
HYTE: Flexible Tiling for Sparse Accelerators via Hybrid
Static-Dynamic Approaches

Xintong Li

Tsinghua University

Beijing, China

lixt21@mails.tsinghua.edu.cn

Zhiyao Li

Tsinghua University

Beijing, China

lizhiyao19@mails.tsinghua.edu.cn

Mingyu Gao

Tsinghua University

Beijing, China

Shanghai Artificial Intelligence Lab

Shanghai, China

Shanghai Qi Zhi Institute

Shanghai, China

gaomy@tsinghua.edu.cn

Abstract
Specialized hardware accelerators are widely used for sparse ten-

sor computations. For very large tensors that do not fit in on-chip

buffers, tiling is a promising solution to improve data reuse on

these sparse accelerators. Nevertheless, existing tiling strategies

on sparse accelerators are either purely dynamic and suffering

from high design complexity, or purely static and using simple

heuristics with insufficient adaptivity. In addition, they have not

extensively explored the full design space of tiling to identify the

optimal schemes, nor have they supported efficient management of

the non-negligible metadata needed for tiling. We propose HYTE,

a hybrid static-dynamic framework to enable flexible and efficient

tiling on sparse accelerators. HYTE relies on a static offline sched-

uler to first identify a near-optimal initial tiling scheme through

effective and lightweight sampling. The tile size and shape, the

dimension iteration order across different tiles, and the buffer allo-

cation policies can all be flexibly configured to adapt to the specific

data sparsity patterns. Then at runtime, HYTE supports efficient

management of the tiling metadata in both the off-chip memory

and the on-chip buffer, as well as a technique of dynamic tuning

on the tile shape to ensure high buffer utilization in the presence

of highly varying local data patterns. Our evaluation shows that

HYTE outperforms state-of-the-art sparse tiling strategies by 3.3×
to 6.2× on average for diverse sparse matrices.

CCS Concepts
•Computer systems organization→ Special purpose systems;
• Computing methodologies→ Linear algebra algorithms; •
Hardware→ Hardware accelerators.
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1 Introduction
Sparse tensor data are prominently used in many domains includ-

ing graph processing, high-performance computing, and machine

learning. Due to their irregular data distributions, sparse tensor

computations are usually inefficient on general-purpose processors,

causing numerous random data accesses with little locality in the

memory hierarchy, as well as severe load imbalance among paral-

lel computing cores. Consequently, special-purpose sparse tensor

accelerators have been proposed to optimize critical sparse kernels

such as sparse-sparse matrix multiplications [4, 12, 14, 17, 20, 22,

24, 26, 31, 40, 41]. These accelerators typically contain an array of

multiply-accumulate processing elements and a hierarchy of SRAM

buffers. They use dedicated dataflow schemes that correspond to

various iteration orders among tensor dimensions, such as Inner

Product (IP), Outer Product (OP), and Gustavson’s.

For large sparse tensors, the on-chip buffer in the accelerator

may be insufficient to fit all data, and there would still be substantial

random data accesses to the expensive off-chip memory. In such

cases, tiling becomes an attractive solution, where the tensor is

split into multiple smaller tiles that each fit in the buffer and are

maximally reused on-chip before moving to the next tile. However,

the irregular distribution of sparse data makes it difficult to identify

the optimal tile shapes and sizes. A large tile with many non-zero

elements may overflow the SRAM buffer and sacrifice data reuse,

while a small tile with few non-zero elements would underutilize

the buffer space and lead to many tiles which cause unnecessary

refetches of the other operand tensors.

State-of-the-art sparse accelerators try to address this difficulty

through either dynamic runtime tiling that flexibly changes the

tile size [19, 25], or using static heuristics to slightly overbook the

buffer space to improve utilization [38]. Unfortunately, purely dy-

namic tiling has to limit its tiling decisions to a small number of

choices due to high implementation complexity, and purely static

tiling is usually less efficient when data sparsity varies significantly.

In addition, we find that these prior designs have not thoroughly

explored the full design space of tiling. Many of their design param-

eters, including the tile shape, the inter-tile iteration order, and the

relative space of SRAM buffers allocated among different operand

tensors, are fixed and sub-optimal, especially when the tensors have

diverse sparse patterns. Moreover, the metadata to support tiling,

https://orcid.org/0009-0007-7461-8662
https://orcid.org/0000-0002-6119-7703
https://orcid.org/0000-0001-8433-7281
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731044
https://doi.org/10.1145/3695053.3731044


ISCA ’25, June 21–25, 2025, Tokyo, Japan Xintong Li, Zhiyao Li, and Mingyu Gao

e.g., the begin and end locations of the compressed non-zero data in

a tile, may also become a significant overhead and require careful

management by the hardware accelerator.

In this paper, we take a holistic approach to study the tiling

strategies of sparse tensor accelerators and propose HYTE, a hybrid
static-dynamic framework for flexible and efficient sparse tiling.

HYTE supports a rich set of flexible tiling parameters, including

the tile size (number of non-zero elements within a tile), the tile

shape (coordinate range along each tensor dimension), the iteration

order of dimensions across adjacent tiles, and the SRAM buffer

allocation policies. At the static offline phase, HYTE relies on a

scheduler to analyze the sparsity patterns of the operand tensors,

using effective yet lightweight sampling approaches to estimate

several key metrics. With the help of a performance model, the

scheduler then generates a near-optimal tiling scheme with initial

values for the above parameters. Our sampling method is more

comprehensive than previous static heuristics [38], and gives more

efficient tiling results with only minor offline overheads.

With the initial tiling scheme, theHYTE hardware further applies

dynamic tuning, which shrinks or extends the tile size to always

ensure maximum buffer utilization even with highly varying local

data sparsity patterns. Because the statically scheduled scheme

is near-optimal, dynamic tuning can be much simplified. Besides,

HYTE efficiently manages the metadata in both the off-chip mem-

ory (for inter-tile execution) and the on-chip buffer (for intra-tile

execution), and flexibly shares the buffer space between data and
metadata to alleviate the metadata complexity.

We evaluate HYTE by comparing it with the state-of-the-art

sparse accelerators [19, 25, 38] on a diverse range of sparse datasets.

On the representative sparse-sparse matrix multiplication kernel

with the Gustavson’s hardware dataflow, HYTE is on average 3.3×
to 6.2× faster than the baselines, and performs very close to the

exhaustively searched static optimal schemes. Most of the benefits

are enabled by the flexible tiling parameter choices and the effective

static scheduling, while our dynamic features in hardware can also

boost performance for certain pathological cases when the static

scheduler fails to find a good scheme.We also show the performance

gains of HYTE are consistent across various sparse computation

kernels and different hardware dataflows. The offline scheduling

cost is minor even though it executes on the CPU, thanks to our

effective sampling method.

We make the following contributions in this paper.

• We demonstrate that existing sparse accelerators have not

extensively explored the full design space of tiling, including

the tile size, tile shape, inter-tile iteration order, and buffer

allocation policies.

• We propose a static offline scheduler for sparse accelerators,

which uses lightweight sampling to adaptively identify near-

optimal tiling schemes for various sparsity patterns.

• We design a hardware architecture for sparse accelerators,

which supports dynamic tuning on the tile shape to ensure

high buffer utilization, and efficiently manages the tiling

metadata in both the off-chip memory and the on-chip buffer.

• We integrate the above techniques into a hybrid static-dynamic

framework, which enables flexible and efficient tiling on

sparse accelerators, and significantly outperforms previous

approaches on diverse sparse matrices.

2 Background and Related Work
This section first introduces the basis of sparse tensor computations

and hardware accelerators for sparse tensors. Then it focuses on

the state-of-the-art tiling strategies in sparse accelerators.

2.1 Sparse Tensor Algebra
Tensors are multi-dimensional data arrays, and sparse tensors pre-

dominantly consist of elements with zero values. As commonly

termed [35], elements in a tensor are referred to as points with a

tuple of coordinates, e.g.,𝑋𝑖, 𝑗,𝑘 at (𝑖, 𝑗, 𝑘) in a 3D tensor𝑋 . Following

previous studies [25, 38], we use the Einsum notation [8] to artic-

ulate operations on sparse tensors. For example, the widely used

sparse-sparse matrix multiplication (SpMSpM) between tensors 𝐴

(𝐼 × 𝐾) and 𝐵 (𝐾 × 𝐽 ) is written as 𝐶𝑖, 𝑗 = 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗 over (𝐼 , 𝐽 , 𝐾).
Here, 𝑘 represents a contracted dimension that aggregates values

across iterations (𝑖, 𝑗, ∗) to output 𝐶𝑖, 𝑗 .

To avoid ineffectual operations on zeros, sparse tensors are often

stored in various compressed formats like the coordinate (COO) and
compressed sparse row/column (CSR/CSC) formats, and their block

variants like block CSR. These formats generally organize tensor

dimensions into a hierarchical structure with levels consisting of

fibers [35], which are sequential lists of coordinates and associated

non-zero values. The term position indicates the actual storage

location of a point within these formats, often differing from its

coordinates due to the compression of zeros and null pointers.

2.2 Sparse Tensor Accelerators
Sparse tensors involve excessive indirect and irregular data accesses

that are ill-suited to general-purpose processors. Consequently,

specialized hardware accelerators for sparse tensors have been

proposed, with substantial optimizations on both the computation

dataflow and the data buffer implementation.

Sparse dataflow. Similar to the dense scenario [16, 39], the

dataflow of sparse accelerators can also be represented as multi-

level loop nests iterating over the multi-dimensional space. Con-

sidering SpMSpM with three dimensions (𝑖, 𝑗, 𝑘), there are three
mainstream dataflow choices adopted by recent sparse accelerators,

namely Inner Product (IP) [4, 12, 31], Outer Product (OP) [14, 26, 41],

and Gustavson’s (Gust) [17, 20, 40], corresponding to the loop or-

ders (outer ⊲ inner) of 𝑖 ⊲ 𝑗 ⊲ 𝑘 , 𝑘 ⊲ 𝑖 ⊲ 𝑗 , and 𝑖 ⊲ 𝑘 ⊲ 𝑗 , respectively.

These dataflow schemes exhibit different data reuse friendliness

for the three tensors 𝐴, 𝐵, 𝐶 , as summarized in Table 1. Specifi-

cally, the effectiveness of reuse is contingent on the placement of

the irrelevant dimensions, such as 𝑘 for 𝐶 , within the loop order.

When the irrelevant dimension is at the inner loop, the data can

be reused across these iterations, resulting in excellent reusability.

Conversely, if the irrelevant dimension is at the outermost level, the

whole data are repetitively scanned and would thrash the limited

on-chip buffer. Recognizing these tradeoffs, several designs [20, 24]

supported multiple dataflows using runtime configurable hardware,

aiming to adapt to the diverse sparse patterns of the input tensor.

Buffer management. Conventional hardware-managed caches

are considered inefficient for specialized accelerators. The approach

of explicit decoupled data orchestration (EDDO) [21, 27, 30] thereby

emerges as a buffer management idiom tailored for accelerators.
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Table 1: Data reuse tradeoffs of different dataflow schemes
for sparse accelerators.

IP (𝑖 ⊲ 𝑗 ⊲ 𝑘) OP (𝑘 ⊲ 𝑖 ⊲ 𝑗 ) Gust (𝑖 ⊲ 𝑘 ⊲ 𝑗 )

Reuse 𝐴𝑖,𝑘 Good Good Good

Reuse 𝐵𝑘,𝑗 Poor Good Poor

Reuse𝐶𝑖,𝑗 Good Poor Good

Specifically, EDDO decouples the computation units and the differ-

ent levels of buffers, and fetches data as far in advance as possible

at each buffer level using dedicated address generators. Each buffer

is explicitly addressed with an independent address space, avoiding

the overheads of cache tags.

Depending on the dataflow, some tensors are accessed in irreg-

ular patterns. They should be buffered and reused in the on-chip

buffers to reduce expensive accesses to the off-chip memory. Other

tensors may exhibit simple streaming patterns with little temporal

locality. They only need small buffer space.

2.3 Tiling in Sparse Accelerators
To further improve data reuse, tiling becomes a promising technique

for sparse accelerators. A tile is a logically continuous sub-space of

the full iteration space (𝐼 , 𝐽 , 𝐾), representing a subset of the overall
computations. The tile shape is defined as its coordinate spread of

each dimension, denoted as 𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘 . The tile size is the number of

non-zero points in it. By restricting the tile size to be no larger than

the on-chip buffer capacity, we can maximize data reuse within the

tile before moving to the next tile. On the other hand, tiling also

incurs repetitive accesses to other tensors and/or additional partial

result merging cost, and complicates data access patterns. Notably,

with most sparse formats, the fibers of a dimension would need to

be segmented according to the tile shape, and these fiber segments
further increase the metadata overheads.

Tiling for sparse tensors typically follows two categories: coor-
dinate tiling and position tiling [25, 38]. Coordinate tiling divides

data with the same coordinate spans along each dimension, which

simplifies coordinate matching during the computation as two tiles

either have exactly the same coordinate range or do not overlap

along a certain dimension. However, the tiles may have different

sizes due to the varying local sparsity, causing potential buffer un-

derutilization or overflow. On the other hand, position tiling divides

data into tiles with the same size based on the actual data amounts

in the specific format, but the resultant unaligned coordinate ranges

between tiles are quite challenging to manage.

State-of-the-art tiling techniques for sparse accelerators.
Currently, most existing designs adopt coordinate tiling to simplify

hardware control. At the same time, they also recognize the ineffi-

ciency of mismatched data size and buffer capacity, and introduce

more dynamic and flexible tiling strategies [19, 25, 38]. For example,

Tailors [38] adopted a speculative strategy to determine the tile size,

by pre-sampling the data sparsity and allowing a small portion of

tiles (e.g., 10%) to overbook the buffer capacity. On the other hand,

DRT [25] and HARP [19] both used dynamic approaches, adjusting

the tile size at runtime to fully utilize the buffer even with varying

data sparsity characteristics.

Table 2 summarizes the details of these three designs from var-

ious perspectives. First, the tile size of Tailors is only statically

determined with 10% overbooking, while both DRT and HARP

dynamically decide the tile size to fully utilize the buffer capacity

based on the current local data sparsity. To construct the tile with a

concrete shape along each dimension, Tailors prioritizes expanding

along the contracted dimension 𝑘 in order to maximize the reuse for

tensor 𝐶 , followed by 𝑗 and 𝑖 . DRT employs an online greedy algo-

rithm to select the tile shape. It iteratively grows each dimension in

the order of 𝑘 , 𝑖 , 𝑗 , until the buffer is fully occupied. Consequently,

the tile shape in DRT resembles a cube with similar spans along

all dimensions. To facilitate such flexible tiling across all dimen-

sions under a compressed format, DRT needs to first preprocess

the original tensor into micro-tiles (of 32 × 32), as the smallest unit

for tiling. HARP, in contrast, focuses on tiling along 𝑖 only, which

is specialized for its OP dataflow and aims to improve data reuse

of tensor 𝐶 . It segments dimension 𝑖 into small pseudo-tiles, and

dynamically merges them into super-tiles during execution, based

on specific buffer usage statistics.

For the processing order between tiles, Tailors goes along di-

mension 𝑗 first, while DRT follows ExTensor [12] to go along 𝑖 first.

HARP also goes along 𝑖 first for inter-tile execution. Finally, these

three designs are also equipped with separate dedicated buffers with

different capacities for different tensors. DRT and HARP require

the tensor tiles to be fully buffered in the corresponding buffers

(buffering), while Tailors could additionally support streaming data

in and out of a small space when the tiles overflow (streaming).

3 Motivation
Despite the above recent efforts making tiling more efficient on

sparse accelerators [19, 25, 38], they are still limited in the abilities

to fully adapt to various complicated sparse data distributions. In

this section, we discuss several critical aspects of sparse tensor

tiling that exhibit drastically different optimal decisions in various

scenarios, motivating even more flexible approaches.

3.1 Tile Parameters
The most critical parameters in tiling are the tile size (number of

non-zero points) and shape (coordinate spread along each dimen-

sion). Making a tile small enough to fit in the on-chip buffer im-

proves data locality of the current tensor, but it also results in more

tiles, requiring repetitive fetches of the other tensors irrelevant to

the tiling dimension to multiply with each of these tiles. Figure 1a

illustrates the performance impact of tile sizes with different sparse

matrices from SuiteSparse [7] doing self-multiplication using the

Gust dataflow. We use an on-chip buffer of 16MB. The horizontal

axis lists different tile sizes as the overflow ratios compared to the

buffer capacity, e.g., “1” means the tile size is 2× larger than the tile

size with no overflow. As shown in the figure, ML_Laplace achieves
the best performance at the tile size without overflow; mouse_gene
excels at a tile size of 2×; and ldoor and cit-Patents prefer much

larger tile sizes close to no tiling. These different behaviors are due

to the diverse data patterns. For example, cit-Patents is quite

sparse, with only 4 non-zeros per column on average, indicating

limited data reuse opportunities. If applied a large tiling factor be-

yond 4, the repetitive access cost would outweigh the reuse benefit.
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Table 2: Tiling scheme comparison between state-of-the-art designs and ours.

Decision Tile size Tile shape Inter-tile order Buffer allocation

Tailors [38] Static Fit 90% tiles 𝑘 → 𝑗 → 𝑖 𝑗 first Unspecified ratios among 𝐴, 𝐵,𝐶

DRT [25] Dynamic Exact fit Iteratively 𝑘, 𝑖, 𝑗 𝑖 first 5%, 45%, 50% for 𝐴, 𝐵,𝐶

HARP [19] Dynamic Exact fit 𝑖 𝑖 first 4.5%, 91%, 4.5% for 𝐴, 𝐵,𝐶

HYTE Static May overflow Static flexible shaping Flexibly Flexibly partitioned among 𝐴, 𝐵,𝐶

(ours) + dynamic if beneficial + dynamic tuning scheduled + data/metadata coordination
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64T,T
16T,4T

4T,16T
T,64T

512T,T
128T,4T

16T,32T

4T,128T

T,512T
128T,T

32T,4T
16T,8T

4T,32T
T,128T

0

1

2

3

4

5

N
or

m
al

iz
ed

 O
ff-

ch
ip

 A
cc

es
se

s

TSOPF_FS_b300_c3 mycielskian16 kron_g500-logn18

A B C

(b) Tile shape. A label of “𝑎T,𝑏T” means to tile
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(c) Inter-tile order. “𝑖/𝑗 /𝑘 first” means to put 𝑖/𝑗 /𝑘
at the innermost loop of the inter-tile level.

Figure 1: Impacts of various tiling configuration parameters when processing SpMSpM 𝐶 = 𝐴 × 𝐵 on different sparse matrices.

The star mark on each line shows the choice of Tailors [38] with

10% overbook tiles, which is suboptimal for most matrices shown.

Takeaway 1 (tile size): Using tile sizes thatmatch the buffer
capacity or follow afixed overflow ratio is not always optimal,
e.g., when repetitive accesses outweigh tiling reuse.

Furthermore, even with the same tile size, the concrete shape of

the tile may also significantly affect performance. Figure 1b shows

the off-chip memory access amounts with different tile shapes while

the tile’s coordinate size (product of the two dimensions) remains

unchanged. In the almost-diagonal matrix TSOPF_FS_b300_c3, the
generated 𝐶 is relatively small, and thus tiling 𝑘 and fetching 𝐶

repetitively would be the best. However in the power-law graph

kron_g500-logn18, 𝐶 dominates the accesses, favoring only tiling

𝑗 and fetching𝐴 repetitively. Finally, the structured mycielskian16
matrix resides in between, where the best performance is achieved

by balancing the tile shape along both dimensions.

Takeaway 2 (tile shape): With the same tile size, the best
coordinate spread in each dimension would depend on the
specific tensor data patterns.

3.2 Control Schemes
Prior designs have used either purely static [38] or purely dy-

namic [19, 25] approaches to determine their tile sizes and shapes,

each with certain drawbacks. Purely static approaches can only

optimize for the average case with heuristic parameter choices. For

example, the 10% overbooked tiles in Tailors [38] may not always

lead to the best performance, as shown in Figure 1a. Purely dynamic

tiling, on the other hand, would either require significant metadata

overheads to make the data format suitable for tiling (e.g., micro-

tiles [25]), or limit to simple tiling schemes that lose efficiency [19],

as discussed in Section 3.1.

Takeaway 3 (static vs. dynamic): Purely static tiling is less
optimal while purely dynamic tiling is too expensive. A com-
bination of the two may be desired.

Another critical control scheme is the inter-tile execution order,

which affects the reuse of the fetched tiles. Note that this inter-tile

order differs from the intra-tile order. The latter is usually desig-

nated by the fixed dataflow implemented by a specific hardware

chip (Table 1) for computations within a single tile, while the for-

mer is across different tiles. Again because of the diverse sizes and

sparsity degrees, in different cases we would need to prioritize

the reuse of one specific tensor over the others, thus requiring

support of different inter-tile orders. In Figure 1c, both matrices

use the Gust dataflow and are evenly tiled along each dimension.

However, reusing 𝐶 by putting the irrelevant 𝑘 dimension at the

innermost (i.e., 𝑘 first) is more critical in the matrix filter3D, but
less beneficial for rail2586.

Takeaway 4 (inter-tile order): The hardware should sup-
port configurable inter-tile orders that could adapt to differ-
ent tensor data patterns.

3.3 Buffer Management
Finally, to realize the flexible tiling schemes and the relevant control

as mentioned above, the hardware buffers must be accordingly en-

hanced. First, because each of the different inter-tile orders mainly

buffers one of the three operand tensors and stream the others, the

buffer capacity allocation among them should be flexible. Previous

designs with rigid capacity partitioning (Table 2) cannot support

such diverse requirements. In addition, with dynamic tiling, the

metadata size and management cost could be substantial, not only

including the original compressed format indexing structure, but

also the new metadata associated with tiling (e.g., the begin and
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end positions of a tiled fiber segment). Actually, the ratio between

metadata and data varies significantly for different matrices, with

the mean and variance as 0.27 and 0.51 across our evaluated matri-

ces. Sparse and heavily tiled matrices could have excessive meta-

data, e.g., up to 3.2× of actual data in kron_g500-logn18. Dense or
mildly tiled matrices, such as nd24k and TSOPF_FS_b300_c3, only
incur < 0.02× overheads. Thus it would be more efficient to also

use the same buffer to flexibly store and manage the metadata in

tandem with the data.

Takeaway 5 (buffer management): The buffer capacity
needs to be flexibly allocated and efficiently managed among
different tensors as well as between data and metadata.

4 HYTE Overview
Based on the key takeaways in Section 3, we propose HYTE, a

hybrid static-dynamic framework for flexible and efficient tiling

on sparse accelerators. HYTE follows previous work [19, 25, 38] to

adopt coordinate tiling and focuses on selecting the best tiling con-

figuration. It is able to support various tiling schemes and identify

the best one according to the specific data tensor characteristics

and hardware dataflow implementations, therefore enabling fully

adaptive execution with high performance and efficiency.

Table 2 compares HYTE with the previous designs. HYTE uses

novel hybrid static-dynamic approaches to achieve the above flex-

ibility and efficiency (Takeaway 3). At the static offline phase,

HYTE relies on a lightweight scheduler to analyze the data patterns

and to decide an initial execution scheme. It extensively yet effi-

ciently explores the design space, and determines optimized tile
sizes, shapes, and inter-tile orders (Takeaways 1, 2, 4). Notably, it
may choose larger tile sizes or even disable tiling if it finds that the

data reuse benefit does not justify the repetitive data fetch cost. It

will also select the tile shape and the inter-tile order that result in

the best overall data reuse based on the tensor size and sparsity

information. During such exploration, the unknown information

such as the output tensor sparsity is estimated through effective yet
lightweight sampling. Moreover, based on the inter-tile reuse analy-

sis, the scheduler also flexibly allocates the buffer space to each tensor
to match their reuse requirements, e.g., using most buffer capacity

for reused tensor tiles while keeping minimum space for streaming

ones (Takeaway 5). Overall, such an initial scheme serves as a

reasonably near-optimal schedule for hardware execution.

At the dynamic online phase, the hardware processes each tile

one after one following the given inter-tile order, while the data

within each tile are fetched to its statically allocated buffer space.

Due to the need of flexible tiling schemes, HYTE requires more

complex metadata for bookkeeping the storage positions of tiled

fiber segments. HYTE enables coordinated management of data
and metadata (Takeaway 5) in both the on-chip buffer and the off-

chip memory, to facilitate efficient intra-tile and inter-tile execution,

respectively. In addition, it also applies dynamic tuning based on the
real-time, local data patterns, to ensure maximum buffer utilization.

Specifically, the statically determined tile size may underutilize

or overflow the buffer when the local data region is sparser or

denser than expected. The hardware would dynamically adjust

the tile shapes to better match the buffer capacity (Takeaways
1, 2). Such dynamic tuning is implemented with cheap hardware

• Initial tile shape: 𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘
• Inter-tile order: a permutation of 𝑖, 𝑗, 𝑘

• Buffer allocation: 𝑆𝐴, 𝑆𝐵, 𝑆𝐶

Figure 2: Initial tiling scheme generated by HYTE scheduler.

counters and simple heuristic rules, in contrast to complex designs

in previous work [25]. This is sufficient because the initial scheme

is already close to optimal, and the dynamic tuning is only needed

in occasional cases to correct the small estimation errors.

Workflow and interface. The offline scheduler of HYTE takes

in the information for input tensors 𝐴 and 𝐵, including their for-

mats, sizes, and sparsities (percents of non-zeros). The scheduler

internally estimates the information for the result tensor 𝐶 . The

hardware specifications are also provided, such as the intra-tile

dataflow (IP/OP/Gust), computation throughput, SRAM buffer ca-

pacity, and DRAM bandwidth. We consider the intra-tile dataflow

as a fixed hardware setting, because different sparse dataflows re-

quire quite different hardware implementations. It is not difficult to

extend our scheduler to search for flexible dataflow choices [20, 24].

The scheduler eventually generates an initial tiling scheme as in

Figure 2, which is then used to guide the execution on the hardware.

The scheme specifies the default tile shape to use (upon which the

hardware may further fine-tune), the inter-tile order to traverse the

tiles, as well as the allocated buffer capacity for each tensor.

In the subsequent Sections 5 and 6, we introduce the detailed de-

signs of the scheduler (offline phase) and the hardware architecture

(online phase) of HYTE, respectively.

5 Scheduling Algorithms
The offline scheduler of HYTE aims to determine a relatively opti-

mized initial tiling scheme for the given sparse data. This scheme

should include the parameters in Figure 2. Similar to existing sched-

ulers for dense computations [13, 16, 28, 39], the scheduler searches

the configuration space of different tile shapes, inter-tile orders, etc.,

assesses each scheme with a hardware cost model, and identifies

the best scheme with the minimum cost (i.e., the best performance).

Algorithm 1: Overall workflow of HYTE scheduler.

// Sample and estimate
1 𝑆𝐼 ← Sample a fraction sp of values from 0 to 𝐼 ;

2 𝑆 𝐽 ← Sample a fraction sp of values from 0 to 𝐽 ;

3 effMAC← EstEffMAC(𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp);
4 {nnzCTk}𝑇𝑘=1,2,4,...,𝐾 ← EstNnzCTk(𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp, sk);
// Search the tiling scheme with the minimum cost

5 𝑐min = ∞; 𝑠min = ⊥;
6 foreach 𝑠 in PrunedTilingSchemeSpace() do
7 𝑐 ← CostModel(𝑠 , effMAC, nnzCTk𝑇𝑘 );
8 if 𝑐 < 𝑐min then 𝑐min ← 𝑐 ; 𝑠min ← 𝑠 ;

9 return 𝑠min;

The overall workflow is summarized in Algorithm 1. The key

challenge that the scheduler needs to address is that, unlike the

dense case where the computation load and data sizes are all di-

rectly known, in the sparse scenario both the required computation
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amount and the output tensor size would depend on the input ten-

sors’ data distributions as well as their correlation in a complex

way. HYTE proposes effective yet lightweight sampling and estima-
tion methods (Algorithm 1 Lines 1 to 4; Section 5.1) to derive these

required statistics without the need to investigate the full input

tensors. We find that such sampling and estimation may introduce

15% on average and up to 43% errors against the cycle-accurate

simulation results, mostly occurring in irregular tensors. These

inaccuracies can be fixed by the online dynamic fine-tuning phase.

To efficiently explore the search space and reduce the search

cost, HYTE leverages several observations to prune unnecessary
and sub-optimal schemes (Line 6; Section 5.2). The remaining ones

are then fed to the hardware cost model (Line 7; Section 5.3) for

assessment to determine the best one. We provide several example

cases in Section 5.4 to show how the scheduler works.

5.1 Sampling and Estimation
To accurately assess the performance of each tiling scheme, we need

to know the computation amount and the data sizes. Besides the

easily known non-zero sizes of the input tensors, we mainly need to

estimate two critical metrics: effMAC as the expected effectual (i.e.,

non-zero) MAC number, and nnzCTk as the non-zero access traffic

size of the output tensor𝐶 under each tiling factor𝑇𝑘 of dimension

𝑘 when repetitive accesses are accounted for.

Algorithm 2: Estimating effMAC and nnzCTk.

1 function EstEffMAC(𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp):
2 𝑠𝑢𝑚 ← 0;

3 for 𝑘 ← 0 to 𝐾 do
4 𝑠𝑧𝐴← Number of non-zeros in 𝐴[𝑆𝐼 ] [𝑘 ];
5 𝑠𝑧𝐵 ← Number of non-zeros in 𝐵 [𝑘 ] [𝑆 𝐽 ];
6 𝑠𝑢𝑚 += 𝑠𝑧𝐴 × 𝑠𝑧𝐵;

7 return
𝑠𝑢𝑚

sp2
;

8 function EstNnzCTk(𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp, sk):
9 function EstNnzC(𝑁𝑘 , 𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp, sk):
10 𝑅 [𝑁𝑘 ] ← A list of empty min-heaps, each of size sk;
11 for 𝑘 ← 0 to 𝐾 do
12 𝑡 ← 𝑘

𝐾/𝑁𝑘
; // tile index

13 𝑎 ← Non-zero indices of 𝐴[𝑆𝐼 ] [𝑘 ] sorted by ℎ1 ( ) ;
14 𝑏 ← Non-zero indices of 𝐵 [𝑘 ] [𝑆 𝐽 ] sorted by ℎ2 ( ) ;
15 foreach 𝑖, 𝑗 in 𝑎,𝑏 do
16 𝑣 ← (ℎ1 (𝑖 ) − ℎ2 ( 𝑗 ) ) mod 1; // fractional part
17 Add ( (𝑖, 𝑗 ), 𝑣) to 𝑅 [𝑡 ], if not already existing;

18 𝑅
all
← Deduplicate and merge sort 𝑅 [𝑁𝑘 ];

19 𝑣sk ← The sk-th smallest value in 𝑅
all
;

20 𝑠𝑢𝑚 ←
∑︁
𝑡

���{𝑣 ≤ 𝑣sk |𝑣 ∈ 𝑅 [𝑡 ]}��� ;
21 return

𝑠𝑢𝑚

𝑣sk · sp2
;

22 nnzCTk← [];
23 foreach𝑇𝑘 do
24 nnzCTk.Append( EstNnzC(𝐾/𝑇𝑘 , 𝐴, 𝐵, 𝑆𝐼 , 𝑆 𝐽 , sp, sk) );
25 return nnzCTk;

Note that both the effectual MACs and the non-zero size of 𝐶

depend not only on the sparsities of the two inputs 𝐴 and 𝐵, but

more importantly also on the correlation between their non-zero

distributions. Due to the complex relationship, we adopt sampling-

based approaches to efficiently estimate these metrics. We sample

a small fraction (denoted as sp) of rows and columns from 𝐴 and 𝐵

(Algorithm 1 Lines 1 to 2). If the compressed formats are compatible,

e.g., getting rows/columns from CSR/CSC, the sampling is straight-

forward. If the formats mismatch, e.g., extracting a column from

CSR, we sample a set of points uniformly from the entire matrix,

and re-group these points into the desired rows/columns.

With the sampled matrices, our estimation methods are summa-

rized in Algorithm 2. For effMAC, we iterate over the contracted
dimension 𝑘 , and multiply the non-zero sizes of the sampled 𝐴 col-

umn and 𝐵 row pair, to get the MAC number of their outer-product.

The total estimated MAC number is the sum scaled by sp2.
To estimate nnzCTk, we borrow from previous techniques [2, 3].

We first consider nnzCTk for𝑇𝑘 = 𝐾 , i.e., no tiling. As in Algorithm 2

Lines 15 to 17, for each non-zero element pair 𝐴[𝑖] [𝑘] and 𝐵 [𝑘] [ 𝑗]
in the sampled matrices, we add (𝑖, 𝑗) into a min-heap with the

value ℎ(𝑖, 𝑗) = (ℎ1 (𝑖) − ℎ2 ( 𝑗)) mod 1, where ℎ1 and ℎ2 are two

hash functions to fixed-point numbers, and “mod 1” extracts the

fractional part of the result. The same (𝑖, 𝑗) pairs for different 𝑘 are

deduplicated in the heap. Then nnzCTk𝑇𝑘=𝐾 can be estimated as

sk/(𝑣sk · sp2), where 𝑣sk is the sk-th smallest ℎ(𝑖, 𝑗) value.
The estimation of nnzCTk for other values of 𝑇𝑘 can be done

similarly as in Algorithm 2. However, naively doing so would incur

𝑂 (log𝐾) invocations of the above procedure (Lines 23 to 24). We

apply two optimizations. First, we use the 𝑣sk value obtained in the

𝑇𝑘 = 𝐾 case to filter out most of the (𝑖, 𝑗) pairs, and only process

the pairs within the sk-th smallest. These pairs are kept in a queue

during the 𝑇𝑘 = 𝐾 invocation. Second, we only iterate these (𝑖, 𝑗)
pairs once, to build 𝑁𝑘,max

= 4096 deduplicated heaps 𝑅 [𝑁𝑘,max
]

for 𝑇𝑘,min
= 𝐾/𝑁𝑘,max

. For 𝑇𝑘×2, we merge each pair of adjacent

heaps of 𝑇𝑘 with deduplication. We do this recursively to calculate

nnzCTk for all 𝑇𝑘 values. With these optimizations, the extra cost

of estimating for other 𝑇𝑘 values can be reduced to 10% of that for

𝑇𝑘 = 𝐾 for most matrices.

The above estimation involves two hyperparameters, whose

default values are chosen as sp = 1/
√
𝑁 and sk =

√
𝑁 (where

𝑁 represents the corresponding dimension 𝐼 , 𝐽 , or 𝐾), to strike a

balance between estimation accuracy and computational cost. This

follows the theoretically proved suggestion of sp · sk ≤ 1 [2]. The

empirical time cost is further evaluated in Section 8.4.

5.2 Search Space Pruning
As in Figure 2, the search space consists of three categories of

parameters: tile shapes, inter-tile orders, and allocated buffer ca-

pacities. Below we analyze the candidate choices for each category

and prune the unnecessary ones.

First, for the tile shapes, we only consider power-of-two sizes

along each dimension, resulting in log
3 𝑁 choices where𝑁 ∼ 𝐼 , 𝐽 , 𝐾 .

Furthermore, we notice that it is not beneficial to tile the outermost

loop of the intra-tile dataflow, e.g., 𝑖 in Gust and IP, or 𝑘 in OP

(Table 1). This is because data are already sequentially processed

along this dimension and tiling it will not affect the access and
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computation flow. We hence reduce the space to log
2 𝑁 . We can do

further pruning if a tile shape is smaller than another feasible (i.e.,

fitting in the buffer size) shape along all dimensions, as it would

surely underutilize the buffer capacity.

Second, we note that only the choice of the innermost loop in the

inter-tile order affects the inter-tile data reuse characteristics. Recall

that given an inter-tile order such as 𝑖 ⊲ 𝑗 ⊲𝑘 , the tensor irrelevant to

the innermost 𝑘 dimension, i.e., 𝐶 , is reused. Exchanging the order

of the outer two loops does not change this result. In summary, we

only need to consider 3 instead of all 6 inter-tile orders.

Third, for buffer allocation, we consider both inter-tile reuse and

intra-tile reuse. First, the fixed intra-tile dataflow could exhibit a

poor access pattern on one tensor (e.g., 𝐶 for OP in Table 1) that

needs to be buffered. We choose to always satisfy this requirement

of the hardware dataflow to ensure its efficiency. Second, as de-

scribed above, the inter-tile order designates one tensor that could

enjoy inter-tile reuse and would request buffer space to keep its

tile. Consequently, we consider two choices, either only using the

buffer for intra-tile reuse, or dividing the buffer space between

inter-tile and intra-tile reuse. The first choice adds 1 more case to

the 3 inter-tile orders, making it 4 in total. Unbuffered tensors use

the streaming mode with minimum space.

In summary, the total search space is no larger than 4 × log2 𝑁 ,

which is just a few hundred different schemes and can be explored

in a short time in practice as further shown in Section 8.4.

5.3 Cost Model
For each candidate scheme from Section 5.2, we use a relatively

straightforward cost model to evaluate its performance, similar to

previous work [13, 16, 28, 39]. The total time is modeled as the total

number of tiles (as 𝐼/𝑇𝑖 × 𝐽/𝑇𝑗 ×𝐾/𝑇𝑘 ) multiplied by the per-tile

execution time, which is max{PE time,DRAM time, SRAM time}.
Here PE time = effMAC/throughput, and DRAM/SRAM time is

the total access amounts of all tensors (e.g., nnzCTk for 𝐶) divided

by the corresponding bandwidth.

It is worth noting that the total DRAM/SRAM access amounts

are sometimes non-trivial to calculate. For SRAM, the accesses are

affected by both the intra-tile dataflow and the tiling scheme. We

assume the tensors are already in the desired sparse formats of the

hardware dataflow. First we consider the case without tiling. For

example, for OP, the access amounts of matrices 𝐴, 𝐵, and 𝐶 are

nnzA, nnzB, and effMAC, respectively; and for Gust, they become

nnzA, effMAC, and nnzC. Repetitive accesses may be needed, e.g.,

IP accesses 𝐵 for 𝐼 times. Then, if tiling is applied to the irrelevant

dimension of a tensor, its SRAM accesses are amplified by the

number of tiles, e.g., nnzA × 𝐽/𝑇𝑗 and nnzB × 𝐼/𝑇𝑖 . However 𝐶
needs special treatment because it is generated and accumulated

on the fly; the access amount is estimated as nnzCTk in Section 5.1.

The DRAM access amounts need to further consider the buffer

allocation and access mode of each tensor. In the streaming mode,

the DRAM traffic is equal to the SRAM traffic. In the buffering mode,

if the tile size is smaller than the allocated buffer space, the traffic

is reduced by the reuse times. Otherwise, the hit rate is the ratio

between the two.

Besides the data, we also need to consider the metadata access

cost. With the flexible tiling schemes supported in HYTE, we need

(a) mouse_gene (b) dielFilterV2real

Figure 3: Non-zero distributions of two example matrices
that prefer no tiling and extensive tiling, respectively.

to maintain a non-negligible amount of metadata (Section 6.2),

e.g., to specify the actual storage positions of the fiber segments in

the current tile, which are irregular and differ significantly from

the regularly tiled coordinates. When a tile is highly sparse, the

metadata overhead can be substantial compared to the data access

cost, e.g., reading/writing the begin position of a fiber segment vs.

only a few non-zeros in this segment. To account for their accesses,

for each tile we calculate how many individual fiber segments it

has, e.g., a CSR-format 𝐴 tile of 𝑇𝑖 ×𝑇𝑘 has 𝑇𝑖 fiber segments. This

determines the size of metadata. Their access counts follow those

of the corresponding data.

5.4 Case Studies
We illustrate how the HYTE scheduler works on two example matri-

ces: mouse_gene and dielFilterV2real, whose non-zero distribu-
tions are shown in Figure 3. The mouse_genematrix has dimensions

45101×45101 with 14,506,196 non-zeros, while dielFilterV2real
has dimensions 1157456 × 1157456 with 24,848,204 non-zeros.

By sampling sp = 1/
√
𝑁 = 0.005 of mouse_gene and tracking

the top sk =
√
𝑁 = 212 hash values, we estimate effMAC, nnzCTk𝐾 ,

nnzCTk𝐾/128 as 7,442,882,727, 262,241,518, and 2,084,207,396, re-

spectively, while the actual values are 7,971,580,000, 237,833,954,

and 2,065,359,984. For dielFilterV2real, sampling with sp =

0.0009 and sk = 1075 yields the estimated values of 449,092,928,

95,012,185, and 125,005,246, compared to the actual 435,260,000,

105,679,996, and 121,610,583. The errors are only about 5% to 10%.

Notably, with mouse_gene, nnzC is 18× larger than the non-zero

size of the input matrix, and nnzCTk𝐾/128 is another 8× larger than
nnzC. In contrast, in dielFilterV2real, nnzC is only 4× the input,
and nnzCTk𝐾/128 approximates nnzC.

After the tiling space exploration, the HYTE scheduler decides

not to tile dimension 𝑘 for mouse_gene. This is due to its relatively

dense distribution and the high nnzC value, which would result in

significant redundant accesses to 𝐶 after tiling (i.e., nnzCTk𝐾/128
vs. nnzCTk𝐾 ). Conversely, the sparsity and low nnzCTk values of

dielFilterV2real favor extensive tiling of 𝑘 .
Our scheduler is general and can easily discover more patterns.

Matrices with similar characteristics to mouse_gene — such as

kron_g500-logn18, ship_001, and human_gene — show similar

variance and power-law distribution. Large and structured ma-

trices — like ldoor and fem_hifreq — perform comparably to

dielFilterV2real. Additional patterns are presented in Section 8.1.
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Figure 4: Hardware architecture of HYTE. The tiling con-
troller and the accessors at each buffer level are newly added.

6 Hardware Architecture
This section describes the hardware architecture of HYTE and how

it supports flexible tiling. We particularly focus on the management

of the metadata of tiling schemes in both the off-chip memory (for

inter-tile execution) and the on-chip buffer (for intra-tile execution).

We also support dynamic tuning in HYTE to compensate for the

estimation errors in the static scheduler.

6.1 Overview
Figure 4 illustrates the overall hardware architecture of HYTE.

Without loss of generality, we assume a multi-PE accelerator with

one level of SRAM buffer and the off-chip DRAM memory, similar

to most prior designs [20, 25, 38, 40]. Here in the figure we omit

any dedicated units to support a specific intra-tile dataflow, such

as index intersectors for IP and partial sum mergers for Gust and

OP, since they do not affect our tiling designs at the global buffer

level. But we consider their performance impact in the evaluation.

HYTE mainly introduces two new hardware components which

are highlighted in Figure 4: the tiling controller that controls the
overall tiling scheme, and the accessor of each tensor (e.g., “A/B/C

acc”) that is in charge of fetching the tiled fiber segments into the

buffer and managing the corresponding metadata. Note that these

modifications are only to the logic for buffer control and data access,

without altering the PE datapaths.

The high-level workflow is as follows. The global tiling controller

first loads the initial tiling scheme statically determined by the

offline scheduler. The inter-tile order and the tile shapes are used

by the tiling controller to determine which tiles to process next

after each inter-tile iteration (Section 6.2). This information is sent

to the accessors, who fetch the corresponding tiles of the multiple

tensors into the buffer, and manage the buffer space according to

the buffer allocation in the offline scheduled scheme (Section 6.3).

Our accessor design is extended from Buffets [30], with the main

difference as changing the control and access granularity from a sin-

gle element to a fiber segment with specified begin/end coordinates.

A specific design challenge is to effectively manage the metadata,
so that with an arbitrary inter-tile order, we can derive the positions
(i.e., the actual storage locations) of the fiber segments given their

begin/end coordinates from the tiling controller. Note that previous

tiling designs have overlooked this issue, either only supporting

tiling along fixed dimensions with simple metadata [19, 38], or rely-

ing on expensive preprocessing [25]. Section 6.2 describes how we

maintain the necessary metadata in the memory across tiles, while

Section 6.3 discusses how the metadata within a tile are managed

in coordination with the tensor data.

Finally, HYTE supports dynamic tuning of tile shapes at runtime

in hardware (Section 6.4), in order to correct the estimation errors of

the static scheduler and to better adapt to the local sparse patterns.

A few hardware counters are added to the accessor to collect the

runtime statistics, and the tiling controller uses such information

to dynamically adjust the tile shape using a simple model.

6.2 Inter-Tile Management
Following the statically scheduled inter-tile iteration order, the

tiling controller tells each accessor which tile to fetch next through

the following control signals (Figure 4 top right). (1) Begin_i,
Begin_j, Begin_k as the begin coordinates. (2) T_i, T_j, T_k as

the current tile shape, which could differ from the statically sched-

uled one after dynamic tuning. (3) Change_i, Change_j, Change_k,
which can take three values: 0 indicates the begin/end coordinates

remain the same as the last iteration; 1 means moving to the next

segment by increasing the begin/end coordinates by the correspond-

ing T value; and 2 resets to 0. For example, with an inter-tile order

of 𝑖 ⊲ 𝑗 ⊲ 𝑘 , the tiling controller would send 0, 0, 1, until the last

innermost iteration that sends 0, 1, 2.

Besides fetching the data fiber segments, the accessor also main-

tains the necessarymetadata, i.e., the positions of the fiber segments.

As the accessor fetches the fiber segment, it sequentially increments

the position, until encountering a coordinate exceeding the tile

boundary. The current position would become the begin position

of the next fiber segment. The exact amount of metadata needed

to store depends on both the inter-tile order and the compressed

format of the tensor. For example, assume the 𝑖 ⊲ 𝑗 ⊲ 𝑘 inter-tile

order and both tensors𝐴 and 𝐵 are in CSR. As shown in Figure 5(a),

𝐴 only needs to keep 𝑇𝑖 positions of the current tile, because the

iteration direction matches its fiber format. But 𝐵 would need to

keep𝐾 positions for the whole tile column. Because HYTE supports

flexible inter-tile orders, both cases must be considered. Due to the

various demands and the potentially large size (e.g., 𝑂 (𝐾) for 𝐵
above), HYTE keeps these metadata in the memory. The cost of

reading/writing these metadata from/to memory has been consid-

ered in our cost model in Section 5.3. If the cost is too high, HYTE

can flexibly and automatically adapt to less aggressive tiling.

6.3 Intra-Tile Management
With the specified coordinate ranges and the begin positions, the

accessor fetches the fiber segments of the tensor into its statically

allocated buffer space. We support two modes for each tensor [38],
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Figure 5: Example hardware behaviors with 𝑖 ⊲ 𝑗 ⊲ 𝑘 inter-tile
order and Gust dataflow. (a) Current tiles’ sparse patterns,
and metadata in the memory. (b) Streaming and buffering
modes, and coordination of data and metadata in the buffer.
(c) Counters for dynamic tuning of tile shapes.

buffering if the tile should be buffered for reuse, or streaming other-

wise. Figure 5(b) shows the two modes. In this example, we buffer

tensor 𝐵’s tiles while streaming 𝐴. We manage the data and meta-

data in coordination, each growing from one end of the buffer space

towards the middle until met. When filling in the data of a fiber

segment, the accessor also records its begin location in the buffer

as the metadata. For example, in 𝐴’s buffer, at time 0 and 1 the first

fiber segment (𝑎, 𝑏) is in, with a metadata 0 denoting its location.

The second segment is empty. The third segment 𝑐 starts at loca-

tion 2. Similarly for 𝐵, e.g., the last segment 𝑠 is at location 3. The

difference between two adjacent metadata entries is the (non-zero)

size of the corresponding fiber segment.

For the streamingmode, we follow the Buffets-like circular buffer

design [30], with a head and an occupancy register denoting the

head of the circular metadata buffer and its size. In Figure 5(b), at

time 3 the 𝐴 buffer is full. Then we evict one fiber segment (i.e., 𝑎

and 𝑏) as well as its metadata at time 4. Now the head moves by 1

and the occupancy reduces by 1, and we have available space to

read in the last segment 𝑑 at time 5.

In the buffering mode, if the tile data exceed the allocated buffer

space, e.g., due to a locally dense region, we do not evict previous

data since they are expected to be reused. The future data of this tile

will just bypass the buffer. This is a result of inaccurate static esti-

mation that misses local sparse pattern variations. We use dynamic

tuning in Section 6.4 to alleviate it.

6.4 Dynamic Tuning
Due to variations in the distribution of non-zeros across different

tiles, the tile that should be buffered may sometimes overflow or

underutilize the statically allocated buffer space. We may need to

decrease or increase the tile size in these cases, respectively. HYTE

applies dynamic tuning for this purpose. The accessor collects a

few runtime statistics and transfers them to the tiling controller,

which adjusts the tile shapes based on certain simple rules.

Specifically, when an accessor fetches a tile, e.g., a 𝐵 tile of shape

𝑇𝑘×𝑇𝑗 in Figure 5(c), we use four counters, cnt00, cnt01, cnt10, cnt11,
to count the numbers of non-zero elements in the four quadrants

of the tile. This gives us a more accurate view of the local non-zero

distribution of the accessed tile. We then use these counter values to

estimate the buffer hit rates for nine potentially adjusted tile shapes,

in which each of the two dimensions can increase by 2×, decrease
by 2×, or keep the same spread. That is, the new tile shape𝑇𝑘

′ ×𝑇𝑗 ′

follows 𝑇𝑘
′ ∈ {𝑇𝑘

2
,𝑇𝑘 , 2𝑇𝑘 },𝑇𝑗 ′ ∈ {

𝑇𝑗
2
,𝑇𝑗 , 2𝑇𝑗 }. The average buffer

hit rate is estimated as

𝑇𝑘
′ ×𝑇𝑗 ′ ×min(E [nnz

tile
] , bufsize)

nnz
total

where nnz
total

is the total tensor size, and nnz
tile

is the number

of non-zeros in the adjusted tile, estimated through the counters.

For example, the adjusted tile 𝑇𝑘
′ × 𝑇𝑗 ′ = 𝑇𝑘

2
× 2𝑇𝑗 would have

nnz
tile

= 1

2
× (min(2×cnt00 + 2×cnt01, bufsize) +min(2×cnt10 +

2×cnt11, bufsize)). If the buffer size is larger than the tile size, the

hit rate is 100%; otherwise it is the ratio between the two.

Using the dynamic counters is more accurate than the static

uniform estimation. Suppose we have a small buffer that can hold

only one element. In Figure 5 if we use a tile shape of 2 × 2 for

𝐵, each tile contains one element on average, and thus we would

assume 100% hits in the static scheduler. However, the actual hit

rate is
1

4
× (min(3, 1) +min(0, 1) +min(0, 1) +min(1, 1)) = 50%.

We empirically decide that if the best hit rate among the nine

shapes is more than 5% better than the existing shape, we will adjust

the tile shape. However, this adjustment may not be immediately

applied. If the current inter-tile iteration direction is different from

the dimension to be adjusted, changing the tile shape would result

in misaligned tiles compared to previous ones. Therefore, the ad-

justment is delayed until the next inter-tile iteration that requires

modification of that specific dimension. For example, in Figure 5(a)

we are iterating along 𝑘 in 𝐵. Changing𝑇𝑘 does not affect the inter-

tile iteration, but shrinking or extending 𝑇𝑗 would make the end

coordinates of 𝑗 misaligned, complicating the processing when we

start a new 𝑗 iteration.

7 Methodology
We compare HYTE with three previous sparse accelerators that

support tiling, namely Tailors [38], DRT [25], and HARP [19]. The

characteristics of these four designs are summarized in Table 2.

All the designs use the same default hardware configuration, with

32 MAC PEs running at 1GHz, and a 4MB global SRAM buffer

realized in 32 banks. The off-chip DRAM uses four DDR4 channels

with 68GB/s in total. These configurations mostly follow the prior

works [20, 33, 40]. We later assess performance with different PE

counts and buffer capacities. We assume the PE array follows the

Gust dataflow by default, but also study the performance under

other dataflow schemes like IP and OP.

We implement a cycle-accurate simulator in C++ to measure

the performance of the above designs when processing different

matrix data. Our simulator accurately captures the accesses of in-

dividual non-zero matrix elements, in order to reflect the actual
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Table 3: Area breakdown of HYTE.

Component Area (mm
2) Area %

Global tiling controller 0.08 0.6%

All tensor accessors 0.43 3.1%

Global SRAM buffer 10.1 73.3%

All PEs 2.8 20.3%

Interconnects 0.37 2.7%

Total 13.78 100.0%

influence of the input data pattern. This is more detailed than pre-

vious models [37]. In particular, various key components like the

index intersector, index selector, and partial sum merger for the IP,

Gust, and OP dataflow schemes are explicitly modeled. The real

input sparse matrix is fed to them to determine which data elements

are actually accessed and processed in the PEs, and thus affect the

compute and memory timing results. The simulator is open-sourced

at https://github.com/tsinghua-ideal/HYTE-sim.

In addition, we implement the RTL designs of the key compo-

nents introduced by HYTE, including the global tiling controller

and the tensor accessors. We synthesize them using Synopsys DC

on the TSMC 28 nm technology. We use CACTI 7.0 [5] to model

the SRAM buffers. The area numbers are listed in Table 3. We see

that HYTE incurs minor area cost of 3.7%, where the chip area is

dominated by the large SRAM buffer.

Our static scheduler, including the sampling process, runs on an

Intel Xeon Gold 6248R processor at 3 GHz, compiled with g++ -O3.

We select real-world sparse matrices from the SuiteSparse Matrix

Collection [7] as our datasets. These matrices are diverse, with vary-

ing densities (from 0.0006% to 0.356%), non-zero sizes (from 1.5M to

25M), and sparsity patterns. Tiling is irrelevant for smaller matrices

with our 4MB buffer. For better comparison, we include several

matrices used in the baseline papers, e.g., filter3D, web-Google,
pwtk, kkt_power, kron_g500-logn18, cit-Patents. We mainly

evaluate the performance of SpMSpM with self-multiplication of

square matrices, i.e., 𝑆 × 𝑆 , following prior studies. In addition, we

also test several other irregular sparse kernels, including (1) 𝐹𝑇 × 𝐹
with a tall-skinny sparse matrix 𝐹 ; (2) 𝐹 × 𝐷 where 𝐷 is a random

dense matrix, i.e., SpMM; (3) 𝐹𝑇 ×𝑆 as one iteration of multi-source

breadth-first search (MS-BFS) in graph analytics [1, 6], where 𝑆 is

the graph and 𝐹 represents the initial source nodes [25].

8 Evaluation
In this section, we first compare the overall performance and en-

ergy efficiency of HYTE against the baselines. Then we extend the

evaluation to other sparse kernels and hardware dataflow schemes.

Finally we specifically analyze the static scheduling cost in HYTE.

8.1 Overall Performance
Figure 6 compares the three baselines and HYTE. The hardware

PE array uses the Gust dataflow, running SpMSpM of 𝑆 × 𝑆 . We

also statically determine the optimal tiling scheme for each matrix

and denote it as Static-Opt. Specifically, we exhaustively search the

design space of tile sizes, tile shapes, inter-tile orders, and buffer

allocation, and choose the scheme with the best performance in our

cycle-accurate simulator (not in the HYTE scheduler’s cost model).

https://github.com/tsinghua-ideal/HYTE-sim
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Figure 8: Performance improvements from each design choice in HYTE, for SpMSpM with Gust dataflow.

For HYTE, we include the static scheduling overheads (mainly the

sampling and search time; more in Section 8.4) in its end-to-end

performance, and also separately report only the online time.

Each of the three baselines shows some advantages on different

matrices, but performs poorly on others. For instance, Tailors is the

best on kron_g500-logn18 but the worst on ldoor. On average,

DRT outperforms the other two designs, as it dynamically decides

tile sizes and also uses balanced tile shapes across all dimensions,

helping it avoid extremely poor performance in each matrix.

HYTE achieves significant speedups, on average 3.3× over the
best-performing baseline DRT, 4.5× over HARP, and 6.2× over

Tailors, including the static scheduling cost. If only considering

the online phase, the speedups are 3.9×, 5.2×, and 7.4×, respec-
tively. Such significant improvements are because HYTE uses a

static-dynamic hybrid method to explore a much larger design

space and identify the best tiling scheme tailored to each matrix. Its

performance is comparable to Static-Opt, and in some cases even

slightly better, particularly on irregular matrices like mouse_gene
and myciel16. This is because dynamic tuning in HYTE uses differ-

ent tile shapes on different regions of one matrix, while Static-Opt

fixes the statically chosen tile shape.

Figure 7 further explains the performance gains of HYTE using

the breakdown of memory accesses for each operand tensor in the

four designs. The schedules of Tailors result in significant memory

accesses for tensor 𝐴, while the schedules of HARP lead to higher

accesses for 𝐵, both because of their rigid tile shape and inter-tile

order choices. In contrast, HYTE is able to find optimized tiling

schemes that balance among the three tensors and avoidmaking any

one dominant, resulting in lower overall memory access volumes.

Figure 7 also shows the memory bandwidth of each design. The

three baselines are consistently memory-bound for all matrices.

Due to the much reduced memory traffic explained above, HYTE

only exhibits high bandwidth usage for very sparse matrices. With

relatively dense data, e.g., nd24k, HYTE consumes less memory

bandwidth and even becomes compute-bound. Note that lower

bandwidth usage in HYTE does not mean lower performance; it is

mainly due to reduced data access amounts.

To separate the contribution of each design choice, we start from

DRT and incrementally add each technique in Figure 8. By using

the best inter-tile order and buffer allocation (“+inter&alloc”), we

can focus on reusing the most critical tensor depending on the

sparse pattern, and get a 1.20× speedup. Further searching for the

tile size and tile shape in the static scheduler (“+size” and “+shape”)

brings additional 1.63× and 1.72× speedups, respectively, being the

major performance benefit sources and matching the observations

in Figures 1a and 1b. The static tiling scheme is near-optimal for
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Figure 9: Energy consumption of HYTE vs. DRT (dots, right y
axis), and breakdown into offline scheduling, online on-chip
components, and memory accesses (bars, left y axis).

most cases, exactly demonstrating the effectiveness of our offline

scheduling approach. Nevertheless, for 9 out of our 18 evaluated

matrices, like mouse_gene and nd24k, dynamic tuning (“+dynamic”)

is necessary to fix the inaccurate static decision, offering up to 1.9×
and on average 1.15× extra speedups.

Energy. Figure 9 shows that the energy consumption of HYTE is

dominated by the off-chip memory accesses (76% on average). The

offline static scheduling on the host CPU consumes only minor en-

ergy, similar to the performance results. Herewe assume 20 pJ/bit [9,

15, 23] for the memory access, and 8.5W per core [11, 18] for the

host CPU, while the on-chip accelerator consumes 10.55W. Thanks

to memory access savings and execution time improvements, HYTE

reduces energy by 81% compared to the baseline DRT.

Scalability. Figure 10 shows the speedups of HYTE over Tailors

at different accelerator chip sizes. We scale the PE count together

with the SRAM buffer capacity as well as the SRAM bank count

in this experiment. HYTE achieves 27.4×, 11.8×, 7.4×, 5.2×, and
3.4× average speedups with 8, 16, 32, 64, and 128 PEs, respectively.

Smaller buffer sizes with fewer PEs are more affected by the tiling

choices. Thus HYTE achieves higher speedups. Nevertheless, even

with up to 128 PEs, there is still a 3.4× speedup on average.

Figure 11 instead only changes the SRAM buffer capacity but

keeps the same default PE count. HYTE achieves 24.9×, 7.4×, 3.0×,
and 1.5× average speedups with 1MB, 4MB, 16MB, and 64MB

buffers, respectively. The speedups are higher for smaller buffers,

in which cases tiling decisions are more critical to performance.

When using very large buffers, the whole matrix data may fit in

the SRAM and do not need tiling at all. We point out that sparse

accelerator designs rarely use very large buffers (e.g., > 32MB), and

usually under 10MB [4, 10, 20, 22, 24, 26, 29, 32–34, 36, 40–42], as

large SRAM offers marginal and diminishing returns. For example,

the performance/area numbers in HYTE are 0.25× and 0.06× under
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Figure 10: HYTE speedups over Tailors at various chip scales.
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Figure 11: HYTE speedups over Tailors at various buffer sizes.

16MB and 64MB buffers compared to 4MB, as the total area grows

to 3.5× and 11.9× while the speedups are only 1.13× and 1.36×.
Furthermore, the better tiling strategies in HYTE could make small

buffers perform better. The performance ratio between 1MB and

64MB in HYTE is 1.8×, in contrast to 31.1× in Tailors.

8.2 Results of Different Kernels
In Figure 12 we evaluate other sparse kernels besides square matrix

self-multiplication, still under the Gust dataflow. For 𝐹𝑇 ×𝐹 , Tailors
and HARP both perform poorly because they tile along the wrong

dimensions of 𝑗 and 𝑖 , respectively, while DRT is slightly better as

it uniformly tiles all dimensions. Through static exploration, HYTE

finds the correct 𝑘 dimension, which is the largest one in this kernel,

to tile. Overall, HYTE with static scheduling only is 3.23× faster

than Tailors, and dynamic tuning increases it to 3.68×.
In the SpMM kernel 𝐹 ×𝐷 , both 𝐵 and𝐶 are dense now. Thus the

cost of tiling 𝑖 and 𝑗 to redundantly access 𝐵 and𝐶 will be very high,

and tiling 𝑘 is the best. Tailors makes the right choice of dimension

this time. HYTE is able to outperform Tailors because the default

overflowed tile size of Tailors is sub-optimal. Overflow here means

sacrificing the hit rate of the dense matrix 𝐵 to improve the locality

of the sparse matrix𝐴, which is not worthwhile. On average, HYTE

is 1.85× better than Tailors for this kernel. Since the second matrix

is dense and thus evenly distributed, dynamic tuning does not help.

Finally, the MS-BFS kernel 𝐹𝑇 ×𝑆 involves a highly sparse matrix

𝐴, so only a few 𝐵 rows are accessed. Not tiling 𝐵 at all would be

the best choice, which HARP satisfies. HYTE also finds this optimal

schedule using its static scheduler and performs the same.
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8.3 Results of Different Intra-Tile Dataflows
We further evaluate howHYTE performs on other hardware dataflows

in Figure 13. With OP, HYTE achieves an average 1.7× speedup

compared to the best baseline. OP is less sensitive to tiling shape

choices. This is because with matrix self-multiplication,𝐴 and 𝐵 are

the same matrix, and thus the cost of redundantly accessing them

is similar. For IP, the overall access pattern is similar to Gust, but

with significantly more accesses to matrix 𝐵. This makes it more

sensitive to very large tile size overflow. HYTE benefits from the

tile shape exploration and the dynamic tuning support, and obtains

a 2.7× speedup on average.
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8.4 Static Scheduling Overheads
Finally, we justify the overheads of static scheduling. The sampling

and estimation cost, which scales with the sampling ratio sp, con-
tributes to the majority of offline time. So it is crucial to choose a

proper sp that is large enough for accurate estimation, and small

enough to reduce offline time. Figure 14 shows the offline and on-

line time for different sp values. The offline scheduler runs on one

CPU core, including estimating effMAC and nnzCTk as well as the

search. The online execution is on the HYTE accelerator.

We see that a small sampling size (e.g., sp = 0.001 for web-google
and vsp) can degrade online performance due to inaccurate estima-

tion, while a large sampling size (e.g., sp = 0.1) introduces excessive

offline overheads. Our selection of sp = 1/
√
𝑁 can balance the two

factors and result in the overall best performance. The ratio of of-

fline to online time is primarily influenced by the matrix sparsity.

Extremely sparse matrices like web-google and kkt_power have
higher offline time. On average, the offline phase accounts for 16.2%

of the total execution time. This overhead is minor compared to

the significant speedups of HYTE over the baseline accelerators.

9 Discussion
Tiling controller implementation. The tiling controller mainly

takes three responsibilities: (1) orchestrating inter-tile iterations;

(2) synchronizing progress among multiple PEs; and (3) support-

ing dynamic tuning. The first two tasks are needed in any sparse

accelerators that support tiling, and commonly implemented in a

specific hardware controller [19, 20, 22, 25, 26, 40, 42]. The last one

is new in HYTE, but the complexity is minor, mainly involving

collecting the counter values from all the accessors and using them

to update the new tile shape, which in turn affects the first task.

Thus it makes more sense to integrate them in one controller.

Instead of a dedicated hardware unit, we may also use software

to control tiling. The controller needs to continuously communicate

with other components as described above. Hence using the host

CPU may not be desired, due to the long PCIe latency between

the accelerator and the CPU, along with the polling/interrupt and

context switching costs on the CPU. It is possible to use an embed-

ded core on-chip, which offers more flexibility, but also has larger

area/power than a specialized controller.

Extending to multi-level buffers. While our evaluation fo-

cuses on a single-level global SRAM, HYTE can naturally extend

to multi-level buffer hierarchies. The hardware design can be hier-

archically composed. Each level uses its own local accessors and

shares the global tiling controller. The scheduler would need to

search for more tiling parameters, such as the tile shape of each

level. This can be done with our current scheduling algorithm in an

iterative way, starting from the outermost level to the innermost.

Scheduling for patterned sparsity. The scheduling process

can be further simplified if the input tensors exhibit structured spar-

sity patterns (e.g., N:M or block-diagonal). With known non-zero

distributions, the metrics like effMAC and nnzCTk can be directly

derived instead of using sampling. Furthermore, for workloads in-

volving multiple structurally similar tensors, the sampling process

can be done only once, or fully offline on representative tensors.

Limitations. The offline scheduling in HYTE is mainly limited

by the inaccuracy in the sampling methods and the cost model, but

Figure 6 shows the statically determined schemes are already close

to the optimal. Therefore HYTE’s dynamic tuning is designed to

be simple and is sufficient in most cases. Nevertheless, more fine-

grained dynamic adjustment may lead to even better performance.

On the other hand, while most sparse tensors are still memory-

bound, HYTE may move certain workloads to compute-bound (Fig-

ure 7), so further increasing the PE resources may help in such cases.

Several inherent bottlenecks in sparse tensor processing, such as

coordinate matching, are orthogonal to HYTE tiling optimizations.

10 Conclusions
We propose HYTE, a hybrid static-dynamic framework for flexible

tiling on sparse tensor accelerators. HYTE improves upon previous

sparse tiling strategies by exploring a comprehensive design space

of tiling parameters, including the tile size/shape, inter-tile order,

and buffer allocation and management policies. A static scheduler

first composes near-optimal schemes offline to identify optimized

tiling for specific sparse tensors. The runtime hardware then dynam-

ically tunes the schemes. Overall, HYTE shows significant speedups

consistently on different sparse kernels and hardware dataflows.
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