
NDPBridge: Enabling Cross-Bank Coordination in
Near-DRAM-Bank Processing Architectures

Boyu Tian†, Yiwei Li†, Li Jiang§‡¶, Shuangyu Cai† and Mingyu Gao†‡

Tsinghua University† Shanghai Qi Zhi Institute‡ Shanghai Jiao Tong University§ Huawei Technologies Co., Ltd.¶

tby20@mails.tsinghua.edu.cn liyw19@mails.tsinghua.edu.cn jiangli@cs.sjtu.edu.cn
caisy21@mails.tsinghua.edu.cn gaomy@tsinghua.edu.cn

Abstract—Various near-data processing (NDP) designs have
been proposed to alleviate the memory wall challenge for data-
intensive applications. Among them, near-DRAM-bank NDP
architectures, by incorporating logic near each DRAM bank,
promise the highest efficiency and have already been commer-
cially available now. However, due to physical isolation, fast
and direct cross-bank communication is impossible in these
architectures, limiting their usage to only simple parallel patterns.
Applications may also suffer from severe load imbalance if each
bank contains data with diverse computation loads. We thus
propose NDPBridge, with novel hardware-software co-design to
enable cross-bank communication and dynamic load balancing
for near-bank NDP systems. We introduce hardware bridges
along the DRAM hierarchy to coordinate message transfers
among banks. The hardware changes are constrained and do
not disrupt the existing DDR links and protocols. We further
enable hierarchical and data-transfer-aware load balancing, built
upon the above hardware communication path and a task-
based programming model. The data transfer overheads are
minimized with several novel optimizations to hide latency,
avoid congestion, and reduce traffic. Our evaluation shows that
NDPBridge significantly outperforms existing NDP designs by
2.23× to 2.98× on average.

Index Terms—near-data processing, processing-in-memory,
DRAM, communication, load balance

I. INTRODUCTION

In the big data era, the well-known memory wall prob-
lem [59] makes memory access a critical bottleneck that limits
the overall system performance scaling. As a result, near-data
processing (NDP) has been proposed as a promising solution,
which aims to minimize the data movement cost by bringing
computation closer to data locations. Prior research exploration
and industrial prototypes have realized many variants of NDP
systems for various applications, including graph analytics [2],
[17], [61], [85], [90], neural networks [1], [27], [45], [88],
genome analysis [13], [33], [48], databases [12], and many
more [25], [35], [40], [42], [50].

Among the various types of DRAM-based NDP realization,
in this work we mainly focus on the NDP variant that tightly
integrates compute logic closest to data, at the lowest bank
level in the modern DRAM hierarchy [1], [20], [30], [31], [40],
[49], [52]. Specifically, each DRAM bank is associated with
a small general-purpose core and some SRAM caches/buffers,
forming an NDP unit. All the NDP units, usually on the
order of several thousands, can process and access data from
their local DRAM banks in parallel. Such DRAM-bank NDP
architectures not only promise the highest bandwidth and

energy efficiency gains due to short data access distances, but
have also been made commercially available nowadays with
several industrial products [20], [49], [52].

However, putting logic too close to DRAM banks also
exhibits critical issues. The NDP units are now spread across
different DRAM chips on different DIMMs and channels,
far away from each other and without direct interconnect
links among them. Thus direct cross-bank communication
is typically not possible in DRAM-bank NDP systems, and
we must rely on host CPU forwarding. Some previous designs
realized cross-DIMM communication for NDP by adding extra
physical links [73], [89], but such an approach is not practical
when it comes to the bank level because of expensive intrusive
modifications to the DRAM chips. In addition, because the
NDP units can only directly access their local bank data,
their workloads may suffer from severe imbalance if these
data require different amounts of computations in complex
and irregular applications. Effective load balancing must be
done to ensure high-performance processing.

In this work, we propose NDPBridge, which enables cross-
bank communication and load balancing through hardware-
software co-design in near-DRAM-bank NDP architectures.
On the hardware level, to support efficient cross-bank
communication, we introduce several levels of NDP bridges
that coordinate message transfers between NDP units. Each
unit puts its outgoing messages in a local mailbox, and the
upper-level bridge would proactively and periodically gather
and scatter these messages across units. The communication
is naturally hierarchical and matches the existing DRAM
hierarchy of banks/ranks/channels. Therefore it localizes data
movements and minimizes global transfers. To avoid pro-
hibitive design complexity and reduce cost, we specifically
limit any hardware changes to places that are already subject to
modifications in prior NDP designs, and use existing physical
links and DDR commands without altering the DIMM form
factor. We also propose a dynamic triggering mechanism to
balance communication cost and timeliness.

On the software level, we enable hierarchical and data-
transfer-aware load balancing built on top of the above
cross-bank communication capability. We adopt a task-based
message-passing model that is expressive enough to represent
most NDP applications [30], [40], [57], [62], and also allows
us to flexibly schedule tasks among different NDP units.
Nevertheless, a critical aspect of load balancing on NDP ar-

C
or

e

(a) Logic-die NDP (b) DIMM-buffer NDP

(c) DRAM-bank NDP
SR

A
M

D
M

A
 E

ng
in

e

64-MB
DRAM
Bank

DDR Interface

......

Logic Die

TSV
DRAM Die

Inter-Cube
Links

: NDP logic

Buffer
Chip

D
R

A
M

 C
hi

p

DRAM
Banks

Buffer
Chip

NDP
Units

Fig. 1. Different variants of NDP architectures based on DRAM.

chitectures compared to traditional shared-memory systems, is
the substantial cost of migrating data along with the scheduled
tasks. We propose efficient metadata schemes to track migrated
tasks/data, as well as novel data transfer optimizations that
hide the latency, avoid the congestion, and reduce the traffic.

We evaluate NDPBridge with a wide range of NDP ap-
plications, by comparing it with existing DRAM-bank NDP
architectures. Overall, NDPBridge enables an average 2.98×
speedup and up to 5.22× with the combined hardware and
software techniques. Specifically, the hardware bridge-based
communication provides 1.51× performance gains over solely
relying on the host CPU to forward messages. On top of that,
our load balancing scheme adds another 1.98× by efficiently
scheduling tasks and data among NDP units. NDPBridge is
2.23× faster than RowClone [70] which supports direct bank-
to-bank transfers within each chip. We thus demonstrate that
NDPBridge significantly enhances existing near-bank NDP
systems with efficient cross-bank coordination capabilities,
and extends their applicability to more complex applications.

II. BACKGROUND AND MOTIVATION

A. Near-Data Processing

In this work, we mainly focus on NDP architectures based
on DRAM technologies, which have been demonstrated to
show immense potential for performance and energy effi-
ciency. We categorize existing NDP architectures based on
the location of compute logic. With 3D-stacked DRAM tech-
nologies which integrate multiple DRAM dies on top of a
logic base, e.g., HMC and HBM [36], [39], [60], logic-die
NDP places the NDP compute logic on the logic die [2], [9],
[11], [17], [23], [25]–[27], [45], [61], [72], [76], [78], [84],
[85], [90]. As shown in Figure 1(a), the NDP logic can access
data stored in the DRAM dies using through-silicon vias
(TSVs) with high bandwidth in parallel. On the other hand,
to work with commercial DRAM like DDR4, the NDP logic
can also be added along the DRAM hierarchical organization.
DIMM-buffer NDP in Figure 1(b) integrates logic into the
buffer chip of each DDR DIMM at the rank level, enabling

higher bandwidth for data aggregation before transferring them
through the memory channel [6], [18], [42], [50], [73], [88],
[89]. This reduces data traffic and enhances system efficiency.
DRAM-bank NDP associates logic with one or several DRAM
banks as in Figure 1(c) [1], [20], [30], [31], [40], [49], [52].
More aggressive NDP architectures incorporate fine-grained
compute logic at DRAM sense amplifiers [4], [53], [54]. In
this work, we focus on DRAM-bank NDP.

B. DRAM-Bank NDP

The high-level architecture of DRAM-bank NDP is depicted
in Figure 1(c). For each of the many DRAM banks in the
system, a processing core is associated with it, which forms
an NDP unit. Through a DMA engine, the core can access data
stored in the local bank. An SRAM buffer is also included to
ease programming and optimize memory access performance.
The SRAM buffer can be implemented either as a cache or as
a programmer-controlled scratchpad in different designs.

DRAM-bank NDP has been not only widely studied in
academia, but also there are already several commercial prod-
ucts available [20], [49], [52]. For example, in UPMEM [20],
the first commercial NDP architecture, the NDP units are
called DPUs. Each DPU contains a wimpy core, a 64 MB
DRAM bank, and 88 kB SRAM buffers for the instruction
and data scratchpads. A typical UPMEM server can scale to
20 dual-rank DIMMs, with 128 DPUs per DIMM. These 2560
DPUs work in parallel and their aggregated DRAM band-
width can reach 1.7 TB/s. Another DRAM-bank NDP product,
HBM-PIM [49], [52], is based on 3D-stacked HBM [36], [39].
Similarly, each HBM bank is incorporated with an execution
engine comprising a floating-point SIMD unit. HBM-PIM uses
command and scalar register files instead of SRAM buffers.

To better use DRAM-bank NDP, the software also needs
certain adjustments, of which one important issue is data
interleaving [30], [62]. To ensure an NDP unit holds a con-
tiguous range of data needed for computation in its local bank,
the UPMEM SDK provides a data transposition procedure
to realize coarse-grained interleaving [20]. HBM-PIM also
provides an automatic data layout rearrangement mechanism
in its BLAS API [52]. We assume a similar design exists in
this work so that each NDP unit has its data in the local bank.

C. Limitations of DRAM-Bank NDP

Despite the significant benefits in access bandwidth and
energy efficiency offered by DRAM-bank NDP architectures,
there are still inherent limitations that hinder their widespread
adoption. We identify the two most critical issues as the lack
of cross-bank communication support and load imbalance.

Lack of cross-bank communication support. In DRAM,
direct data communication between two DRAM banks is
usually not possible. In the context of DRAM-bank NDP,
each NDP unit corresponds to a DRAM bank. The NDP core
can only access data stored in the local bank. We refer to
this model as data-local execution. In existing designs [20],
[52], cross-unit communication requires moving data to the
host CPU first, and then back to the intended receiving

DRAM Channel

Host CPU

NDP
Unit

......
tree

0.00

0.50

1.00

N
or

m
al

iz
ed

 T
im

e

Wait Time
Avg. Time

Fig. 2. Inefficiencies when executing tree traversal on the baseline DRAM-
bank NDP architecture. Simulated in a 512-unit system with 2 memory
channels (Section VII). Data transfers are done by host CPU forwarding.

unit. Such back-and-forth data transfers on bandwidth-limited
DRAM channels dwarf the NDP benefits and incur prohibitive
overheads. Specifically, Figure 2 left shows the workflow of
tree traversal on DRAM-bank NDP architectures. Each tree
node processing executes in the bank that stores the node.
When going to the child node, if it is stored in another bank, it
cannot be processed by the current NDP unit due to data-local
execution. The host CPU must fetch the results and forward
to the destination units. As shown in Figure 2 right, in the
total execution time, we highlight the 32.9% wait time as
the difference between the total time and the time for actual
task execution, which is mainly caused by cross-bank data
communication. As a result, the applicability of DRAM-bank
NDP is effectively restricted to simple embarrassingly parallel
applications where different units rarely share data.

It is challenging to support such cross-bank communication.
Traditional wisdom for communication support in NDP sys-
tems relies on adding extra physical links between units. In
logic-die NDP, the NDP units are directly connected through
inter- and intra-stack memory networks, through which they
can communicate with each other [46], [47], [63], [65], [83].
Initially, DIMM-buffer NDP relies on the host CPU to forward
cross-DIMM packets, which is inefficient. Recent designs
like DIMM-Link [89] add external physical links between
DIMMs to enable fast inter-DIMM data transfers, but do
not enable bank-to-bank communication within a DIMM.
However, adding physical links no longer works when it comes
to the bank level. This will require extensive modifications
inside DRAM chips, which disrupts the form factor of standard
DRAM and is severely restricted by the available metal
layers in the DRAM technology, as also noticed in previous
work [62]. RowClone [70] utilizes the existing data bus shared
by all banks in a DRAM chip for cross-bank communication
within a chip, which has been adopted by several follow-up
designs [44], [74], [87]. However, banks in different DRAM
chips remain isolated.

Load imbalance. While providing abundant parallelism, the
thousands of NDP units make it challenging to fully utilize
the compute logic resources and achieve load balance when
processing complex applications. Due to the lack of cross-
unit communication capability, traditional DRAM-bank NDP
designs only use static workload assignment, which not only
burdens the programmer with manual workload distribution,
but in most cases is difficult to achieve good enough balance.

Level-2 Bridge

Level-1 Bridge
(Rank Buffer Chip)

Host CPU

DIMM-2

DIMM-3

CH0 CH1

Rank0 Rank1

DIMM-0

D
R

A
M

 R
an

k

D
R

A
M

C
hi

pUnit
(Bank) 0

Unit
(Bank) 1......

...
...

......

: Cross-Bank Messages : Message Transfer Steps

: DQ Lines inside DRAM Ranks: C/A Bus : Data Bus

Fig. 3. NDPBridge overall architecture.

In Figure 2 right, the overall time is determined by the slowest
NDP unit. We also mark the average time of all units in
the figure. The big difference between the maximum and the
average time indicates significant load imbalance.

Nevertheless, even after we enable efficient cross-unit com-
munication, supporting dynamic load balancing is still non-
trivial. Traditional dynamic scheduling techniques in shared-
memory systems only need to transfer some computation tasks
from busy units to idle units, but not the data, because all units
can access the data in roughly the same performance. However,
in DRAM-bank NDP, remote data accesses are significantly
slower than local accesses. If only moving the computation
to the new unit but leaving the data at the original location,
too many remote accesses will occur during the computation
and eliminate any performance gains. Therefore, dynamic load
balancing in DRAM-bank NDP should not only transfer the
computation tasks but also the associated data, which we call
as data-first scheduling. To support this, first, we need to do
additional bookkeeping to track those data moved out of their
original locations and ensure coherence. Second, both the data
and computation movements could incur significant delays
under limited cross-unit communication speed. This commu-
nication overhead has a crucial impact on the performance of
the dynamic load balancing (see Section VI-C).

III. NDPBRIDGE OVERVIEW

In this work, we propose NDPBridge, aiming to resolve
the two limitations of cross-bank communication and load
imbalance in DRAM-bank NDP systems through hardware-
software co-design. Figure 3 shows the overall architecture.

The hardware aspect of NDPBridge supports efficient cross-
bank communication by introducing multiple levels of bridges
into the DRAM hierarchy (Section V). The NDP logic at
each bank puts its outgoing messages in a dedicated mailbox
region in its local DRAM, and the upper-level bridges would
proactively gather and scatter the messages in a hierarchical
manner, realizing flexible cross-bank communication. Such
message gathering/scattering uses existing physical links and
DDR commands, and only adds limited hardware structures to
places in DRAM that are already subject to modifications in
NDP systems. Therefore the implementation complexity and
cost are well bounded.

The software aspect of NDPBridge enables effective load
balancing across all near-bank processing units in the system,
built on top of the hardware cross-bank communication ca-
pability. First, NDPBridge embraces a task-based message-
passing programming and execution model (Section IV),
where NDP applications are naturally represented by large
amounts of parallel data-centric tasks. Tasks can be moved
across banks as messages to execute near their data, and further
be scheduled to achieve load balance. The load balancing
scheme in NDPBridge is hierarchical and data-transfer-aware
(Section VI). We propose key optimizations to alleviate the
impact of long-latency data migration during load balancing,
including hiding transfer latency, avoiding transfer congestion,
and reducing transfer traffic.

IV. PROGRAMMING MODEL

NDPBridge uses a task-based message-passing program-
ming model for DRAM-bank NDP architectures, similar to
prior designs [38], [57], [76]. A task represents the operations
on one data element, e.g., a graph vertex in graph processing,
a tree node in tree traversal, or a matrix row in matrix-vector
multiplication. Such a data-centric task definition matches well
with applications that apply near-data processing on a large
amount of data elements. It also provides a natural abstraction
for workload scheduling and allows the runtime system to
automatically assign and schedule in the task granularity.

More specifically, a task consists of the following attributes:
a function pointer, a timestamp for synchronization, a physical
address of the data that this task operates on, an optional
estimation of the task’s workload, and any number of ad-
ditional arguments. The timestamp is used to support bulk-
synchronization [37], [38], [76], [82]. Tasks with the same
timestamp can be executed in parallel. The estimated workload
is used to aid load balancing, as discussed later in Section VI.
It can be inaccurate or even unspecified because our task
scheduling is done dynamically. If a task needs to trigger
operations on other data elements, it can generate child tasks,
in a similar fashion of remote procedure calls. The child task
generation is done by the parent calling the following API:

enqueue task(func ptr, timestamp, data ptr,
workload, args...)

Then the new task is scheduled, and pushed to the unit where
the corresponding data element resides for processing, which
aligns well with data-local execution in DRAM-bank NDP.
Algorithm 1 shows an example of implementing tree traversal
using our programming model.

Our programming model mainly has two differences com-
pared to previous task-based models. First, each task is asso-
ciated with one data element. While it may initially appear
as a strict constraint, numerous data-intensive applications
are inherently composed of separate computations performed
on distinct data elements, especially for those executed on
DRAM-bank NDP that adopts data-local execution (Sec-
tion II-C). Previous NDP studies have already presented many
applications adhered to this criterion [30], [40], [57], [62].

Algorithm 1: Tree traversal task.
1 function TreeTrav(ts, n, q):

input: timestamp ts, tree node n, query q.
2 if n.value == q then return n.id ;
3 else if n.value < q && n.leftPtr ̸= nullptr then
4 return enqueue task(TreeTrav, ts, n.leftPtr, 1, q)

5 else if n.value > q && n.rightPtr ̸= nullptr then
6 return enqueue task(TreeTrav, ts, n.rightPtr, 1, q)

7 return invalid id;

Furthermore, we can still support tasks accessing multiple data
elements in the way described below. Second, for applications
where one task involves multiple data elements, the commu-
nication is done through pushing tasks to remote units by
message passing instead of pulling data to local units in typical
shared-memory systems. For example, stencil computing can
be implemented through two steps: (1) each pixel pushes its
current value (by invoking tasks) to all its neighbors; (2) each
pixel uses the received value to update its own value. Pushing
tasks has several benefits over pulling data. First, it eliminates
the need of maintaining coherence of multiple data copies
across thousands of units, which is unlikely to scale. Second,
pulling data requires sending requests and then receiving
data, while pushing tasks only needs one-way transmission,
reducing traffic. Lastly, pulling remote data usually exhibits
very long latencies in DRAM-bank NDP due to inefficient
communication, which incurs idle waiting cycles in NDP
cores. Although techniques such as multi-threading may help,
they incur extra hardware and software complexity. In contrast,
neither the execution of the local nor remote cores is blocked
during task pushing. Therefore, the push-based model is also
widely adopted in previous NDP systems [2], [46], [64].

Our programming model complies with the philosophy
of MapReduce in that users focus on the local action of
each data element, and the system composes these actions
to process a large dataset. The programming burden of our
model is acceptable and worthwhile. Programmers do need to
manually invoke tasks and specify data elements, which can
both be done only with application knowledge. Note that NDP
systems usually allocate large and contiguous virtual address
ranges [2], [3], [15], [46], [51], [61] or directly work on the
physical address space [20], [30], [44], [64], so specifying data
element addresses is feasible in user applications. In exchange,
they are free from concerning the underlying communication
implementation and load balancing, both of which require deep
understanding of the DRAM-bank NDP hardware.

V. HARDWARE SUPPORT FOR COMMUNICATION

NDPBridge realizes hierarchical message communication
across NDP units, with the help of multiple levels of bridges.
At each level, the children are passive; only the parent bridge
actively gathers/scatters messages among the children. Our
specific system uses two levels. The level-1 bridges enable
message passing among NDP units within each rank, without

NDP
Unit

......

Command
Generator

DDR PHY
DQ

Mailbox Region

Backup Buffer
Message
Router

Location
Metadata Scatter Buffers

C/A

Buffer
Chip

L
ev

el
-2

 N
D

P
B

ri
dg

e

L
ev

el
-1

 N
D

P
B

ri
dg

e
...

...

DRAM Rank

GATHER / SCATTER /
STATE-GATHER /
SCHEDULE DQC/A

 (a) Level-1 NDP Bridge inside a DRAM Rank (b) NDP Unit

N
D

P
C

or
e

D
at

a
&

 In
st

C
ac

he

Unit Controller
(DMA Engine)

DRAM Bank

Task Queue

Mailbox Region

Storage Region

Reserved Queue

Location
Metadata

Sketch

Access Arbiter

Command
Handler

Borrowed Data Region

Message
Handler

Fig. 4. Detailed hardware structures at the NDP units and the bridges in NDPBridge. The modules marked in yellow are the new hardware support for load
balancing, which will be elaborated in Section VI-A.

data traffic from/to the host CPU. The level-2 bridges further
connect the level-1 bridges for cross-rank communication.

A. Hardware Modifications

The hardware modifications are mainly in two places of the
system: at the NDP units and at the bridges.

NDP units. Figure 4(b) demonstrates the architecture of
an NDP unit in NDPBridge. Similar to previous DRAM-
bank NDP designs (Section II-B), there is a DRAM bank, a
wimpy core, and SRAM buffers as data and instruction caches.
The core accesses the DRAM bank through a DMA engine,
which is extended with more functionalities in our design and
renamed as the unit controller. We add a task queue in the
local DRAM to support task-based execution in Section IV.
The core fetches tasks from the local task queue to execute.

The majority of the local DRAM space is used as the
normal data storage region for local computation. Besides, we
statically allocate a portion of the DRAM bank, called the
mailbox region, to store cross-unit communication messages
waiting to be sent out. It is implemented as a ring buffer, with
its head and tail pointers maintained in the unit controller. New
messages are added to the tail. When the region is full, the
unit controller stalls the next message enqueue.

The parent bridge gathers and scatters messages to the
NDP unit by issuing standard DDR commands through the
existing DDR interface (C/A and DQ links). We explain the
details in Section V-B. The gather/scatter requests are parsed
by the command handler. For a gather request, it fetches
messages from the head of the mailbox region. For a scatter
request, the messages are directly written to their destinations
by the message handler in the unit controller. For example,
a received task is enqueued to the task queue, and a received
data element (for load balancing discussed below) is stored
into the borrowed data region in the DRAM.

Since now the DRAM accesses could come from both the
local NDP core and the upper-level bridge, we add an access
arbiter to coordinate the accesses from the two, similar to
previous work [15]. Note that such arbitration is needed even
in the baseline design to support concurrent accesses from the
NDP core and the host CPU. Such bank-side arbitration elim-
inates the need for complex modifications to the host memory

controller. The controller can transmit DDR commands from
the host CPU seamlessly, while actual memory accesses from
both the host and the NDP unit are coordinated near the bank.
We follow previous designs to optimize issues like DRAM
row buffer conflicts and write-read turn-around delays [15].

Our dynamic load balancing scheme requires extra hardware
support. In-SRAM location metadata track the migrated data
elements. An in-DRAM borrowed data region stores the
data elements that are scheduled in. The SRAM-based sketch
structure and the in-DRAM reserved queue are used to identify
the hottest data and the corresponding tasks for scheduling. We
explain how these modules are used in Section VI.

Bridges. We explain the design of the level-1 (rank-level)
bridges as in Figure 4(a). The level-1 bridge is implemented
in the DIMM buffer chip, with mainly three SRAM data
buffers and some auxiliary logic. Our design requires DRAM
modules with buffer chips. For a rank with N banks, we add
N scatter buffers to store the messages to be scattered to
these banks. The gathered messages are routed by the message
router into these scatter buffers based on their destinations. For
the messages whose destinations are in other ranks and should
be sent to the upper level, we store them in a mailbox region
similar to the one inside the NDP unit. If any of the scatter
buffers or the mailbox region is full, the gathered messages
are temporarily stored in a backup buffer. If the backup buffer
is also full, the bridge will pause gathering messages. The
scatter buffer is 1 kB per bank, in total 64 kB for 64 banks
in a rank. We use 128 kB for the mailbox region, and 64 kB
for the backup buffer. A command generator forges the DDR
commands needed for gathering/scattering messages from/to
the banks (Section V-B). Note that it is not a full memory
controller (e.g., no scheduling) so its logic is quite simple. We
do not need to schedule these forged DDR commands here,
because the actual DDR accesses are scheduled and arbitrated
by the access arbiter at the bank, as mentioned above [15].
Finally, in-SRAM location metadata are needed to support
load balancing, similar to those in the NDP units.

The upper-level bridges have similar hardware architectures.
The simplest way is to implement the level-2 bridge in the
host CPU using a software runtime (as in our evaluation),
similar to the baseline but now we only deal with cross-rank

messages rather than all cross-bank messages. Alternatively,
we can leverage previous DIMM-buffer NDP communication
designs, such as adding peer-to-peer links between DIMMs
as in DIMM-Link [89], or broadcast links between DIMMs
as in ABC-DIMM [73]. NDPBridge is orthogonal to and can
work in tandem with them. In addition, these previous designs
only implemented physical links, while NDPBridge also needs
extra metadata bookkeeping for load balancing.

Hardware cost. We emphasize that the hardware modifica-
tions of NDPBridge incur low implementation complexity and
cost. All the added components are confined to the places that
have already been subject to modifications in existing NDP
systems, e.g., at the DIMM buffer chips [6], [42], [50], [89]
and besides the DRAM banks [20], [30], [49], [52]. Some
of these changes have even been justified by commercial
products [20], [30], [43], [49], [52]. First, the DIMM form
factor could remain unaltered. NDPBridge does not require
additional physical pins or links inside the DIMM. Moreover,
the DDR interface between the DIMMs and the host CPU
remains unaffected. Second, the area cost is negligible. We
implement the added logic modules in Verilog and synthesize
them in the TSMC 28 nm technology. We use CACTI 7.0 [7]
to model the added SRAM storage. For the bridge, the logic is
only 0.002 52 mm2. The SRAM has 1.25 MB capacity in total
(Table I) and occupies 1.46 mm2. Together the area overheads
are only 1.46% of the rank buffer chip area [42]. For an NDP
unit, we need to add 0.000 134 mm2 logic plus 20.2 kB SRAM,
which are minor compared to the existing core and caches.

Compatibility with split DIMM buffers. Our current
level-1 bridge design relies on a unified buffer chip per rank
for both data and C/A links. This requirement follows most
previous DDR4-based DIMM-buffer NDP designs [24], [42],
[50]. Nevertheless, it has been pointed out that since DDR4,
separate data buffers (DBs) and a registering clock driver
(RCD) chip are preferred to further improve the signal integrity
of DQ [6]. NDPBridge can also be implemented with such a
DIMM type. Since in this case each DB chip is attached to a
set of DRAM chips, a level-1 bridge among these DRAM
chips can be implemented in the DB chip. The DQ bus
multiplexing mechanism in Chameleon [6] can be used to
transfer the generated commands from DB chips to DRAM
banks. Specifically, Chameleon puts NDP accelerators in the
DBs, which are connected to their corresponding DRAM chips
through only the DQ links. Therefore it proposes temporal and
spatial multiplexing to transfer not only data but also C/A com-
mands on these DQ links, respectively called chameleon-t and
chameleon-s [6]. Such multiplexing would slightly sacrifice
data bandwidth for dispatching C/A. In our design, the level-1
bridge is in the DB, and can use similar designs to multiplex
the DQ links for sending generated commands to NDP units.
The RCD and the BCOM interface between the RCD and
the DBs are not needed. This design would incur slightly
higher hardware overheads than our default implementation
with a unified buffer, because more level-1 bridges must be
implemented in multiple DB chips. The message router and
the command generator must be replicated in each DB, and

64 bytes

State

Address

Data Payload

2 bits 4 bits Scheduling Result

(A2, W2)(A1, W1)

Task

Data

58 bits

Address

Lmailbox Wqueue Wfinish

Task Type Timestamp Workload

Type Index

Type Index

Type Index

Args
4 bits 14 bits 14 bits

12 bytes

Fig. 5. Message formats.

consume 0.0201 mm2 in total assuming eight DBs per rank.
In contrast, the added SRAM buffers could be split among
the DBs to keep the total size the same, i.e., 1.46 mm2 as
above. The hardware cost of link multiplexing is negligible as
reported in Chameleon [6]. Among different DB chips, the
level-2 bridge can use the host CPU or requires an extra chip
in the DIMM, which may need form factor changes. We show
the performance evaluation of this design in Section VIII-A.

B. Communication Protocols

Message types. There are three types of messages in NDP-
Bridge: task messages, data messages, and state messages.
Figure 5 shows their formats, with a type field to distinguish
the types. The maximum message size is 64 bytes. If a message
is too large, we divide it into multiple small sub-messages. The
index field indicates such a sequence.

The state message is used by the upper-level bridges to
gather state information of their children, including the length
of the mailbox region Lmailbox, the workload amount of tasks
in the task queue Wqueue, and the finished workload amount
Wfinish. These states are used to decide whether to trigger a
new round of message gathering and load balancing, which
will be introduced in Sections V-C and VI. When the children
need to respond to such a scheduling round, they also append
the list of data to be scheduled out (the addresses and the
associated workload amounts) in the state message.

The task message is used to transfer a task to another
NDP unit, either because the data element to be processed
is remote, or due to load balancing. It contains the address of
the corresponding data element, the task type that selects the
task function pointer, and the other arguments following the
programming API in Section IV.

Finally, the data message transfers a chunk of local data to
another NDP unit, in order to allow the corresponding tasks
on this data chunk to be scheduled to other units for load
balancing (Section VI). If the data chunk is longer than the
message payload, multiple messages are composed.

Communication procedures. NDPBridge uses three proce-
dures for cross-unit communication: state gathering, message
gathering, and message scattering. We introduce three com-
mands in the bridge: STATE-GATHER, GATHER, and SCATTER.
These commands are implemented using existing DDR com-
mands and sent through existing C/A links, but target spe-
cially reserved row and column addresses outside the physical
DRAM array range. We denote the reserved row/column as
R ROW and R COL, respectively. The command handler in

the NDP unit controller (Figure 4(b)) detects these reserved
addresses and decodes accordingly. Other command encoding
approaches are also possible [3], [6], [31], [42].

A STATE-GATHER command to a bank is a DDR ACTIVATE
command to R ROW. The child’s unit controller prepares the
state information and responds with a state message as above.
Since the state information is maintained inside the unit
controller and not stored in the mailbox, state messages will
not be blocked by other messages, and can be delivered timely.

The bridge can also issue a GATHER command to gather
task/data messages from its children, by sending a DDR
READ command to R COL. After decoding the command in
the command handler, the unit controller fetches messages
from the head of the mailbox region, and returns it to the
bridge. The bridge decides the destination NDP unit of the
gathered messages based on the address field in the message,
following the default address mapping if the data element is
not migrated, or using the location metadata in the bridge
otherwise. The message is then stored into one of the scatter
buffers or the mailbox region, according to the destination.

Finally, the bridge scatters the task/data messages in the
scatter buffers to their destinations. It sends a SCATTER com-
mand, which is a DDR WRITE to R COL. For the lowest level,
upon receiving a task message, the unit controller inserts the
task into the task queue to wait for execution. If it is a data
message, the data chunk is stored into the borrowed data
region, and the location metadata are updated. If the child
is another bridge, the received message will be routed to the
corresponding scatter buffer and later sent to the lower level.

Although each message is 64 bytes, we use a larger granular-
ity Gxfer for GATHER/SCATTER message transfers to achieve bet-
ter channel bandwidth utilization. Gxfer is by default 256 bytes
in NDPBridge. We empirically decide it in Section VIII-C. It
is also used as the granularity of load balancing in Section VI.

We further leverage memory-level parallelism in commer-
cial DRAM architectures to optimize the communication.
Note that all DRAM chips in a rank share the same C/A
links, and their DQ links are bundled into the wider channel.
Therefore, at the level-1 bridge, a single command can be
issued to the same banks in all the chips simultaneously, with
different messages gathered/scattered. For example, assume
eight x8 DRAM chips compose a 64-bit channel. A GATHER
command can access bank 0 across all eight chips in parallel.
After a 64-bit data piece is received in each half-cycle, it is
decomposed into eight 8-bit slices, each from one bank. The
bridge internally handles such layout transformation. Then the
bridge gathers from bank 1 across all chips, and so on.

C. Dynamic Communication Triggering

In NDPBridge, the upper-level bridge actively initiates com-
munication among its lower-level children. The state gathering
is lightweight as only one message is returned per bank. It
happens periodically every Istate cycles, by default 2000 cycles
(we evaluate other values in Section VIII-C). However, how
frequently to do a round of task/data message gathering/scat-
tering needs careful consideration. We denote the minimum

interval as Imin, which is the time to finish communication
across all children (recall that each bank in a chip is round-
robin accessed). Too frequent communication may cause band-
width waste. This is because message gathering/scattering is
done at a fixed access granularity Gxfer. If there is no pending
message, a GATHER would be wasted. In contrast, insufficient
communication may leave many tasks in the mailbox regions
not sent to their destinations in time, incurring idle core cycles.

We propose a simple but efficient dynamic scheme to trigger
message gathering/scattering. The key idea is that, when there
are idle units, we communicate more frequently to promptly
deliver tasks; otherwise, we wait until we can fully utilize
bandwidth. Specifically, if an NDP unit’s mailbox is empty,
the bridge does not gather. If the length Lmailbox exceeds
the transfer granularity Gxfer, the bridge immediately starts a
message gathering. Otherwise, the bridge only gathers if there
are idle children based on Wqueue, with the frequency of Imin.
Lmailbox and Wqueue are available in the collected state message.

VI. LOAD BALANCING SCHEME

The capability of cross-unit communication in NDPBridge
further enables dynamic load balancing. However, as discussed
in Section II-C, dynamic load balancing for DRAM-bank NDP
faces unique challenges and requires a data-first scheduling
paradigm, where the data must be migrated first before a task
can be scheduled to another unit. Next we propose hierarchical
and data-transfer-aware load balancing, including efficient
metadata tracking of migrated data, and scheduling policies
aware of data migration cost.

We call the idle unit that receives tasks as the receiver, and
the busy unit that sends out tasks as the giver. The giver would
also lend the corresponding data to the receiver.

A. Load Balancing Workflow

We design a hierarchical load-balancing workflow. At each
level, the bridge periodically collects state messages from
its children. When it detects idle children (precisely defined
in Section VI-C), it initiates the load balancing process. To
leverage the DRAM hierarchy and reduce expensive cross-rank
communication, NDPBridge first tries to balance loads within
each rank. Only if all local NDP units in a rank are idle, the
level-1 bridge would report to the level-2 bridge, which then
initiates cross-rank load balancing. This hierarchical procedure
is similar to prior NUMA-aware load balancing schemes [8],
[14], [21], [22], [66], [71].

The load balancing workflow includes the following steps
as shown in Figure 6. ❶ Bridge commands scheduling: The
bridge randomly matches each idle receiver with one or more
non-idle givers, and uses a SCHEDULE command (see below)
to send each giver a budget value representing the amount
of workload that should be scheduled out of this giver. The
budget value of a giver is the sum of the required workload of
all receivers matched to the giver. The required workload of
each receiver is introduced in Section VI-C. ❷ Giver chooses
tasks: When a giver receives the budget value, it locally
chooses enough tasks to satisfy this budget (Section VI-C) and

4

update metadata (G)

assign scheduled-out data (B)

3 receive data & update metadata (R)5

1 command scheduling (B) 2 choose tasks (G)
Bridge

Command Generator
Location Metadata

Giver Unit Receiver Unit
Borrowed Data Region

Location Metadata Sketch

MailBox

Location Metadata
......Reserved Queue

Fig. 6. Load balancing workflow. Only hardware modules involved in load
balancing are depicted, and marked by the colored boxes corresponding to
the execution steps they are involved in. B, G, and R represent bridge, giver,
and receiver, respectively.

puts the selected tasks and their corresponding data into the
mailbox. ❸ Giver updates metadata: The list of scheduled-
out tasks/data is temporally kept in the unit controller, and
is returned to the bridge through the next state message. ❹
Bridge assigns scheduled-out data: After the bridge collects
the scheduling result, it assigns the data to the receivers
based on the previous matching. The bridge also maintains
the location metadata accordingly (Section VI-B). ❺ Receiver
receives data and updates metadata: When a data message
containing new data elements arrives at the receiver, the re-
ceiver updates the local metadata and stores the data elements
to the borrowed data region in the DRAM. The metadata
scheme is further elaborated in Section VI-B. Note that load
balancing happens hierarchically at each level. The level-2
bridge only assigns budgets and coordinates data among the
level-1 bridges, while each level-1 bridge is responsible for
locally lending out enough tasks from its own children to
satisfy the budget, or assigning received tasks to the children.

The SCHEDULE command can be implemented in several
ways, similar to Section V-B or following previous work [3],
[42]. We use the DDR ACTIVATE command. The row address
encodes the budget, by concatenating a non-existing row
address prefix (recall that we reserve some row address bits)
with the actual budget value.

B. Metadata Scheme

In NDPBridge, both the NDP units and the bridges need to
keep metadata to track where data have been migrated. Each
NDP unit has two metadata structures. The first one is a bitmap
isLent, one bit per each size-Gxfer block, to indicate whether
the block is currently lent to another unit. The other one is
a set-associative table called dataBorrowed, which tracks all
received data blocks borrowed from other units by storing
their current addresses in the borrowed data region in the local
DRAM. Each entry is essentially a key-value pair of 〈 original
block address → remapped block address 〉. A table entry may
be replaced (following LRU), in which case the corresponding
data block is returned to its original home unit. In each rank-
level bridge, we also maintain a dataBorrowed table, but its
entry only stores the receiver unit ID instead of the detailed
address. The two levels of dataBorrowed tables are inclusive.
Here we do not need an isLent bitmap to mark which data

Unit
6

Unit
0

Unit
1

Unit
2

Unit
3

isLent(red)=1 dataBorrowed(red)=0x0012

dataBorrowed(red)=3

isLent(green)=1

dataBorrowed(green)=1

dataBorrowed(green)=2

dataBorrowed(green)=0x0044

: Data items, following data transfer order
......

Unit-0 isLent

Unit-3 dataBorrowed

1

Unit
4

Unit
5

Unit
7

red 0x0012
............

Fig. 7. Data migration workflow and corresponding metadata structures.

blocks are lent to other ranks. If a block is marked isLent = 1
in its home NDP unit, but does not appear in the rank-level
dataBorrowed table, it means the block is in another rank.

Figure 7 shows how to manage these metadata structures
when lending data. For the red data block lent from unit 0 to
3, we set its isLent in unit 0, and update dataBorrowed in
level-1 bridge 0 with 〈 red → 3 〉 and that in unit 3 with 〈 red
→ 0x0012 〉. For the green data block lent from unit 1 to 6
across ranks, we set isLent in unit 1, update dataBorrowed
in both levels of bridges, and finally that in unit 6. These
metadata updates happen along with data message passing.
Therefore, updating dataBorrowed in the receiver is always
later than updating isLent in the giver, ensuring that a block
is never simultaneously available at both units. For a block
whose original address is x, if this is the home unit of x and
isLent(x) = 0, the block is local. If this is not the home unit
but dataBorrowed has an entry for x, it is also locally stored.
Other than these two cases, the block is not available locally.

In our default configuration (Table I), we use a 2 kB isLent
table and a 16 kB, 8-way dataBorrowed table in each NDP
unit (0.19 mm2). We add a 1 MB, 16-way dataBorrowed table
in each bridge (1.18 mm2 or 1.18% of the buffer chip).

C. Data-Transfer-Aware Scheduling Policy

An obvious but vital characteristic of data-first scheduling is
that data transfers take time. As a result, there could be a long
delay between issuing a load balancing request and actually
receiving the tasks/data at the receiver unit. During this period,
the scheduling is not yet effective and the receiver unit remains
idle, yielding limited load balancing benefits or even adversely
impacting performance due to extra data transfers. This is
not an issue in traditional shared-memory systems that only
schedule tasks but not migrating data. Hence in NDPBridge,
data transfers should be our primary focus of consideration,
and call for specific data-transfer-aware optimizations.

With Figure 8, we summarize three goals of data-transfer-
aware scheduling, namely hiding transfer latency, avoiding
transfer congestion, and reducing transfer traffic. We show
that directly applying traditional work stealing fails to achieve
these goals. Then we propose our optimizations for each goal.

Hiding transfer latency. Traditional load balancing policies
steal tasks from others when the local task queue is empty. If
data transfers are slow, it would result in notable idle time
in the receiver unit, as shown in Figure 8 left. NDPBridge

No Load
Balancing

Scheduling
Hot

Tasks/Data

Goal-1:
Hide Transfer

Latency

Goal-3:
Reduce Tranfer

Traffic

Traditional
Work

Stealing
Fine-Grained Stealing

&
Workload Correction

Goal-2:
Avoid Tranfer

Congestion

In-Advance
Scheduling

Data-
Transfer-

Aware
Scheduling

Unit-1
Unit-2

: Execution Time
: Communication Time

: Task : Data

Fig. 8. Three key design considerations in data-transfer-aware scheduling.

schedules tasks in advance before the task queue becomes
empty, thus overlapping the transfer latency with useful com-
putations. The key question is how advance it should be. We
set a threshold Wth. When the remaining task queue workload
Wqueue < Wth, the upper-level bridge should start load bal-
ancing to refill the task queue. We determine the threshold to
fully hide the data transfer latency, as Wth = 2×Gxfer×Sexe

Sxfer
. Here

Sexe and Sxfer represent the average speeds of executing task
workloads and transferring data blocks between NDP units
and the bridge. The bridge can easily estimate their values
through the gathered state messages. The factor of 2 accounts
for transfers to and from the bridge.

Avoiding transfer congestion. The amount of stolen tasks
also needs re-calibration. Traditional wisdom steals half of
the victim queue length [10], [71], which may be too much
for NDPBridge and cause back-and-forth task migration due
to several reasons. First, task transfers now take longer time,
which adds to the receiver’s overall time and may make it
a new straggler as in Figure 8 middle. Second, tasks are
dynamically generated in our model as time goes on. When
the stolen tasks arrive after too long, the original idle unit may
already become busy. Third, with data-first scheduling, the
migrated data elements would automatically attract more tasks
afterwards. Fourth, when tasks have been assigned to a receiver
but are still being transferred, the receiver should not request
more tasks. Therefore, NDPBridge uses fine-grained stealing,
to only transfer a small amount of workload to the receiver.
We set the amount to a small multiple of Wth, e.g., 2×Wth.
The idea is to just ensure the unit has enough work to do
before the next load balancing round, which will transfer tasks
to it again if there are still not enough tasks. Furthermore, we
apply workload correction to account for the already scheduled
but still transferring tasks. The bridge keeps an toArrive
counter for each NDP unit for such pending loads, and uses
Wqueue + toArrive to estimate the actual workload.

Reducing transfer traffic. The previous optimizations
mainly find a better timing to transfer data. But if there are
simply too many data to transfer, the overheads would still
dominate. Next we reduce the amount of data transfers through
better selecting which data blocks and tasks to lend out.

Traditional work stealing simply chooses tasks from the tail
of the victim queue. However, in our case, stealing different

Scheduling
 Response

To
MailBox
Region

......

Reserved Queue

h(T.addr)
......

Buckets

(addr, workload)

Entries

Reserved Task Chunk

............

Task T

SCHEDULE

Fig. 9. SRAM-based sketch and in-DRAM reserved task queue to identify
and schedule hot data/tasks in NDPBridge.

tasks would lead to quite different data traffic, because data
elements have drastically different hotness. Selecting hot data
blocks allows for less data traffic for the same amount of task
workload. As in the right side of Figure 8, to schedule four
tasks, with cold data elements each only processed by one
task, four elements must be sent. Obviously, a better way is to
migrate a single hot data element associated with four tasks.

Following this insight, NDPBridge aims to identify and
schedule hot data elements and their corresponding tasks
when doing load balancing. We use a sketch-based solution
to track hot data in the block granularity. The sketch [16],
[79]–[81], [86] is a data structure widely used in networking
measurement, using a small storage to efficiently and approxi-
mately identify hot items in a data stream. We use a simplified
design similar to HeavyGuardian [79], while we do not need
to track cold data. Each NDP unit maintains a sketch as a set-
associative buffer. It is composed of several buckets indexed
by the data address, and each bucket stores a list of entries as
〈 address, workload 〉, as shown in Figure 9 left. When a task
on data x and of workload w comes to the unit, it searches
address x in the sketch. On a hit, w is added to the stored
entry. On a miss, if there is empty space, a new entry 〈x, w 〉
is inserted. Otherwise, we find the entry emin in the bucket
with the lowest workload, and decay emin.workload by w with
a probability P = b−emin.workload, where b = 1.08 offers the
best accuracy as mathematically proved [79]. If emin.workload
becomes negative, we remove it and insert 〈x, w 〉. We use
sixteen 16-entry buckets, with 58-bit block addresses and 1-
byte workload counters. The sketch size is just 2 kB.

The tasks associated with each data block in the sketch are
reserved in a special reserved queue in the local DRAM, and
will be prioritized for load balancing. The reserved queue is
organized in size-Gxfer chunks. As shown in Figure 9 right,
each sketch entry is statically assigned a chunk as the initial
space to store its associated tasks. If this chunk is full, new
chunks are dynamically allocated to form a linked list. A
bitmap is used to track such allocation, 1 bit per chunk. We
manage 1280 chunks per NDP unit, for about 10000 tasks.

When we need to extract tasks to schedule out, we first find
the hottest entry from the sketch. We move the corresponding
data block, and the associated tasks from the reserve queue
chunks, into the mailbox region waiting to be transferred. This
entry is then removed from the sketch, and the chunks are
cleared/freed. If more tasks are needed, the next hottest sketch
entry is extracted. If the sketch becomes empty, we fall back
to use the tasks from the tail of the task queue.

TABLE I
SYSTEM CONFIGURATIONS.

NDP system
2 channels × 4 ranks × 8 chips × 8 banks
512 NDP units in total (1 units per bank)
32 GB capacity in total (64 MB per bank)

NDP core In-order, 400 MHz, 10 mW
L1-D cache 64 kB, 4-way, 64 B cachelines, LRU
L1-I cache 32 kB, 2-way, 64 B cachelines, LRU

DRAM bank 64 bits I/O; 17 ns CAS/RCD/RP; 150 pJ/64bit RD/WR

NDP Unit SRAM: 2 kB isLent; 16 kB 8-way dataBorrowed
DRAM: 1 MB mailbox, 1 MB borrowed data region

NDP Bridge SRAM: 64 kB scatter buffers, 64 kB backup buffer
SRAM: 128 kB mailbox, 1 MB 16-way dataBorrowed

Sketch 16 buckets, 16 entries/bucket, 1-byte counter per entry

Comm.
Gxfer = 256 byte, Istate = 2000 cycles
2400 MT/s × 64 bits between level-1 and level-2
2400 MT/s × 8 bits between NDP units and level-1

TABLE II
EVALUATED DRAM-BANK NDP SYSTEMS.

Design Communication Load balancing

C Forwarded by host CPU None
B Using bridges (ours) None
W Using bridges (ours) Work stealing
O Using bridges (ours) Data-transfer-aware (ours)

Hardware cost. We summarize the newly introduced hard-
ware structures to support load balancing in NDPBridge. Each
unit needs a toArrive counter, a sketch, and a bitmap for
reserve queue allocation. The total SRAM capacity is less than
2.2 kB. The bridge needs logic to estimate Sexe and Sxfer, by
processing gathered state information.

VII. METHODOLOGY

System models. We use zsim [68], a Pin-based simulator, to
model DRAM-bank NDP systems. We extend zsim with task-
based execution similar to Swarm [38] and modify the previ-
ous DRAM modules [25] to support independent accesses to
individual DRAM banks from NDP cores. Table I summarizes
our system configurations. We assume a wimpy in-order core
in each NDP unit at 400 MHz following UPMEM [20]. Each
core consumes 10 mW similar to ARM Cortex M3 [5]. We
use CACTI 7.0 [7] to model the timing and energy of SRAM
caches/buffers and metadata storage. Our DRAM parameters
follow the configurations of UPMEM [20], [30], i.e., each
UPMEM module is a DDR4-2400 style DIMM with 8 DRAM
chips and 8 banks per chip. Each 64-bit DRAM read/write to a
bank costs 150 pJ based on evaluations on UPMEM [20]. The
data movement energy on the off-chip channels is obtained
from [25]. For cross-rank communication, we do not use
DIMM-Link [89] but simply use the original DDR channels.
DIMM-Link cannot help communication within a rank.

Applications. We evaluate eight data-intensive parallel ap-
plications: linked list traversal (ll), hash table (ht), tree
traversal (tree), sparse matrix-vector multiplication (spmv),
breadth-first search (bfs), single-source shortest path (sssp),

ll ht tree spmv pr sssp bfs wcc geomean
0.00
1.00
2.00
3.00
4.00
5.00

N
or

m
al

iz
ed

 T
im

e

C
B

W
O

Wait Time
Average Execution Time

Fig. 10. Overall performance comparison between NDPBridge and baselines.
Normalized to O. The bars and the square marks show the maximum and the
average time across NDP units.

Page Rank (pr), and weakly connected component (wcc). We
port the workloads into our task-based message-passing model,
similar to existing parallel benchmark suites [30], [58]. We
use real-world graphs [55] and datasets [19] for the graph
applications and spmv. We generate data and queries for ll,
ht, and tree following a Zipfian distribution [91].

Baselines. We compare NDPBridge with three baseline
DRAM-bank NDP designs summarized in Table II. The base-
line C (for CPU) relies on host CPU forwarding to do cross-
unit communication and applies no dynamic load balancing.
This is the same as the execution model of existing DRAM-
bank NDP products [20]. B (for bridges) uses the proposed
hardware bridges for communication, but without doing load
balancing. W (for work-stealing) further uses traditional work
stealing approaches for load balancing. We also apply work-
load correction (Section VI-C) to W, since it is a simple and
natural trick for load balancing with centralized control at the
bridge. Finally O combines all of our designs in NDPBridge.

We also compare with two baselines with different architec-
tures. First, H is a non-NDP system that only uses the host
CPU to execute the same task-based applications. The host
CPU has 16 out-of-order cores at 2.6 GHz, a 20 MB last-level
cache, and two DDR4-2400 channels. With shared memory,
each core can freely steal tasks from other cores’ task queues.
Second, to compare with previous cross-bank communication
schemes, we include R, which leverages RowClone [70] for
cross-bank data transfers within each DRAM chip. Commu-
nication between different chips is done through forwarding
by the host, the same as C. We do not apply load balancing
in R since it cannot be implemented only using the hardware
modifications in RowClone.

VIII. EXPERIMENTAL RESULTS

A. Overall Comparison

Figure 10 compares the execution time of different designs.
Similar to Figure 2, we show the overall time determined by
the slowest NDP unit, and the average time of all units. Their
difference indicates load imbalance. We also highlight the wait
time due to communication.

First, for the communication overhead, the wait time takes a
significant portion of the total execution time in C, up to 57.7%
for sssp. B reduces this overhead to only 1.4%, and thus

ll ht tree spmv pr sssp bfs wcc geomean
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

N
or

m
al

iz
ed

 T
im

e
H
C

R
B

O Wait Time
Average Execution Time

Fig. 11. Overall performance comparison between NDPBridge and other
architectures: host execution without NDP (H), intra-chip cross-bank com-
munication in RowClone (R). Normalized to O.

achieves 1.51× better performance than C on average, which
demonstrates the efficiency of using our hardware bridges
for cross-unit communication rather than using host CPU
forwarding. Applications ll, ht, and spmv do not exhibit
communication overheads because their data are distributed
in a way that does not need cross-unit communication when
load balancing is not enabled. For example, each linked list in
ll and each bucket of ht are fully stored in one NDP unit [30],
[57], and thus each query goes only to this unit.

However, B still suffers from the load imbalance problem.
The average execution time is only 22.4% of the maximum.
W alleviates load imbalance by using work stealing through
bridge-enabled communication. It achieves a 1.45× speedup
than B and 2.23× than C on average. The average execu-
tion time now becomes 47.0% of the maximum. However,
W is not aware of the message transfer overheads during
task scheduling. It incurs more message transfers than B for
many applications, and the wait time increases from 1.4% to
18.6% of the execution time on average. This restricts the
performance gains of scheduling, and sometimes even hurts
the performance (e.g., tree).

Finally, with both the efficient bridge-enabled cross-
unit communication capability and the specially designed
data-transfer-aware load balancing policy in NDPBridge, O
achieves the best performance among the designs, 2.98×
faster than C and 1.98× than B. It achieves fairly good load
balancing, with the average execution time being 59.0% of the
maximum. But scheduling tasks to balance loads indeed incurs
more message communication, so the wait time in O is 10.0%
of the overall time, higher than B without load balancing.
Nevertheless, O is able to reach a good tradeoff between the
two. The communication time is much lower than using the
basic work-stealing, resulting in a 1.35× speedup over W.

Notice that although W and O use dynamic scheduling,
neither can balance the loads perfectly as in shared-memory
systems where the average time is almost the same as the
maximum. This is due to two reasons. First, the NDP unit state
information is collected periodically and hierarchically, which
may be inaccurate and stale. Second, the load balancing cost
is higher in NDP due to more expensive message transfers.
Sometimes it may be better to not schedule out tasks because
transferring them to other units may take even longer time.

Figure 11 shows the comparison with non-NDP host exe-

64-unit 128-unit 256-unit 512-unit 1024-unit
0.00
5.00
10.00
15.00
20.00

Pe
rf
or
m
an
ce

C
B
W
O

Fig. 12. Scalability comparison between NDPBridge and baselines when
running pr. Normalized to C with 64 units.

cution (H) and RowClone (R). C is only 19.9% faster than
H and sometimes even performs worse, due to the wimpy
NDP cores as well as the high communication cost and the
severe load imbalance. With all of our optimizations applied,
O can achieve an average 3.59× speedup than H. With R,
communication between banks in the same DRAM chip can
be accelerated. Thus it is 1.35× faster than C due to the more
efficient communication (75.2% less wait time). However,
in the evaluated workloads the communication across chips
is more critical, so using bridges in B achieves a 1.12×
speedup than R. O further enables load balancing (which is not
discussed in RowClone [70]) and achieves an overall 2.23×
speedup than R. Notice that regarding the communication
within a DRAM chip, RowClone’s scheme is faster than ours
since it only needs one instruction and does not need to
store messages inside the bridges. We believe NDPBridge and
RowClone can be combined to accelerate both intra-chip and
inter-chip data communication.

Recall that NDPBridge is also compatible with split DIMM
buffers, as discussed at the end of Section V-A. In this design,
since the DQ pins for data transfers are multiplexed for C/A
dispatching, the communication bandwidth between NDP units
and level-1 bridges is lower than our default implementation,
which hurts performance. We now evaluate this implemen-
tation. We use the chameleon-s design in which two out of
the eight DQ pins of each DRAM chip are dedicated to C/A,
which shows the best performance in Chameleon [6]. We use
the host CPU as the level-2 bridge. The evaluation shows a
9.1% performance degradation compared to the default design,
with a 35.3% increase in the wait time.

Scalability. Figure 12 measures the scalability of NDP-
Bridge by using different system scales from 64 to 1024 units,
corresponding to 1 to 16 ranks (all with 64 units per rank). We
can see that the speedup of NDPBridge over the baselines gets
larger as the system scales up. As the number of NDP units
increases, data become more distributed and tasks become
more imbalanced, making both cross-unit communication and
load balancing more critical. Our techniques have good scala-
bility. Specifically, even at 1024 units, O still gets a 1.68×
speedup compared to its 512-unit setting. The multi-level
bridge hierarchy is the key. NDPBridge can confine intra-rank
communications under a level-1 bridge, without involving the
level-2 bridge. As a result, the traffic through the level-2 bridge
is significantly less than those of the level-1 bridges, e.g.,
only 40.4% at 512 units. This also allows for using the same-
sized message buffers in the level-2 bridge, even though they

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

N
or

m
al

iz
ed

 E
ne

rg
y

ll ht tree spmv pr sssp bfs wcc geomean

Static
Core + SRAM

DRAM (Normal Access)
DRAM (Communication)

C
B

W
O

Fig. 13. Overall energy comparison between NDPBridge and baselines.
Normalized to O.

W +Adv+Fine+Hot O

(a)

0.0
0.5
1.0
1.5

Pe
rf
or
m
an
ce

Imin 2Imin Dyn.
(b)

0.0

0.5

1.0

D
yn

. E
ne

rg
y

0.0

0.5

1.0

Pe
rf

or
m

an
ce

Fig. 14. (a) Impact of data-transfer-aware load balancing techniques. (b) Im-
pact of dynamic communication triggering. Averaged across all applications.

are smaller than the aggregated size of all the level-1 bridge
buffers. Nevertheless, the cross-rank traffic would still increase
as the system further scales, e.g., to 56.1% at 1024 units.
Future work could investigate more complex interconnection
across ranks and better data partitioning schemes.

Notice that W fails to outperform B at 1024 units, because
the task scheduling traffic gets too much and the communi-
cation cost outweighs the load balancing benefit. In contrast,
data-transfer-aware load balancing in O is always beneficial.

Energy. The energy consumption of each design is shown in
Figure 13, which breaks down into four components: 1) NDP
cores and SRAM caches, 2) local DRAM bank accesses, 3)
DRAM bank accesses for cross-unit communication, and 4)
static. The static energy and the core energy roughly follow
the performance trend. Although the data traffic is generally
higher with load balancing enabled (W and O), sometimes the
communication energy may be lower than C and B (e.g., pr,
bfs). This is because with balanced load and faster execution,
we can avoid doing unnecessary message gathering/scattering
and thus reduce communication. Since ll, ht, and spmv do
not incur communication if not enabling load balancing, B
does not provide any energy saving over C, but consumes
more energy due to the added SRAM structures. Overall,
NDPBridge consumes the least energy over all designs, with
an average 56.4% reduction compared to C.

B. Detailed Performance Analysis

We now study the detailed tradeoffs in the NDPBridge op-
timizations. Figure 14(a) investigates data-transfer-aware load
balancing in Section VI-C. The baseline is W. We individually
apply each of the three techniques, in-advanced scheduling
(+Adv) to hide latency, fine-grained stealing (+Fine) to avoid
congestion, and scheduling hot tasks/data (+Hot) to reduce
traffic. Using in-advance scheduling alone provides the lowest

x4 x8 x16
0.00
1.00
2.00
3.00
4.00

N
or

m
al

iz
ed

 T
im

e

C
B

W
O

Wait Time
Average Execution Time

Fig. 15. Impact of DRAM chip DQ pin widths. Averaged across all
applications. Normalized to O within each configuration.

performance gain, only 4.6% on average. This is because there
is a large amount of data traffic and it is hard to hide their
latency. Fine-grained stealing achieves 1.19×. Leveraging hot
tasks/data could directly reduce data traffic, and thus offers the
highest speedup of 1.29×. The three optimizations comple-
ment each other from different perspectives. When combined,
O yields 1.35× performance gains over W.

Figure 14(b) studies the effect of dynamic communication
triggering in Section V-C. Compared with using a fixed
Imin interval, dynamic triggering reduces the access energy
by 29.5% by avoiding unnecessary gathering/scattering. The
performance is not sacrificed, degrading only 0.4%, showing
our scheme is effective in ensuring prompt message transfers.
In contrast, simply reducing the communication frequency to
2Imin significantly hurts the performance by 31.0%.

Our previous experiments assume x8 DRAM chips and
eight chips per rank to compose the 64-bit channel. We now
investigate the performance benefits of NDPBridge when using
other DQ pin widths (x4 and x16) while keeping the same
channel I/O width of 64 bits. Specifically, each rank can
be made of sixteen x4 chips, or four x16 chips. We also
maintain the same number of ranks in the system to ensure
similar ratios of intra-rank vs. inter-rank communication. Con-
sequently, there are 1024 (2 channels × 4 ranks/channel × 16
chips/rank × 8 banks/chip), 512, and 256 banks in the x4, x8,
and x16 configurations, respectively. Figure 15 shows that,
NDPBridge (O) can also work efficiently with x4 and x16
DRAM chips, achieving 3.26× and 2.58× speedups over C,
respectively. Due to the narrower DQ links to each chip, the
communication bottleneck is more critical in the x4 DRAM
configuration. Therefore, our bridge-based communication (B)
yields the highest performance gain of 2.33× over C with
x4 chips, while it is only 1.12× with x16 chips. On the
other hand, communication bandwidth also influences load
balancing, as limited communication bandwidth may cause
congestion in the mailbox and prevent scheduled data and
tasks from being quickly transferred out. So W and O provide
higher performance gains against B with x16 chips, 1.79× and
2.3× respectively. In contrast, they only achieve 1.09× and
1.4× with x4 chips. These results demonstrate the necessity of
optimizing both the hardware communication mechanism and
the software load balancing strategy, as NDPBridge does, in
order to achieve robust performance at various configurations.

geomean
(a) Gxfer value &
metadata storage.

0.0
0.5
1.0

Pe
rf

or
m

an
ce

64-1/4
256-1/4
1024-1/4
64-1
256-1

1024-1
64-4
256-4
1024-4

ll tree pr sssp
geomean

(b) State gathering interval.

0.0

0.5

1.0

Pe
rf

or
m

an
ce

1000
2000
5000

10000
20000

ll tree pr sssp
geomean

(c) Sketch bucket number.

0.0
0.5
1.0

Pe
rf

or
m

an
ce

2
4

8
16

32
64

ll tree pr sssp
geomean

(d) Sketch bucket size.

0.0
0.5
1.0

Pe
rf

or
m

an
ce

2
4

8
16

32
64

Fig. 16. Impact of various design parameter choices in NDPBridge. The
geomean is averaged across all applications.

C. Design Parameter Choices

Figure 16(a) shows the impact of different Gxfer values
as well as the sizes of the metadata tables (isLent and
dataBorrowed). We use 64 B, 256 B (default), and 1024 B for
Gxfer, and sweep 1/4, 1, and 4 times for the metadata storage
size. The results show that the current 256-byte granularity
is a good balance. Using 64 B can provide slightly better
performance if permitting 4× metadata storage.

Figure 16(b) shows the influence of Istate which is how often
to do state information gathering with STATE-GATHER. 2000
cycles could retain sufficient performance.

Figure 16(c,d) investigate the sketch size (the number of
buckets and the number of entries per bucket). Our default 16-
bucket, 16-entry configuration is sufficiently good. Although a
larger sketch may provide slightly better performance for some
applications, it occupies larger area and increases design cost.

IX. RELATED WORK

DRAM-bank NDP architectures. DRAM-bank NDP pro-
vides the highest aggregated memory access bandwidth and
parallelism among all the NDP variants. Both research pro-
totypes [1], [31], [77] and commercialized products [20],
[30], [49], [52] have been proposed following this paradigm.
Previous work has also optimized specific applications on the
commercial NDP products [28]–[30], [34], [40], [41]. Our
software programming model eases programming on DRAM-
bank NDP, and our hardware modifications enable cross-bank
communication and dynamic load balancing.

Communication support for NDP. Communication sup-
port is a vital topic for all three kinds of NDP architec-
tures. Logic-die NDP implements cross-unit communication
through inter/intra-stack interconnects [46], [47], [63], [65],
[83]. Designs have been proposed to reduce data traffic on
the interconnect by better data placement [75], [85], caching
remote data [76], and reducing intermediate results on the

way [32], [69]. NoM [67] directly connected the many banks
in a 3D-stacked memory using additional physical links, which
incurred prohibitive hardware modifications and would be
difficult to apply to 2D DRAM chips. For DIMM-buffer NDP,
which also relies on expensive host CPU forwarding for com-
munication, previous research added peer-to-peer links [89]
or broadcast support [73] between DIMMs. These techniques
cannot be applied to DRAM-bank NDP directly, since there
are no direct interconnects between banks and the physical
constraints are much more severe inside DRAM chips.

HBM-PIM [52] required data layout changes to boost per-
formance for BLAS-style computations. Its API allowed for
automatically rearranging the data layout by the host processor
when bringing the weight matrix into the memory. But there
was no direct cross-bank communication support. Each unit
operated on the partial data of a vector/matrix resided in the
local bank. For other irregular data types, ensuring data local-
ity would also require additional data interleaving. RowClone-
based designs [44], [70], [74], [87] utilized the shared data bus
inside a DRAM chip to support cross-bank communication
only within a chip. This intra-chip communication mechanism
can be combined with our inter-chip design.

Load balancing for NDP. Effective load balancing is
crucial to the performance of NDP architectures that consist of
massive parallel processing units. Most previous work relied
on static partitioning techniques to balance loads [2], [17],
[40], [56], [64], [85], [88], [90]. PIM-tree [40] particularly
optimized ordered index workloads for DRAM-bank NDP ar-
chitectures. However, these domain-specific designs put great
burdens on programmers and cannot be applied to other
applications. Dynamic load balancing has also been studied for
other types of NDP [76] and other platforms such as NUMA
systems [8], [14], [21], [22], [66], [71]. These designs cannot
be applied to vanilla DRAM-bank NDP architectures that lack
communication support. Building upon the communication
support in NDPBridge, we further propose several new data-
transfer-aware scheduling policies to address the unique load
balancing challenges in DRAM-bank NDP.

X. CONCLUSIONS

This paper proposes a hardware-software co-design ap-
proach to improve DRAM-bank NDP architectures, through
enabling cross-bank communication and load balancing. Hard-
ware bridges are added along the DRAM hierarchy to hierar-
chically forward data among banks. Computation tasks can
be scheduled to idle bank logic to avoid imbalanced loads,
with novel optimizations to reduce data transfer overheads.
Combining the hardware and software techniques allows our
system to outperform existing baselines.

ACKNOWLEDGMENT

The authors thank the anonymous shepherd and reviewers
for their valuable suggestions, and the Tsinghua IDEAL group
members for constructive discussion. This work was sup-
ported by the National Natural Science Foundation of China
(62072262). Mingyu Gao is the corresponding author.

REFERENCES

[1] S. Aga, N. Jayasena, and M. Ignatowski, “Co-ML: A Case for Collab-
orative ML Acceleration Using Near-Data Processing,” in International
Symposium on Memory Systems (MEMSYS), 2019.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable
Processing-in-Memory Accelerator for Parallel Graph Processing,” in
42nd ACM/IEEE Annual International Symposium on Computer Archi-
tecture (ISCA), 2015.

[3] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions:
A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,”
in 42nd ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA), 2015.

[4] M. A. Z. Alves, P. C. Santos, M. Diener, and L. Carro, “Opportunities
and Challenges of Performing Vector Operations Inside the DRAM,” in
International Symposium on Memory Systems (MEMSYS), 2015.

[5] ARM, “Arm Cortex-M3,” 2004, https://developer.arm.com/Processors/
Cortex-M3.

[6] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and Practical Near-DRAM Acceleration Ar-
chitecture for Large Memory Systems,” in 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[7] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, 2017.

[8] N. Ben-David, Z. Scully, and G. E. Blelloch, “Unfair Scheduling Patterns
in NUMA Architectures,” in 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2019.

[9] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun,
J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gi-
aninazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik, L. Kapp-
Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny, O. Mutlu, and
T. Hoefler, “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems,” in 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2021.

[10] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Compu-
tations by Work Stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
1999.

[11] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks,” in 23rd International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2018.

[12] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu, “Polynesia:
Enabling Effective Hybrid Transactional/Analytical Databases with Spe-
cialized Hardware/Software Co-Design,” in 38th IEEE International
Conference on Data Engineering (ICDE), 2022.

[13] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand,
A. Norion, A. Scibisz, S. Subramoneyon, C. Alkan, S. Ghose, and
O. Mutlu, “GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome Sequence Anal-
ysis,” in 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020.

[14] Q. Chen, Y. Chen, Z. Huang, and M. Guo, “WATS: Workload-Aware
Task Scheduling in Asymmetric Multi-Core Architectures,” in IEEE 26th
International Parallel and Distributed Processing Symposium (IPDPS),
2012.

[15] B. Y. Cho, Y. Kwon, S. Lym, and M. Erez, “Near Data Acceleration
with Concurrent Host Access,” in ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 2020.

[16] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: The Count-Min Sketch and Its Applications,” Journal of Algo-
rithms, vol. 55, no. 1, 2005.

[17] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 38, no. 4, 2019.

[18] G. Dai, Z. Zhu, T. Fu, C. Wei, B. Wang, X. Li, Y. Xie, H. Yang, and
Y. Wang, “DIMMining: Pruning-Efficient and Parallel Graph Mining on
Near-Memory-Computing,” in 49th Annual International Symposium on
Computer Architecture (ISCA), 2022.

[19] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, 2011.

[20] F. Devaux, “The True Processing in Memory Accelerator,” in IEEE Hot
Chips 31 Symposium (HCS), 2019.

[21] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach, “Scalable
Task Parallelism for NUMA: A Uniform Abstraction for Coordinated
Scheduling and Memory Management,” in 25th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT),
2016.

[22] A. Drebes, A. Pop, K. Heydemann, N. Drach, and A. Cohen, “NUMA-
Aware Scheduling and Memory Allocation for Data-Flow Task-Parallel
Applications,” in 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2016.

[23] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM Acceleration Architecture Leveraging Commodity DRAM
Devices and Standard Memory Modules,” in 21st IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2015.

[24] S. Feng, X. He, K.-Y. Chen, L. Ke, X. Zhang, D. Blaauw, T. Mudge, and
R. Dreslinski, “MeNDA: A Near-Memory Multi-Way Merge Solution
for Sparse Transposition and Dataflows,” in 49th ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2022.

[25] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data Processing for
In-Memory Analytics Frameworks,” in 24th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2015.

[26] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable
Logic for Near-Data Processing,” in 22nd IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2016.

[27] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in 20nd International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2017.

[28] C. Giannoula, I. Fernandez, J. Gómez-Luna, N. Koziris, G. Goumas,
and O. Mutlu, “Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-in-Memory Architectures,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 50, no. 1, 2022.

[29] J. Gómez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F.
Oliveira, G. Singh, and O. Mutlu, “Evaluating Machine Learning Work-
loads on Memory-Centric Computing Systems,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2023.

[30] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a New Paradigm: Experimental Analysis
and Characterization of a Real Processing-in-Memory System,” IEEE
Access, vol. 10, 2022.

[31] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie,
“iPIM: Programmable In-Memory Image Processing Accelerator Using
Near-Bank Architecture,” in 47nd ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2020.

[32] J. Huang, R. Reddy Puli, P. Majumder, S. Kim, R. Boyapati, K. H.
Yum, and E. J. Kim, “Active-Routing: Compute on the Way for Near-
Data Processing,” in 25th IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019.

[33] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “MEDAL: Scalable
DIMM Based Near Data Processing Accelerator for DNA Seeding
Algorithm,” in 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

[34] M. Item, G. F. Oliveira, J. Gómez-Luna, M. Sadrosadati, Y. Guo,
and O. Mutlu, “TransPimLib: Efficient Transcendental Functions for
Processing-in-Memory Systems,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2023.

[35] J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J.
Ham, and J. W. Lee, “Charon: Specialized Near-Memory Processing
Architecture for Clearing Dead Objects in Memory,” in 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[36] JEDEC, “High Bandwidth Memory (HBM) DRAM,” 2021, https://www.
jedec.org/standards-documents/docs/jesd235a.

[37] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez,
“Data-Centric Execution of Speculative Parallel Programs,” in 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016.

[38] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“A Scalable Architecture for Ordered Parallelism,” in 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
2015.

[39] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM
(High Bandwidth Memory) DRAM Technology and Architecture,” in
IEEE International Memory Workshop (IMW), 2017.

[40] H. Kang, Y. Zhao, G. E. Blelloch, L. Dhulipala, Y. Gu, C. McGuffey,
and P. B. Gibbons, “PIM-Tree: A Skew-Resistant Index for Processing-
in-Memory,” Proc. VLDB Endow., vol. 16, no. 4, dec 2022.

[41] ——, “PIM-trie: A Skew-Resistant Trie for Processing-in-Memory,” in
35th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2023.

[42] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang, “RecNMP: Accel-
erating Personalized Recommendation with Near-Memory Processing,”
in ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[43] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J. Park, H. Park,
J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S. Lee, “Near-Memory
Processing in Action: Accelerating Personalized Recommendation with
AxDIMM,” IEEE Micro, vol. 42, no. 1, 2021.

[44] D. Kim, J.-Y. Kim, W. Han, J. Won, H. Choi, Y. Kwon, and J.-Y. Kim,
“MPU: Towards Bandwidth-Abundant SIMT Processor via Near-Bank
Computing,” arXiv preprint arXiv:2305.13970, 2023.

[45] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“NeuroCube: A Programmable Digital Neuromorphic Architecture with
High-Density 3D Memory,” in 43rd ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2016.

[46] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, “Toward Stan-
dardized Near-Data Processing with Unrestricted Data Placement for
GPUs,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2017.

[47] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System
Interconnect Design with Hybrid Memory Cubes,” in 22nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013.

[48] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location
Filtering in DNA Read Mapping Using Processing-in-Memory Tech-
nologies,” BMC Genomics, vol. 19, no. 2, 2018.

[49] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son,
O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H.-
S. Shin, J. Kim, B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim, S. Kim,
E.-B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn,
and N. S. Kim, “25.4 A 20nm 6GB Function-in-Memory DRAM, Based
on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications,” in IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, 2021.

[50] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical Near-Memory
Processing Architecture for Embeddings and Tensor Operations in Deep
Learning,” in 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

[51] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing Near Memory
for Machine Learning Workloads with Bounded Staleness Consistency
Models,” in International Conference on Parallel Architecture and
Compilation (PACT), 2015.

[52] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and
N. S. Kim, “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology : Industrial Product,” in ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021.

[53] M. Lenjani, A. Ahmed, M. Stan, and K. Skadron, “Gearbox: A Case
for Supporting Accumulation Dispatching and Hybrid Partitioning in
PIM-Based Accelerators,” in 49th Annual International Symposium on
Computer Architecture (ISCA), 2022.

[54] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. R. Stan, and K. Skadron, “Fulcrum: A Simplified Control and Access
Mechanism Toward Flexible and Practical In-Situ Accelerators,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020.

[55] J. Leskovec and R. Sosič, “SNAP: A General-Purpose Network Analysis
and Graph-Mining Library,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8, no. 1, 2016.

[56] H. Liu, L. Zheng, Y. Huang, C. Liu, X. Ye, J. Yuan, X. Liao, H. Jin, and
J. Xue, “Accelerating Personalized Recommendation with Cross-Level
Near-Memory Processing,” in 50th Annual International Symposium on
Computer Architecture (ISCA), 2023.

[57] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-Centric Computing
Throughout the Memory Hierarchy,” in 25th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2020.

[58] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A System for Large-Scale Graph Process-
ing,” in ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2010.

[59] S. A. McKee, “Reflections on the Memory Wall,” in 1st Conference on
Computing Frontiers, 2004.

[60] Micron, “Hybrid Memory Cube – HMC Gen2,” 2018,
https://www.micron.com/-/media/client/global/documents/products/
data-sheet/hmc/gen2/hmc gen2.pdf.

[61] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graph-
PIM: Enabling Instruction-Level PIM Offloading in Graph Computing
Frameworks,” in 23rd IEEE Symposium on High Performance Computer
Architecture (HPCA), 2017.

[62] J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard,
M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, and A. Fedorova, “A Case
Study of Processing-in-Memory in Off-the-Shelf Systems,” in USENIX
Annual Technical Conference (USENIX ATC), 2021.

[63] M. Ogleari, Y. Yu, C. Qian, E. Miller, and J. Zhao, “String Figure:
A Scalable and Elastic Memory Network Architecture,” in 25th IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019.

[64] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Dalorex:
A Data-Local Program Execution and Architecture for Memory-Bound
Applications,” in IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2023.

[65] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H. Loh,
“There and Back Again: Optimizing the Interconnect in Networks of
Memory Cubes,” in 44th ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA), 2017.

[66] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki,
“Adaptive NUMA-Aware Data Placement and Task Scheduling for
Analytical Workloads in Main-Memory Column-Stores,” in 46th Inter-
national Conference on Very Large Data Bases (VLDB), 2016.

[67] S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati,
O. Mutlu, and M. Daneshtalab, “NoM: Network-on-Memory for Inter-
Bank Data Transfer in Highly-Banked Memories,” IEEE Computer
Architecture Letters (IEEE CAL), 2020.

[68] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” in 40th ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2013.

[69] K. Sangaiah, M. Lui, R. Kuttappa, B. Taskin, and M. Hempstead, “Snac-
kNoC: Processing in the Communication Layer,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.

[70] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data
Copy and Initialization,” 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2013.

[71] S. Shiina and K. Taura, “Almost Deterministic Work Stealing,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2019.

[72] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk,
O. Mutlu, and H. Corporaal, “Napel: Near-Memory Computing Applica-
tion Performance Prediction via Ensemble Learning,” in 56th ACM/IEEE
Design Automation Conference (DAC), 2019.

[73] W. Sun, Z. Li, S. Yin, S. Wei, and L. Liu, “ABC-DIMM : Alleviat-
ing the Bottleneck of Communication in DIMM-Based Near-Memory
Processing with Inter-DIMM Broadcast,” 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 2021.

[74] N. Talati, A. H. Ali, R. Ben Hur, N. Wald, R. Ronen, P.-E. Gaillardon,
and S. Kvatinsky, “Practical Challenges in Delivering the Promises of

Real Processing-in-Memory Machines,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2018.

[75] X. Tang, O. Kislal, M. Kandemir, and M. Karakoy, “Data Movement
Aware Computation Partitioning,” in 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2017.

[76] B. Tian, Q. Chen, and M. Gao, “ABNDP: Co-Optimizing Data Access
and Load Balance in Near-Data Processing,” in 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023.

[77] X. Xie, P. Gu, Y. Ding, D. Niu, H. Zheng, and Y. Xie, “MPU:
Towards Bandwidth-Abundant SIMT Processor via Near-Bank Comput-
ing,” arXiv preprint arXiv:2103.06653, 2021.

[78] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and
Y. Xie, “SpaceA: Sparse Matrix Vector Multiplication on Processing-in-
Memory Accelerator,” in 27th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021.

[79] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “HeavyGuardian:
Separate and Guard Hot Items in Data Streams,” in 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018.

[80] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-Wide
Measurements,” in Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

[81] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“HeavyKeeper: An Accurate Algorithm for Finding Top-K Elephant
Flows,” IEEE/ACM Transactions on Networking, vol. 27, no. 5, 2019.

[82] V. A. Ying, M. C. Jeffrey, and D. Sanchez, “T4: Compiling Sequential
Code for Effective Speculative Parallelization in Hardware,” in 47th
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), 2020.

[83] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and Y. Xie,
“A Unified Memory Network Architecture for In-Memory Computing

in Commodity Servers,” in 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2016.

[84] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “TOP-PIM: Throughput-Oriented Programmable
Processing in Memory,” in 23rd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2014.

[85] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: Reducing Communication for PIM-Based Graph
Processing with Efficient Data Partition,” in 24th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[86] B. Zhao, X. Li, B. Tian, Z. Mei, and W. Wu, “DHS: Adaptive Memory
Layout Organization of Sketch Slots for Fast and Accurate Data Stream
Processing,” in 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2021.

[87] M. Zhou, W. Xu, J. Kang, and T. Rosing, “TransPIM: A Memory-
Based Acceleration via Software-Hardware Co-Design for Transformer,”
in IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA), 2022.

[88] Z. Zhou, C. Li, X. Wei, X. Wang, and G. Sun, “GNNear: Accelerating
Full-Batch Training of Graph Neural Networks with Near-Memory
Processing,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2023.

[89] Z. Zhou, C. Li, F. Yang, and G. Sun, “DIMM-Link: Enabling Efficient
Inter-DIMM Communication for Near-Memory Processing,” in IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023.

[90] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-Based Graph Processing,” in 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[91] G. K. Zipf, Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Ravenio Books, 2016.

