
Hydrogen: Contention-Aware Hybrid Memory for
Heterogeneous CPU-GPU Architectures

Yiwei Li
Tsinghua University

liyw19@mails.tsinghua.edu.cn

Mingyu Gao
Tsinghua University

Shanghai Qi Zhi Institute
gaomy@tsinghua.edu.cn

Abstract—Integrating hybrid memories with heterogeneous
processors could leverage heterogeneity in both compute and
memory domains for better system efficiency. To ensure per-
formance isolation, we introduce Hydrogen, a novel hardware
architecture to optimize the allocation of hybrid memory re-
sources to heterogeneous CPU-GPU systems. Hydrogen supports
efficient capacity and bandwidth partitioning between CPUs and
GPUs in both memory tiers. With the key observation that CPUs
and GPUs exhibit distinct preferences to memory capacity and
bandwidth, Hydrogen enables decoupled capacity and bandwidth
allocation between CPUs and GPUs with flexible partitioning
ratios. It also throttles overly excessive data migration from
GPUs with a token-based mechanism. To effectively explore the
large, multi-dimensional design space and support dynamically
varying application behaviors, Hydrogen uses epoch-based online
search for optimized configurations, and incorporates lightweight
reconfiguration with reduced data movements. Combining these
novel techniques, Hydrogen significantly outperforms existing
designs by 1.16× on average, and up to 1.31×.

Index Terms—hybrid memory, DRAM cache, heterogeneous
CPU-GPU system, fairness

I. INTRODUCTION

Recent advances in big data, artificial intelligence, and
in-memory database applications have driven the needs for
modern high-performance microprocessors and memory sys-
tems [38], [39], [70]. Historically, performance enhancements
primarily stemmed from transistor miniaturization. However,
with Dennard scaling and Moore’s Law approaching their
limits [14], [61], there is a growing trend towards organizing
transistors into heterogeneous components for better efficiency.

This trend manifests in two distinct forms: compute-side
heterogeneity and memory-side heterogeneity. On the compute
side, specialized hardware like GPUs is increasingly employed
for data-parallel applications. Although traditionally dedicated
GPUs have their independent memory systems, integrated
GPUs [1], [21], [24] and other on-chip accelerators are now
tightly integrated with the CPU cores and often share the same
main memory. On the other hand, memory-side heterogeneity
is emerging with technologies like high-bandwidth memory
(HBM) [31] and non-volatile memory (NVM) [17], comple-
menting traditional DRAM with higher bandwidth or greater
density potentials, respectively. Hybrid memory architectures
with multiple tiers aim to combine the advantages of various
memory technologies, offering a unified, large, and fast mem-
ory abstraction for diverse applications [33], [60].

In the realm of high-performance computing (HPC), the
advent of hybrid memory and heterogeneous computing
paradigms has witnessed significant evolution, especially in
the context of supercomputers. HPC systems, characterized
by their demanding computational workloads such as large-
scale simulation [7], scientific computing [18], and data ana-
lytics [43], increasingly leverage the synergy between hetero-
geneous computing resources (e.g., CPUs, GPUs, and acceler-
ators) and hybrid memory architectures to achieve unparalleled
performance and efficiency. As a representative example, the
Frontier supercomputer [37] has over 9000 nodes, where each
node uses 1 CPU and 4 GPUs, equipped with 512 GB DDR4
and 512 GB HBM2E, respectively. Each node further uses
4 TB NVM to match the significant memory footprints of HPC
workloads. Hybrid memory systems offer a versatile solution
to the diverse and memory-intensive requirements of typical
HPC workloads, enabling them to benefit from both traditional
DRAM and emerging memory technologies like HBM and
NVM. This fusion of compute and memory heterogeneity not
only addresses the scalability challenges faced by conventional
architectures but also paves the way for innovative optimiza-
tion strategies in supercomputing environments.

We envision that the future of hardware architecture perfor-
mance growth lies in effectively harnessing both compute-side
and memory-side heterogeneity. However, integrating hybrid
memory architectures with heterogeneous CPU-GPU systems
poses several non-trivial issues. In this work, we focus on
the architectures with integrated GPUs, where both the CPUs
and GPUs can access a unified memory system composed of
hybrid technologies. We extensively analyze the importance
of carefully managing all the critical resources in the hybrid
memory, including the capacity and bandwidth of both the
fast and slow tiers of memory. We find several key insights.
For example, CPU and GPU workloads have quite different
preferences for the fast memory resources. CPUs prefer larger
fast memory capacity while GPUs require higher fast mem-
ory bandwidth. However, in traditional memory partitioning
schemes, simply assigning different memory channels to CPUs
and GPUs results in coupled resource allocation, which mis-
matches the above demands. In addition, the slow memory
bandwidth is a crucial resource that affects both CPU and
GPU performance. Because state-of-the-art hybrid memory
prefers large data block granularities (e.g., 256 B) to exploit
spatial locality [41], [65], data migration between the two

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

liyw19@mails.tsinghua.edu.cn
gaomy@tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00017&domain=pdf&date_stamp=2024-11-17

tiers would amplify slow memory traffic and waste bandwidth
if the data migrated to the fast memory are not beneficial.
Previous work [36], [40], [44], [49] has not fully captured
this comprehensive design space or leveraged the above unique
workload characteristics, and thus left significant performance
potentials on the table. Actually, exploring such a large design
space with multiple dimensions of resource management re-
mains a challenging task, and would require not only effective
search strategies to identify optimized configurations, but also
efficient runtime hardware support to alleviate reconfiguration
overheads for highly varying workload demands.

We propose Hydrogen (H2), a novel hardware architec-
ture to effectively partition the critical resources of hybrid
memory for heterogeneous CPU-GPU systems, aiming to
enhance performance isolation and fairness between CPUs
and GPUs. Hydrogen accepts user-specified weights of CPU
and GPU workloads, and optimizes the weighted throughput
of the overall systems transparently to the user applications.
Internally, Hydrogen identifies three key resources, namely fast
memory bandwidth, fast memory capacity, and slow memory
bandwidth, and defines a multi-dimensional design space for
partitioning. It introduces novel and specialized partitioning
schemes for each resource, catering to the unique character-
istics of CPU and GPU workloads. Specifically, Hydrogen
decouples the bandwidth and capacity partitioning of the
fast memory using a novel mapping from cache sets/ways to
memory channels, so that the CPUs and GPUs can obtain
different ratios of bandwidth and capacity that best match
their demands. Hydrogen also utilizes token-based migration
to allocate the slow memory bandwidth, effectively throttling
excessive data migration induced by the GPUs to reduce
slow memory traffic amplification. Finally, to tackle the large,
multi-dimensional design space, Hydrogen adopts an epoch-
based online sampling technique with hill climbing search in
order to find the best configuration for dynamically varying
program behaviors. When updating the partitioning configu-
rations, the system reconfiguration utilizes consistent hashing
mapping and lazy layout changes to reduce the data move-
ment/invalidation overheads.

Our evaluation across a range of memory-intensive CPU-
GPU workload combinations demonstrates that Hydrogen sig-
nificantly outperforms the best existing designs [36], [49],
achieving speedups of 1.16× on average and up to 1.31×. This
owes to its comprehensive and efficient partitioning schemes
for various memory resources as well as its effective adapt-
ability to application behaviors. Overall, Hydrogen represents
novel and contention-aware hybrid memory management for
heterogeneous CPU-GPU architectures.

We make the following contributions in this paper.
• We present a comprehensive analysis of the unique

demands and challenges of integrating hybrid memory
architectures with heterogeneous CPU-GPU computing
systems, highlighting the importance of carefully parti-
tioning the capacity and bandwidth of both the fast and
slow memories, in order to meet the distinct preferences
of CPU and GPU workloads.

• We introduce Hydrogen, a novel hardware architecture
designed to optimize the allocation of hybrid memory
resources across CPUs and GPUs. Hydrogen uniquely
decouples the bandwidth and capacity partitioning of the
fast memory, and implements a token-based migration
strategy for efficient slow memory bandwidth allocation,
tailored to the specific needs of CPU and GPU workloads.

• We develop an epoch-based online sampling technique
combined with a hill climbing search algorithm inte-
grated into Hydrogen, enabling dynamic adaptation to
the varying behaviors of applications over time. These
techniques allow Hydrogen to efficiently explore a large,
multi-dimensional design space for optimized memory
resource partitioning.

• We demonstrate through extensive evaluation that Hy-
drogen significantly outperforms existing hybrid memory
management approaches, achieving on average a 1.16×
speedup, and in certain cases up to 1.31×, across a
variety of memory-intensive workloads. These improve-
ments are attributed to Hydrogen’s comprehensive and
efficient partitioning schemes, as well as its adaptability
to application-specific behaviors.

The rest of the paper is organized as follows: Section II
introduces the background knowledge on hybrid memory sys-
tems and heterogeneous CPU-GPU architectures, highlighting
the significant trends in both compute-side and memory-side
heterogeneity. Section III presents the insights and challenges
for combining hybrid memory and heterogeneous CPU-GPU
systems, followed by a review of related work on memory
resource partitioning. Section IV describes our proposed Hy-
drogen architecture in detail. Section V presents the evaluation
methodology, which we use in Section VI to demonstrate the
benefits of Hydrogen. We conclude the paper in Section VII.

II. BACKGROUND

In this section, we introduce the background of system
heterogeneity in both the memory and computing subsystems
in modern high-performance hardware architectures.

A. Hybrid Memory Systems

Various memory technologies have emerged recently be-
sides conventional DRAM. For example, high-bandwidth
memory (HBM) utilizes 3D-stacking to achieve 4× to 8×
bandwidth over traditional DRAM at comparable laten-
cies [30], [31]. However, its capacity is constrained to up
to 36 GB per stack due to thermal and cost considerations.
On the other hand, non-volatile memories (NVM), e.g., Intel
Optane memory [17], [25], provide substantial density ad-
vantages, but exhibit increased access latency and reduced
bandwidth. Hybrid memory architectures aim to combine the
benefits of fast access and large capacity through intelligently
integrating multiple memory technologies [12], [13], [28],
[32], [33], [42], [45], [50], [51], [54], [57], [60], [68]. The
development and adoption of hybrid memory systems have
garnered considerable interest within the industry. For exam-
ple, Intel has introduced support for NVM and HBM in its

Cascade Lake and Sapphire Rapids processors, respectively.
NVIDIA’s Pascal architecture implemented HBM and DRAM
tiering strategies. In our study, we mainly focus on the case
with conventional DRAM as slow memory and HBM as fast
memory, as this combination is widely deployed in modern
CPU and GPU platforms [23], [27], [46]. Other heterogeneous
memory technologies can be similarly adopted.

Hybrid memories can be organized in two modes: cache
(or vertical) mode, and flat (or horizontal) mode. The cache
mode designates the fast memory as another level of cache
beyond the processor’s cache hierarchy in front of the slow
memory [13], [16], [20], [28], [32], [33], [42], [51], [63], [68].
In this mode, only the slow memory contributes to the physical
memory capacity visible to the operating system (OS), while
the fast memory is fully hardware managed. Alternatively, the
flat mode exposes both memories to the OS, creating a large
unified physical address space [12], [45], [50], [54], [57], [60],
[64]. However, it incurs higher cost due to bidirectional data
migration between the two tiers, which doubles data traffic
and introduces write-after-read dependencies. Our design is
compatible with both modes.

B. Heterogeneous CPU-GPU Architectures

This study envisions future heterogeneous systems that
amalgamate GPUs and CPUs into a single package sharing
a unified address space. This architecture not only simplifies
programming but also enhances performance by enabling
seamless data sharing and reducing memory transfer over-
heads. Integrated GPUs have been present since the advent
of Intel Sandy Bridge [21] and AMD Fusion [1]. Within
these architectures, the GPU incorporates a vast array of
execution units (EUs) that are adept at performing massively
parallel computations. As an example, Xe-LPG [24], Intel’s
recent integrated GPU architecture, features 16 EUs per GPU
subslice. Each subslice is provisioned with dedicated caches
for instructions and data. Six subslices constitute a GPU slice.
The GPU can further scale to multiple slices, with each slice
connected via an interconnect fabric that aggregates the total
L3 cache capacity across the slices. This fabric also bridges
the GPU and the CPU over a unified ring interconnect. Such
an intricate connectivity paradigm culminates in achieving a
peak throughput of 2.1 TFLOPs, 4× higher than a datacenter
CPU like Gold 5120. In addition, advancements in chiplet
design paradigms [66] promise to escalate the capabilities
of integrated GPUs. The ongoing development of integration
technologies continuously narrows the gap between dedicated
and integrated GPU solutions, and realizes more compact,
energy-efficient, and performant computing platforms.

This heterogeneous CPU-GPU architecture is increasingly
becoming a cornerstone in the development of upcoming su-
percomputers to achieve unprecedented efficiency for HPC. El
Capital, the successor of Frontier, exemplifies this trend by uti-
lizing the AMD MI300 accelerated computing unit as the basic
building block [2]. Each MI300 combines a 24-core Zen4 CPU
and an integrated GPU with 228 compute units into a single
organic package, complemented with 128 GB HBM3 [4]. The

ROCm framework and the Heterogeneous-compute Interface
for Portability (HIP) further facilitate heterogeneous program-
ming for HPC workloads, e.g., astrophysics, computational
biology, machine learning, and more [3]. This architecture not
only streamlines the data processing pipeline but also improves
the data transfer speed between these computing units, which
is crucial for HPC applications with frequent data exchange
between CPUs and GPUs.

In addition, recent core heterogeneity encompasses more
than just GPU integration. A notable trend is the asym-
metric multi-core architecture [15] that stratifies compute-
efficient “big” cores with energy-saving “small” cores. This
stratification enables better thread scheduling across different
core types and balances between processing performance and
energy consumption. Architectures embodying this philosophy
include ARM big.LITTLE [6], Apple M1 SoC [5], and the
Intel Alder Lake processor family [26]. Another trend is
to integrate specialized domain-specific accelerators into the
same CPU chip. Intel’s latest Sapphire Rapids CPUs have
been fortified with Advanced Matrix Extensions (AMX) units,
delivering a staggering 180 TFLOPs of BF16 throughput. This
throughput is comparable to that of premier dedicated GPUs
such as NVIDIA A100 [47]. While we mainly focus on
integrated GPUs in this work, our proposed techniques could
generalize to these similar heterogeneous architectures.

III. MOTIVATION

This work aims to combine hybrid memory and heteroge-
neous CPU-GPU systems. We first describe the target archi-
tecture in Section III-A, and then discuss the design challenges
and opportunities in Section III-B, which are not exploited by
the prior work summarized in Section III-C.

A. Target Architecture

To balance with their substantial processing capabilities,
heterogeneous CPU-GPU architectures demand better memory
systems with fast speed and large capacity; more processing
units require higher data access throughput, and are also capa-
ble of processing larger datasets. We thus believe that hybrid
memory architectures can substantially improve heterogeneous
computing performance. A well-orchestrated hybrid memory
architecture can offer both high bandwidth and large capac-
ity. For instance, HBM can deliver the necessary bandwidth
for GPU operations, while conventional DDR4 DRAM can
provide ample capacity for all processing cores.

Fig. 1 illustrates such an architecture, where a heteroge-
neous processor like Intel Xe-LPG is connected to hybrid
HBM and DDR memories. We use HBM2E with 16 channels
as the fast memory, and 4 channels of DDR4 as the slow
memory, both behind the last-level cache (LLC) of the hetero-
geneous processor. We assume hardware-based hybrid memory
management [12], [32], [33], [42], [50], [51], [57], [60]. We
use the cache mode by default, but most of our designs
directly apply to the flat mode as well, which is detailed in
Section IV-F, with the main difference of swapping two blocks
between the two memories rather than fetching a block only

Shared Last-Level Cache

HBMDRAM

CPU
Core

Private
Cache

DRAM

Remap Cache

Remap
Table

Metadata lookup pathData access path

CPU
Core

DRAM

Data migration path

EUEUEU ×16 EUs

Private Cache

GPU subslice

EUEUEU ×16 EUs

Private Cache

GPU subslice

…

Integrated GPU

Private
Cache

…

CPU

On-Chip Interconnection Network

DRAM

Fig. 1. Target architecture with heterogeneous CPUs and GPUs, and hybrid
memories of HBM and DRAM.

from slow to fast. The whole memory space is organized in
a set-associative manner [32], [42], [57], [60]. Both the fast
and slow memory spaces are divided into the same number of
sets, and each set contains a few fast memory blocks (whose
number is called the associativity) and some slow memory
blocks. Caching only happens among fast/slow blocks within a
set. When accessing data, a hardware-maintained remap table
(stored in the fast memory) first translates the physical address
into the actual device address, either in the fast memory (a
cache hit) or in the slow memory (a cache miss). In the latter
case the data block can be fetched into the fast memory based
on the replacement policy. The remap table designs are widely
used in state-of-the-art hybrid memory architectures to flexibly
support not only the cache mode but also the flat mode [41],
[50], [60], [65]. We further cache the remap table entries in
an on-chip SRAM remap cache to speed up metadata probing.
Following previous work, Hydrogen assumes data blocks of
256 bytes [41], [65] to balance metadata footprints and data
migration cost. It uses a 4-way associativity (4 fast blocks per
set) [41] to balance hit rates and metadata overheads. Fig. 11
investigates other associativity and block size choices.

B. Challenges and Opportunities

However, in the above architecture, hybrid memory is a
shared resource between CPUs and GPUs, and thus may suffer
from severe contention among data accesses from the two
different processors. We quantitatively demonstrate such neg-
ative performance impact as the design challenges. We further
analyze the distinct and complementary memory requirements
of CPU and GPU workloads as the unique opportunities to
motivate our novel optimizations.

We simulate a system following the configurations in Sec-
tion III-A running the mixed CPU-GPU workloads in Table II
(more details in Section VI). This baseline does not enforce
any isolation between CPU and GPU memory accesses. First,
Fig. 2(a) measures the performance slowdown when running
the CPU and GPU workloads simultaneously on the system
compared to running them alone. We observe that the CPU
workloads typically experience more significant degradation
compared to the GPU workloads. For instance, in C1, the CPU
faces a 1.94× slowdown, while the GPU only suffers 1.33×.

1 2 3 4 5 6 7 8 9101112
(a)

Slowdown of CPU-GPU mix workloads

0.00
0.50
1.00
1.50
2.00
2.50

Sl
ow

do
w

n

CPU GPU
(b)

Fast memory bandwidth sensitivity

0.00
0.25
0.50
0.75
1.00
1.25

Pe
rf

or
m

an
ce

CPU GPU
(c)

Fast memory capacity sensitivity

0.00
0.25
0.50
0.75
1.00
1.25

Pe
rf

or
m

an
ce

0.00

0.25

0.50

0.75

1.00

H
it

R
at

e

CPU GPU
(d)

Slow memory bandwidth sensitivity

0.00
0.25
0.50
0.75
1.00
1.25

Pe
rf

or
m

an
ce

CPU GPU
16Ch (default)
4Ch 1Ch

1GB (default)
512MB

256MB
128MB

4Ch (default)
2Ch 1Ch

Fig. 2. Performance analysis of CPU and GPU workloads on hybrid memory.
(a) shows the respective slowdown of CPU and GPU workloads when running
them together in the system compared to running each alone. Larger numbers
indicate higher slowdown. (b) to (d) show the performance sensitivity of CPU
and GPU workloads in C1 when varying fast memory bandwidth, fast memory
capacity, and slow memory bandwidth.

This can be attributed to the distinct natures of CPU and GPU
workloads: CPUs are latency-sensitive and prefer larger fast
memory capacity for more data hits, while GPUs, benefiting
from thread-level parallelism, are more bandwidth-driven and
can tolerate longer memory access latencies [19]. Therefore,
to avoid contention between CPUs and GPUs, we would need
to carefully control the sharing of memory capacity and
bandwidth (Challenge 1).

Furthermore, we also see that the degree of slowdown
depends on the workload mixes, indicating that different
workload combinations prefer different resource partitioning.
Specifically, in C1 above, the CPU performance significantly
degrades, so we should allocate more resources to the CPU.
But in C5 the GPU exhibits slightly worse degradation than the
CPU. This highlights the need for a dynamic and adaptive
approach to resource partitioning based on the workload
characteristics (Challenge 2).

A more in-depth investigation reveals several novel design
opportunities that we can leverage. We vary the numbers
of fast and slow memory channels (and their bandwidth
correspondingly) as well as the fast memory capacity, and
measure how the performance of CPU and GPU workloads
changes, respectively. We use C1 as the representative. First,
when reducing the fast memory bandwidth in Fig. 2(b), the
CPU workloads see little performance variation, while the
GPU workloads slow down by up to 30%. This emphasizes
the importance of prioritizing fast memory bandwidth
for bandwidth-sensitive GPU workloads (Insight 1). On
the other hand, when reducing the fast memory capacity in
Fig. 2(c), the trend is quite different. Now the CPU work-
loads suffer from sharper performance degradation, halved at
256 MB. However at the same capacity, the GPU workloads

are able to maintain 92% performance. This can be explained
by their access patterns and the changes in fast memory hit
rates. CPUs have more random accesses and rely on temporal
and spatial locality enabled by a large fast-memory cache
size. GPUs mostly issue streaming accesses and enjoy spatial
locality even at small cache sizes. This result inspires us to
allocate more fast memory capacity to latency-sensitive
CPU workloads (Insight 2). Finally we look at the slow
memory bandwidth. In Fig. 2(d), both the CPU and GPU show
notable slowdown, though the GPU is slightly more sensitive.
As a result, it is necessary to carefully partition slow memory
bandwidth between CPUs and GPUs (Insight 3).

C. Related Work

Prior research has identified the need for performance isola-
tion within the memory hierarchy. Initial approaches to cache
partitioning in multi-core systems primarily focus on either
hard partitioning along the way or set dimensions [11], [52],
[55], or soft partitioning through adaptation in cache replace-
ment policies [58], [67]. The Utility-based Cache Partitioning
(UCP) strategy [52] aimed to allocate cache ways to applica-
tions in a manner that minimized cache misses. Nonetheless,
the intrinsic limitations of cache associativity constrained way-
partitioning to only a handful of coarse-grained partitions,
significantly diminishing the effective associativity for each
partition. Cho et al. [11] explored set-partitioning of cache
space, a technique that, while innovative, necessitated complex
modifications and incurred substantial overheads due to data
copying or flushing during partition resizing, complicating its
integration with the shared address space. PIPP [67] modified
the replacement policy to provide control over the cache space
allocation of different cores. Vantage [58] further enforced
fine-grained dynamic partitioning based on statistical analysis.
These designs do not differentiate CPU and GPU workload
access patterns, but maximize the overall cache hit rate.

Other designs focus on cache partitioning for heterogeneous
CPU-GPU architectures. To balance LLC use, TAP [40] intro-
duced distinct cache insertion/partition strategies for CPUs and
GPUs to leverage the fact that GPUs are less sensitive to data
caching. Rai et al. [53] explored different read/write hit/miss
policies for CPU and GPU requests. HeLM [44] opted for a
bypass strategy for GPU workloads that could tolerate latency.
OSCAR [69] proposed to substitute conventional SRAM with
larger STT-RAM, coupled with interconnect traffic reconfigu-
ration to minimize SRAM write latency and energy. However,
a key difference between SRAM caches and hybrid memory
systems is that, besides the capacity, the access bandwidth in
the latter is also limited and must be carefully considered.

For hybrid memory architectures, APU [66] envisioned to
integrate stacked memory and external memory for CPU-GPU
heterogeneous systems using chiplets. Kim et al. [35] simply
forced GPU workloads to the slow memory, only caching
write-intensive blocks in the fast memory. HAShCache [49]
prioritized CPU requests in the memory controller queue,
partitioned the fast memory capacity, and supported slow
memory bypassing. Profess [36] focused on general multi-

process fairness for hybrid memory, adopting a bypass policy
to ameliorate performance for those processes experiencing the
most hit rate degradation or migration cost. Moreover, Intel’s
Resource Director Technology (RDT) [22] offered a mecha-
nism to govern LLC way-partitioning and memory bandwidth
distribution among different cores. None of these designs
has comprehensively considered both capacity and bandwidth
partitioning for both fast and slow memories as we do. We
quantitatively compare our techniques with HAShCache and
Profess in Section VI.

IV. DESIGN

In this work, we propose Hydrogen, a novel architecture that
effectively partitions critical resources of hybrid memory for
heterogeneous CPU-GPU systems, in order to achieve robust
performance isolation and improve fairness. It optimizes the
weighted throughput (i.e., instructions per cycle, IPC) of CPU
and GPU workloads, where the weights are specified by the
user. The design of Hydrogen can be easily adapted to other
optimization goals. Hydrogen is designed to operate at the
hardware level, providing complete transparency to both the
system and application software. We use the cache mode for
simplicity, and briefly discuss the flat mode at the end.

Based on the insights in Section III-B, Hydrogen pinpoints
three critical shared resources in hybrid memory: fast memory
bandwidth, fast memory capacity, and slow memory band-
width. It then employs a novel mapping scheme to decouple
the bandwidth and capacity partitioning of fast memory (Sec-
tion IV-A), and utilizes token-based migration to efficiently
allocate the slow memory bandwidth (Section IV-B). To find
the best configuration, Hydrogen adopts a dynamic, epoch-
based online sampling technique (Section IV-C), with the help
of efficient reconfiguration with consistent hashing mapping
and lazy layout changes (Section IV-D). The overall workflow
of Hydrogen is summarized in Section IV-E, and we discuss
other design issues in Section IV-F.

A. Decoupled Partitioning for Fast Memory

We first discuss how Hydrogen partitions the fast memory
bandwidth and capacity in a decoupled manner, so that the
CPU gets enough capacity to ensure high hit rates, and the
GPU utilizes sufficient bandwidth. Recall that we assume a 16-
channel HBM as the fast memory, with each channel accessed
in a 64 B cacheline granularity while the block size is 256 B.
Therefore, we group 4 channels into a superchannel to supply
one data block in each access, and there are 4 superchannels
(simply called channels below) in the fast memory. Hydrogen
can work with any number of (super)channels.

Since the fast memory is used as a cache, we can ap-
ply conventional cache partitioning schemes, such as way-
partitioning [55] and set-partitioning [62]. Way-partitioning
techniques isolate CPU and GPU data into separate cache
ways, employing partition-conscious replacement policies that
evict data from the CPU- or GPU-dedicated ways. Set-
partitioning techniques, which utilize OS page coloring [11],
distribute CPU and GPU data across different cache sets in

CPU data GPU data

Ch 0Set 0, 4, …

Ch 1Set 1, 5, …

Ch 2Set 2, 6, …

Ch 3Set 3, 7, …

Set Partitioning
CPU:GPU=3:1

Way 0 Way 1 Way 2 Way 3
Ch 0 Ch 1 Ch 2 Ch 3Each set

Way Partitioning
CPU:GPU=3:1

(a) Conventional cache partitioning scheme

Way 0

Ch 1 Ch 2 Ch 3

Ch 1 Ch 2 Ch 3

Ch 0

Ch 0

Ch 0

Ch 1 Ch 2 Ch 3

Fast
memory
swap

Cap CPU:GPU=3:1
Bw CPU:GPU=1:3

CPU Req 1

GPU Req

CPU Req 2

Way 1-3

(b) Decoupled partitioning access path

Way 0-1

Ch 0

Ch 0

Ch 0

Ch 1

Ch 1

Ch 1

Way 2-3

Ch 2

Ch 2

Ch 2

Ch 3

Ch 3

Ch 3

Cap CPU:GPU=3:1
Bw CPU:GPU=2:2

Lazy
swap

Ch 1

Ch 1

Ch 1

Bw reconfig.

(c) Lazy reconfiguration

GPU Req

Fig. 3. Decoupled partitioning for fast memory capacity and bandwidth. (a) illustrates the conventional set/way-partitioning schemes by partitioning channels.
(b) shows our novel decoupled partitioning scheme and the CPU/GPU data access paths. (c) depicts that minimum data blocks are swapped in a lazy manner,
when switching the bandwidth ratio from 3:1 to 2:2.

a predetermined ratio. Fig. 3(a) shows two straightforward
designs, where we map the partitioned way/set dimension to
different channels, and partition the channels between the CPU
and the GPU based on the desired ratio (e.g., CPU:GPU = 3:1;
we discuss how to determine the best ratio in Section IV-C).
While this approach is simple and ensures strong isolation by
making the CPU and GPU access independent channels, it has
a key drawback: the partitioning ratios of capacity and band-
width are coupled and must be the same, corresponding to the
number of allocated channels. This mismatches with Insights 1
& 2 in Section III-B, where the CPU should get more capacity
and the GPU should get more bandwidth. Alternatively, we can
map the partitioned dimension of ways/sets to each channel,
and partition within each channel, i.e., sharing each channel
between the CPU and GPU and internally applying partition-
ing. However, severe bandwidth interference would occur in
the same channel, where GPU accesses may overwhelmingly
dominate CPU accesses. Furthermore, partitioning within a
channel requires significant hardware changes to the DRAM
row buffer policy, the memory controller queue, and other
hardware components of the channel.

In Hydrogen, we adopt a decoupled partitioning approach
enabled by a novel mapping scheme from ways/sets to chan-
nels, as shown in Fig. 3(b). Hydrogen associates ways to
channels, and uses way-partitioning because it is easier to im-
plement [55]. Nevertheless, our decoupled scheme also works
with set-partitioning, as later discussed in Section IV-F. First,
to ensure strong bandwidth isolation, we partition the channels
to the CPU and GPU based on the bandwidth ratio (e.g.,
CPU:GPU = 1:3). Hence the CPU enjoys dedicated channels
(way 0) without suffering from GPU access contention. Then,
to offer more capacity to the CPU (capacity CPU:GPU >
bandwidth CPU:GPU as in Section III-B), we allocate space
from the non-CPU-dedicated (i.e., shared) channels (ways 1
to 3) to the CPU, while ensuring that the GPU can still utilize
all channels’ bandwidth. To do so, we assign certain ways
in each set to the GPU, but use different ways (channels) in
different sets. Therefore, GPU accesses to different sets will go
to different channels and enjoy full bandwidth. Although CPU
accesses still consume some bandwidth from these channels, it
is not a big issue due to two reasons. First, the GPU typically

uses much more bandwidth, and the CPU bandwidth is a very
small portion. Second, we let the CPU-dedicated channels and
the CPU shares in the shared channels effectively form a two-
level hierarchy, where the hottest CPU data are swapped into
the dedicated channels and kept there (called fast memory
swap), similar to standard cache replacement. This swap traffic
is light, as quantitatively analyzed in Section VI-B.

B. Token-Based Migration for Slow Memory

Now we turn to the slow memory bandwidth. In hybrid
memory systems, each miss to the slow memory would trigger
a block-level replacement (for the cache mode) or swap (for
the flat mode) to the fast memory, collectively referred to as
migration. Migration can amplify traffic from 64 B to 256 B,
thus heavily taxing the limited slow memory bandwidth if
not bringing enough hit rate benefits. As depicted in Fig. 4,
each memory access first checks whether it hits in the fast
memory. If a miss occurs, both the demanding 64 B cacheline
and the remaining 192 B are fetched from the slow memory,
performing a refill operation in the granularity of 256 B
blocks. Dirty victims also need writebacks, thereby consuming
additional bandwidth. To conduct a full refill and writeback,
almost two 256 B blocks are transferred from/to the slow
memory, resulting in 7× data amplification over 64 B.

To address this, Hydrogen introduces a token-based mi-
gration mechanism to regulate slow memory migration band-
width. With a hardware-friendly token counting design, Hy-
drogen determines whether the bandwidth consumption is
acceptable to conduct a data migration. Note that Footprint
Cache and other designs [33], [41] proposed optimizations that
also save data migration cost and can be orthogonally applied
here, but requiring more complex metadata management.

Recognizing that GPU workloads typically consume more
bandwidth in both fast and slow memories (Section III-B),
we choose to harness GPU-induced migrations in Hydrogen.
The memory controller manages a hardware token counter.
For each GPU-induced migration, some tokens are consumed
(1 for each refill and 2 if there is also a dirty writeback or
a data swap) and the counter is decremented. If the counter
reaches zero, further migrations for GPU accesses would be
suppressed. On the other hand, a token faucet mechanism

Check
Hit?

Access fast
memory (64B)

Access slow
memory (64B)

CPU req
or token
cnt > 0?

Token faucet
mechanism

MissHit

Skip migration

Fetch the rest slow
memory block (192B)

Y

Refill fast memory
block (256B)

Victim
dirty?

Read fast memory
victim (256B)

Y

Writeback victim to
slow memory (256B)

Migration done

Added in Hydrogen

N

N

Fig. 4. Access flow with token-based migration in Hydrogen.

replenishes the counter by a certain amount periodically, e.g.,
every 1 million cycles. This amount specifies how many GPU-
induced migrations are allowed in this period, and is adaptively
adjusted to balance between CPU and GPU accesses, which
is detailed in Section IV-C. Hydrogen uses a single counter
for the entire slow memory bandwidth. We also tried separate
per-channel counters, but there is negligible difference.

C. Epoch-Based Sampling

To enforce the end performance goal, e.g., maximizing the
weighted IPC, Hydrogen adaptively determines three pivotal
parameters reflecting the hybrid memory partitioning scheme:
1) cap, which controls the ratio of fast memory capacity
allocated to the CPU and GPU; 2) bw, which controls the
percentage of fast memory channels dedicated to the CPU,
thus partitioning the fast memory bandwidth; 3) tok, which
controls the amount of GPU-induced migrations, effectively
partitioning the slow memory bandwidth. Note that cap and
bw are decoupled in Hydrogen as discussed in Section IV-A.

To dynamically identify the optimal set of parameters,
Hydrogen implements an online, epoch-based hill climbing
algorithm. After each sampling epoch (e.g., 10M cycles), the
hardware records the numbers of retired instructions in the
CPU and GPU, respectively, and calculates the weighted IPC
using the user-specified weights. Hydrogen keeps exploring
different parameter choices, by iteratively selecting each of
the three parameters to increase or decrease in the direction of
improving the weighted IPC (i.e., hill climbing), until conver-
gence. It then keeps this best parameter setting in the following
epochs. To adapt to program phase changes, for every 500M
cycles, Hydrogen starts a new parameter exploration phase
to find the current best parameters. We evaluate the length
choices of an epoch and a phase in Section VI-C.

Although previous work like TAP [40] suggested core
sampling mechanisms, i.e., using different cores to simulta-
neously explore different competing policies, Hydrogen opts

for the epoch-based sampling approach because of the much
larger multi-dimensional search space, which contains many
configurations and requires too many cores to effectively
sample. Hill climbing places the sampling tasks along the
temporal dimension, and focuses on the small regions close
to the optimal point in the design space. We find that hill
climbing is able to identify the optimal parameters after only
a few epochs, and thus it is sufficient in our case.

D. Reconfiguration

System reconfiguration is triggered by changes in the re-
source partitioning parameters. Applying a new tok value is
straightforward, done by the token faucet mechanism in the
next epoch (Section IV-B). Changes to the cap and bw param-
eters, however, might have bigger impact involving excessive
data relocation. To alleviate this cost, Hydrogen leverages
consistent hashing [34], a method engineered to enhance the
congruence between the previous and current mappings. This
approach effectively reduces the requirement for extensive data
movements or invalidations during the reconfiguration.

Consider a scenario where B out of N channels are allo-
cated to the CPU, dictated by the bw parameter, and C ways in
each N -way set are designated for CPU data, as determined by
the cap parameter. For instance, N = 4, B = 1, and C = 3 in
Fig. 3(b). Our problem is to select N−C ways from the N−B
ways in the shared channels to store CPU data. This way se-
lection is done by consistent hashing functions, so the number
of reallocated ways is minimized, and the overlapped ways
between the previous and current mappings are maximized
to avoid relocating the data in them. These hashing functions
use the set ID as a key, ensuring diverse way selection across
different sets, in alignment with the requirements outlined in
Section IV-A. For example, as illustrated in Fig. 3(c), adjusting
the bw ratio from 1:3 to 2:2 necessitates only the invalidation
or relocation of GPU blocks in way 1, while other ways are
not impacted. Moreover, we could restrict the evaluation of
these expensive hashing functions to only the reconfiguration
period. After reconfiguration, the new allocations are recorded
using just one extra alloc bit per way in the remap table entry
to represent whether it is assigned to the CPU or GPU.

To reduce the reconfiguration overhead, adaptations to new
cap and bw layouts are implemented in a lazy manner. For
example, if a GPU block is reassigned from way 1 to way
2, the actual transfer of blocks is deferred, occurring off the
critical path. A block is only moved or evicted when it is
accessed and identified as misplaced, based on its alloc bit.
As will be demonstrated in Section VI-B, this strategy ensures
that the reconfiguration cost remains minimal.

E. Putting It All Together

With all the designs in Hydrogen, we now summarize its
overall workflow. A memory access request from either the
CPU or the GPU starts by looking up the remap metadata
from the on-chip remap cache or the remap table in the fast
memory. If the metadata indicate a hit in the fast memory,
corresponding data are fetched from there. A fast memory

swap (Section IV-A) may be required in some cases, e.g., for
a CPU request targeting a block outside the CPU-dedicated
channels. If it is a fast memory hit but the alloc bit of the
way mismatches with the actual request type, e.g., a GPU-
requested block in a CPU-dedicated way, it indicates a need
for lazy reconfiguration (Section IV-D), which invalidates the
misplaced block after the access. If a miss occurs, we should
access the slow memory and try to migrate data into the
fast memory. If it is a GPU request, we need to first check
and update the token counter (Section IV-B), and bypass the
migration if there is no available token for the slow memory
bandwidth. The token counter is replenished according to
the token faucet mechanism. Finally, we periodically trig-
ger epoch-based reconfiguration (Section IV-C), to determine
whether to dynamically adjust the resource partitioning.

F. Discussion

Hardware cost. The implementation of Hydrogen neces-
sitates only minor hardware changes and incurs moderate
overheads. Specifically, the hardware uses several registers
to maintain the current cap, bw, and tok configurations and
the system throughput. The hill climbing algorithm further re-
quires the storage for another set of configurations to compare
the current and the previous performance, along with some
logic to conduct exploration and optimization. To facilitate
decoupled partitioning of the fast memory, the hardware also
records both the dedicated and shared channels. All the above
changes only need some registers and simple logic. For lazy
reconfiguration, one extra alloc bit is added for each block
in the remap table in the fast memory. This would add a tiny
0.049% metadata storage overhead.

Decoupled set-partitioning. It is also possible to imple-
ment a decoupled set-partitioning scheme, analogous to the
proposed way-partitioning scheme in Hydrogen. In this design,
cache sets are statically interleaved across different fast mem-
ory channels. Similar to Fig. 3(b), the sets in a certain number
of channels (e.g., 4 out of 16 channels) are dedicated to CPU
data, while the rest are shared between the CPU and GPU
with an interleaving scheme that spreads GPU data across
all shared channels. The OS and the GPU runtime regulate
memory allocation requests from the CPU and GPU with the
page coloring technique [11], so that CPU and GPU data are
correspondingly mapped into the designated sets. Although
this design supports set-partitioning, it also inherits the typical
drawbacks such as high repartitioning overheads and OS-level
modifications.

Flat mode support. Different from the cache mode, the
blocks are initially placed in the fast memory until the fast
memory is used up, i.e., the first touch policy. For each data
migration, we swap the slow memory block and a victim
block in the fast memory, within the same set. Since we adopt
the same set-associative layout, the decoupled fast memory
partitioning works as in Section IV-A. We always decrement
the token counter by 2 as each swap contains read and write.
This makes the system more cautious about data migration.

TABLE I
SYSTEM CONFIGURATIONS.

CPU 8 cores
CPU L1 8-way, 64 kB per core, 64 B cachelines, LRU
CPU L2 8-way, 1 MB per core, 9-cycle latency, LRU

GPU 96 Execution Units
GPU L1 128 kB per 16 units

Shared LLC 16-way, 16 MB shared, 38-cycle latency, LRU

Fast memory
HBM2E, 16 channels × 1 rank × 16 banks;
1600 MHz, RCD-CAS-RP: 23-23-23;
RD/WR: 6.4 pJ/bit, ACT/PRE: 15 nJ

Slow memory
DDR4-3200, 4 channels × 2 ranks × 16 banks;
1600 MHz, RCD-CAS-RP: 22-22-22;
RD/WR: 33 pJ/bit, ACT/PRE: 15 nJ

V. METHODOLOGY

Simulated configuration. We use zsim [59] to evaluate
Hydrogen on an 8-core CPU + 96-EU GPU system as detailed
in Table I. We use HBM2E and DDR4 as the fast and slow
memories, respectively. The specifications of HBM2E and
DDR4 are extracted from recent literature [9], [29], [30]. We
set the slow memory capacity to cover the workload footprint
so no application suffers from page faults. The fast memory
has 1/8 of the slow memory capacity, as in previous hybrid
memory designs [41], [65]. We use CACTI 7.0 [8] to model
SRAM structures. We use a 256 B block size and 4-way
cache mode by default, and evaluate other granularity and
associativity configurations in Section VI-C.

Workloads. We randomly combine CPU and GPU work-
loads into 12 combinations listed in Table II. The CPU
workloads are chosen from the memory-intensive workloads in
SPEC CPU2017 [48]. We fast-forward over the initialization
phase and simulate the memory access traces of 5 billion
instructions when executed in the rate mode with 2 copies
for each CPU workload. The GPU workloads include several
Rodinia benchmarks [10] and a BERT model inference task
from MLPerf [56]. We only simulate the memory accesses
from the GPU kernels. The default IPC weights for our
performance goal are CPU:GPU = 12:1, following their core
count ratio, to make their accesses equally important. We
evaluate other weights in Fig. 10.

Baselines. Our baseline follows Fig. 1 without any partition-
ing. We also compare with HAShCache [49] and Profess [36],
two recent partitioning designs for hybrid memory. HASh-
Cache adopts a direct-mapped cache organization and uses
chaining to support pseudo-associativity. We modify Profess
to support the cache mode and 4-way associativity, and port
it to the same HBM+DDR hybrid memory configuration as
the other systems for fair comparison. We also implement a
simple way-partitioning scheme, denoted as WayPart, which
does not use our decoupled technique, and dedicates 75% of
the ways to the CPU workloads. All designs use the same
block size and a 256 kB on-chip remap cache in the memory
controller.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
(b) HBM2E + DDR4

0.00
0.25
0.50
0.75
1.00
1.25
1.50

W
ei

gh
te

d
Sp

ee
du

p

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
(b) HBM3 + DDR4

0.00
0.25
0.50
0.75
1.00
1.25
1.50

W
ei

gh
te

d
Sp

ee
du

p
HAShCache Profess WayPart Hydrogen (DP) Hydrogen (DP+Token) Hydrogen (Full)

Fig. 5. Performance comparison between HAShCache, Profess, WayPart, and several Hydrogen variants. Normalized to the baseline without any partitioning.

TABLE II
WORKLOAD COMBINATIONS.

CPU Workloads GPU Workloads

C1 gcc-mcf-lbm-roms backprop
C2 omnetpp-lbm-gcc-xz backprop
C3 roms-mcf-deepsjeng-cactusBSSN hotspot
C4 lbm-fotonik3d-deepsjeng-omnetpp lud
C5 roms-lbm-deepsjeng-fotonik3d streamcluster
C6 omnetpp-xz-roms-deepsjeng pathfinder
C7 bwaves-gcc-xz-fotonik3d needle
C8 fotonik3d-gcc-omnetpp-deepsjeng bfs
C9 mcf-cactusBSSN-roms-deepsjeng srad
C10 deepsjeng-xz-roms-bwaves pathfinder
C11 omnetpp-gcc-fotonik3d-lbm bert
C12 mcf-gcc-cactusBSSN-omnetpp bert

VI. EVALUATION

We first present the overall comparison results between
Hydrogen and the baseline designs. We then conduct a detailed
analysis to illustrate the benefits and overheads of Hydrogen.
Finally, we extend our evaluation to more configurations to
demonstrate the generality of Hydrogen.

A. Overall Comparison

Fig. 5(a) presents the overall performance of different de-
signs, using HBM2E and DDR4 as the fast and slow memory
tiers. Hydrogen (Full) outperforms the non-partitioned baseline
by 1.24× on average, and up to 1.48×. We analyze the
other variants of Hydrogen in Section VI-B. HAShCache
does not perform well, mainly due to the limited hit rates
from its direct-mapped organization, which stress the slow
memory bandwidth. Profess works well for certain workloads
(e.g., C3 and C4), but it only prevents improper migration,
without decoupling the fast memory resource partitioning to
match the different requirements of CPU and GPU workloads.
These workloads are less sensitive to the partitioning scheme,
and their access patterns are friendly to Profess’ MDM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

HAShCache Profess Hydrogen

Fig. 6. Memory energy comparison between HAShCache, Profess, and
Hydrogen. Normalized to HAShCache.

replacement policy. If we use LRU in Profess, Hydrogen
would perform better. Similarly, WayPart also does not use
decoupled partitioning and only shows limited benefits. Also
its fixed resource partitioning ratio between the CPU and GPU
is suboptimal for some workload combinations. Moreover,
previous designs do not iteratively optimize their policies as
Hydrogen does. Compared to Profess, the best one among
these baselines, Hydrogen is 1.16× faster on average and up
to 1.31×. Compared to HAShCache, Hydrogen has a speedup
of 1.47× on average and up to 1.98×.

Furthermore, we also show the performance results in
Fig. 5(b) when increasing the fast memory bandwidth by
adopting the more recent HBM3 memory [31], with doubled
bandwidth and scaled timing parameters. Hydrogen outper-
forms the best baseline, Profess, by 1.12× on average. The
speedups are smaller with HBM3, because higher fast memory
bandwidth makes bandwidth partitioning less critical, while
capacity partitioning remains important. If we have more
CPU/GPU cores or use more bandwidth-intensive workloads,
the speedups would become more significant.

Fig. 6 further illustrates the memory energy consumption.
Overall Hydrogen achieves on average 31% energy reduction
compared to HAShCache, and up to 50% on C11, thanks to
the optimized memory partitioning schemes that both improve

Hydrogen Prob NoSwap Ideal

(a) Fast memory swap methods

0.80

0.90

1.00

1.10
N

or
m

. P
er

fo
rm

an
ce

Hydrogen Ideal
Reconfigure

Exhaustive
Search

(b) Reconfiguration methods

0.80

0.90

1.00

1.10

N
or

m
. P

er
fo

rm
an

ce

Fig. 7. Performance impact of (a) fast memory swap methods (b) reconfig-
uration overheads. Geomeans of all workloads are shown.

performance and reduce expensive slow memory accesses. In
C11, the significant energy saving matches the high perfor-
mance gain in Fig. 5, where the 30% speedup translates to
26% static DRAM energy reduction.

B. Analysis of Benefits and Overheads

Performance breakdown. We further evaluate the indi-
vidual techniques used in Hydrogen by separating their per-
formance contributions in Fig. 5(a). Due to space limits we
will primarily analyze the HBM2E results. Hydrogen (DP)
only enables decoupled partitioning for the fast memory but
with a fixed partitioning scheme that allocates 75% fast
memory bandwidth and 25% fast memory capacity to GPU
workloads. It achieves an average 1.10× speedup. A more
detailed investigation shows that CPU workloads show similar
performance in Hydrogen (DP) and simple WayPart. This is
expected as WayPart uses 75% capacity for CPU workloads,
the same as Hydrogen (DP). However, Hydrogen (DP) has the
benefit of offering sufficient bandwidth to GPU workloads.
For example in C10, compared with the baseline, the GPU
performance decreases to 23% in WayPart, while keeping at
87% in Hydrogen (DP).

Then, Hydrogen (DP+Token) further enables the token-
based migration for the slow memory. Here we allow a fixed
ratio of 15% requests to migrate in each epoch, where the
threshold is heuristically set based on the bandwidth ratio of
the fast and slow memories. Regulating migration gives us
another 4.4% speedup over Hydrogen (DP). It is particularly
effective for those combinations seeing excessive memory
accesses from GPUs, e.g., a 12% improvement for C5 with
streamcluster.

So far all the resource partitioning ratios are manually and
heuristically set. Finally, we add the hill climbing algorithm
to automatically explore the design space and select the
optimized configurations. This technique shows another 8.6%
speedup. For some workloads, e.g., C5, the manually spec-
ified configurations are suboptimal due to workload-specific
memory access patterns. After our systematic optimization,
C5 shows a 14% improvement.

Fast memory swap overheads. Fig. 7(a) compares several
design choices for fast memory swaps, i.e., how to migrate data
from non-CPU-dedicated channels to CPU-dedicated channels
(Section IV-A). The Ideal design assumes zero cost for the
migration, but it only brings a 4.5% speedup over our method.
This is because there are only 11.9% of the CPU accesses

C
on

fig
 1

C
on

fig
 2

C
on

fig
 3

C
on

fig
 4

C
on

fig
 5

C
on

fig
 6

C
on

fig
 7

C
on

fig
 8

C
on

fig
 9

C
on

fig
 1

0
C

on
fig

 1
1

C
on

fig
 1

2
C

on
fig

 1
3

C
on

fig
 1

4
C

on
fig

 1
5

C
on

fig
 1

6
C

on
fig

 1
7

C
on

fig
 1

8
C

on
fig

 1
9

C
on

fig
 2

0
H

yd
ro

ge
n0.00

0.25
0.50
0.75
1.00

N
or

m
. P

er
fo

rm
an

ce

Fig. 8. Performance of some of the exhaustive search configurations and the
one found by Hydrogen, with C5. Normalized to Hydrogen.

100M 500M
(default)

1000M

(b) Phase

0.80

0.90

1.00

1.10

N
or

m
. P

er
fo

rm
an

ce

5M 10M
(default)

20M 50M

(a) Sampling epoch

0.80

0.90

1.00

1.10

N
or

m
. P

er
fo

rm
an

ce

Fig. 9. Sensitivity studies on (a) phase length and (b) sampling epoch length.
Geomeans of all workloads are shown.

requiring fast memory swaps, given that most CPU hot data
are well cached in the dedicated channels. We also try an-
other probability-based method Prob that bypasses half of the
fast memory swaps. This technique decreases the end-to-end
performance by 1.2% due to higher contention in the non-
CPU-dedicated channels. Not doing fast memory swaps at all
(NoSwap) brings even more degradation, with 4% on average
and up to 5.1%. These results show that fast memory swaps
are generally beneficial to the overall performance, and have
only minor overheads even compared to the ideal case.

Reconfiguration overheads and sampling effectiveness.
From Fig. 7(b) we see that the reconfiguration in Hydrogen
causes only 3.2% performance loss compared to an ideal
reconfigure design that can instantly switch to the new config-
uration. This demonstrates the effectiveness of our consistent
hashing mapping and lazy layout updates (Section IV-D).
Moreover, our epoch-based sampling is effective. If we exhaust
all configurations offline and choose the best one, it only
outperforms our online hill climbing algorithm by 5.1%,
including the reconfiguration overheads. We show some of
the exhaustive search results for C5 as an example in Fig. 8.
Different configurations affect performance, with the optimal
one being 73% faster than the median. In addition, Hydrogen
effectively chooses a good configuration, within 96.1% of the
optimal choice.

C. Sensitivity Studies

Sampling epoch lengths and phase lengths. Fig. 9 shows
the effects of using different sampling epoch length and phase
length values (Section IV-C). Using 10 million cycles for a
sampling epoch balances the sampling cost and the adaptabil-
ity. If the sampling epoch is too short, the reconfiguration
overheads will become non-negligible, reducing the end-to-

Base-
line

1:1 4:1 12:1
(default)

12:1

(a) CPU:GPU IPC weight

0.00

0.50

1.00

1.50

2.00

Sl
ow

do
w

n

8 16 32
(b) CPU core count

1.00

1.20

1.40

Sp
ee

du
p

CPU GPU

Fig. 10. (a) Impact of different CPU:GPU IPC weights, with C6. Lower slow-
down means better performance. (b) Impact of CPU core counts. Speedups
are normalized to the baseline without any partitioning.

A
1-
B
64

A
1-
B
25
6

A
1-
B
2k

A
4-
B
64

A
4-
B
25
6

A
4-
B
2k

A
16
-B
64

A
16
-B
25
6

A
16
-B
2k

0.00

0.50

1.00

1.50

Sp
ee
du
p

HAShCache Profess Hydrogen

Fig. 11. Impact of different associativities (A) and block sizes (B). Normal-
ized to the baseline without any partitioning of the same configuration.

end performance by over 5%. If the sampling epoch is too
long, the reconfiguration opportunities are limited, and the
performance is also sub-optimal. We empirically find that 20
optimization steps are required before convergence. For the
phase length, our evaluated workloads do not have frequent
behavior changes, so short phases incur unnecessary reconfig-
urations. The OS can optionally turn off phase reconfiguration
if it knows the workloads are stable. To retain flexibility, we
set a default value of 500 million cycles.

IPC weights. Fig. 10(a) uses different CPU:GPU IPC
weights for the end performance goal, from 1:1 to 32:1
on C6. Higher ratios prioritize CPUs, and reduce the CPU
slowdown from 1.61× to 1.30×. But the GPU slowdown
slightly increases from 1.06× to 1.18×. Users can flexibly
set different weights according to their needs. All settings
outperform the non-partitioned baseline.

Core counts. Fig. 10(b) increases the CPU cores while
keeping 96 GPU cores, with the IPC weights also changing
according to the core count ratio. Increasing CPU cores em-
phasizes the importance of bandwidth and capacity partition-
ing. However, more CPU cores reduce the GPU’s impact, so
partitioning more resources to the CPU yields less significance,
similar to the trend in Fig. 10(a).

Block sizes and associativities. Fig. 11 scales the asso-
ciativity (A) from 1 to 16, and the block size (B) from 64 B
to 2 kB. The chaining technique in the original HAShCache
design enables pseudo-associativity to cache more data blocks,
but it only works with the direct-mapped organization. To scale
HAShCache to higher associativities, we disable chaining and
add corresponding tag access latencies. Hydrogen exhibits

consistent speedups across different configurations, except
A1-B64. In direct-mapped scenarios, HAShCache slightly
outperforms Profess and Hydrogen, because of its chaining
optimization mentioned above. Hydrogen outperforms Profess
by properly partitioning the fast memory to leverage more
associativities. For large block sizes with high data migration
cost, Hydrogen outperforms Profess by effectively controlling
the migration rate when the bandwidth resources are limited.

VII. CONCLUSIONS

This paper presents Hydrogen, a hybrid memory man-
agement scheme for heterogeneous CPU-GPU systems. It
effectively partitions fast memory capacity, fast memory band-
width, and slow memory bandwidth to increase system-level
performance isolation. It achieves on average 1.16× and up
to 1.31× speedups over state-of-the-art designs.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers and the shep-
herd for their valuable suggestions, and the Tsinghua IDEAL
group members for constructive discussion. This work was
supported by the National Natural Science Foundation of
China (62072262). Mingyu Gao is the corresponding author.

REFERENCES

[1] AMD, “Fusion,” 2011, http://sites.amd.com/us/fusion/apu/Pages/fusion.
aspx.

[2] AMD, “AMD Delivers Leadership Portfolio of Data
Center AI Solutions with AMD Instinct MI300 Series,”
2023, https://www.amd.com/en/newsroom/press-releases/
2023-12-6-amd-delivers-leadership-portfolio-of-data-center-a.html.

[3] AMD, “AMD Infinity Hub,” 2023, https://www.amd.com/en/developer/
resources/infinity-hub.html.

[4] AMD, “AMD Instinct MI300A Accelerators,” 2023, https://www.amd.
com/en/products/accelerators/instinct/mi300/mi300a.html.

[5] Apple, “Apple Unleashes M1,” 2020, https://www.apple.com/newsroom/
2020/11/apple-unleashes-m1/.

[6] Arm, “Arm big.LITTLE technology,” 2011, https://www.arm.com/
technologies/big-little.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. Weeratunga, “The NAS Parallel
Benchmarks - Summary and Preliminary Results,” in 1991 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). ACM, 1991, pp. 158–165.

[8] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 14:1–14:25, 2017.

[9] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM Sys-
tem for GPUs,” in 23rd International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, 2017, pp.
73–84.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in International Symposium on Workload Characterization
(IISWC). IEEE Computer Society, 2009, pp. 44–54.

[11] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,” in 39th International Symposium on Mi-
croarchitecture (MICRO). IEEE Computer Society, 2006, pp. 455–468.

[12] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level
Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache,” in 47th International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2014, pp. 1–
12.

http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
https://www.amd.com/en/newsroom/press-releases/2023-12-6-amd-delivers-leadership-portfolio-of-data-center-a.html
https://www.amd.com/en/newsroom/press-releases/2023-12-6-amd-delivers-leadership-portfolio-of-data-center-a.html
https://www.amd.com/en/developer/resources/infinity-hub.html
https://www.amd.com/en/developer/resources/infinity-hub.html
https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html
https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.arm.com/technologies/big-little
https://www.arm.com/technologies/big-little

[13] C. Chou, A. Jaleel, and M. K. Qureshi, “BATMAN: Techniques for Max-
imizing System Bandwidth of Memory Systems with Stacked-DRAM,”
in 3rd Internatinoal Symposium on Memory Systems (MEMSYS). ACM,
2017, pp. 268–280.

[14] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in 38th
International Symposium on Computer Architecture (ISCA). ACM,
2011, pp. 365–376.

[15] A. Garcia-Garcia, J. C. Saez, and M. Prieto, “Contention-Aware Fair
Scheduling for Asymmetric Single-ISA Multicore Systems,” IEEE
Transactions on Computers, vol. 67, no. 12, pp. 1703–1719, 2018.

[16] N. D. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth,”
in 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2014, pp. 38–50.

[17] F. T. Hady, A. P. Foong, B. Veal, and D. Williams, “Platform Storage
Performance With 3D XPoint Technology,” Proceedings of the IEEE,
vol. 105, no. 9, pp. 1822–1833, 2017.

[18] M. T. Heath, Scientific Computing: an Introductory Survey. SIAM,
2018.

[19] J. Hestness, S. W. Keckler, and D. A. Wood, “A Comparative Analysis of
Microarchitecture Effects on CPU and GPU Memory System Behavior,”
in International Symposium on Workload Characterization (IISWC).
IEEE Computer Society, 2014, pp. 150–160.

[20] C. Huang and V. Nagarajan, “ATCache: Reducing DRAM Cache Latency
via a Small SRAM Tag Cache,” in 23rd International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM,
2014, pp. 51–60.

[21] Intel, “Sandy Bridge,” 2011, http://software.intel.com/en-us/articles/
sandy-bridge/.

[22] Intel, “Intel Resource Director Technology (Intel RDT),” 2016,
https://www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html.

[23] Intel, “Intel Xeon Phi Coprocessor x200 Product Family,” 2017,
https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf.

[24] Intel, “Intel Iris Xe GPU Architecture,” 2020, https://www.intel.
com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/
intel-iris-xe-gpu-architecture.html.

[25] Intel, “Intel Optane DC Persistent Memory,”
2020, https://builders.intel.com/docs/networkbuilders/
intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf.

[26] Intel, “Intel Hybrid Architecture (code name Alder Lake),” 2022,
https://www.intel.com/content/www/us/en/developer/articles/technical/
hybrid-architecture.html.

[27] Intel, “4th Gen Intel Xeon Processor Scalable Family, sapphire rapids,”
2023, https://www.intel.com/content/www/us/en/developer/articles/
technical/fourth-generation-xeon-scalable-family-overview.html.

[28] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee,
“Efficient Footprint Caching for Tagless DRAM Caches,” in 22nd
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2016, pp. 237–248.

[29] JEDEC, “DDR4 SDRAM Standard,” 2021, https://www.jedec.org/
standards-documents/docs/jesd-79-4a.

[30] JEDEC, “High Bandwidth Memory (HBM2) DRAM,” 2021, https:
//www.jedec.org/standards-documents/docs/jesd235a.

[31] JEDEC, “High Bandwidth Memory (HBM3) DRAM,” 2023, https:
//www.jedec.org/standards-documents/docs/jesd238a.

[32] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache,” in 47th International
Symposium on Microarchitecture (MICRO). IEEE Computer Society,
2014, pp. 25–37.

[33] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for
Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” in 40th International Symposium on Computer Architecture
(ISCA). ACM, 2013, pp. 404–415.

[34] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in 29th
Annual ACM Symposium on the Theory of Computing (ToC). ACM,
1997, pp. 654–663.

[35] D. Kim, S. Lee, J. Chung, D. Kim, D. H. Woo, S. Yoo, and S. Lee, “Hy-
brid DRAM/PRAM-Based Main Memory for Single-Chip CPU/GPU,”

in 49th Annual Design Automation Conference (DAC). ACM, 2012,
pp. 888–896.

[36] D. Knyaginin, V. Papaefstathiou, and P. Stenström, “ProFess: A Proba-
bilistic Hybrid Main Memory Management Framework for High Per-
formance and Fairness,” in 24th International Symposium on High
Performance Computer Architecture (HPCA). IEEE Computer Society,
2018, pp. 143–155.

[37] O. R. N. Laboratory, “Update on Frontier Exascale System and Early
Science,” 2022, https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/
202203/ASCAC 202203-Geist.pdf.

[38] A. Labrinidis and H. V. Jagadish, “Challenges and Opportunities with
Big Data,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
2032–2033, 2012.

[39] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep Learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[40] J. Lee and H. Kim, “TAP: A TLP-Aware Cache Management Policy for
a CPU-GPU Heterogeneous Architecture,” in 18th International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE
Computer Society, 2012, pp. 91–102.

[41] Y. Li and M. Gao, “Baryon: Efficient Hybrid Memory Management with
Compression and Sub-Blocking,” in 29th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2023, pp.
137–151.

[42] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block
Sizes for Very Large Die-Stacked DRAM Caches,” in 44th International
Symposium on Microarchitecture (MICRO). ACM, 2011, pp. 454–464.

[43] P. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “S12 - The HPC Challenge (HPCC)
Benchmark Suite,” in 2006 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC). ACM Press,
2006, p. 213.

[44] V. Mekkat, A. Holey, P. Yew, and A. Zhai, “Managing Shared Last-
Level Cache in a Heterogeneous Multicore Processor,” in 22nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE Computer Society, 2013, pp. 225–234.

[45] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-Stacked and Off-Package Memories,” in 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2015, pp. 126–136.

[46] NVIDIA, “NVIDIA Pascal Architecture,” 2016, https://www.nvidia.com/
en-us/data-center/pascal-gpu-architecture/.

[47] NVIDIA, “NVIDIA Ampere Architecture,” 2020, https://www.nvidia.
com/en-us/data-center/ampere-architecture/.

[48] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade:
Did SPEC CPU 2017 Broaden the Performance Horizon?” in 24th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2018, pp. 271–282.

[49] A. Patil and R. Govindarajan, “HAShCache: Heterogeneity-Aware
Shared DRAMCache for Integrated Heterogeneous Systems,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 14,
no. 4, pp. 51:1–51:26, 2017.

[50] A. Prodromou, M. R. Meswani, N. Jayasena, G. H. Loh, and D. M.
Tullsen, “MemPod: A Clustered Architecture for Efficient and Scal-
able Migration in Flat Address Space Multi-level Memories,” in 23rd
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2017, pp. 433–444.

[51] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in 45th International Symposium
on Microarchitecture (MICRO). IEEE Computer Society, 2012, pp.
235–246.

[52] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in 39th International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 2006, pp. 423–432.

[53] S. Rai and M. Chaudhuri, “Exploiting Dynamic Reuse Probability to
Manage Shared Last-level Caches in CPU-GPU Heterogeneous Pro-
cessors,” in 30th International Conference on Supercomputing (ICS).
ACM, 2016, pp. 3:1–3:14.

[54] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in 25th International Conference on Supercomputing
(ICS). ACM, 2011, pp. 85–95.

http://software.intel.com/en-us/articles/sandy-bridge/
http://software.intel.com/en-us/articles/sandy-bridge/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-x200-family-datasheet.pdf
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.jedec.org/standards-documents/docs/jesd-79-4a
https://www.jedec.org/standards-documents/docs/jesd-79-4a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd238a
https://www.jedec.org/standards-documents/docs/jesd238a
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202203/ASCAC_202203-Geist.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202203/ASCAC_202203-Geist.pdf
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/

[55] P. Ranganathan, S. V. Adve, and N. P. Jouppi, “Reconfigurable Caches
and their Application to Media Processing,” in 27th International
Symposium on Computer Architecture (ISCA). IEEE Computer Society,
2000, pp. 214–224.

[56] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference
Benchmark,” arXiv preprint arXiv:1911.02549, Nov 2019.

[57] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “SILC-
FM: Subblocked InterLeaved Cache-Like Flat Memory Organization,”
in 23rd International Symposium on High Performance Computer Ar-
chitecture (HPCA). IEEE Computer Society, 2017, pp. 349–360.

[58] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-
grain Cache Partitioning,” in 38th International Symposium on Computer
Architecture (ISCA). ACM, 2011, pp. 57–68.

[59] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in 40th International
Symposium on Computer Architecture (ISCA). ACM, 2013, pp. 475–
486.

[60] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Trans-
parent Hardware Management of Stacked DRAM as Part of Memory,”
in 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2014, pp. 13–24.

[61] T. N. Theis and H. P. Wong, “The End of Moore’s Law: A New
Beginning for Information Technology,” Computing in Science and
Engineering, vol. 19, no. 2, pp. 41–50, 2017.

[62] K. Varadarajan, S. K. Nandy, V. Sharda, B. Amrutur, R. R. Iyer,
S. Makineni, and D. Newell, “Molecular Caches: A Caching Structure
for Dynamic Creation of Application-Specific Heterogeneous Cache Re-
gions,” in 39th International Symposium on Microarchitecture (MICRO).

IEEE Computer Society, 2006, pp. 433–442.
[63] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Decoupled

Fused Cache: Fusing a Decoupled LLC with a DRAM Cache,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 15,
no. 4, pp. 65:1–65:23, 2019.

[64] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “LLC-
Guided Data Migration in Hybrid Memory Systems,” in 33rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS).
IEEE, 2019, pp. 932–942.

[65] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2:
Combining Caching and Migration in Hybrid Memory Systems,” in 26th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 649–662.

[66] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. R. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design
and Analysis of an APU for Exascale Computing,” in 23rd Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE Computer Society, 2017, pp. 85–96.

[67] Y. Xie and G. H. Loh, “PIPP: Promotion/Insertion Pseudo-Partitioning
of Multi-Core Shared Caches,” in 36th International Symposium on
Computer Architecture (ISCA). ACM, 2009, pp. 174–183.

[68] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-Efficient DRAM Caching via Software/Hardware Coopera-
tion,” in 50th International Symposium on Microarchitecture (MICRO).
ACM, 2017, pp. 1–14.

[69] J. Zhan, O. Kayiran, G. H. Loh, C. R. Das, and Y. Xie, “OSCAR:
Orchestrating STT-RAM Cache Traffic for Heterogeneous CPU-GPU
Architectures,” in 49th International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 2016, pp. 28:1–28:13.

[70] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang, “In-Memory Big
Data Management and Processing: A Survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015.

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The artifact contains the implementation of Hydrogen, a
set of approaches for contention-aware hybrid memory man-
agement for CPU-GPU heterogeneous systems. We make the
following contributions in this paper.

• C1: We present a comprehensive analysis of the unique
demands and challenges of integrating hybrid memory
architectures with heterogeneous CPU-GPU computing
systems, highlighting the importance of carefully parti-
tioning the capacity and bandwidth of both the fast and
slow memories, in order to meet the distinct preferences
of CPU and GPU workloads.

• C2: We introduce Hydrogen, a novel hardware architec-
ture designed to optimize the allocation of hybrid memory
resources across CPUs and GPUs. Hydrogen uniquely
decouples the bandwidth and capacity partitioning of the
fast memory, and implements a token-based migration
strategy for efficient slow memory bandwidth allocation,
tailored to the specific needs of CPU and GPU workloads.

• C3: We develop an epoch-based online sampling tech-
nique combined with a hill climbing search algorithm
integrated into Hydrogen, enabling dynamic adaptation
to the varying behaviors of applications over time. These
techniques allow Hydrogen to efficiently explore a large,
multi-dimensional design space for optimized memory
resource partitioning.

• C4: We demonstrate through extensive evaluation that
Hydrogen significantly outperforms existing hybrid mem-
ory management approaches, achieving on average a
1.16× speedup, and in certain cases up to 1.31×, across a
variety of memory-intensive workloads. These improve-
ments are attributed to Hydrogen’s comprehensive and
efficient partitioning schemes, as well as its adaptability
to application-specific behaviors.

Moreover, we detail the methodologies for obtaining or
generating the datasets utilized in our study, along with the
scripts for replicating the experiments described in the paper.

B. Computational Artifacts

We use A1 as our computational artifact to this paper.
The following table outlines the artifacts in relation to the

paper’s contributions and specifies the elements within the
paper that can be reproduced using each artifact.

Artifact ID Contributions Related
Supported Paper Elements

A1
C1 Tables I-II and Figure 2
C2-C4 Figures 5-11

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact A1 contains two components related to the
contributions. A1 includes a trace-based simulator framework
for an integrated CPU-GPU system, and trace generators for
the SPEC CPU2017, Rodinia, and MLPerf benchmarks. This
provides the analysis in C1 and the baseline performance
in C4. Furthermore, A1 modifies the memory controller in
the simulator to incorporate C2 and C3, showcasing the
performance advantages of Hydrogen over existing hybrid
memory partitioning designs HAShCache and Profess.

Expected Results

Hydrogen with C2 and C3 designs should have higher
weighted speedups than the baseline designs. By applying the
specified hardware configurations in the simulation, Hydrogen
outperforms the non-partitioned baseline by 1.24× on average,
and up to 1.48×. Compared to the Profess baseline, Hydrogen
is 1.16× faster on average and up to 1.31×. Compared to the
HAShCache baseline, Hydrogen is 1.47× faster on average
and up to 1.98×.

Expected Reproduction Time (in Minutes)

The artifact’s execution time varies by workloads, generally
spanning 20 to 40 minutes for trace generation and hundreds of
minutes for complete simulation, offering a practical window
for replication and analysis.

Artifact Setup (incl. Inputs)

Hardware: A1 requires Intel CPUs for execution. We
specifically use dual 2.20 GHz Intel Xeon Gold 5120 CPUs
with 28 logical cores per CPU, and 256 GB RAM. The trace
generators for Rodinia and MLPerf require NVIDIA GPUs.
NVIDIA GeForce RTX 3090 is used in this paper.

Software:
• Run-time environment: The experiments in this paper use

Ubuntu 22.04.3 LTS for all tools, and CUDA Toolkit
version 11.3 for Rodinia and MLPerf trace generation.

• Dependencies: A1 requires Intel Pin 3.11, scons 3.1.1,
libconfig 1.7.1, libhdf5 1.10.5, and zlib 1.2.11.

Datasets / Inputs:
• We use SPEC CPU2017 as the CPU workloads. It is not

available for download. Official website.
• We use Rodinia 3.1 and MLPerf Inference Benchmark

v3.0 as the GPU workloads. They are available here and
here.

Installation and Deployment:
• Compilation: The experiments in the paper use gcc

8.4.0 to compile the code. Use make -C traces/ and
make -C sims/ to build the trace generators and the
simulator, respectively.

https://www.spec.org/cpu2017/
https://www.cs.virginia.edu/rodinia/doku.php?id=downloads
https://github.com/mlcommons/inference/releases

Artifact Execution

We evaluate the end-to-end performance of Hydrogen using
real-world CPU and GPU workloads. This includes three tasks.
T1 generates the workload traces, which are used as the input
to the simulation task T2. The output of T2 is processed
by another task T3, which produces CSV tables as the final
results.

T1: We generate the workload traces
and configure the simulated hardware. The
./traces/generate_overall_spec_workload script
generates all SPEC CPU2017 workload traces.
We skip the initialization phase and simulate the
memory access traces of 5 billion instructions. The
./traces/generate_overall_rodinia_workload script
generates all Rodinia GPU workload traces. The
./traces/generate_overall_mlperf_workload script
generates all MLPerf GPU workload traces. For Rodinia and
MLPerf, we only simulate the memory access traces from the
GPU kernels.

T2: The simulation configuration templates are
provided in the sims/ directory, containing baseline,
hashcache, profess, and hydrogen. We specify the
trace file paths in sys.logic.cpu.traceFilePrefix

and sys.logic.gpu.traceFilePrefix, and
simulate different designs using commands like
sims/build/opt/zsim sims/baseline/zsim.cfg.
T3: After simulation, we gather performance statistics from

the simulator, e.g., the execution time and the cache hit rate.
The command ./extract_performance.py sims/ lists all
experiments in T2, and extracts all critical metrics, including
CPU and GPU performance, into a final CSV table perf.csv.

Artifact Analysis (incl. Outputs)
The overall performance is summarized in the perf.csv

file in the CSV format. Each entry shows the CPU and
GPU cycles of one workload combination under one design.
We calculate the CPU and GPU speedups by dividing the
cycles with the baseline cycles. Then the overall speedup is
weighted summed using the CPU and GPU speedups. Each
entry has one weighted speedup, which corresponds to one
bar in Figure 5. We are supposed to see that Hydrogen
outperforms the baseline and other state-of-the-art designs
in terms of the weighted speedups. The results correspond
to the numbers reported in Figure 5. Figure 5 is the most
important result, containing the performance breakdown and
performance comparison between Hydrogen and other designs.
Numbers in other figures can be generated similarly.

	Introduction
	Background
	Hybrid Memory Systems
	Heterogeneous CPU-GPU Architectures

	Motivation
	Target Architecture
	Challenges and Opportunities
	Related Work

	Design
	Decoupled Partitioning for Fast Memory
	Token-Based Migration for Slow Memory
	Epoch-Based Sampling
	Reconfiguration
	Putting It All Together
	Discussion

	Methodology
	Evaluation
	Overall Comparison
	Analysis of Benefits and Overheads
	Sensitivity Studies

	Conclusions
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1

