Livingstone, Justin Patriquin, and Gavin Uhma. 2018. Private Machine Learning
in TensorFlow using Secure Computation. arXiv:1810.08130 [cs.CR]

[25] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty
Computation from Somewhat Homomorphic Encryption. In Advances in Cryp-
tology – CRYPTO 2012, Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 643–662.

[26] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.
2012. Implementing AES via an Actively/Covertly Secure Dishonest-Majority
MPC Protocol. In Proceedings of the 8th International Conference on Security
and Cryptography for Networks (Amalfi, Italy) (SCN’12). Springer-Verlag, Berlin,
Heidelberg, 241–263. https://doi.org/10.1007/978-3-642-32928-9_14

[27] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2014. Ad-Hoc Se-
cure Two-Party Computation on Mobile Devices using Hardware Tokens. In
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, 893–908. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/demmler

[28] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY -
A Framework for Efficient Mixed-Protocol Secure Two-Party Computation.
In 22nd Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2015. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-
mixed-protocol-secure-two-party-computation

[29] Jia Deng, Alex Berg, Sanjeev Satheesh, H Su, Aditya Khosla, and Li Fei-Fei. 2012.
Imagenet large scale visual recognition competition 2012 (ILSVRC2012). See net.
org/challenges/LSVRC 41 (2012).

[30] Tamara Dugan and Xukai Zou. 2016. A Survey of Secure Multiparty Computation
Protocols for Privacy Preserving Genetic Tests. In 2016 IEEE First International
Conference on Connected Health: Applications, Systems and Engineering Technolo-
gies (CHASE). 173–182. https://doi.org/10.1109/CHASE.2016.71

[31] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, 275–294. https://www.usenix.org/
conference/osdi21/presentation/feng

[32] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using Verification to Disentangle Secure-Enclave Hardware from Soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles (Shang-
hai, China) (SOSP ’17). Association for Computing Machinery, New York, NY,
USA, 287–305. https://doi.org/10.1145/3132747.3132782

[33] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
Analysis: Concrete Results. In Cryptographic Hardware and Embedded Systems —
CHES 2001. Springer Berlin Heidelberg, Berlin, Heidelberg, 251–261.

[34] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph. D. Dissertation.
Stanford, CA, USA. Advisor(s) Boneh, Dan. AAI3382729.

[35] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(New York, New York, USA) (STOC ’87). Association for Computing Machinery,
New York, NY, USA, 218–229. https://doi.org/10.1145/28395.28420

[36] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure Two-Party Computation
in Sublinear (Amortized) Time. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (Raleigh, North Carolina, USA) (CCS ’12).
Association for Computing Machinery, New York, NY, USA, 513–524. https:
//doi.org/10.1145/2382196.2382251

[37] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
SoK: General Purpose Compilers for Secure Multi-Party Computation. 2019 IEEE
Symposium on Security and Privacy (SP) (2019), 1220–1237.

[38] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2018.
Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for
TinyOT). In Advances in Cryptology – ASIACRYPT 2018, Thomas Peyrin and
Steven Galbraith (Eds.). Springer International Publishing, Cham, 86–117.

[39] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2018.
TinyKeys: A New Approach to Efficient Multi-Party Computation. In Advances
in Cryptology – CRYPTO 2018, Hovav Shacham and Alexandra Boldyreva (Eds.).
Springer International Publishing, Cham, 3–33.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[41] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. 2009. Power-Up SRAM
State as an Identifying Fingerprint and Source of True Random Numbers. IEEE
Trans. Comput. 58, 9 (2009), 1198–1210. https://doi.org/10.1109/TC.2008.212

99

https://doi.org/10.1109/MSEC.2018.2888775
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://arxiv.org/abs/2009.01489
https://arxiv.org/abs/2009.01489
https://arxiv.org/abs/2009.01489
https://doi.org/10.1145/100216.100287
https://arxiv.org/abs/1611.04482
https://ia.cr/2019/1362
https://doi.org/10.1109/ISSCC.2006.1696222
https://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085
https://doi.org/10.1145/2808769.2808774
https://doi.org/10.1145/2808769.2808774
https://eprint.iacr.org/2016/086
https://arxiv.org/abs/1810.08130
https://doi.org/10.1007/978-3-642-32928-9_14
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/demmler
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/demmler
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1109/CHASE.2016.71
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TC.2008.212

ISCA ’22, June 18–22, 2022, New York, NY, USA Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao

[42] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In 44th International Symposium on Computer Architecture
(ISCA). 1–12.

[43] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1575–1590. https://doi.org/10.1145/3372297.
3417872

[44] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York,
NY, USA, 830–842. https://doi.org/10.1145/2976749.2978357

[45] Marcel Keller, Peter Scholl, and Nigel P. Smart. 2013. An Architecture for Practical
Actively Secure MPC with Dishonest Majority. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer Communications Security (Berlin, Germany)
(CCS ’13). Association for Computing Machinery, New York, NY, USA, 549–560.
https://doi.org/10.1145/2508859.2516744

[46] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-Party Com-
putation Meets Machine Learning. arXiv:2109.00984 [cs.LG]

[47] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[48] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. CrypTFlow: Secure TensorFlow Inference. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 336–353. https://doi.org/10.1109/SP40000.2020.00092

[49] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and Mayank
Varia. 2016. Secure multi-party computation for analytics deployed as a light-
weight web application. https://open.bu.edu/handle/2144/21786

[50] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.3387532

[51] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 717–732. https://www.usenix.org/conference/
usenixsecurity21/presentation/li-mengyuan

[52] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong, Tim-
othy Sherwood, and Ben Hardekopf. 2011. Caisson: A Hardware Description
Language for Secure Information Flow. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-
fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,
USA, 109–120. https://doi.org/10.1145/1993498.1993512

[53] Yi Li and Wei Xu. 2019. PrivPy: General and Scalable Privacy-Preserving Data
Mining. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining (Anchorage, AK, USA) (KDD ’19). Association
for Computing Machinery, New York, NY, USA, 1299–1307. https://doi.org/10.
1145/3292500.3330920

[54] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[55] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE
Symposium on Security and Privacy. 359–376. https://doi.org/10.1109/SP.2015.29

[56] Ziyao Liu, Ivan Tjuawinata, Chaoping Xing, and Kwok-Yan Lam. 2020. MPC-
enabled Privacy-Preserving Neural Network Training against Malicious Attack.
CoRR abs/2007.12557 (2020). arXiv:2007.12557 https://arxiv.org/abs/2007.12557

[57] Lingjuan Lyu, Han Yu, Xingjun Ma, Lichao Sun, Jun Zhao, Qiang Yang, and
Philip S. Yu. 2020. Privacy and Robustness in Federated Learning: Attacks and
Defenses. CoRR abs/2012.06337 (2020). arXiv:2012.06337 https://arxiv.org/abs/
2012.06337

[58] Sanu K. Mathew, Suresh Srinivasan, Mark A. Anders, Himanshu Kaul, Steven K.
Hsu, Farhana Sheikh, Amit Agarwal, Sudhir Satpathy, and Ram K. Krishnamurthy.
2012. 2.4 Gbps, 7 mW All-Digital PVT-Variation Tolerant True Random Number
Generator for 45 nm CMOS High-Performance Microprocessors. IEEE Journal of
Solid-State Circuits 47, 11 (2012), 2807–2821. https://doi.org/10.1109/JSSC.2012.
2217631

[59] Microsoft. 2021. Azure network round-trip latency statistics. https://docs.
microsoft.com/en-us/azure/networking/azure-network-latency.

[60] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 35–52. https://doi.org/10.1145/
3243734.3243760

[61] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy (SP). 19–38. https://doi.org/10.1109/SP.2017.12

[62] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.
InAdvances in Cryptology – CRYPTO 2012, Reihaneh Safavi-Naini and Ran Canetti
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 681–700.

[63] NVIDIA. 2022. CUDA GPUs. https://developer.nvidia.com/cuda-gpus. Accessed:
2022-04-10.

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[65] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CrossTalk: Speculative Data Leaks Across Cores Are Real. In 2021 IEEE
Symposium on Security and Privacy (SP). 1852–1867. https://doi.org/10.1109/
SP40001.2021.00020

[66] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An Ar-
chitecture for Computing on Encrypted Data. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 1295–1309. https:
//doi.org/10.1145/3373376.3378523

[67] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (Incheon,
Republic of Korea) (ASIACCS ’18). Association for Computing Machinery, New
York, NY, USA, 707–721. https://doi.org/10.1145/3196494.3196522

[68] Victor Ruehle, Robert Sim, Sergey Yekhanin, Nishanth Chandran,
Melissa Chase, Daniel Jones, Kim Laine, Boris Köpf, Jaime Teevan,
Jim Kleewein, and Saravan Rajmohan. 2021. Privacy Preserving
Machine Learning: Maintaining confidentiality and preserving trust.
https://www.microsoft.com/en-us/research/blog/privacy-preserving-machine-
learning-maintaining-confidentiality-and-preserving-trust/

[69] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
238–252. https://doi.org/10.1145/3466752.3480070

[70] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori. 2018. An inside
job: Remote power analysis attacks on FPGAs. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE). 1111–1116. https://doi.org/10.23919/
DATE.2018.8342177

[71] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In CCS.

[72] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[73] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O((Logn)3) Worst-Case Cost. In Proceedings of the 17th International
Conference on The Theory and Application of Cryptology and Information Secu-
rity (Seoul, South Korea) (ASIACRYPT’11). Springer-Verlag, Berlin, Heidelberg,
197–214. https://doi.org/10.1007/978-3-642-25385-0_11

100

https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2508859.2516744
https://arxiv.org/abs/2109.00984
https://doi.org/10.1109/SP40000.2020.00092
https://open.bu.edu/handle/2144/21786
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1145/1993498.1993512
https://doi.org/10.1145/3292500.3330920
https://doi.org/10.1145/3292500.3330920
https://doi.org/10.1109/SP.2015.29
https://arxiv.org/abs/2007.12557
https://arxiv.org/abs/2007.12557
https://arxiv.org/abs/2012.06337
https://arxiv.org/abs/2012.06337
https://arxiv.org/abs/2012.06337
https://doi.org/10.1109/JSSC.2012.2217631
https://doi.org/10.1109/JSSC.2012.2217631
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://developer.nvidia.com/cuda-gpus
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1109/SP40001.2021.00020
https://doi.org/10.1109/SP40001.2021.00020
https://doi.org/10.1145/3373376.3378523
https://doi.org/10.1145/3373376.3378523
https://doi.org/10.1145/3196494.3196522
https://www.microsoft.com/en-us/research/blog/privacy-preserving-machine-learning-maintaining-confidentiality-and-preserving-trust/
https://www.microsoft.com/en-us/research/blog/privacy-preserving-machine-learning-maintaining-confidentiality-and-preserving-trust/
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.1007/978-3-642-25385-0_11

PPMLAC: High Performance Chipset Architecture for Secure Multi-Party Computation ISCA ’22, June 18–22, 2022, New York, NY, USA

[74] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture
for Homomorphic Computing on Encrypted Data. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 387–398. https:
//doi.org/10.1109/HPCA.2019.00052

[75] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and ChristopherW. Fletcher. 2019. MicroScope: EnablingMicroarchitec-
tural Replay Attacks. In Proceedings of the 46th International Symposium on Com-
puter Architecture (Phoenix, Arizona) (ISCA ’19). Association for Computing Ma-
chinery, New York, NY, USA, 318–331. https://doi.org/10.1145/3307650.3322228

[76] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. 2021. CryptGPU: Fast
Privacy-Preserving Machine Learning on the GPU. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
1021–1038. https://doi.org/10.1109/SP40001.2021.00098

[77] Andrew S Tanenbaum. 1989. Never underestimate the bandwidth of a station
wagon full of tapes hurtling down the highway.. In Computer Networks. Prentice-
Hall, New Jersey, USA, 51.

[78] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood.
2011. Crafting a Usable Microkernel, Processor, and I/O System with Strict
and Provable Information Flow Security. In Proceedings of the 38th Annual In-
ternational Symposium on Computer Architecture (San Jose, California, USA)
(ISCA ’11). Association for Computing Machinery, New York, NY, USA, 189–200.
https://doi.org/10.1145/2000064.2000087

[79] Carlos Tokunaga, David Blaauw, and Trevor Mudge. 2008. True Random Number
GeneratorWith a Metastability-Based Quality Control. IEEE Journal of Solid-State
Circuits 43, 1 (2008), 78–85. https://doi.org/10.1109/JSSC.2007.910965

[80] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. 2019. IO-
DINE: Verifying Constant-Time Execution of Hardware. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1411–
1428. https://www.usenix.org/conference/usenixsecurity19/presentation/von-
gleissenthall

[81] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium.
USENIX Association.

[82] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.

2020. LVI: Hijacking Transient Execution through Microarchitectural Load Value
Injection. In 41th IEEE Symposium on Security and Privacy (S&P’20).

[83] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In S&P.

[84] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2018. SecureNN: Effi-
cient and Private Neural Network Training. Cryptology ePrint Archive, Report
2018/442. https://ia.cr/2018/442.

[85] Andrew C. Yao. 1982. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). 160–164. https:
//doi.org/10.1109/SFCS.1982.38

[86] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A Comprehensive Survey
of Privacy-Preserving Federated Learning: A Taxonomy, Review, and Future
Directions. ACM Comput. Surv. 54, 6, Article 131 (jul 2021), 36 pages. https:
//doi.org/10.1145/3460427

[87] Tjalling J. Ypma. 1995. Historical Development of the Newton-Raphson Method.
SIAM Rev. 37, 4 (1995), 531–551. http://www.jstor.org/stable/2132904

[88] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptol. ePrint Arch. 2015 (2015), 1153.

[89] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security. In
Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (Istanbul, Turkey) (ASPLOS ’15).
Association for Computing Machinery, New York, NY, USA, 503–516. https:
//doi.org/10.1145/2694344.2694372

[90] Yihua Zhang, Aaron Steele, andMarina Blanton. 2013. PICCO: AGeneral-Purpose
Compiler for Private Distributed Computation. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer Communications Security (Berlin, Germany)
(CCS ’13). Association for Computing Machinery, New York, NY, USA, 813–826.
https://doi.org/10.1145/2508859.2516752

[91] M. Zhao and G. E. Suh. 2018. FPGA-Based Remote Power Side-Channel Attacks.
In 2018 IEEE Symposium on Security and Privacy (SP). 229–244. https://doi.org/
10.1109/SP.2018.00049

[92] Shijun Zhao, Qianying Zhang, Guangyao Hu, Yu Qin, and Dengguo Feng. 2014.
Providing Root of Trust for ARM TrustZone Using On-Chip SRAM. In Proceedings
of the 4th International Workshop on Trustworthy Embedded Devices (Scottsdale,
Arizona, USA) (TrustED ’14). Association for Computing Machinery, New York,
NY, USA, 25–36. https://doi.org/10.1145/2666141.2666145

101

https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1109/SP40001.2021.00098
https://doi.org/10.1145/2000064.2000087
https://doi.org/10.1109/JSSC.2007.910965
https://www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall
https://www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall
https://ia.cr/2018/442
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/3460427
https://doi.org/10.1145/3460427
http://www.jstor.org/stable/2132904
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1145/2666141.2666145

	Abstract
	1 Introduction
	2 Background
	2.1 MPC: Additive Secret Sharing
	2.2 One-time Table (Beaver Triple) Generation
	2.3 Comparison with Alternatives and Related Work

	3 Key Innovative Ideas
	4 Design and Implementation
	4.1 Architectural Support for Secure Multiplications
	4.2 Secure Initialization and Remote Attestation
	4.3 Extensions
	4.4 Security Guarantees
	4.5 Reducing Communication by Caching Multiplicands
	4.6 Put It Altogether: The PPMLAC Architecture

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

