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Abstract—Fully homomorphic encryption (FHE) algorithms
enable privacy-preserving computing directly on encrypted data
without leaking sensitive contents, while their excessive computa-
tional overheads could be alleviated by specialized hardware ac-
celerators. The vector architecture has been prominently used for
FHE accelerators to match the underlying polynomial data struc-
tures. While most FHE operations can be efficiently supported by
vector processing units, the number theoretic transform (NTT)
and automorphism operators involve complex and irregular data
permutations among vector elements, and thus are handled with
separate dedicated hardware units in existing FHE accelerators.
In this paper, we present an efficient inter-lane network design
and the corresponding dataflow control scheme, in order to realize
NTT and automorphism operations among the multiple lanes of
a vector unit. An arbitrarily large operator is first decomposed
to fit in the fixed width of the vector unit, and the required data
permutation and transposition are conducted on the specialized
inter-lane network. Compared to previous designs, our solution
reduces the hardware resources needed, with up to 9.4× area
and 6.0× power savings for only the inter-lane network, and up
to 1.2× area and 1.1× power savings for the whole vector unit.

Index Terms—fully homomorphic encryption, hardware accel-
erator, vector processing unit, network

I. INTRODUCTION

Data privacy has become a critical concern nowadays, driven
by two important trends: the increasingly precious value of user
data in the era of artificial intelligence, and the great interest of
outsourcing data computations to public cloud computing plat-
forms that are potentially vulnerable. Homomorphic encryption
is a family of cryptographic algorithms that allow a user to
encrypt her sensitive data before sending to the cloud. The un-
trusted cloud platform only sees and operates on the encrypted
ciphertext. The user then receives the processed ciphertext and
decrypts into a plaintext output, which is equivalent to perform-
ing the corresponding computations on the plaintext input. This
enables computation outsourcing without compromising data
privacy. Fully homomorphic encryption (FHE) supports infinite
amounts of both addition and multiplication on ciphertexts
through a technique called bootstrapping [1]. Although several
FHE schemes have been developed [2]–[5], they have not yet
been widely deployed in real-world applications, mostly due
to the excessive computational cost of homomorphic ciphertext
processing, e.g., over 1000×, compared to the corresponding
plaintext computations.
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To overcome the high computational overheads, various
domain-specific accelerators for FHE have been proposed [6]–
[12]. Most of them follow the vector architecture, where the
processing unit has multiple lanes that share similar control
and compute on a data vector in parallel. This design choice
is motivated by the underlying data structures of modern FHE
algorithms, which are mainly based on polynomials of very
high degrees up to several thousands. A polynomial, when
represented by either its coefficients or a set of evaluation
values, naturally forms a long vector. Many basic FHE op-
erations can then be viewed as regular vector operations and
efficiently mapped onto such vector architectures. However, two
crucial exceptions exist, which are number theoretic transform
(NTT) and automorphism. Both involve complex and irregular
permutations among the vector elements, unfriendly to the vec-
tor processing style. Consequently, previous FHE accelerators
typically use dedicated hardware units, such as complex data
permutation networks like full crossbars, and/or large on-chip
SRAM buffers, to support these two operations.

In this paper, we propose a unified vector processing unit
that is able to support all the FHE operations, including the
challenging NTT and automorphism. The unit contains multiple
lanes, each consisting of modular adder/multiplier and register
resources. It naturally supports element-wise operations, as well
as cross-lane reduction for matrix/tensor multiplications. Each
pair of adjacent lanes can also be combined to realize the
butterfly operations in the NTT and inverse NTT kernels.

The key component is a novel inter-lane network that effi-
ciently realizes the data permutations required in the irregular
NTT and automorphism operations, with very low area and
power cost. More specifically, our inter-lane network uses the
constant-geometry network [13], [14] to support NTT, and
uses a multi-stage shift network to realize data transposition
and automorphism. A key contribution of our work is we
realize that an arbitrary automorphism can be decomposed
into a series of simple shifts and thus can be handled by our
inter-lane network. In addition, we support mapping NTT and
automorphism operations of arbitrarily large sizes to the vector
processing unit through decomposing them into smaller ones
that match the hardware size, i.e., the number of lanes [9],
[15]. While data dimension transpositions would be needed
during such decomposition, we again realize them on the same
shift network without extra dedicated units, demonstrating the
benefits of unified hardware design.
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We compare our design with previous methods that use com-
plex networks and/or dedicated SRAM buffers to realize NTT
and automorphism. When ported to the same vector processing
unit architecture with identical number of 64 lanes, our inter-
lane network design reduces the area cost by 1.6× to 9.4×, and
the power consumption by 2.9× to 6.0×, for supporting these
two irregular operations. The full vector processing unit, while
dominated by the modular arithmetic logic and the register files,
can still exhibit up to 1.2× area and 1.1× power savings. At the
same time, our unified inter-lane network does not significantly
compromise performance. The computation logic is 75% to
85% utilized compared to the ideal case when running various
NTT operations, and always fully utilized for automorphism.

In summary, our paper makes the following contributions.
• We discover a novel decomposition for automorphism,

which transforms an automorphism of arbitrary length into
only a set of shift operations.

• We propose a novel inter-lane network design consisting
of constant-geometry NTT connections and multi-stage
shifts, which can realize all the necessary permutations
for NTT and automorphism of arbitrary length.

• We design a unified vector processing unit, using the
above inter-lane network and multiple lanes of modular
arithmetic logic, to support all the types of operations in
modern FHE algorithm schemes.

• We compare our vector processing unit with previous
approaches, showing up to 9.4× area and 6.0× power
savings for only the inter-lane network, and up to 1.2×
area and 1.1× power savings for the whole vector unit.

II. BACKGROUND

We first give a brief overview of FHE, particularly the
CKKS scheme. Then we introduce number theoretic transform
and automorphism, which need special optimizations in vector
architectures. Finally we discuss previous FHE accelerator
designs and how they implement the above two operations.

A. Fully Homomorphic Encryption (FHE)

Several FHE schemes have been proposed thus far. In this
paper we mainly discuss the most efficient CKKS scheme [2],
while other schemes like BGV [3], BFV [4], [5] can also be
similarly supported given their similar computation patterns.

In CKKS, each ciphertext can encrypt N/2 plaintext numbers
that are processed in the SIMD manner [16], [17]. A ciphertext
is represented as two polynomials with N coefficients in a large
modular field RQ. Using the residual number system (RNS),
each coefficient can be decomposed into L numbers, each in
a smaller field Rqi with narrower bitwidth for more efficient
computations [18]–[20]. Thus each ciphertext is effectively a
tensor of shape 2×N×L. Homomorphic addition (HAdd) adds
two ciphertext tensors in an element-wise way. Homomorphic
multiplication (HMult) involves polynomial multiplications that
can be accelerated using number theoretic transforms (NTTs),
and then goes through a process of keyswitch that contains
element-wise operations, matrix/tensor multiplications, as well
as NTTs. Homomorphic rotation (HRot), which shifts the
plaintext numbers in a ciphertext, involves a special operation

called automorphism, after which a keyswitch pass is also
needed. After a certain number of homomorphic operations
are applied, the ciphertext would gather too much noise that
makes decryption fail. At this time, a complicated process
called bootstrapping is necessary to reset the ciphertext noise.
We omit the details of bootstrapping here, but emphasize that
it involves the same basic operations including HAdd, HMult,
and HRot. For more details, please refer to [21]–[23].

As a summary, homomorphic computations, including
bootstrapping, mainly involve element-wise operations, ma-
trix/tensor multiplications, NTTs, and automorphisms. Most of
these operations can be efficiently supported with vector-style
processing. This observation has motivated previous FHE accel-
erators to use vector architectures [6]–[9], [11], [12]. However,
NTT and automorphism involve irregular data permutations
within each polynomial, and cannot be directly handled in the
vector manner. We focus on these two operations in this paper.

B. Number Theoretic Transform (NTT)

Similar to fast Fourier transforms on complex data, NTTs
perform on integer field data, and transform polynomials
between the coefficient domain and the value domain in
O(N logN) complexity. NTTs are widely used in cryptography
to accelerate polynomial multiplications, by first performing
NTTs to convert the input polynomials into the value domain,
then doing element-wise multiplications, and finally converting
the result back to coefficients through an inverse NTT (iNTT).
The computation of (i)NTT on N elements has logN stages,
where the ith stage does butterfly operations on each pair of
elements with a specific stride of distance N/2i. Pre-computed
twiddle factors are also needed in these butterfly operations.

Mapping NTTs onto vector architectures has several diffi-
culties. First, when N is large and the elements do not all fit
in the local buffer, fetching the strided input elements exhibits
irregular data access patterns with little locality, resulting in
excessive expensive accesses to the off-chip memory and/or
across the global chip interconnect. Second, even with small N
values, organizing the elements in the strided patterns to feed
the multiple processing units needs special data permutations
between the vector processing lanes.

NTT decomposition. We use the widely used NTT decom-
position method [15], [24]–[26] to address the first challenge
above, which recursively decomposes a large NTT into multiple
smaller NTTs that each matches the hardware size. Assume the
hardware has the computing and buffering resources to process
a length-m NTT each time. We can decompose an arbitrary
NTT of length N into ⌈logN/ logm⌉ dimensions, which are
processed one-after-one. For each dimension, we independently
process all the individual length-m NTTs. When switching
dimensions, we need to transpose the data to continuously
collect the elements in each NTT of the next dimension, and
also do a pass of element-wise twiddle factor multiplications
on all the elements. For example, with 2D decomposition of
N = R×C, we first process the R instances of row NTTs, each
of length C. Then we do element-wise twiddle multiplications
on all the N elements and transpose the matrix into column-



major. Finally we compute the C instances of column NTTs,
each of length R.

C. Automorphism

Automorphism is a permutation on N elements, which
moves the input elements following the mapping σΦ,r(i) in
Eq. (1), i.e., the element of index i goes to the new position at
index σΦ,r(i). Φ is a number co-prime to the input length N ,
typically chosen as Φ = 5.

σΦ,r : i 7→ i× Φr mod N, i = 0, 1, . . . , N − 1 (1)

Automorphism followed with keyswitch is used to implement
HRot in FHE. Specifically, applying σΦ,r(i) on the ciphertext
polynomials would rotate the plaintext numbers in the cipher-
text with a distance of r, i.e., from (z0, z1, . . . , zN/2−1) to
(zr, . . . , zN/2−1, z0, . . . , zr−1).

Similar to NTT, automorphism also exhibits irregular data
permutations among the polynomial elements. Note that al-
though the encrypted plaintext numbers are rotated in a cyclic
way, the ciphertext element movement has little locality. For
example, with N = 64 and r = 2, the original elements at
0, 1, 2, 3, 4, . . . should be moved to 0, 5, 25, 61, 49, . . .. Conse-
quently, we need efficient optimizations to address the random
off-chip accesses and the complex on-chip permutations.

Automorphism decomposition. Previous work has noticed
that an automorphism can also be decomposed into small
permutations [7], [9], [10]. This allows us to overcome the
random off-chip access inefficiency similarly to NTTs above.
For example, we can view the N elements as a row-major
matrix with R rows and C columns where N = R× C. Then
the elements in the same column would remain in the same
column after automorphism [9], [11]. This is because, for an
original element i whose column index c = i mod C, after
automorphism its new column c′ = σΦ,r(i) mod C = i ×
Φr mod C = c×Φr mod C only depends on c. This property
suggests that an automorphism can be processed column by
column, where each column is permuted independently, and
then stored into the new column position. The new row and
column indices are given as below [11].

r′ = r × Φr mod R+

⌊
c× Φr

C

⌋
mod R (2)

c′ = c× Φr mod C (3)

Here Eq. (3) is effectively a smaller automorphism on the C
columns. The permutation in Eq. (2) contains two parts. The
first term is also a smaller automorphism on the R elements in
this column. The second term is independent on r and thus a
constant in each specific column, representing a cyclic shift.

D. Related Work

Various domain-specific accelerators for FHE [7]–[10], [12]
followed the vector-style architecture that includes a set of
vector processing units to process the many elements in the
ciphertext tensors in parallel. However, to support the vector-
unfriendly operations of NTT and automorphism that irreg-
ularly permute elements in one vector (i.e, a polynomial),

TABLE I
COMPARISON OF RELATED DESIGNS.

Design Transpose in NTT Automorphism

F1 [7] Quadrant-swap buffers Cyclic shift + transpose
CraterLake [8] Fixed network Fixed network

BTS [10] Crossbars Crossbars
ARK [9] Dedicated unit Dedicated network

SHARP [12] Quadrant-swap buffers Dedicated network

Ours Unified constant-geometry + shift network

previous designs mostly used dedicated units and complicated
networks, as summarized in Table I. We compare our optimized
unified network design with them quantitatively in Section V.

For NTT, all designs applied 2D or 3D NTT decomposition
and then focused on the small NTTs that fit in hardware. The
small NTTs were processed using dedicated NTT units with
customized networks to realize the butterfly access patterns.
For the transpose between dimensions, F1 [7] and SHARP [12]
used SRAM buffers for hierarchical quadrant swaps; Crater-
Lake [8] used a fixed permutation network dedicated to trans-
pose; BTS [10] did implicit transpose when transferring data
along its global horizontal and vertical crossbars, storing data
elements to the new addresses in the destinations; ARK [9] also
adopted a dedicated transpose unit.

For automorphism, F1 [7] used cyclic shifts in conjunction
with the aforementioned transposition unit. CraterLake [8]
instead used a fixed network to simplify control complexity.
ARK [9] and SHARP [12] implemented a specialized auto-
morphism unit that contains a complex multi-stage permutation
network. BTS [10] again used its global crossbars to implicitly
conduct automorphism through specialized addressing schemes.

III. HARDWARE ARCHITECTURE

In this paper, we propose a unified vector processing unit
(VPU) architecture that supports all the FHE operations. The
key to supporting the vector-unfriendly NTT and automorphism
operations in the VPU is the design of an inter-lane network.
This section describes the hardware of the VPU. Section IV
discusses how to map NTT and automorphism to the VPU.

Fig. 1(a) shows the overall hardware architecture of the FHE
accelerator, which contains multiple VPUs connected through
a network-on-chip (NoC). On-Chip SRAM is used to cache
data for maximum reuse. This high-level architecture follows
the common structure of recent FHE accelerators [7]–[10],
[12]. Our novel design lies inside the VPU, as shown in
Fig. 1(b), which has m computing lanes (by default m = 64),
interconnected with an inter-lane network. We next discuss the
lane and the inter-lane network in details.

A. Computing Lane

As illustrated in Fig. 1(c), each computing lane in the
VPU has identical structure, including a modular multiplier,
a modular adder/subtractor, and a register file with two read
ports and one write port. This naturally allows the multi-
ple lanes in a VPU to conduct element-wise modular ad-
dition/subtraction/multiplication with the data in the register
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files. For matrix/tensor multiplications, besides element-wise
operations, cross-lane reduction is also needed, which can be
trivially done using the shift functionality of the inter-lane
network as described in Section III-B. We use Barrett reduction
for the modular arithmetics [6], [9]–[12], [27], as it could
better support the base conversion in the FHE keyswitch than
Montgomery multipliers.

Each pair of lanes also has connections that allow them
to directly obtain each other’s data, in order to facilitate the
butterfly operation in NTT that involves both lanes’ data. Note
that to support NTT and iNTT without the need of bit reverse,
both decimal-in-time (DIT) and decimal-in-frequency (DIF)
butterfly patterns are needed. Fig. 1(c) highlights the activated
datapath for DIT; DIF can be similarly executed. Besides the
two data elements, the twiddle factor is also read from the
register file in one of the two lanes.

B. Inter-Lane Network

The inter-lane network is illustrated in Fig. 2. It consists of
two NTT constant-geometry (CG) stages [13], [14] for DIT
and DIF, respectively, plus a shift network with logm stages
each shifting a distance of m/2,m/4, . . . , 1. When m = 4, the
two CG stages are identical and merged into one. Each stage

has m 2-to-1 MUX’es, selecting between the local lane’s and
another specific lane’s elements. With typical numbers of lanes
like m = 32, 64, there are only 7 to 8 stages, whose critical
path is well within the desired clock cycle like 1 GHz.

Note that the MUX’es in the shift stages use separate control
signals, so they can be independently controlled as long as there
is no conflict. For example, in the first stage in Fig. 2, a[0]
and a[4] are co-controlled as their outputs conflict, but they
are independent from a[1] and a[5]. Overall, the stages have
m/2,m/4, . . . , 1 independent signals, in total m− 1 bits.

The inter-lane network is used to realize the length-m NTT
permutation, the required transpose in NTT decomposition, and
the automorphism. These complement the already supported
element-wise operations and matrix/tensor multiplications in
the computing lanes, to cover all the FHE operations. Specif-
ically, when performing the decomposed small NTT of length
m, only the corresponding DIT or DIF CG stage is activated,
while the rest stages all use local direct connections. The CG
stage pairs the two elements required in each butterfly operation
to adjacent lanes, using a single uniform network to realize the
strides in different NTT stages [13], [14]. For transpose and
automorphism, our key contribution is to decompose them into
a series of shift operations that can be realized using the shift
stages. The details will be described in Section IV.

IV. OPERATION MAPPING

This section details our approaches to map NTT and au-
tomorphism onto our VPU and realize their permutations on
the unified inter-lane network. Similar to previous designs, we
apply decomposition to make arbitrarily large operations fit in
the size of a VPU. For simplicity, we focus on how to execute
the operation on a single VPU. It is easy to extend the mapping
to multiple VPUs for parallel execution.

A. NTT Mapping

We decompose a length-N NTT into multiple dimensions
each up to length-m, and process the small NTTs of each
dimension on the VPS by mapping the m elements to the m
lanes and using the CG network for the butterfly operations
(Section III-B). If the last dimension size is smaller than m,
e.g., m/2, the CG network also can be divided into multiple
independent groups to allow multiple smaller NTTs to execute
in parallel. The element-wise twiddle multiplications between
dimensions are done using the element-wise mode of the VPU.
Thus the remaining issue is to realize dimension transpose,
which can use the inter-lane network.

We use an example in Fig. 3 to illustrate how this can be
done. Assume the NTT is decomposed into three dimensions of
x, y, z, where x and y have length of 4 (two bits each) matching
the number of lanes m, but z is shorter with only length 2 (one
bit). Initially dimension x is across lanes, while z|y are within
one lane in its register file. We now want to transpose y to the
dimension across lanes, i.e., z|y×x → x|z× y as in Fig. 3(a).
Such a transpose can be done by first transforming each column
(e.g., [0, 1, 2, 3]) to a diagonal pattern (as in the middle figure),
and then from this diagonal to a row. Specifically, in the first
step, we shift down each column by y, so the new lane ID of
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Fig. 3. Dimension transpose in NTT on the inter-lane network. The NTT is
decomposed into three dimensions of x1|x0, y1|y0, z. (a) shows the transpose
from z|y1|y0 × x1|x0 to x1|x0|z × y1|y0. (b) shows the transpose from
y1|y0|x1 × x0|z to z|y1|y0 × x1|x0.

each element becomes x+ y mod m. For example, the second
column [4, 5, 6, 7] has y = 012, so they are shifted to lanes
1, 2, 3, 0. We also write them to the register addresses of x|z,
i.e., the target columns 0, 2, 4, 6. In the second step, we simply
shift up each column by x to make the new lane ID as y. A
similar process can transpose x|z × y → y|x1 × x0|z. Here
because z is shorter than the VPU width, a partial dimension
x0 is also distributed across the lanes to fully utilize the VPU.

However, when we transpose this layout back to the original
one, i.e., y|x1×x0|z → z|y×x, we face a different scenario as
in Fig. 3(b). In the first column [0, 16, 1, 17], the elements need
irregular shift-down distances of 0, 1, 3, 0. Only using the shift
network cannot realize this. Fortunately, we can use the CG
network to first reorganize the data, e.g., changing the column
to [0, 1, 16, 17], and then shift and write them to proper register
addresses as in the middle figure. Then a simple shift could
reach the final layout. Note that the shorter z compares to m,
the more CG passes would be needed, up to logm− 1 times.

B. Automorphism

We also decompose a large length-N automorphism to R×C
following Section II-C, where R = m is the number of lanes so
each column is processed in parallel on all the lanes of the VPU.
According to Eq. (3), each column is still in the same column,
so after processed it is written to the new column position as a
whole. The remaining problem is to realize Eq. (2) on the inter-
lane network. While the shift part can be directly supported,
the automorphism is challenging.

The key insight is that the first term in Eq. (2) vanishes
when we have Φr mod R = 1. Considering Φ is co-prime
with N and N is typically a power of 2, this condition can
be satisfied if we have R = 2 here. That is, if we recursively
decompose the length-R automorphism until length 2, then all
the automorphisms would vanish and only the shift operations
at these recursive levels remain.

Specifically, for a length-m automorphism, we decompose it
into R′ × C ′ with C ′ = 2. This eliminates the automorphism

in Eq. (3), and only leaves one automorphism and one shift
in Eq. (2) for each of the two length-m/2 sub-columns. The
automorphism is recursively decomposed, while the shift can
be directly implemented using our inter-lane network. For
example, with 8 lanes in Fig. 2, the two sub-columns [0, 2, 4, 6]
and [1, 3, 5, 7] can be shifted using the first and second stages.
Assume the desired outputs are [4, 6, 0, 2] and [7, 1, 3, 5], i.e.,
shifting by distances of 2 and 3 (or global distances of 4 and
6), respectively. The first stage shifts both groups, and the
second stage only shifts the second group. This is possible
with separate control signals for each MUX. The other smaller
sub-columns can be similarly handled.

Note that although the recursive decomposition results in
multiple shifts, these shifts can be all merged by updating
their control signals, i.e., two shifts of distance 2 become one
shift of distance 4. By doing so, we could guarantee that for
any length-m automorphism, data only need to go through the
inter-lane network once. However, since these shifts are highly
irregular, the shift control signals are also too complicated to
be generated at runtime. We thus pre-generate them for all
possible automorphisms and store them in on-chip SRAM. With
m lanes, there are at most m

2 distinct automorphisms with any
Φ co-prime with 2, each requiring m − 1 bits of control, in
total m

2 (m − 1) bits. For example, with m = 64, we need
about 2 kbits, a small area cost.

Now consider the full length-N automorphism. When de-
composed into N = R × C with R = m, we still need to
combine the length-m automorphism with a length-m shift as in
Eq. (2). Their control signals are merged at runtime using some
extra simple logic gates. Consequently, for any automorphism,
data only go through the inter-lane network once.

We open source the control signal generation details at https:
//github.com/tsinghua-ideal/automorphism-decomposition.

V. EVALUATION

A. Methodology

We implement our VPU design, including the lanes and the
inter-lane network, in RTL using Verilog. We use m = 64
lanes by default, with 64-bit datapaths. We synthesize the
design using the ASAP 7 nm library [28], [29]. The design
successfully meets the 1 GHz frequency target. The SRAM and
register files are modeled with FN-CACTI [30], and scaled to
7 nm following the parameters from [31], [32]. We compare
our design with previous FHE accelerators, including F1 [7],
BTS [10], ARK [9], and SHARP [12]. BTS, ARK, and SHARP
are under 7 nm; F1 uses 14/12 nm, and we scale it to 7 nm. We
exclude CraterLake [8] as it uses fixed networks for specific
parameters that are not general. However, all these designs
use drastically different processing units that are difficult to
normalize. As the main goal of this work is to showcase the
benefits of our inter-lane network design, to conduct a fair
comparison, we port previous designs’ approaches to realizing
NTT and automorphism into our multi-lane VPU, and replace
our inter-lane network. We then report the area and power
comparisons for only this data permutation component as well
as the full VPU.

https://github.com/tsinghua-ideal/automorphism-decomposition
https://github.com/tsinghua-ideal/automorphism-decomposition


TABLE II
AREA AND POWER COMPARISON BETWEEN VARIOUS DESIGNS, ALL WITH 64 LANES.

Design Network area (µm2 | ratio) VPU area (µm2 | ratio) Network power (mW | ratio) VPU power (mW | ratio)

F1 [7] 55616.42 | 9.40× 300306.61 | 1.20× 93.50 | 6.00× 842.12 | 1.10×
BTS [10] 19405.16 | 3.28× 264095.35 | 1.05× 45.13 | 2.90× 793.75 | 1.04×
ARK [9] 9480.50 | 1.60× 254170.69 | 1.01× 46.35 | 2.97× 794.97 | 1.04×

SHARP [12] 44453.51 | 7.52× 289143.70 | 1.15× 44.04 | 2.83× 792.66 | 1.04×

Ours 5913.62 | 1.00× 250603.81 | 1.00× 15.59 | 1.00× 764.21 | 1.00×

TABLE III
THROUGHPUT UTILIZATION OF NTT AND AUTOMORPHISM IN OUR DESIGN.

N NTT Automorphism

210 74.77% 100%
212 85.14% 100%
214 77.63% 100%
216 79.96% 100%
218 81.81% 100%
220 80.80% 100%

TABLE IV
AREA AND POWER RESULTS OF OUR INTER-LANE NETWORK.

Num. of lanes Area (µm2) Power (mW)

4 208.99 0.59
8 509.45 1.38

16 1180.83 3.13
32 2664.50 7.02
64 5913.62 15.59
128 12975.47 34.28
256 28226.38 75.02

B. Area and Power

We summarize the area and power comparison in Table II.
Specifically, F1 [7] uses a dedicated transpose unit, which
mainly consists of a set of quadrant-swap SRAM buffers. An
automorphism is done through another cyclic shift network
together with the transpose unit. Its area and power are domi-
nated by the SRAM buffers, which are 9× and 6× larger than
ours. BTS [10] uses full crossbars (scaled to 64-bit links in
our comparison), which are expensive and scale poorly. The
area is 3.3× larger than ours, and the power is 2.9× higher.
ARK [9] has a dedicated automorphism unit with a special
network design, and a dedicated NTT unit with customized
NTT connections. These two networks, while area-efficient, are
separate and thus have unnecessary overheads, resulting in 1.6×
larger area and 3× higher power than our unified inter-lane
network design. Finally, SHARP [12] inherits its automorphism
unit from ARK, but for NTT it adds the SRAM-based transpose
unit similar to F1. The latter structure supports larger NTT
lengths at the expense of much larger area, up to 7×.

When assessing the total area and power of the VPU, which
includes both the lanes (the modular arithmetic units and the
register files) and the inter-lane network, we see that the lanes
dominate the cost. Nevertheless, the more efficient inter-lane
network still exhibits 1.01× to 1.20× area reduction, and
1.04× to 1.10× power reduction. We note that this compar-

ison is conservative. In most of the baselines, the modular
arithmetic units for NTT and the element-wise processing
units are also separated, resulting in further area and power
duplication. While in our design, we reuse the same modular
adder/multiplier for both element-wise and NTT operations.

C. Performance
Regarding performance, we evaluate NTT and automorphism

operations with various lengths N on our VPU, and compare
to an ideal case that fully utilizes all the lanes at all time.
We report the throughput utilization, i.e., the actual throughput
on our VPU vs. the ideal full throughput, in Table III. For
NTTs, transposing the data needs to traverse through the inter-
lane network for multiple times, and thus results in throughput
loss. Overall, we still achieve about 75% to 85% utilization of
the lane logic. Note that when N increases over 212 and 218,
which are integer powers of the number of lanes m = 64, the
throughput utilization drops, due to one more dimension in the
decomposition and thus one more round of transposition. On
the other hand, our network always achieves full throughput for
automorphism. This is because each data element only goes
through the inter-lane network once, thanks to the ability to
merge all the shifts in a decomposed automorphism.

D. Scalability
Finally, we examine the scalability of our design, by varying

the number of lanes m from 4 to 256, and measuring the area
and power in Table IV. We see slightly super-linear scalability
for area and power. When increasing from 4 lanes to 256 by
64×, the area increases by 135× and the power increases by
127×, roughly corresponding to 2.27× and 2.24× growth for
every doubling of lane counts.

VI. CONCLUSIONS

In this paper, we propose a unified vector processing unit
that is able to support all types of FHE operations. The key
innovation lies in how to efficiently support the irregular data
permutations among the multiple lanes of the vector processing
unit, i.e., NTTs and automorphisms, through the use of an inter-
lane network consisting of two constant-geometry stages plus
a multi-stage shift network. Compared to previous approaches,
our unified design saves significant area and power while
maintaining high throughput utilization.
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