
Stream-Based Data Placement for Near-Data
Processing with Extended Memory

Yiwei Li† Boyu Tian† Yi Ren† Mingyu Gao†‡

Tsinghua University† Shanghai Qi Zhi Institute‡

liyw19@mails.tsinghua.edu.cn tby20@mails.tsinghua.edu.cn

yi-ren20@mails.tsinghua.edu.cn gaomy@tsinghua.edu.cn

Abstract—The data access bottleneck in memory-intensive
applications has motivated various architectural innovations in
the main memory system, with Near-Data Processing (NDP)
and Compute Express Link (CXL) as two recent prominent
representations. In this work, we focus on addressing the memory
capacity limitation of 3D-stacked NDP systems using CXL-based
extended memory, where the DRAM space of the 3D NDP stacks
is used as the cache of the CXL-based memory. Nevertheless,
this architecture exhibits unique challenges to address the signif-
icant interconnect latency and expensive metadata management
problems. We propose NDPExt, a hardware-software co-design
approach to achieve efficient NDP with extended memory. On
the hardware side, NDPExt uses coarse-grained data streams
rather than conventional fine-grained cachelines to manage the
NDP stacks as a distributed DRAM cache, in order to reduce
metadata cost and apply custom optimizations to different data.
On the software side, NDPExt periodically derives the optimized
cache configuration to allocate the DRAM cache space to each
stream based on profiled miss behaviors. The configuration co-
optimizes capacity sizing, spatial placement, and data replication.
Combining the two techniques allows NDPExt to achieve 1.41×
on average and up to 2.43× performance improvements over
state-of-the-art cache management solutions.

Index Terms—near-data processing, CXL, caching, streams

I. INTRODUCTION

Nowadays, big data, artificial intelligence, and in-memory

databases have posed continuously increasing demands on the

memory systems of modern computers, due to their large

data footprints and excessive access rates. Data accesses to

and from the conventional DRAM-based main memory have

emerged as a crucial performance and energy bottleneck,

known as the “memory wall” [52]. In order to adapt to such

urgent demands of memory-intensive applications, two emerg-

ing architectures have gained significant attention recently. On

one hand, Near-Data Processing (NDP) systems [11], [18],

[23], [26], [38], [41], [46], [55] move the computations close

to where the data reside, thereby enabling high-bandwidth

and low-latency data accesses and reducing data movement

overheads. On the other hand, the Compute Express Link

(CXL) specification [16] outlines the interaction between

the host processor’s memory and the peripheral memories,

making it efficient and convenient to extend system memory

capacities [24], [25], [30], [31], [49], [51].

However, for those NDP systems based on 3D-stacked

memory technologies [35], [54], despite the abundant data

bandwidth to the memory dies and the flexible interconnection

across the logic dies, a significant limitation is the overall

capacity, which is currently limited to only about six stacks

with several gigabytes each [14], [32]. We therefore propose

to extend the current 3D-stacked NDP system with external

memory modules that are connected through the CXL inter-

face. We name such a design as NDP with extended memory.

In this architecture, the memory regions of the NDP stacks

are used as a distributed DRAM cache, while the extended

CXL-based memory serves as the OS-visible physical memory

space. To each core in one of the NDP stacks, some cache

space is local while the others are remote, naturally exhibiting

non-uniform access characteristics similar to the conventional

non-uniform cache architecture (NUCA) [42].

However, NDP has its unique challenges, such as the much

more severe interconnect latencies when accessing remote

cache locations across the 3D memory stacks, and the sub-

stantial overheads of maintaining and looking up the metadata

of the distributed DRAM cache. Previous NUCA solutions [6],

[7], [56], [71] fail to address these two issues, because they

do not sufficiently consider the data placement issue to reduce

the interconnect distance, and they cannot adopt efficient

and flexible data replication due to the metadata constraint.

Even though NDP and NUCA are both well-explored topics,

the above unique challenges make it ineffective to directly

combine existing techniques and call for new innovations.

In this work, we propose NDPExt, an optimized architecture

of NDP with extended memory, leveraging two hardware-

software co-designed optimizations to address the above chal-

lenges. On the hardware side, NDPExt adopts software-defined

data streams [74]–[76] as a coarse-grained abstraction to orga-

nize the distributed DRAM cache as stream caches. Compared

to the traditional fine-grained, cacheline-level management, the

stream cache not only reduces the metadata storage and lookup

cost, but also offers a nice level of abstraction on which we

can apply flexible and customized placement and replication

strategies to individual data streams without much complexity.

On the software side, NDPExt periodically derives the

optimized cache configuration schemes which partition and

allocate the distributed DRAM space to the many different

streams in the workload. The configuration algorithm is ex-

ecuted by a software runtime on the host processor, taking

as input the cache miss behaviors of all the streams that are

profiled by specially designed hardware samplers. We propose

efficient sampling methods that can scale to many different

1648

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

2379-315/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00120

streams and many NDP cores in the system. Compared to

existing NUCA algorithms, our algorithm co-optimizes the

sizing of each stream cache and the placement across different

cores. It also supports more flexible data replication where

each stream can use its own custom replication scheme.

When evaluated on a wide range of memory-intensive

workloads, NDPExt significantly outperforms the state-of-the-

art NUCA solutions [6], [7], [56], [71] by 1.41× on average,

and up to 2.43×. The reasons for such improvements are

mainly two-fold: the much lower metadata access overheads

enabled by our hardware stream cache design, and the better

data placement and replication enabled by our software config-

uration algorithm. Overall, NDPExt represents a novel design

that efficiently alleviates the memory capacity limitation of

3D-stacked NDP systems, and contributes towards large-scale

practical NDP adoption.

II. BACKGROUND AND RELATED WORK

A. Emerging Memory Architectures

We first introduce the two emerging techniques: Near-Data

Processing (NDP) and Compute Express Link (CXL).

Near-Data Processing (NDP). NDP moves processing

logic closer to data locations to enjoy the high bandwidth

and low latency of data access and to reduce the data move-

ment overheads. Currently, NDP systems targeting the main

memory can be broadly categorized into those that retain

the original DIMM form factor, and those that rely on 3D-

stacked memories (e.g., HBM and HMC [35], [54]). DIMM-

based NDP systems add computing logic on the separate

rank-level buffer chips [11], [18], [41], [46], [55] or near

the internal DRAM banks [23], [26], [38]. Because there are

only links between the memory controller and each DIMM,

the interconnect bandwidth among the NDP logic remains

limited if not applying hardware modifications [70], [81],

which restricts their use in complex applications. In contrast,

3D-stacked NDP systems put computing logic on the bottom

dies of 3D memory stacks, where the memory dies on the top

support fast data accesses [1], [8], [17], [20], [21], [43], [45],

[69], [79], [82]. High-bandwidth interconnects could also be

implemented on and between the logic dies with on-chip and

off-chip links, connecting them into a memory network [44],

[58], [60], [78] that supports flexible communication.

However, compared to DIMMs, 3D-stacked memory de-

vices currently suffer from limited capacity due to fundamental

technology difficulties. First, the number of memory stacks

is constrained by the interposer area, with rapidly increasing

cost for more stacks and more complex routing [39]. Second,

the capacity of each stack is constrained by the die-stacking

difficulty and their thermal conductivity. For example, each 3D

stack such as HMC and HBM currently is limited to only a

few gigabytes [35], [54]. Even when connected using multiple

stacks, the total memory capacity is far below that of a typical

modern server, which could have up to several terabytes.

Compute Express Link (CXL). The CXL standard [16] has

enabled efficient and convenient interaction with the peripheral

memories on the I/O buses. It encompasses several protocols

tailored for different use cases. CXL.io provides a basic proto-

col for device configuration on top of PCIe. CXL.cache allows

accelerators to cache data from the host memory and ensures

coherence. CXL.mem maps the device memory addresses into

the host address space for direct load/store accesses.

In this work, we primarily concentrate on the CXL.mem

feature for memory pooling [24], [25], [49], [51], such as

memory expanders as large as 512 GB per module [59]. To

configure a CXL memory pool, at the boot time, the host-

side driver recognizes and initializes the CXL-enabled devices.

This includes mapping the control interface and the actual

CXL memory into the host address space. Once mapped, any

load/store to this space is handled by the CXL controller,

which in turn accesses the corresponding CXL memory.

CXL.mem enables efficient memory accesses with no polling

or syscall software overheads. Compared with conventional

DIMMs and networking-based memory pooling, CXL is more

scalable. First, memory bandwidth can substantially improve

with more PCIe lanes, e.g., with the most recent CXL 3.0

+ PCIe 6.0, the bandwidth ranges from 7.6 GB/s (x1) to

121 GB/s (x16). Second, memory capacity can also grow

using additional CXL switches to reach terabyte-scale pooling.

Third, CXL.mem promises fewer pins without the need for

multiple individual DDR controllers. For instance, an 8-lane

CXL port can offer bandwidth comparable to a DDR5-4800

channel, using 5× fewer pins [12], [25], [49], [66].

B. Non-Uniform Cache Architecture (NUCA)

In classical chip multi-processors, the growing chip area and

the increasing core count both lead to the increasingly larger

last-level cache (LLC) capacity realized through multiple indi-

vidual banks spread across the chip. The access latencies from

a specific core to these different banks become non-uniform,

motivating prior research to optimize such a non-uniform

cache architecture (NUCA) [42]. Unlike traditional centralized

caches, NUCA requires complex placement, migration, and

replication strategies. NUCA designs can be categorized into

static (S-NUCA) and dynamic (D-NUCA), based on how

flexibly a cacheline could be migrated across banks. D-NUCA

can be further classified as shared-cache-based [6], [13], [28],

[56], [71] and private-cache-based [5], [9], [47], [61]. Shared-

cache-based designs view all the banks as a shared cache and

remap cachelines to different locations, while private-cache-

based designs use cache coherence protocols to look up and

migrate cachelines among the banks. Several state-of-the-art

shared-cache-based D-NUCA designs have considered fine-

grained and access-pattern-aware data placement. Jigsaw [6]

partitioned the cache across multiple threads according to way-

based sampling results. Whirlpool [56] distinguished different

data structures during partitioning. Nexus [71] further sup-

ported replication for read-only data.

C. Stream Basics

Streams are a coarse-grained abstraction that expresses the

memory address range and the expected access pattern within

the range [57]. In this paper, we mainly focus on two types of

1649

�������� 		

���
����

��������

�	������
�����������

�	��������

�������������

�	�
�����

�	������

���������������������� �����������

Fig. 1. Proposed architecture of NDP with extended memory. The NDP stacks
use dedicated extended memory connected using CXL, which can be directly
accessed without involving the host processor.

streams: affine and indirect. An affine stream has statically

determined access addresses following an affine function,

e.g., addr = a× i+b, resembling the common sequential and

strided access patterns. On the other hand, the addresses in an

indirect stream are dynamically determined by the input data,

e.g., addr = s[i] where s is another affine or indirect stream.

Distinguishing between affine and indirect streams provides

hints about the access patterns for different data in the work-

load, enabling us to use different management mechanisms

tailored for each address range. Prior work also used stream

programming hints to facilitate prefetching [74], instruction

offloading [75], [76], and automated parallelization [73].

III. NDP WITH EXTENDED MEMORY

In this work, we focus on 3D-stacked NDP systems and

address their main limitation of memory capacity, as discussed

in Section II-A. Following the seminal idea of memory hi-

erarchy in conventional computer architecture research, the

fast but small NDP memory devices could be extended with

more traditional memory modules that have larger capacity

but possibly slower access speed. We call this architecture

NDP with extended memory. While adding extended memory

could now support large-scale applications, it does incur higher

latency and energy to access, and may offset the benefits

of NDP if not well designed. Therefore, careful architectural

optimizations must be done to ensure we could achieve the

best of both worlds, i.e., the fast access speed of NDP, and the

large memory capacity of extended memory. We first discuss

the choices of the overall architecture in Section III-A, and its

specific design challenges in Section III-B. We propose novel

optimizations to address the challenges in the next sections.

A. Overall Architecture

NDP. Our NDP modules align with prior 3D-stacked NDP

designs [1], [8], [17], [20], [21], [43], [45], [69], [79], [82].

As shown in Fig. 1, several NDP stacks are interconnected

with inter-stack links. Each stack consists of 16 NDP units

arranged in an internal 4×4 mesh, with each NDP unit

including the computing logic on the bottom die and the

corresponding memory region above. The NDP unit is the

basic hardware granularity in our architecture. We use general-

purpose, energy-efficient cores as the NDP logic, but other

types such as reconfigurable logic and ASIC can also fit in

our architecture. Besides the computing logic, each unit has a

memory controller to access the corresponding local memory,

and a router to access remote memory regions through the

inter-stack and intra-stack networks. We connect the NDP

modules with the host processor through PCIe interfaces [1],

similar to accelerators and GPUs. Coarse-grained program

kernels could be offloaded to the NDP modules.

Connecting NDP to extended memory. We further connect

CXL-based extended memory modules to the above NDP

stacks, through a central CXL controller as shown in Fig. 1.

The requests from NDP are parsed by the CXL endpoint in

the extended memory, which then issues DDR commands to

the corresponding memory channels. In this design, the NDP

system and the extended memory module can be manufactured

fully independently by different vendors to save the integration

cost, as long as both expose the standard CXL interface

to the other. The host processor also does not need any

modification. We note that while we specifically use CXL,

other technologies, such as adding traditional DIMM-based

memory, or reusing the host memory by relaying accesses

through the host processor, are also possible. Nevertheless, it

is believed that CXL has much better scalability in bandwidth,

capacity, and pin count than traditional DDR (Section II-A),

and will gradually replace DDR in the future [12]. Because

our system does not have any backward-compatibility issues

as CPUs and GPUs, CXL is a particularly suitable choice.

Cache vs. part-of-memory. As we now have both the fast

and small NDP memory and the slow and large extended

memory, another decision to make is whether to manage the

NDP as a cache of the extended memory space, or expose

both as parts of the physical memory visible to the OS. This

is a well-studied debate in previous heterogeneous memory

research [37], [50], [53], [62], [67], [72]. In this work, we

assume a cache-based approach, where data are initially loaded

into the extended memory, and fetched on demand to the NDP

stacks at runtime. This choice is preferred for its simplicity and

transparency to the application software. In addition, the NDP

stack capacity is relatively small compared to the extended

memory, so treating the former as part of the memory does

not significantly increase the overall capacity. Furthermore, we

manage the combination of the NDP memory across all stacks

as a global, distributed cache. Compared to making each NDP

unit use its own private cache space, this would enable better

data sharing and reuse, especially for applications with fine-

grained irregular access patterns like graph computing.

B. Design Challenges

To our best knowledge, NDPExt is the first work to use

the entire NDP memory as a cache, and to extend the system

capacity using CXL-based memory. The key design goal in

NDPExt is to efficiently manage the cache, which is composed

of the 3D-stacked DRAM distributed across the many NDP

units. We can quickly see the similarity between this architec-

1650

NDP NUCA

(a)

0.00

0.25

0.50

0.75

1.00

P
er

fo
rm

an
ce

 B
re

ak
d
o
w

n
Metadata

Cache

Memory

Interconnect

Computing

!" !#

$

��������
�
��

���

�
�

�������������������
	���������������
	������%�����������

 $ �
!" !#

	���
!�����

(b)

Fig. 2. (a) Comparison of the access latency breakdown in NDP and NUCA
systems. (b) Challenges of a distributed DRAM cache in NDP systems.

ture and the conventional NUCA systems, which motivates us

to design optimized data access and placement mechanisms.

Nevertheless, despite the same distributed cache organi-

zation with non-uniform access characteristics, NDP also

exhibits unique challenges. To illustrate these differences, we

simulate the PageRank workload on both systems using a

simple static cacheline-interleaving policy. Both systems use

64 (processor or NDP) cores. The NUCA system mimics

Jigsaw [6], with a 512 kB LLC bank per core, and a 9-

cycle access latency plus a 3-cycle routing latency. The NDP

system uses HMC-style memory, following Table II. Fig. 2(a)

shows their average access latency breakdown. We observe

two unique bottlenecks in NDP illustrated in Fig. 2(b).

(1) Interconnect overheads. In conventional static NUCA

systems, all data elements are randomly cached across all

units, resulting in high hop counts to gather all data to

one core. By using the same random placement policy, the

NDP system incurs a much higher latency portion on the

interconnect (intra-stack and inter-stack) compared to the

NUCA system, 32% vs. 13%. This overhead greatly affects the

overall performance. NDP has higher interconnect latencies

than NUCA because there are usually more NDP cores than

NUCA cores and thus more interconnect hops, and we need

to go off-chip more often due to the many 3D memory stacks.

Actually, thanks to the much larger capacity, the NDP system

achieves a significantly higher cache hit rate than the NUCA

one (70% vs. 47%), which contributes to the much smaller

portion of the next-level memory. However, most of these

hits still exhibit long latencies, as they may be served from a

remote NDP stack of multiple hops away.

(2) Metadata overheads. In the NDP system, the dis-

tributed DRAM cache is too large to have its metadata

(i.e., tags) stored fully on-chip on the logic die, an issue

similar to prior hardware-based DRAM caches [37], [50], [62],

[67], [69], [72]. For instance, for a 256 MB DRAM cache,

the metadata would need 16 MB space assuming each 64 B

cacheline needs a 4-byte entry. Such a size cannot be entirely

placed on-chip. As a result, there is significant extra access

traffic (one metadata lookup per cacheline access, illustrated

in Fig. 2(b)) consumed on accessing the cache metadata stored

in the DRAM of local/remote NDP stacks. We observe that

10% of cycles are spent on remote tag accesses.

Consequently, design optimizations for the NDP cache

should incorporate additional considerations beyond the ex-

isting NUCA schemes. Specifically, previous designs such

as Jigsaw [6], CDCS [7], and Whirlpool [56] proposed to

monitor the data use patterns of each core, and iteratively

adjust the data placement to move data to the “center-of-mass”

locations to reduce access distances. For Fig. 2(b), by placing

the common data B in the middle of the T0 and T1 units,

the interconnect hops can decrease from 4.5 to 1.5. If the

cache capacity is insufficient, some data are gradually evicted

to nearby places. These approaches have two issues. First, they

treat the cache space at the center of the interconnect more

valuable than the corner ones, because the preferred center-

of-mass data locations are more likely to fall into the center

NDP units. Second, if not all data can be put in the desired

locations, some are placed at suboptimal positions, incurring

extra hops. Both issues may not be severe in conventional

NUCA because the interconnect impact is only a few cycles,

but with NDP, data placement should be carefully handled.

One way to alleviate the long interconnect distance issue

is to apply data replication, i.e., cache multiple data copies at

different places so each core can get a nearby replica. Data

replication is particularly suitable for our NDP scenario, where

we could trade the abundant DRAM cache capacity for lower

access distances. For example, in Fig. 2(b) if we replicate data

B at both T0 and T1, we can eliminate remote accesses to it

on the interconnect. Prior NUCA systems like R-NUCA [28]

and Nexus [71] used a global replication degree that was

applied uniformly to all the read-only data and instructions.

This rather rigid scheme may not result in the best cache

utilization, but the fine-grained cacheline-level management

prohibits more complex designs. As mentioned above, the

metadata lookup cost is already quite high in the NDP cache,

not yet considering the needs of flexible data replication.

C. Our Approaches

NDPExt addresses the above issues using two co-designed

techniques. On the hardware side (Section IV), NDPExt uses a

stream cache organization on the NDP memory, with a coarse-

grained stream abstraction instead of tracking fine-grained

cachelines. The coarse granularity alleviates metadata cost and

also supports more flexible data placement and replication at

the stream level. On the software side (Section V), NDPExt

uses a runtime on the host processor to periodically derive

optimized cache configuration schemes that allocate the NDP

cache space to the streams, based on efficient sampling tech-

niques to profile the miss behaviors, and a novel algorithm

to co-optimize capacity sizing, spatial placement, and data

replication. Better allocation near data consumers and data

replication both reduce the interconnect overheads and thus

decrease the hit latency. However, replicating data may reduce

the cache hit rate as well. Our algorithm carefully balances this

hit rate vs. hit latency tradeoff.

IV. STREAM CACHE DESIGN

NDPExt adopts software-defined streams as a coarse-

grained abstraction for caching, in order to support flexible

1651

data placement and replication, without excessive metadata

overheads. Compared to conventional NUCA, tracking streams

rather than individual cachelines reduces metadata storage

and lookup cost. Furthermore, we can now use customized

replication schemes for each stream rather than being limited

to a single global policy as in R-NUCA [28] and Nexus [71].

A. Using Streams for NDP Caching

NDP is mainly used for memory-intensive applications,

where there are large amounts of data to be accessed. These

data are typically organized into certain dense or sparse struc-

tures and accessed through well-defined patterns. Streams, in-

cluding the affine and indirect types, are thus a suitable coarse-

grained abstraction to model such NDP data. For example,

in parallelized graph traversal, the vertices are partitioned to

multiple threads, and the edge list is sequentially accessed to

obtain the outgoing edges for each vertex. Both the vertex list

and the edge list are affine streams. In contrast, the order of

the visited boolean array depends on the edge list, making

it an indirect stream. As another example, our quantitative

investigation finds that over 99% data accesses in PageRank

in Fig. 2(a) can be captured by streams, with 55% as affine and

44% as indirect. These accesses are to various data structures

like the vertex list, the edge list, and the rank score array. Many

other NDP workloads also exhibit ample stream accesses [75].

Previous work has demonstrated that the stream model can

effectively capture the access behaviors of various applica-

tions, and can be used to facilitate instruction prefetching [74],

instruction offloading [75], [76], and automated paralleliza-

tion [73]. We are the first to adopt the stream model to simplify

DRAM cache organization and lookup. We adopt a similar

model to prior work [74]–[76]. Streams are configured using

the following API, which is made after each data allocation

and before actual accesses to the data structure.

configure stream(type, base, size, elemSize,
[stride, length, order])

All streams should provide the first four arguments to config-

ure the stream type (affine or indirect), the starting address,

the total size, and the size of each element. Multi-dimensional

affine streams can optionally supply the last three arguments,

if the access order is different from the storage order, e.g.,

column-major accesses to a row-major matrix. We use similar

strategies as in previous work [76] to support reordered affine

iterators for at most 3 dimensions. The order is given in the 3-

bit order argument. The hardware would cache the elements

following their access order. Element reordering significantly

improves data spatial locality, resulting in higher hit rates and

reduced unnecessary DRAM row activations.

Table I explains the arguments in detail. These configu-

rations are stored with a unique stream ID called sid, and

will be sent to the hardware for stream management, as

discussed below. Similar to previous work [73]–[76], currently

we only support manually inserting stream configuration hints,

and defer automatic compiler-based methods to future work.

Note that the rest hardware components, such as the upper-

TABLE I
STREAM METADATA.

Field Bits Description

Common

sid 9 Stream ID
base 48 Base physical address
size 48 Total stream size
elemSize 4 Element size
readOnly 1 Read-only or not

Affine only
stride 48×3 Access stride along dim X/Y/Z
length 48×2 Stream length along dim Y/Z
order 3 Access dimension order

level SRAM caches, still work with the conventional physical-

address-based cachelines, and are not affected.

B. Overall Caching Scheme

Similar to shared-cache-based D-NUCA, NDPExt maintains

a remapping scheme to determine where a stream could be

cached. Each stream could be remapped to multiple cache

locations if it is read-only, supporting data replication to reduce

the interconnect overheads when accessed. As we maintain

the remapping metadata in the unit of coarse-grained streams

rather than individual fine-grained cachelines, the metadata

storage and lookup cost is well confined. Furthermore, the

low-cost metadata scheme also enables us to use more complex

replication policies, i.e., each stream is allowed to have its own

replication scheme. This is the key difference from previous

NUCA designs like Nexus [71].

We now describe the overall caching scheme in detail.

Recall that the whole system is composed of multiple NDP

units, each of which contains some local DRAM space that

is used as part of the distributed DRAM cache capacity. Each

stream is allocated a specific amount of cache space (in units

of DRAM rows) from each NDP unit in the system. To further

support data replication, the allocated cache space in these

NDP units can be partitioned into multiple replication groups,

and each group can independently cache a copy. For example,

in Fig. 3(a), a specific stream A has cache space in all the

four NDP units, organized into two replication groups of (0, 1)

and (2, 3). The memory accesses missed from the local SRAM

caches (�) will first look up the local metadata structures (SLB

and ATA, described later in Section IV-C), and then are either

served by the local memory controller (�a, �a) or routed to

a remote NDP unit within its replication group (�b, �b). If

the data are not cached, we fetch from the extended memory.

As illustrated in Fig. 3(b), we use a structure called remap
shares (RShares) to record the allocation of DRAM cache

space to streams. RShares is a vector whose length is equal

to the number of NDP units. Each item represents how many

DRAM rows in the corresponding NDP unit are allocated to

this stream as cache space. The exact locations are kept in

another remap row base vector RRowBase. We use another

structure called RGroups of the same length as RShares, to

represent the replication group ID that each NDP unit belongs

to. For example, with RShares = (8,6,4,2) and RGroups =
(0,0,1,1), the first two units use 8 and 6 DRAM rows to

1652

&'()�*+,)-

&'().,�*+/

010

23�
��45�6

&'()�*+,)�

���)����6	

010

23�

�45�6

�789:��
0;;<=99

>?@�0A0�>>

B�C)9D<=E)�FFG7=;)�H��=<)B	
�C

��=E=�D)�'
II

J K > >L
��7�<=9

��FM	�9=

�0

�N�)
��
���,)
�O�0�0

�N�,)
��

,�,��)�N�,)
��

��=EP)QR)�)IS>?AKI
>?AKQ ��=EP)J>)�)T@
L

L

��FM	�9=
U)���9=D

�:D)M:D7)<=E��)�;;<=99
<FMV)>?AKIW)F��9=DV)AR

��97

B=C)�'�)E=EF<8)��8FHD

0QRX0IS

B�C)�Y=<Y:=M)���7:��)9�7=E=

&'()�*+,)

���)����6	

010

23	

�45�6

0>X0A@

�

��

��

&'()�*+,)�

&'().,�*+/

010

23�
��45	6

�

��

>?AW)��:D)> J >?>0>> >
K >?>AK> >
I >?>�>> A
R >?A>>> A

F�DM�<=)<=�F��:�H<=;

9:;)�)H�:D)�' �7�<=9 ��FM��9= ��<FH�9

>?AW)��:D)A
>?AW)��:D)R
>?AW)��:D)Q

��=EP)QR ��=EP)ISL
IR ��=EP)IR S ��=EP)S L

L

���:�=)9D<=�E9
:�;:<=�D)9D<=�E9

B�C)9D<=�E)<=E��)D���=

B;C)���:�=)D��)�<<�8)B0�0C
��� '�D�

>?AK>)U)>?I
0>X0A@

�=��:��D:F�)�<FH�)A

�=��:��D:F�)�<FH�)>

0AKX0QA

Fig. 3. (a) Overall caching scheme. SRAM caches and memory controllers are omitted. (b) Stream remap table for centralized remapping information. (c)
Stream lookahead buffer (SLB) of unit 0. (d) Affine tag array (ATA) of unit 1. The valid and dirty bits are omitted. (e) Data layouts in DRAM caches for
affine and indirect streams.

cache the stream as replication group 0, while the next two

units contribute 4 and 2 DRAM rows to form replication group

1. Within each replication group, we use hash functions to

determine the exact location for each element of the stream [6].

The above information fully determines the stream-based,

distributed DRAM caching scheme in NDPExt. Such a scheme

is configured by the runtime software (Section V) and enforced

by the hardware (Section IV-C). To support dynamic changes

in program behaviors, the scheme is also periodically recon-

figured by the runtime. The runtime maintains a centralized

stream remap table as Fig. 3(b) to keep the information,

stored in the host processor memory together with the stream

configurations (Table I). Currently, NDPExt supports up to 512

streams (9-bit sid) and 64 NDP units. Each item in RShares,

RRowBase, and RGroups is 16 bits (at most 64k DRAM rows

allocated in each NDP unit), 18 bits (256k DRAM rows in

total per NDP unit), and 6 bits (maximum 64 groups). In total

the stream remap table is 512×64×40bits = 160kB.

Replication only for read-only streams. NDPExt only al-

lows replication of read-only streams. For read-write streams,

NDPExt allows only a single global replication group, so

there is only a single copy of the stream data in the cache,

ensuring coherence. To detect read-only streams, NDPExt

keeps a readOnly bit for each stream, initialized to 1. In the

event of a write operation to a read-only stream, an exception

is sent to the host processor, which updates the stream remap

table states [6], [7], [56], [71]. As the host processor has the

information of all remap shares for all remap groups, it then

sends invalidates to the relevant NDP units. No writebacks

are needed because the data are still clean thus far, and

this exception only happens at most once per stream. So the

overhead is minor. Only stream status changes involve the host

processor, while subsequent writes are handled by the NDP

units. Such exceptions are rare and incur minor overheads in

typical applications [28]. Alternatively, we can augment the

stream API to let programmers mark read-only streams.

C. Hardware Structures

Besides the stream remap table as the global metadata, we

further design a hardware structure called stream lookahead

buffer (SLB) to locally cache the metadata in each NDP unit

for faster probing, similar to TLB vs. page table. Fig. 3(c)

shows the structure of SLB. Each SLB has 32 entries, one

entry for one stream. Each entry is simplified and thus

consumes less space compared to the full stream remap table

entry. Specifically, we avoid storing RGroups by zeroing out all

RShares items except for those in the same replication group,

because only the cache space within the same group could be

used by this NDP core. We also store only one remap row base

item in RRowBase that corresponds to this NDP unit. Overall,

each SLB only uses 4.6 kB of SRAM space, comparable to

previous NDP hardware metadata cost [69].

Given a miss request, the physical address is searched in

the local SLB using a modified content-addressable memory

(CAM) structure, to identify the stream it falls in, by com-

paring with the base and size fields of each entry. It further

calculates the corresponding element ID using the elemSize.

In Fig. 3(c), 0x5CA1AB00 is within stream 0x1 and corresponds

to an element ID of 44. To conduct range matching, we use a

ternary CAM (TCAM) design [2]. We search for the common

prefix of base and base+size, while the rest lower bits are

set to “don’t care”. Then we check each of the hit ranges with

digital comparators to identify the actual hit.

If the address misses in the SLB, we ask the host processor

to check the complete stream remap table and refill the SLB

entry. This method, akin to virtual memory translation, has

been previously employed in NUCA systems [6], [7], [56],

[71]. If the address is not identified as a stream element,

we bypass the DRAM cache and directly access the ex-

tended memory. This case is rare (less than 0.1% in our

experiments), because most of such data, e.g., local variables,

are covered within the local SRAM caches. For simplicity,

NDPExt currently supports associating one address with at

most one stream. We ignore the rare cases where the same data

participate in different access patterns in some applications.

Otherwise, coherence is not guaranteed as these streams are

separately cached and synonyms appear. On the other hand,

dynamic-sized streams can be supported with oversubscrip-

tion, e.g., over-allocating space, and updating stream configu-

1653

rations and invalidating cached data for each memory realloca-

tion. Untouched data are not cached, so oversubscription does

not hurt performance. The rare stream configuration updates

are done by the host processor.

With the obtained element ID in the stream, we further

determine which NDP unit within this replication group should

cache this element, using the RShares information in the SLB

entry. For example in Fig. 3(c), the replication group has 8 and

6 DRAM rows in NDP units 0 and 1 as cache space. After

hashing the element ID 44, we can determine this element is

at NDP unit 1, with a certain DRAM row offset within its total

6 rows. Then the request is sent to the destination NDP unit

through the interconnect. At the destination unit, we look up

the SLB again to obtain the remap row base for this stream,

and add the row offset to it to get the final DRAM row address.

With the DRAM row address, the last step is to determine

the DRAM column address of the target element. NDPExt

adopts different schemes for the two stream types.

Affine streams. Affine streams use a simple SRAM-based

tag array (called the affine tag array, ATA, in Fig. 3(d)) to look

up the exact DRAM column address of an element. We use a

cache block size of 1 kB for affine streams, i.e., a 4-byte tag for

each 1 kB data. A set-associative structure suffices for the ATA

since affine streams are mostly regular. The block size should

be large enough to amortize the tag overheads, but not exceed

the available spatial locality. However, even with large 1 kB

blocks, the required SRAM tag size is still too large to cover

the entire 256 MB local DRAM. Fortunately, affine streams

mostly exhibit scan-like patterns with mainly spatial locality,

and do not need large cache space. Thus we restrict the total

cache space per NDP unit for all affine streams to be within

16 MB, reducing the SRAM tags to a reasonable 64 kB on-

chip storage. If there are too many streams or some streams

are too long, they would miss in the DRAM cache and are

accessed (mostly in a streaming manner) from the extended

memory. Section VII-C assesses the performance impact.

Indirect streams. Data elements in indirect streams are

cached individually without forming a larger block, consid-

ering that indirect streams exhibit little spatial locality, and

sequentially prefetching additional data is useless. Because

the caching granularity is a single element, much smaller than

the block size in affine streams, indirect streams cannot use

SRAM-based tag storage. To support flexible element sizes,

NDPExt stores the tag with the data element, a strategy used in

some DRAM cache designs [62]. The DRAM column address

is also obtained through a hash function on the element ID.

Then, a single DRAM access is performed to get both the

tag and the data. Essentially, this is a direct-mapped cache

where the location of an element is completely determined by

hashing. Nevertheless, prior DRAM cache literature showed

that high associativities only brought marginal hit rate bene-

fits but introduced overheads for tags and replacement [62].

Some DRAM caches used small associativities with way

prediction [15], [36]. We regard this as a potential alternative

design. For simplicity we adopt the direct-mapped approach,

but evaluate higher associativities in Section VII-C.

V. CACHE CONFIGURATION POLICIES

As mentioned before, the software runtime on the host

processor periodically (e.g., every 50 million cycles [6], called

an epoch) generates the cache configuration, i.e., the stream

remap table including RShares, RRowBase, and RGroups. Such

a configuration essentially determines how to partition and

allocate the DRAM cache space of all NDP units to the

streams to achieve the highest overall efficiency. This section

describes the configuration policies. First, we use hardware

samplers to obtain the miss curve statistics of the data streams

to guide our cache configuration (Section V-A), and develop

an algorithm to assign the limited samplers to cover the many

data streams in the workload (Section V-B). With the miss

curve of each stream, we propose an effective approach to

derive the optimized cache configuration (Section V-C), in

which each stream can use its own best replication scheme,

and the sizing and placement are co-optimized in one loop to

avoid the inefficiencies in previous NUCA designs [6], [7],

[56]. Finally, we discuss an optimization leveraging consistent

hashing, to reduce data movements and cache misses during

cache reconfiguration (Section V-D).

A. Set-Based Miss Curve Samplers

State-of-the-art NUCA partitioning policies [6], [7], [56]

heavily rely on the miss curves (the miss rates at different

cache capacities) of the workload to assign cache space to

the data that can benefit the most from the extra space.

Conventional LLCs usually have high associativities and thus

can easily adopt way partitioning. However, as in Section IV,

NDPExt uses DRAM caches with low associativities or even as

direct-mapped, hence it can only be partitioned along sets. This

poses challenges for miss curve profiling, as set partitioning

does not have the stack property (if an access hits at a capacity

C, it must also hit at capacities larger than C). As a result,

previous utility monitor designs [63], where a single size-C
monitor can capture the miss curve at all capacities from 1 to

C, cannot be used anymore.

Nevertheless, because NDPExt uses hash functions to de-

termine the set, we can assume all sets see relatively uniform

accesses. We can thus sample a small number (i.e., k = 32) of

sets to infer the overall miss behaviors of all sets. Specifically,

for a stream that uses a total of K sets across multiple NDP

units, if we sample k sets in one unit, we can scale the miss

statistics by K/k for the total misses of this stream [6], [63].

Accordingly, we design our set-based hardware miss curve

sampler as follows. Each sampler is used to derive the miss

curve for one stream, by simultaneously capturing c = 64 dif-

ferent capacity cases, ranging from 32 kB to 256 MB (the full

DRAM space per NDP unit). We geometrically partition [7]

this range with a per-step multiplicative factor of 1.16 =
63
√

256MB/32kB. The complete curve can be interpolated as

in [6]. Each capacity case needs k = 32 sets. We use simple

static interleaving [63] to select the k sample sets among the

total capacity in each case, and count the hits/misses to these

sample sets. Without storing data, each set occupies 4 bytes for

the address. In total, a sampler requires 32×64×4B = 8kB

1654

Z�
��
��Z
��
��
�

Z�
��
��Z
��
�Z

Z

Z

#

"

#

[

\��� Z�����

#

(a)

"

#

[

]
64 128 256 512

Number of streams
(b)

0.00

0.15

0.30

0.45

A
ss

ig
n
m

en
t

T
im

e
(m

s)

Fig. 4. (a) Modeling sampler assignment as a max-flow problem. The bold
edges indicate the streams are selected by those units. (b) Host processor
execution time to assign different numbers of streams.

storage. We put four samplers per unit, which are 32 kB, easily

implemented with on-chip SRAM. Our sampler configuration

is similar to prior work [6], [71] and could result in sufficient

accuracy, which we further evaluate in Section VII-C.

B. Assigning Samplers to Streams

As described in Section V-A, each NDP unit has four miss

curve samplers that each can monitor one stream. A constraint

is that each sampler can only monitor a stream that is accessed

by the local NDP unit. But each stream may be accessed by

multiple units, so any sampler in these units can be used.

Therefore, we need to collaboratively assign the samplers in

different NDP units to the data streams in the workload, aiming

to cover as many streams as possible.

First of all, we add a 512-length bitvector in each NDP unit,

indicating which streams are accessed in this unit during this

epoch. At the end of each epoch, the bitvectors of all units

are sent to the host processor, as the input to determine the

sampler assignment for the next epoch.

We then formalize the sampler assignment problem as a

max-flow problem, which can be solved by the runtime soft-

ware on the host processor, e.g., with the efficient Edmonds-

Karp algorithm [19]. Specifically, as in Fig. 4(a), we construct

a directed bipartite graph with NDP units and streams as the

nodes. A unit-weight edge is added between an NDP unit and

a stream if this unit has accessed this stream. We then connect

the “super source” node to each unit, with an edge of weight

S = 4, which is the number of samplers per unit, and thus

the number of streams to be sampled on this unit. The “super

sink” node is connected to all streams, with a unit-weight edge

from each stream node. The max-flow algorithm identifies the

maximum flow from the super source node to the super sink

node while respecting to the capacity (weight) of each edge.

The result would indicate that each stream node receives a

unit flow from one of the unit nodes, and each unit node

at most sends out S units of flow. This corresponds to the

sampler assignment constraints. For example as shown by the

bold edges in Fig. 4(a), if unit 0 samples stream 0, unit 1

samples streams 1 and 2, and unit 2 samples stream 3, all the

edge capacity restrictions are satisfied while the total flow is

maximized, because each stream node can flow to the super

sink node, indicating every stream is sampled. This algorithm

runs fast on the host processor, in less than half a millisecond

to assign 512 streams as in Fig. 4(b).

When there are too many streams, it is possible that a

fully covered solution cannot be obtained, meaning that some

streams are not captured by any sampler. In these rare cases,

we first sample a subset of the streams and buffer their results

in the host processor, and in the next epoch sample the rest

of the streams, until covering all streams. However, in our

evaluated workloads we never encounter such a case.

C. Configuration Algorithm

With the miss curve information of all the streams sent to

the host processor at the end of an epoch, the runtime will start

its reconfiguration process to find the best scheme to allocate

the DRAM cache space to the streams. Traditionally in NUCA,

the sizing problem (i.e., how much capacity to allocate to each

stream) and the placement problem (i.e., from which banks to

obtain the allocated capacity) are solved separately [6], [7],

[56]. Specifically, to determine sizing, the lookahead algorithm

and its variants [6], [63] first identify the steepest slope at the

current positions on all the miss curves, which implies the

maximum utility margin. Then it allocates extra cache space

to this data stream. However, in NDP systems, we know that

the interconnect is a key bottleneck (Section III-B), calling for

much more careful placement decisions. Furthermore, existing

NUCA solutions have only limited support for data replication,

requiring all data to apply the same replication degree.

To overcome these issues, we propose our configuration

algorithm, with two key advantages. First, it determines the

size of each stream cache and the corresponding placement

across NDP units simultaneously in an iterative manner, so

the interconnect overheads are thoroughly considered in the

process. Second, it enables more flexible data replication,

where each stream can use different replication schemes, cor-

responding to the replication groups (RGroups) in Section IV.

Algorithm 1 illustrates the algorithm details. The allocCap
array stores the cache capacity allocated on each NDP unit

to each stream. It is initialized to all zeros. At each iteration,

the algorithm first finds the next steepest slope among the

miss curves, and allocates cache space to this stream (Line 4),

similar to the conventional lookahead algorithm [6], [63]. The

space is allocated to all the units that have accessed this

stream (i.e., accUnits[sid], identified by the bitvector in

Section V-B), assuming that each unit forms its own replication

group at the beginning (Lines 6 to 8). When the available

NDP memory is sufficient, this approach ensures maximum

data replication and minimizes access distances.

As the allocation goes on, at some point we may fail

to allocate the desired space on a unit. In this case, we

consider either extending the current replication group to use

space from nearby units, or merging two existing groups to

reallocate space for the current unit. Note that these changes

to the replication groups are for a specific stream, so different

streams could evolve into different replication schemes. In a

nutshell, each stream is initially replicated locally in each unit

with the maximum replication degree. Later when local space

is used up, we gradually use nearby unit space or reduce the

replication degree to free up more space.

1655

Algorithm 1: Cache configuration.

input: number of streams S, number of NDP units N, stream miss
curves missCurves[S], lists of units that have accessed each
stream accUnits[S][].

output: allocated capacity on each unit to each stream
allocCap[N][S].

1 allocCap ← all 0;
2 do
3 found ← False;
4 sid, segSize ← NextSteepestSlopeSeg(missCurves);
5 for uid in accUnits[sid] do
6 if HasAvailSpace(segSize) then
7 allocCap[uid][sid]+ = segSize;
8 continue;

9 extendUnit ← NearestAvailableUnit(uid) ;
10 if extendUnit then
11 extendGroup ← (curRepGroup, extendUnit);
12 extendUtil ← CalcUtil(extendGroup) ;
13 found ← True;

14 groupA ← FindMergeGroup(uid) ;
15 groupB ← NearestGroup(groupA) ;
16 if groupA and groupB then
17 mergeGroup ← (groupA, groupB) ;
18 mergeUtil ← CalcUtil(mergeGroup) ;
19 found ← True;

20 if found then
21 allocCap ← AdjustAlloc(allocCap, extendUtil,

extendGroup, mergeUtil, mergeGroup);

22 while found;

To extend the current group (Lines 9 to 13), we start by

searching for nearby units with sufficient space to accommo-

date the allocation. We use CalcUtil to select the grouping

case with the highest utility. We apply an attenuation factor to

the nearby unit to reflect the extra remote access cost when

calculating the gained utility of this allocation. The attenuation

factor is defined as the DRAM access latency divided by

the sum of the DRAM latency and the interconnect latency,

so farther units have smaller factors, decreasing their utility

values. The utility of the extended group is the sum of the

utilities of the units in it, weighted by their allocated space.

For example, an existing replication group may contain 60 and

40 elements in units A and B, respectively. Its utility is thus

60+ 40× kAB = 96 for A and 40+ 60× kBA = 94 for B, in

total 190. We assume all attenuation factors k are 0.9 here.

To extend the next 20-element space to a nearby unit C, we

calculate the utility of A as 60+ 40× kAB + 20× kAC = 114.

Similarly the utility of B is 112. The utility of the extended

group is thus 226. Note that unit C does not access this stream

so its utility contribution is 0.

To merge existing groups (Lines 14 to 19), we first find

the group that contains the current unit, and has the lowest

group utility (groupA). The low utility ensures that squeezing

its space does not significantly affect performance. Then we

try to merge this group with the nearest group of the same

stream (groupB), to form a larger group. After merging, the

algorithm frees up some elements of the stream in the current

unit, and replaces them with those same ones in the units of the

other merged group, which are remote. It then recalculates the

group utility, where the attenuation factor is applied because

some elements are now cached remotely.

Following the previous example, instead of extending to

unit C, we merge the replication group (A, B) with another

qualified replication group containing unit D with the same

100 elements. After merging, only one copy of the 100

elements are distributed to the three units in the new group,

e.g., 30, 30, 40 for A, B, D, respectively. Hence the total

utility for this stream decreases from 290 (190 for group A

and B, plus 100 for D) to 280 (93 + 93 + 94 for A, B, D), but

some space has been freed up. Note that the stream selected

to be merged may not necessarily be the same as the stream

currently under allocation. As long as a replication group could

free up some space from merging, the allocation can continue.

Finally, the algorithm compares the gained utilities of group

extending and group merging, and selects the better one

(Line 21). By employing this iterative algorithm, NDPExt is

able to simultaneously allocate and place cache space for each

stream, with similar cost as in [6].

Similar to prior conventional NUCA placement schemes [7],

our configuration process cannot always guarantee the global

optimal placement. But it still works well in practice. For

example, while sampling is based on previous epochs, using

history to predict future is a widely used technique in computer

architecture [33], [63]. Similarly, while our placement strate-

gies are greedy, previous work has empirically demonstrated

lookahead algorithms [63] work well. We leave complicated

policies for future work. Furthermore, our configuration al-

gorithm is able to result in proper degrees of replication

for read-only streams to balance between high cache hit

rates (less replication) and low remote access latencies (more

replication). We find that for applications with most read-

only streams, a modest amount of cache space is used by

replicated data, e.g., up to 33% and 27% for mv and gnn,

respectively. For backprop that contains two phases, the read-

intensive layerforward kernel uses 91% cache space for

replication, while no replication occurs in the adjustweights
kernel which needs to write data.

D. Reducing Data Movements in Reconfiguration

After each periodical reconfiguration, the cache configura-

tion is sent to the NDP stacks and applied. Prior work [6],

[7] employed bulk invalidation to invalidate all cached data if

the space was reassigned. Because the reconfiguration epoch

is sufficiently long, e.g., 50 million cycles, even though the

bulk invalidation is slow and takes up to 300k cycles [6], it

does not significantly impact the overall performance.

Nevertheless, to reduce data movements and cache misses,

we discuss an optimization in NDPExt that adopts consistent

hashing [40] to keep as many cached data unchanged as pos-

sible. For each stream, we consider each possible DRAM row

location (RRowBase) in each NDP unit as an individual spot

in the circular space of consistent hashing, in total 65536×64

spots. During reconfiguration, NDPExt remaps the stream data

to the nearest spot leveraging consistent hashing, therefore

saving data movements. In our experiments, consistent hashing

1656

TABLE II
SYSTEM CONFIGURATIONS.

NDP system
4×2 inter-stack mesh, 16 NDP cores per stack;
128 NDP cores in total

NDP core 2 GHz, in-order
L1I 2-way, 32 kB per core, 64 B cachelines, LRU
L1D 4-way, 64 kB per core, 64 B cachelines, LRU

NDP HBM
16 GB HBM 3.0, 1600 MHz, 256 MB/unit;
RCD-CAS-RP: 24-24-24;
RD/WR: 1.7 pJ/bit, ACT/PRE: 0.6 nJ

NDP HMC
16 GB HMC 2.1, 1250 MHz, 256 MB/unit;
RCD-CAS-RP: 14-14-14;

Extended memory
DDR5-4800, 4 channels × 2 ranks × 16 banks;
RCD-CAS-RP: 40-40-40;
RD/WR: 3.2 pJ/bit, ACT/PRE: 3.3 nJ

Intra-stack network 128-bit link, 1.5 ns/hop [65], [69]; 0.4 pJ/bit
Inter-stack network 32 GB/s per dir., 10 ns/hop [20], [22], [69]; 4 pJ/bit

CXL link 16-lane; 200 ns link latency; 11.4 pJ/bit

reduces the invalidation traffic by 9.4% on average, and brings

a 3.7% speedup compared to bulk invalidation.

VI. METHODOLOGY

System models. We use zsim [64] to conduct simulations

of a 128-core NDP system, summarized in Table II. We extend

zsim to support multi-stack mesh interconnection. Our NDP

logic consists of simple in-order cores of 2 GHz. To show

generality, we model two types of NDP memory, following

HBM3 and HMC2, respectively, with 16 GB total capacity.

For HBM, each stack is connected via a 2.5D interposer to

a logic die, on which there are 16 cores accessing this HBM

through a crossbar [22], [69]. For HMC, 16 cores are put at

the logic die at the base of each stack, and each core directly

accesses its corresponding vault [1], [22]. Effectively, with

HBM, each full stack is a NUCA node, while HMC enables

more fine-grained NUCA nodes of individual vaults. We show

overall performance comparison with both memory types, but

do performance analysis primarily using HBM since the two

show similar trends. The extended memory is modeled as

four DDR5-4800 channels. The memory timing and energy

parameters are from datasheets and follow prior work [20],

[21], [29], [34], [35], [48], [54]. The intra-stack NoC and

inter-stack link models are obtained from [65]. We use a direct-

attached multi-headed CXL Type-3 device, with a default link

latency of 200 ns [68] (excluding DRAM access). We evaluate

other CXL latency cases in Fig. 8(b).

Total SRAM cost. The timing and energy of the SRAM

structures in NDPExt are modeled using CACTI 7 [3]. The

added SRAM per NDP unit includes the following compo-

nents: 1) The 32-entry SLB, consuming 4544 bytes. 2) The

affine tag array with 16k entries, resulting in 64 kB. 3) The

hardware miss curve samplers, using another 32 kB. 4) The

bitvector that records which streams are accessed, which is

512 bits. Overall, the SRAM usage is well aligned with prior

NDP designs [69] and remains acceptable.

Workloads. We use a diverse set of NDP-friendly appli-

cations, including tensor computation, graph computing, and

other parallel workloads. Tensor workloads include DLRM-

style recommendation system inference (recsys), matrix-

vector multiplication (mv), graph convolution neural network

(gnn) using the Reddit dataset [77] implemented with sparse-

dense matrix multiplications. These workloads are imple-

mented using SIMD instructions. We also port workloads from

Rodinia [10], including backprop, hotspot, lavaMD, lud, and

pathfinder. We exclude workloads with small memory foot-

prints. Graph workloads are from GAP [4], including breadth-

first search (bfs), pagerank (pr), connected components (cc),

betweenness centrality (bc), and triangle counting (tc). We

simulate their 2nd to 5th iterations. Multiple processes of the

workload are executed until the total footprint exceeds the

NDP memory. The number of streams ranges from 4 to 256

in different workloads. We only need to modify a few lines

of code in each workload (with an average of 4.3 lines) to

annotate these streams, with minor extra programming efforts.

Baseline designs. We compare NDPExt with Jigsaw [6],

Whirlpool [56], and Nexus [71], where these conventional

NUCA designs are adapted to our DRAM cache. These

baselines need to issue a metadata access before the actual

data access, and we use a 128 kB metadata cache per NDP

unit for fair comparison. To further improve the baseline

performance, we optimistically assume an idealized dual-

granularity metadata cache design similar to Bi-Modal DRAM

Cache [27], where metadata are stored per 512 B block but data

migration is fine-grained at 64 B to avoid overfetch. Whirlpool

partitions the cache for different statically classified data. We

annotate streams as in NDPExt and manually classify these

streams. Nexus replicates memory pages following regular-

shaped groups using a global replication degree. In addition,

we further compare with a non-NDP host processor with

64 cores and DDR5 main memory. It uses the Jigsaw-style

NUCA design for its 32 MB LLC. Besides the above baselines,

we also evaluate a version of NDPExt without the runtime

reconfiguration (NDPExt-static), but the cache space is equally

allocated to every stream.

VII. EVALUATION

We first compare the overall performance and energy

between NDPExt and the baselines. Then we analyze the

performance gains under different configurations, and present

detailed sensitivity studies of various design parameters.

A. Overall Comparison

Fig. 5(a) and (b) present the performance comparisons for

the HBM-style and HMC-style NDP systems, respectively. In

both cases, NDP systems exhibit considerable performance

advantages over non-NDP host execution, with gains ranging

from 4.3× to 7.3×. Among the NDP-based ones, NDPExt

consistently achieves the best performance, outperforming the

second-best one, Nexus, by 1.41× with HBM and 1.48× with

HMC on average. The recsys workload shows notable bene-

fits, with up to 2.43× and 2.17× improvements under HBM

1657

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

(a) HBM3-style NDP memory

0

5

10

15

20

S
p
ee

d
u
p

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

(b) HMC2-style NDP memory

0

5

10

15

20

S
p
ee

d
u
p

Jigsaw Whirlpool Nexus NDPExt

NDPExt-static

Fig. 5. Overall performance comparison between NDPExt and the baselines
using (a) HBM-style and (b) HMC-style NDP. Normalized to non-NDP host.

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

0.00

0.25

0.50

0.75

1.00

N
o

rm
al

iz
ed

 E
n

er
g

y Static Core+SRAM DRAM Interconnect

Fig. 6. Overall energy comparison between NDPExt (right) and Nexus (left)
using HBM-style NDP. Normalized to Nexus.

mv gnn hotspotpathfinder pr cc
0

30

60

90

120

In
te

rc
o
n
n
ec

t
L

at
en

cy
 (

n
s)

0%

25%

50%

75%

100%

M
is

s
R

at
e

Nexus NDPExt Miss rate

Fig. 7. Interconnect latency (bars) and miss rate (dots) comparisons between
NDPExt and Nexus.

4
×

3
2

8
×

1
6

1
6
×

8

8
×

8

4
×

8

1
6
×

1
6

1
×

1

(a) Scalability

0.0

0.5

1.0

1.5

2.0

S
p
ee

d
u
p

50 100 150 200 250

(b) CXL link latency (ns)

0.0

0.5

1.0

1.5

2.0

Fig. 8. Speedups of NDPExt over Nexus with (a) different NDP core counts,
as # stacks × # NDP cores per stack, and (b) different CXL link latencies.

and HMC. Although the HBM-style system has fewer NUCA

nodes than the HMC-style one, they exhibit similar speedups.

This is because the performance is mainly bound by the inter-

stack links that have much lower bandwidth and higher latency

than the intra-stack NoC. Finally, NDPExt surpasses NDPExt-

static by 1.2× on average, and shows substantial speedups up

to 1.7× on irregular workloads like pr, which would require

more dynamic cache configuration decisions.

The performance gains of NDPExt can be attributed to two

reasons: metadata access elimination and better stream-level

placement. For metadata, although the 128 kB dual-granularity

metadata cache in the baselines achieves over 95% hit rates for

high-locality workloads, with large-scale graph workloads the

hit rates drastically decrease to 47%. Since each metadata miss

requires at least a local memory access on the critical path, the

performance suffers. In contrast, NDPExt uses coarse-grained

stream-level metadata that are much smaller and can stay local,

alleviating the metadata access overheads.

For data placement, Fig. 7 further presents both the aver-

age interconnect latencies and the miss rates in Nexus and

NDPExt, for a selection of representative workloads. The

interconnect latency reflects the interconnect overheads, while

the miss rate quantifies the number of requests serviced by the

extended memory. NDPExt significantly reduces the intercon-

nection overheads with better data placement and proper data

replication. For example, in hotspot, Nexus suffers from a

long average interconnect latency of 113 ns, while NDPExt

uses several small replication groups each containing 1 or

2 units, besides a large group of 10 units. The interconnect

latency is thus reduced to 38 ns. For the miss rate, using the

stream abstraction effectively enables prefetching that exploits

spatial locality, e.g., hotspot and pathfinder. Although for

some workloads like mv the miss rate may slightly increase

due to replication, overall NDPExt exhibits better performance

than the baseline. The results indicate NDPExt can properly

size streams and form good replication groups for each stream.

Fig. 6 exhibits the energy consumption breakdown for all

workloads. On average, NDPExt saves a significant portion

of 40.3% energy consumption compared to Nexus. The static

energy follows the execution time. Since NDPExt eliminates

additional tag accessing, and the miss rate to the higher-energy

extended memory decreases (Fig. 7), the DRAM energy is

reduced by 8.3%. Thanks to better placement schemes, the

interconnect energy is reduced from 6.6% to 3.2%. This energy

reduction confirms the previous reduction in access latency.

B. Performance Analysis

From now on, we focus on the HBM-style system, and only

present the average performance results due to space limit.

NDP core count scalability. In Fig. 8(a), we first change

the stack counts and keep the same total core count (first

three bars). With more distant cores across more stacks, the

interconnection cost reduction in NDPExt is more critical,

leading to higher speedups of up to 1.65× for 16 stacks. We

next scale down NDP cores from 128 cores to 32 cores by

using fewer stacks (4th and 5th bars). NDPExt still achieves

1658

1
(default)

4 8 32 64

(a) Stream cache associativity

0.90

0.95

1.00

1.05

1.10

N
o

rm
.

P
er

fo
rm

an
ce

512B 1kB
(default)

2kB

(b) Stream cache block size

0.90

0.95

1.00

1.05

1.10

4 16
(default)

64 Ideal

(c) Affine space restriction

0.90

0.95

1.00

1.05

1.10

16 32
(default)

64

(d) Sampler resource k

0.90

0.95

1.00

1.05

1.10

S P F
(default)

(e) Reconfiguration method

0.00

0.25

0.50

0.75

1.00

1.25

10M 50M
(default)

200M

(f) Reconfiguration interval

0.00

0.25

0.50

0.75

1.00

1.25

Fig. 9. Impact of various design decisions in NDPExt. The results in each case are normalized to the default value as marked.

9% higher performance for a small 4-stack system. We then

test a large 16-stack, 256-core system. More cores stress the

interconnect with more accesses, and thus NDPExt achieves a

higher speedup to 1.75×. Finally, we show the speedup of only

one NDP unit. The NDP system falls back to a conventional

DRAM cache. In this case, cache configuration in Section V

is no longer needed, and we eliminate its cost in the results,

similar to the static mode in Fig. 5. NDPExt still offers a

speedup of 1.16× from the more efficient stream abstraction.

CXL link latency impact. In Fig. 8(b), we evaluate dif-

ferent CXL link latencies. We use a more practical 200 ns

CXL link latency, but also consider optimistic 50 to 70 ns

projections in earlier reports [49], [51], [66], [80]. Higher

link latencies make misses to the extended memory more

expensive. In this case, the placement scheme in NDPExt has

higher benefits compared to the center-of-mass method used in

the baselines. Since NDPExt effectively reduces such misses

as in Fig. 7, it obtains higher speedups with slower CXL links,

from 1.33× to 1.50×.

Reconfiguration overheads. The overheads consist of two

parts. First, the host processor assigns samplers to streams

(Section V-B), whose cost is evaluated in Fig. 4(b). Second,

data migration will happen during reconfiguration. We find that

data migration requests only account for 1.3% of all access

requests, thanks to the optimization in Section V-D.

C. Design Choice Studies

In this subsection we study how to choose the proper values

for various design parameters in NDPExt.

Stream cache associativity and block size. Recall that ND-

PExt directly hashes elements in indirect streams, so the asso-

ciativity is fixed to 1 way. In this idealized experiment, we only

use higher associativities to show the potential performance

loss of using such a direct-mapped cache. Fig. 9(a) shows

that the direct-mapped cache is acceptable. Even a 64-way

organization only brings minor gains. This aligns well with

prior DRAM cache work [62]. Graph computing workloads

are those that can benefit the most from higher associativities,

with about 10% to 20% speedups at 64 ways. Fig. 9(b) further

shows the impact of using different block sizes for affine

streams in our stream cache. Using blocks larger than 1 kB

brings slightly better performance, especially for applications

with good spatial locality. We leave reconfigurable block sizes

for different applications as future work.

Affine space restriction. To fit affine metadata on-chip,

NDPExt restricts the total allocated space for affine streams

(Section IV-C). Fig. 9(c) shows the results of different affine

space restrictions. We find that for most applications this

16 MB restriction has a negligible impact on performance. We

also evaluate an ideal case without any restrictions. It shows

about 2% average speedup, mostly on mv and gnn that have

the most affine streams.

Sampling resources. Fig. 9(d) evaluates different numbers

of sampling sets k. Using different k values does not have

a noticeable impact on the overall performance, because the

behavior of the cache can be approximated using only a few

sampling sets [63], [71].

Reconfiguration method and interval. Fig. 9(e) evaluates

different reconfiguration methods. “S(tatic)” equally allocates

the cache space for each stream on each unit, without dy-

namic reconfiguration. “P(artial)” reconfigures only during

the first 200M cycles, and assumes the workload behaviors

are stabilized afterwards. “F(ull)” is adopted in NDPExt,

periodically reconfiguring as the workloads execute. We find

that partial reconfiguration cannot unleash all performance

potentials, especially for applications with many streams like

mv, and applications with dynamic tasks like pr, respectively

14.7% and 20.7% slower than NDPExt. Fig. 9(f) investigates

the reconfiguration interval. We find that using 50M cycles is

sufficient. Using a 100M cycle interval exhibits a considerable

26% performance drop due to application dynamism.

VIII. CONCLUSIONS

In this paper, we make a case for a new architecture

paradigm, called near-data processing (NDP) with extended

memory, in order to address the capacity limitation of existing

NDP systems. We further propose novel hardware-software co-

designed optimizations to address the performance bottlenecks

in this architecture. A stream cache design is used to alleviate

the metadata cost of the distributed DRAM cache in this

system. An effective configuration algorithm can derive the

optimized schemes about allocating cache space to different

data. Our design significantly improves performance on large-

scale memory-intensive workloads.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-

able suggestions, and the Tsinghua IDEAL group members

for constructive discussion. This work was supported by the

National Natural Science Foundation of China (62072262).

Mingyu Gao is the corresponding author.

1659

REFERENCES

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-Memory Accelerator for Parallel Graph Processing,” in 42nd Interna-
tional Symposium on Computer Architecture (ISCA), 2015, pp. 105–117.

[2] M. J. Akhbarizadeh, M. Nourani, D. S. Vijayasarathi, and P. T. Balsara,
“PCAM: A Ternary CAM Optimized for Longest Prefix Matching
Tasks,” in 22nd IEEE International Conference on Computer Design
(ICCD), 2004, pp. 6–11.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 14:1–14:25, 2017.

[4] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,”
arXiv preprint arXiv:1508.03619, Aug. 2015.

[5] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive Se-
lective Replication for CMP Caches,” in 39th International Symposium
on Microarchitecture (MICRO), 2006, pp. 443–454.

[6] N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-Defined
Caches,” in 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013, pp. 213–224.

[7] N. Beckmann, P. Tsai, and D. Sanchez, “Scaling Distributed Cache
Hierarchies Through Computation and Data Co-scheduling,” in 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 538–550.

[8] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks,” in 23rd International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2018,
pp. 316–331.

[9] P. Caheny, L. Alvarez, M. Casas, and M. Moretó, “TD-NUCA: Runtime
Driven Management of NUCA Caches in Task Dataflow Programming
Models,” in 2017 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2022, pp. 80:1–80:15.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[11] D. Chen, H. He, H. Jin, L. Zheng, Y. Huang, X. Shen, and X. Liao,
“MetaNMP: Leveraging Cartesian-Like Product to Accelerate HGNNs
with Near-Memory Processing,” in 50th International Symposium on
Computer Architecture (ISCA), 2023, pp. 56:1–56:13.

[12] A. Cho, A. Saxena, M. Qureshi, and A. Daglis, “A Case for CXL-Centric
Server Processors,” arXiv preprint arXiv:2305.05033, May 2023.

[13] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,” in 39th International Symposium on Mi-
croarchitecture (MICRO), 2006, pp. 455–468.

[14] J. Choquette, “Nvidia Hopper GPU: Scaling Performance,” in 2022 IEEE
Hot Chips 34 Symposium (HCS), 2022, pp. 1–46.

[15] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level
Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache,” in 47th International Symposium on
Microarchitecture (MICRO), 2014, pp. 1–12.

[16] CXL Consortium, “Compute Express Link 3.0 White Paper,”
2022, https://www.computeexpresslink.org/ files/ugd/0c1418
1798ce97c1e6438fba818d760905e43a.pdf.

[17] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 38, no. 4, pp. 640–653,
2019.

[18] G. Dai, Z. Zhu, T. Fu, C. Wei, B. Wang, X. Li, Y. Xie, H. Yang, and
Y. Wang, “DIMMining: Pruning-Efficient and Parallel Graph Mining
on Near-Memory-Computing,” in 49th International Symposium on
Computer Architecture (ISCA), 2022, pp. 130–145.

[19] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems,” Journal of the ACM (JACM),
vol. 19, no. 2, pp. 248–264, 1972.

[20] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data Processing for
In-Memory Analytics Frameworks,” in 24th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2015, pp.
113–124.

[21] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in 23rd International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2017, pp. 751–764.

[22] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fer-
nandez, J. Gómez-Luna, L. Orosa, N. Koziris, G. I. Goumas, and
O. Mutlu, “SynCron: Efficient Synchronization Support for Near-Data-
Processing Architectures,” in 27th International Symposium on High
Performance Computer Architecture (HPCA), 2021, pp. 263–276.

[23] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory Architecture,” arXiv preprint
arXiv:2105.03814, May 2021.

[24] D. Gouk, M. Kwon, H. Bae, S. Lee, and M. Jung, “Memory Pooling
With CXL,” IEEE Micro, vol. 43, no. 2, pp. 48–57, 2023.

[25] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct Access, High-
Performance Memory Disaggregation with DirectCXL,” in 2022
USENIX Annual Technical Conference (ATC), 2022, pp. 287–294.

[26] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie,
“iPIM: Programmable In-Memory Image Processing Accelerator Using
Near-Bank Architecture,” in 47th International Symposium on Computer
Architecture (ISCA), 2020, pp. 804–817.

[27] N. D. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth,”
in 47th International Symposium on Microarchitecture (MICRO), 2014,
pp. 38–50.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-Optimal Block Placement and Replication in Distributed
Caches,” in 36th International Symposium on Computer Architecture
(ISCA), 2009, pp. 184–195.

[29] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. N. Vijaykumar, “Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning,” in 53rd International Sym-
posium on Microarchitecture (MICRO), 2020, pp. 372–385.

[30] L. Huang, Z. Zhang, S. Li, D. Niu, Y. Guan, H. Zheng, and Y. Xie, “Prac-
tical Near-Data-Processing Architecture for Large-Scale Distributed
Graph Neural Network,” IEEE Access, vol. 10, pp. 46 796–46 807, 2022.

[31] W. Huangfu, K. T. Malladi, A. Chang, and Y. Xie, “BEACON: Scalable
Near-Data-Processing Accelerators for Genome Analysis near Memory
Pool with the CXL Support,” in 55th International Symposium on
Microarchitecture (MICRO), 2022, pp. 727–743.

[32] Intel, “4th Gen Intel Xeon Processor Scalable Family, Sapphire Rapids,”
2023, https://www.intel.com/content/www/us/en/developer/articles/
technical/fourth-generation-xeon-scalable-family-overview.html.

[33] A. Jain and C. Lin, “Hawkeye: Leveraging Belady’s Algorithm for
Improved Cache Replacement,” in 2nd Cache Replacement Competition,
2017, pp. 1–4.

[34] JEDEC, “DDR5 SDRAM Standard,” 2022, https://www.jedec.org/
standards-documents/docs/jesd-79-5b.

[35] JEDEC, “High Bandwidth Memory (HBM3) DRAM,” 2023, https:
//www.jedec.org/standards-documents/docs/jesd238a.

[36] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache,” in 47th International
Symposium on Microarchitecture (MICRO), 2014, pp. 25–37.

[37] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for
Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” in 40th International Symposium on Computer Architecture
(ISCA), 2013, pp. 404–415.

[38] H. Kang, Y. Zhao, G. E. Blelloch, L. Dhulipala, Y. Gu, C. McGuffey,
and P. B. Gibbons, “PIM-tree: A Skew-resistant Index for Processing-
in-Memory,” Proceedings of the VLDB Endowment, vol. 16, no. 4, pp.
946–958, 2022.

[39] A. Kannan, N. D. E. Jerger, and G. H. Loh, “Enabling Interposer-
Based Disintegration of Multi-Core Processors,” in 48th International
Symposium on Microarchitecture (MICRO), 2015, pp. 546–558.

[40] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in 29th
Annual ACM Symposium on the Theory of Computing (ToC), 1997, pp.
654–663.

[41] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. M. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C. Wu, M. Hempstead, and X. Zhang, “RecNMP: Acceler-

1660

ating Personalized Recommendation with Near-Memory Processing,” in
47th International Symposium on Computer Architecture (ISCA), 2020,
pp. 790–803.

[42] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002, pp. 211–222.

[43] D. Kim, J. Kung, S. M. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A Programmable Digital Neuromorphic Architecture with
High-Density 3D Memory,” in 43rd International Symposium on Com-
puter Architecture (ISCA), 2016, pp. 380–392.

[44] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System
Interconnect Design with Hybrid Memory Cubes,” in 22nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013, pp. 145–155.

[45] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location
Filtering in DNA Read Mapping Using Processing-in-Memory Tech-
nologies,” BMC Genomics, vol. 19, no. S2, 2018.

[46] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical Near-Memory
Processing Architecture for Embeddings and Tensor Operations in
Deep Learning,” in 52nd International Symposium on Microarchitecture
(MICRO), 2019, pp. 740–753.

[47] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and
Shrinking Private Caches,” in 17th International Symposium on High
Performance Computer Architecture (HPCA), 2011, pp. 219–230.

[48] S. H. Lee, S. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon,
S. Lee, K. Lim, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn,
and N. S. Kim, “Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology : Industrial Product,” in 48th
International Symposium on Computer Architecture (ISCA), 2021, pp.
43–56.

[49] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and
R. Bianchini, “Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms,” in 28th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2023,
pp. 574–587.

[50] Y. Li and M. Gao, “Baryon: Efficient Hybrid Memory Management with
Compression and Sub-Blocking,” in 29th International Symposium on
High Performance Computer Architecture (HPCA), 2023, pp. 137–151.

[51] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. O. Kanaujia, and P. Chauhan,
“TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory,”
in 28th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2023, pp. 742–755.

[52] S. A. McKee, “Reflections on the Memory Wall,” in 1st Conference on
Computing Frontiers (CF), 2004, p. 162.

[53] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-Stacked and Off-Package Memories,” in 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 126–136.

[54] Micron, “Hybrid Memory Cube – HMC Gen2,” 2018,
https://www.micron.com/-/media/client/global/documents/products/
data-sheet/hmc/gen2/hmc gen2.pdf.

[55] H. A. Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon:
Versatile and Practical Near-DRAM Acceleration Architecture for Large
Memory Systems,” in 49th International Symposium on Microarchitec-
ture (MICRO), 2016, pp. 50:1–50:13.

[56] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving
Dynamic Cache Management with Static Data Classification,” in 21st
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016, pp. 113–127.

[57] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-Dataflow Acceleration,” in 44th International Symposium on
Computer Architecture (ISCA), 2017, pp. 416–429.

[58] M. Ogleari, Y. Yu, C. Qian, E. L. Miller, and J. Zhao, “String Figure: A
Scalable and Elastic Memory Network Architecture,” in 25th Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2019, pp. 647–660.

[59] S. J. Park, H. Kim, K. Kim, J. So, J. Ahn, W. Lee, D. Kim, Y. Kim,
J. Seok, J. Lee, H. Ryu, C. Y. Lee, J. Prout, K. Ryoo, S. Han, M. Kook,
J. S. Choi, J. Gim, Y. S. Ki, S. Ryu, C. Park, D. Lee, J. Cho, H. Song,

and J. Lee, “Scaling of Memory Performance and Capacity with CXL
Memory Expander,” in 2022 IEEE Hot Chips 34 Symposium (HCS),
2022, pp. 1–27.

[60] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H. Loh, “There
and Back Again: Optimizing the Interconnect in Networks of Memory
Cubes,” in 44th International Symposium on Computer Architecture
(ISCA), 2017, pp. 678–690.

[61] M. K. Qureshi, “Adaptive Spill-Receive for Robust High-Performance
Caching in CMPs,” in 15th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2009, pp. 45–54.

[62] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in 45th International Symposium
on Microarchitecture (MICRO), 2012, pp. 235–246.

[63] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in 39th International Symposium on Microarchitecture
(MICRO), 2006, pp. 423–432.

[64] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in 40th International
Symposium on Computer Architecture (ISCA), 2013, pp. 475–486.

[65] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. R. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. S. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
“Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-
Based Architecture,” in 52nd International Symposium on Microarchi-
tecture (MICRO), 2019, pp. 14–27.

[66] D. D. Sharma, R. Blankenship, and D. S. Berger, “An Introduction
to the Compute Express Link (CXL) Interconnect,” arXiv preprint
arXiv:2306.11227, June 2023.

[67] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Trans-
parent Hardware Management of Stacked DRAM as Part of Memory,”
in 47th International Symposium on Microarchitecture (MICRO), 2014,
pp. 13–24.

[68] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S. Kim, “Demysti-
fying CXL Memory with Genuine CXL-Ready Systems and Devices,”
in 56th International Symposium on Microarchitecture (MICRO), 2023,
pp. 105–121.

[69] B. Tian, Q. Chen, and M. Gao, “ABNDP: Co-optimizing Data Access
and Load Balance in Near-Data Processing,” in 28th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023, pp. 3–17.

[70] B. Tian, Y. Li, L. Jiang, S. Cai, and M. Gao, “NDPBridge: Enabling
Cross-Bank Coordination in Near-DRAM-Bank Processing Architec-
tures,” in 51st International Symposium on Computer Architecture
(ISCA), 2024, pp. 628–643.

[71] P. Tsai, N. Beckmann, and D. Sanchez, “Nexus: A New Approach to
Replication in Distributed Shared Caches,” in 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2017, pp. 166–179.

[72] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2:
Combining Caching and Migration in Hybrid Memory Systems,” in 26th
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 649–662.

[73] Z. Wang, C. Liu, A. Arora, L. K. John, and T. Nowatzki, “Infinity
Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion,”
in 28th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2023, pp. 359–375.

[74] Z. Wang and T. Nowatzki, “Stream-based Memory Access Specialization
for General Purpose Processors,” in 46th International Symposium on
Computer Architecture (ISCA), 2019, pp. 736–749.

[75] Z. Wang, J. Weng, S. Liu, and T. Nowatzki, “Near-Stream Computing:
General and Transparent Near-Cache Acceleration,” in 28th Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2022, pp. 331–345.

[76] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, “Stream
Floating: Enabling Proactive and Decentralized Cache Optimizations,”
in 27th International Symposium on High Performance Computer Ar-
chitecture (HPCA), 2021, pp. 640–653.

[77] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“GraphSAINT: Graph Sampling Based Inductive Learning Method,” in
8th International Conference on Learning Representations (ICLR), 2020.

1661

[78] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and
Y. Xie, “A Unified Memory Network Architecture for In-Memory
Computing in Commodity Servers,” in 49th International Symposium
on Microarchitecture (MICRO), 2016, pp. 29:1–29:14.

[79] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: Reducing Communication for PIM-Based Graph
Processing with Efficient Data Partition,” in 24th International Sympo-
sium on High Performance Computer Architecture (HPCA), 2018, pp.
544–557.

[80] Z. Zhou, Y. Chen, T. Zhang, Y. Wang, R. Shu, S. Xu, P. Cheng,

L. Qu, Y. Xiong, and G. Sun, “Toward CXL-Native Memory Tiering via
Device-Side Profiling,” arXiv preprint arXiv:2403.18702, March 2024.

[81] Z. Zhou, C. Li, F. Yang, and G. Sun, “DIMM-Link: Enabling Efficient
Inter-DIMM Communication for Near-Memory Processing,” in 29th
International Symposium on High Performance Computer Architecture
(HPCA), 2023, pp. 302–316.

[82] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-Based Graph Processing,” in 52nd International
Symposium on Microarchitecture (MICRO), 2019, pp. 712–725.

1662

