
Femur: A Flexible Framework for Fast and SecureQuerying
from Public Key-Value Store
JIAOYI ZHANG, Tsinghua University, China
LIQIANG PENG, Alibaba Group, China
MO SHA, Alibaba Cloud, Singapore
WEIRAN LIU, Alibaba Group, China
XIANG LI, Tsinghua University, China
SHENG WANG, Alibaba Cloud, Singapore
FEIFEI LI, Alibaba Cloud, China
MINGYU GAO∗, Tsinghua University, China
HUANCHEN ZHANG∗, Tsinghua University, China

With increasing demands for privacy, it becomes necessary to protect sensitive user query data when accessing

public key-value databases. Existing Private Information Retrieval (PIR) schemes provide full security but

suffer from poor scalability, limiting their applicability in large-scale deployment. We argue that in many

real-world scenarios, a more practical solution should allow users to flexibly determine the privacy levels of

their queries in a theoretically guided way, balancing security and performance based on specific needs. To

formally provide provable guarantees, we introduce a novel concept of distance-based indistinguishability,

which can facilitate users to comfortably relax their security requirements. We then design Femur, an efficient

framework to securely query public key-value stores with flexible security and performance trade-offs. It uses

a space-efficient learned index to convert query keys into storage locations, obfuscates these locations with

extra noise provably derived by the distance-based indistinguishability theory, and sends the expanded range

to the server. The server then adaptively utilizes the best scheme to retrieve data. We also propose a novel

variable-range PIR scheme optimized for bandwidth-constrained environments. Experiments show that Femur

outperforms the state-of-the-art designs even when ensuring the same full security level. When users are

willing to relax their privacy requirements, Femur can further improve the performance gains to up to 163.9×,
demonstrating an effective trade-off between security and performance.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols.

Additional Key Words and Phrases: Public Key-Value Store, Private Information Retrieval

ACM Reference Format:
Jiaoyi Zhang, Liqiang Peng, Mo Sha, Weiran Liu, Xiang Li, Sheng Wang, Feifei Li, Mingyu Gao, and Huanchen

Zhang. 2025. Femur: A Flexible Framework for Fast and Secure Querying from Public Key-Value Store. Proc.
ACM Manag. Data 3, 3 (SIGMOD), Article 162 (June 2025), 29 pages. https://doi.org/10.1145/3725299

∗
Huanchen Zhang and Mingyu Gao are also affiliated with Shanghai Qi Zhi Institute. Corresponding authors.

Authors’ Contact Information: Jiaoyi Zhang, jy-zhang20@mails.tsinghua.edu.cn, Tsinghua University, Beijing, China;

Liqiang Peng, plq270998@alibaba-inc.com, Alibaba Group, Beijing, China; Mo Sha, shamo.sm@alibaba-inc.com, Al-

ibaba Cloud, Singapore, Singapore; Weiran Liu, weiran.lwr@alibaba-inc.com, Alibaba Group, Beijing, China; Xiang

Li, lixiang20@mails.tsinghua.edu.cn, Tsinghua University, Beijing, China; Sheng Wang, sh.wang@alibaba-inc.com, Al-

ibaba Cloud, Singapore, Singapore; Feifei Li, lifeifei@alibaba-inc.com, Alibaba Cloud, Hangzhou, China; Mingyu Gao,

gaomy@tsinghua.edu.cn, Tsinghua University, Beijing, China; Huanchen Zhang, huanchen@tsinghua.edu.cn, Tsinghua

University, Beijing, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART162

https://doi.org/10.1145/3725299

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0008-3075-6147
HTTPS://ORCID.ORG/0009-0008-4717-1604
HTTPS://ORCID.ORG/0000-0001-6876-9463
HTTPS://ORCID.ORG/0000-0002-1466-7418
HTTPS://ORCID.ORG/0000-0001-8906-0832
HTTPS://ORCID.ORG/0009-0007-1582-3316
HTTPS://ORCID.ORG/0009-0003-0770-5775
HTTPS://ORCID.ORG/0000-0001-8433-7281
HTTPS://ORCID.ORG/0009-0001-4821-1558
https://doi.org/10.1145/3725299
https://orcid.org/0009-0008-3075-6147
https://orcid.org/0009-0008-4717-1604
https://orcid.org/0000-0001-6876-9463
https://orcid.org/0000-0002-1466-7418
https://orcid.org/0000-0001-8906-0832
https://orcid.org/0000-0001-8906-0832
https://orcid.org/0009-0007-1582-3316
https://orcid.org/0009-0003-0770-5775
https://orcid.org/0000-0001-8433-7281
https://orcid.org/0009-0001-4821-1558
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725299

162:2 Jiaoyi Zhang et al.

1 Introduction
The growing data volumes and pervasive cloud services have spurred efforts to protect user data

privacy. Protecting user queries to public datasets is as critical as protecting the underlying database.

For example, users checking phone numbers against a public scam database are vested in keeping

the numbers private to the hosting server. Similarly, users querying sensitive health or financial data

risk potential discrimination (e.g., biased treatment in insurance or employment) if their queries

are revealed. These use cases highlight the need for secure and efficient query mechanisms for

accessing public key-value stores while keeping queries confidential.

Private Information Retrieval (PIR) schemes [28, 29, 45, 50, 59, 60, 64] have emerged to address the

above concerns. They allow users to upload encrypted keys for confidential server-side computation

and results return without decryption. The entire process ensures that sensitive information

remains secure. Despite advancements in PIR techniques—such as improvements in cryptographic

protocols [7, 23, 31, 42, 57], encoding strategies [13], and pre-processing optimizations [25, 27, 31,

95]—they still face challenges with scaling. To guarantee query path privacy, most designs must

process all the 𝑛 key-value pairs in the database with up to 𝑂 (𝑛) complexity, leading to high query

response time in large-scale applications. For example, Pantheon [7] takes 1.15 seconds to execute

a query on only 65,536 key-value pairs.

In this paper, we propose a more practical solution that relaxes security while upholding theo-

retical guarantees. Existing PIR schemes yield impractical processing times for large real-world

datasets, with delays ranging from seconds to hours (Pantheon [7] takes over 2 hours on 2
24
records).

Moreover, full dataset obfuscation may not be necessary in many applications. For example, an

American user may only need to hide their queries within the U.S. phone numbers rather than

the global dataset. In fact, industry practices often relax security by using hash functions [43] to

partition datasets into smaller buckets to improve query performance by reducing the number of

key-value pairs involved per query. However, this method lacks formal security guarantees: the

bucket IDs are exposed during computation, and an uneven hash partition could produce single-pair

buckets, thus revealing the user’s query.

We introduce Femur, a framework enabling users to control and balance performance and privacy

with theoretical security guarantees. Femur allows users to configure from no security to full security

backed by our formal definition of “relaxed security” (i.e., distance-based indistinguishability).
Depending on the chosen level, Femur’s user-side module automatically sends an obfuscated range

of keys (including the user’s real key) to the server, ensuring that the real key is indistinguishable

under the relaxed security level without unnecessary performance loss. When this key range

extends to the entire database, Femur achieves full privacy as before.

Femur consists of three main components: key-to-position conversion, obfuscated range genera-

tion, and adaptive key-value retrieval. First, the user-side key-to-position conversion module maps

query keys to their storage locations within the database, similar to existing keyword PIRs. The

novelty lies in that we use the PGM-index [40], a state-of-the-art, space-efficient learned index

for the mapping. The prediction error of PGM-index can be handled together with the obfuscated

query range. Learned indexes are typically faster and smaller than traditional indexes (e.g., B+trees)

and can therefore speed up the conversion while significantly reducing the index size stored on the

client side.

Second, the obfuscated range generation module adds noise to the range predicted by the PGM-

index before sending it to the server so that the server-side computation (or transmission) is

confined to the key-value pairs within the range. This obfuscated range satisfies distance-based

indistinguishability with a user-specified security level guaranteed by our theory. The higher the

security level, the slower the query.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:3

Third, the server-side adaptive key-value retrieval module employs a cost model to choose the

best strategy, trading between computation and network bandwidth. For high-bandwidth networks,

the client side downloads all key-value pairs in the obfuscated range (of length 𝑠) in plaintext. This

approach conceals the query key without homomorphic computation but incurs 𝑂 (𝑠) transmission

complexity. When the bandwidth is limited, we propose a novel variable-range PIR scheme with a

transmission complexity of 𝑂 (1) but a computation complexity of 𝑂 (𝑠).
Our experiments show that Femur scales well on a dataset containing 200 million records (a

size infeasible for previous solutions) and outperforms the two baselines (Chalamet [25] and

Pantheon [7]) by 1.05× and 7.71×, respectively under full security, and by 163.9× and 1206.1×,
respectively with a relaxed security guarantee. Additionally, Femur’s offline initialization phase

only takes a few minutes, compared to several hours from previous designs. We also integrated

Femur into Redis [1], a popular in-memory key-value store, and demonstrated that Femur also

supports efficient value updates in real-world scenarios.

We make the following contributions.

• We identify that full security prevents current PIR schemes from scaling and is often unnecessary

in real-world applications.

• We introduce relaxed security by formally defining “distance-based indistinguishability” to allow

users to trade between performance and privacy while offering provable security guarantees.

• We propose Femur, a framework that eliminates unnecessary computational and communication

costs by incorporating a learned index with a novel variable-range PIR scheme.

• We demonstrate Femur’s superior performance and scalability via a thorough evaluation.

2 Preliminaries
2.1 Private Retrieval From Public Data
This paper focuses on user privacy in public key-value stores by ensuring secure lookups that hide

both the users’ query keys and access patterns. This is often realized by traditional PIR schemes,

including keyword PIRs and index PIRs. Depending on whether pre-processing is allowed, PIR

schemes can be further categorized as stateless PIR (without pre-processing) [7, 8, 13, 59] often

with linear computational complexity, and as stateful PIRs [25, 29, 31, 45, 50, 95] which leverage

offline pre-processing to reduce online computation.

2.1.1 Index-PIR. Index PIRs assume that the user knows the exact location of the queried data.

Typically, the user encodes the location as a one-hot vector, encrypts it, and sends it to an untrusted

server. The server then performs a privacy-preserving inner product between the encrypted query

and its dataset, returning the encrypted result to the user. We focus on the single-server scenario,

as the multi-server setup relies on the less practical assumption of non-colluding servers.

Existing index-PIR schemes like SimplePIR [45] and FrodoPIR [31] reduce online computation

via one-time pre-computation, where users download specific “hints” in the offline phase. However,

their online phase still scales linearly with dataset size. Piano [95] takes a different approach where

the user continuously uploads sets of multiple locations during pre-processing and obtains the XOR

of these data as hints. The online query must match one of these hints, accelerating queries but

incurring offline communication overhead equal to the dataset size, rendering it impractical. Since

offline interactions between the user and the server are inevitable (e.g., establishing a communication

channel), Femur also allows transferring hints during the offline phase. However, it ensures that the

hint size remains significantly smaller than the dataset. To achieve this, Femur introduces a novel

design that leverages learned indexes for faster pre-processing and efficient online processing.

Additionally, optimizations in cryptographic primitives [60, 64] and batch processing [65, 87]

are orthogonal to our design and could enhance our framework with minor adjustments.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:4 Jiaoyi Zhang et al.

2.1.2 Keyword-PIR. In real-world scenarios, users often do not know the exact location of the data

they wish to retrieve. Keyword PIRs address this limitation by allowing queries based on keywords,

and they are typically implemented on top of index PIRs. The earliest approach [28] achieves this

by mapping keywords to data locations through logarithmic rounds of communication. However,

this introduces substantial overhead, rendering the method inefficient. For example, retrieving data

from one million key-value pairs may require up to 21 round trips, resulting in significant overhead.

Recent keyword PIR schemes reduce rounds to one. Approaches based on fully homomorphic

encryption (FHE) [23, 42] achieve this by using equality operators [7, 57]. In these schemes, the

user encrypts the desired keyword and uploads it to the server, which performs an equality check

between the encrypted keyword and all keys in the dataset. This results in an encrypted one-hot

vector that can be used for consequent index PIR. While these methods reduce communication,

equality checks remain computationally expensive. To further enhance efficiency, Chalamet [25]

employs techniques such as cuckoo hashing or filters to map keys to multiple potential locations,

using index PIR to retrieve and combine these values. Compared to FHE-based methods, Chalamet

reduces the online server-side computations, but still incurs high communication overhead and

requires substantial pre-processing.

These schemes improve retrieval efficiency while maintaining full security. However, Femur

provides extra flexibility by allowing users to adjust security levels according to their specific needs,

achieving a better balance between performance and privacy.

2.2 Differential Privacy
Differential privacy (DP) is a rigorous mathematical method widely used in database systems, aimed

at preventing adversaries from inferring individual data from query results by adding controlled

noise. Classical DP applications assume the presence of a trusted party that collects all the data

and adds noise to the entire dataset, an approach adopted by various organizations including

Google [12] and Uber [46, 47]. In contrast, Local Differential Privacy (LDP) removes the need for a

trusted party by allowing users to obfuscate data locally before sharing, as used by Google [9, 36],

Apple [77], and Meta [61]. Besides, users have the flexibility to choose their desired privacy level

based on the sensitivity of their information [11].

Definition 1 (Local Differential Privacy, LDP). An obfuscation mechanismM : D → O
satisfies 𝜖-LDP with privacy level 𝜖 (𝜖 ≥ 0) if for any 𝑥, 𝑥 ′ ∈ D and any output 𝑦 ∈ O, we have

Pr[M(𝑥) = 𝑦] ≤ 𝑒𝜖 · Pr[M(𝑥 ′) = 𝑦] (1)

The private parameter 𝜖 represents the privacy level, with larger 𝜖 indicating weaker privacy

protection provided byM. To satisfy the condition of LDP,M must effectively hide all differences

between data entries, including the difference between the maximum and minimum values. In

practice, this often requires adding a significant amount of noise, leading to reduced usability.

Definition 2 (Distance-based Local Differential Privacy). An obfuscation mechanism
M : D→ O satisfies 𝜖-dLDP with privacy level 𝜖 (𝜖 ≥ 0) if for any 𝑥, 𝑥 ′ ∈ D such that |𝑥 − 𝑥 ′ | ≤ 𝑡 ,
and for any possible output 𝑦 ∈ O, we have

Pr[M(𝑥) = 𝑦] ≤ 𝑒𝑡𝜖 · Pr[M(𝑥 ′) = 𝑦] (2)

According to this definition, the indistinguishability between any two sensitive data points

decreases as the distance 𝑡 between them increases [26]. This strikes a balance between privacy

and utility and is more suitable for practical application scenarios.

Theorem 1 (Post-Processing [35]). LetM : D→ O be an 𝜖-dLDP obfuscation mechanism, and
𝑓 : O→ O′ be any randomized function. Then, 𝑓 ◦M remains 𝜖-dLDP.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:5

Immunity to post-processing is a key property of differential privacy, meaning that arbitrary

transformations can be performed on the output without compromising privacy guarantees.

2.3 Learned Indexes
Similar to PIR schemes that employ filters for keyword PIR, index structures (e.g., B+tree [21] or

learned indexes) can also be used to map keywords to their corresponding locations before retrieval.

Learned indexes, first introduced by Kraska et al. [51], utilize data distribution characteristics to

build more efficient index structures. Specifically, it focuses on data distribution and rank to map

a given key to its corresponding memory address [33, 53, 84, 86, 91, 92]. This operation can be

understood as a cumulative distribution function (CDF) applied to the key distribution.

Most learned indexes follow a similar structure and search process. Given a set of key-value

pairs, they use a construction algorithm to create a tree structure, typically consisting of a root

node, one or more levels of internal nodes, and leaf nodes that manage the key-value pairs. Each

node contains a simple linear model and metadata representing the distribution of a subset of the

entire dataset. To query a key, the learned index performs a top-down traversal. At each level, a

model is used to predict the next node’s location to be accessed at the next level, continuing until a

leaf node is reached. The model in the leaf node predicts the position (i.e., rank) of the query key,

and a last-mile search is performed within a small range to determine the exact key location.

3 Motivation
We focus on a scenario where a server hosts a public key-value store, allowing users to retrieve

values by their keys without revealing which specific keys they are querying. Such scenarios are

common, including untraceable browsing [44, 50, 85], contact discovery [22, 32], password leakage

detection [78], anonymous messaging [13, 14, 52, 62], etc. For example, at WWDC 2024, Apple

introduced a live caller ID lookup feature that enables users to obtain information about incoming

calls from a public dataset without revealing the queried phone number to the server. This feature

helps safely block nuisance calls, offering both security and convenience.

In such scenarios, the server is typically the data owner. The users can privately perform read-

only lookups on the public key-value store but are usually not allowed to modify the data. Only the

server may periodically update its data as needed. This is fundamentally different from the cases

where the users outsource their own databases to untrusted servers. But we emphasize that it is

still a common and important problem in the real world, as exemplified above. For example, an

investor may wish to privately retrieve information about a particular stock, such as its trading

record, without intending to update any public data. However, these queries often involve sensitive

information (e.g., investment interests), necessitating privacy guarantees.

Most existing approaches rely on PIR schemes to support such scenarios. As discussed in Sec-

tion 2.1, PIR schemes usually use an encrypted one-hot bitmap to represent the location of the

desired key-value pair, and perform homomorphic inner products with all key-value pairs in the

dataset, thereby concealing the queried key. However, their computational cost scales with the

size of the database, making them impractical for large datasets. For example, Pantheon [7] takes

several hours to execute a query on a dataset containing 16,777,216 key-value pairs. Although

Pantheon can parallelize computations by distributing the dataset across multiple machines, this

does not fundamentally reduce the computational complexity of each query, leaving the scalability

problem unresolved.

In this paper, we argue that such impractical performance of existing schemes stems from their

rigid guarantees of full security, which require all key-value pairs to be involved in computa-

tion or transmission. Current PIR schemes cannot bypass this requirement, even with optimized

cryptographic algorithms or preprocessing. However, this requirement is not always necessary in

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:6 Jiaoyi Zhang et al.

practical applications. In real-world scenarios, users’ security requirements are independent of the

dataset size and often remain fixed. For example, when protecting a user’s address, the user may

be comfortable revealing her country (e.g., the United States) but not her city (e.g., San Francisco).

This allows the query to be executed securely over all addresses within the country, rather than

over the entire global dataset. Moreover, in a geographic database like Open Street Map, which is

keyed by latitude and longitude, nearby data items in the database are geographically close to each

other. Practical applications often involve scenarios where the storage location in the database is

correlated with the value of the key. Meanwhile, such “weaker” security is common in industrial

solutions, which often use hash functions to partition the complete dataset into smaller subsets.

However, such methods not only leak the bucket ID where the queried key is located but also fail

to provide provable privacy guarantees in general scenarios. For example, if a bucket contains only

a single entry, the queried key is immediately exposed.

To address these issues, we believe it is essential to offer flexible degrees of relaxed security

based on the user’s specific needs. This flexibility should still offer provable theoretical guarantees

at all security levels. With a solid theoretical foundation, users can feel comfortable using more

practical solutions that are not fully secure. To achieve this goal, the first requirement is to formally

define how to relax security levels with theoretical guarantees. Then, a practical system design

is needed to realize flexible privacy and ensure efficient query processing at all security levels. In

addition, it should not impose significant computational or storage burdens on users, meaning

offline computation and storage should be minimized.

4 Relaxed Security for Private Retrieval
Our objective is to develop a flexible and scalable framework that enables users to privately retrieve

the value associated with a querying key from a public key-value store. The primary security goal

is to hide the user’s lookup queries from the server, while the server’s key-value data points are

public. Our scenario resembles that of the keyword PIR [7, 13, 25, 57], with the key distinction

that it permits the flexibility of enforcing different levels of relaxed security based on specific

user requirements. In this section, we formalize our novel definition of relaxed security and the

corresponding threat model.

4.1 Problem Formulation
Let 𝐷𝐵 = {(𝑘0, 𝑣0), (𝑘1, 𝑣1), . . . , (𝑘𝑛−1, 𝑣𝑛−1)} denote the set of public key-value pairs held by the

server, where the key set 𝐾 = {𝑘0, 𝑘1, . . . , 𝑘𝑛−1} serves as the primary key of the database (no

duplication). 𝐷𝐵 is sorted by primary keys. Each key-value pair is stored in plaintext with a uniform

length to prevent attackers from inferring the queried key based on length variations. Let 𝑘target be

the querying key of the user, and 𝑣target be the corresponding value. We discuss our problem below

in terms of correctness and privacy.

4.1.1 Correctness. If 𝑘target ∈ 𝐾 , the server must return the corresponding 𝑣target; otherwise, it

returns null, allowing the client to readily verify that 𝑘target does not exist.

4.1.2 Privacy: Distance-based indistinguishability. Our privacy definition aims to protect query

privacy within a distance less than 𝑡 in the database 𝐷𝐵. Here, distance refers to the difference in

storage positions of two querying keys within the sorted key-value store, with 𝑡 representing the

maximum allowable distance specified by the client. Let 𝑞𝑖 and 𝑞 𝑗 represent queries corresponding

to keys 𝑘𝑖 and 𝑘 𝑗 , respectively (possibly chosen by the adversary), where |𝑖 − 𝑗 | ≤ 𝑡 . The user selects
one query to execute, while the adversary observes the resulting events, denoted by𝑂𝑖 and𝑂 𝑗 (e.g.,

the key-value pairs involved in the server-side computation), and attempts to distinguish which

query was executed.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:7

Inspired by LDP introduced in Section 2.2, we define a scheme as achieving distance-based

indistinguishability (denoted as 𝜖-dist indistinguishability) for a given maximum allowable distance

𝑡 (𝑡 > 0), if there exists a non-negative constant 𝜖 such that for any pair of queries 𝑞𝑖 and 𝑞 𝑗 where

|𝑖 − 𝑗 | ≤ 𝑡 (𝑖, 𝑗 ∈ [0, 𝑛)), and for all possible adversarial observations 𝑂 in the observation space Ω,
the following condition holds:

Pr[𝑂 | 𝑞𝑖] ≤ 𝑒𝜖 · Pr[𝑂 | 𝑞 𝑗] (3)

where Pr[𝑂 | 𝑞𝑖] represents the probability of the observation𝑂 given that 𝑞𝑖 has been issued. This

ensures that the adversary cannot distinguish between queries 𝑞𝑖 and 𝑞 𝑗 based on observed events,

thereby maintaining distance-based indistinguishability. The parameters 𝜖 and 𝑡 together determine

the security guarantees, where 𝜖 is the privacy parameter and 𝑡 is the maximum allowable distance

between two queries for the indistinguishability guarantee to hold. When 𝑡 is fixed, increasing

𝜖 weakens the indistinguishability, resulting in more relaxed security guarantees. Conversely,

when 𝜖 is fixed, a larger 𝑡 strengthens the security guarantees. In Femur, the ratio of these two

parameters determines the expected number of data points within the obfuscation range, as

discussed in Section 7.

To minimize user burden, we set the default value of 𝜖 to 2
−6
, since 𝑡 is generally more intuitive

for users to adjust. This empirical default value of 𝜖 , chosen as a power of 2, aligns with the highest

security levels in prior DP-related work [54]. Users can adjust 𝑡 to specify how many neighboring

queries should be included to make the real query indistinguishable among them, allowing for

a trade-off between privacy and performance based on individual needs. For example, suppose

𝐷𝐵 = {(𝑘0, 𝑣0), (𝑘1, 𝑣1), . . . , (𝑘99, 𝑣99)}, and the user queries 𝑘𝑖 = 𝑘20 and sets 𝑡 to 10. In this case, any

potential output corresponding to a query 𝑞 𝑗 for any key within the range [𝑘10, 𝑘30] and the query

𝑞20 for 𝑘20 satisfies Equation (3). This ensures that adversaries cannot determine which specific key

the user is querying within [𝑘10, 𝑘30], even when observing the access pattern.

Intuitively, we can obfuscate the real query by adding fake queries. Let 𝑆𝑖 represent the set of

queries that includes 𝑞𝑖 and extra fake queries generated by the client through a perturbation

mechanism that satisfies 𝜖-dist indistinguishability, where |𝑆𝑖 | is the number of queries. Then, the

probability of correctly guessing 𝑞𝑖 is
1

|𝑆𝑖 | . If |𝑆𝑖 | = 𝑛, full security and maximum uncertainty are

achieved. If |𝑆𝑖 | < 𝑛, it corresponds to relaxed quantity-based agnosticism, reducing the uncertainty.

Finally, if |𝑆𝑖 | = 1, no security is provided, as the adversary can directly infer the query.

4.2 Threat Model
The user locally owns a trusted client machine. It aims to query some data in the public key-value

store on an untrusted server. The stored data is in plaintext. A semi-honest adversary may control

the server and want to steal sensitive information about which item is returned. The adversary

can monitor incoming queries from users, observe server responses, and see any operations

performed by the server, including which data point is involved in the computations (i.e., the

data access patterns). It can measure the execution time, which depends on the number of queries

but is not affected by which specific keys are queried. It can also monitor, record, and analyze

data communication between the client and the server, even utilizing any prior knowledge and

observations, as well as the query history. However, the adversary cannot break cryptographic

schemes like AES. This ensures that the adversary cannot decrypt the encrypted data (i.e., the

querying key and the returned result). Besides, it will not tamper with any data or code executed

on the server.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:8 Jiaoyi Zhang et al.

ServerClientkey 𝒌, privacy param 𝒕

Predicted Range:
["𝑦 − 𝜀!"#", "𝑦 + 𝜀!"#"]

Obfuscated Range:
𝑙, 𝑟 ← [&𝑦 − 𝜀!"#" − 𝑡$, &𝑦 + 𝜀!"#" + 𝑡%]

Obfuscated Range
Generation

PGM-Index
Scheme Selection

(Cost Model)
(1) Plaintext Download
 Params: 𝑙, 𝑟

(2) Variable-Range PIR
 Params: 𝑙, 𝑟, 𝐸 "𝑦 − 𝜀!"#"

public key-value pairs…

𝑀! 𝑀" 𝑀# 𝑀$%" 𝑀$

𝑅𝑜𝑜𝑡

…

PGM-Index

Key-Value Retrieval
(1) Return:
(2) Return: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 [2𝑦

𝑘𝑣! 𝑘𝑣" … … 𝑘𝑣$ … … … … … 𝑘𝑣& … … …

𝑘𝑣$ … … … … … 𝑘𝑣&

… … …

Fig. 1. The Core Components of Femur Framework.

5 Design Overview
Femur allows users to flexibly control the privacy-preserving granularity of queries for efficiently

processing. Femur has two phases: offline initialization and online query phase. The initialization

phase is executed offline only once when there is no database update, allowing users to gather

essential information from the server. The online query phase includes the entire process from

client-side query generation to receiving results from the server. In this section, we outline the key

components and workflow of Femur.

5.1 Offline Initialization Phase
When a client arrives, it begins by exchanging one-time information with the server during the

initialization phase. Specifically, the server provides the client with essential details about the

database, including the number of key-value pairs, the bit length of each pair, and the available

retrieval schemes with their corresponding parameters. Besides, the server supplies an auxiliary

index to allow the client to locally convert querying keys into (approximate) server storage loca-

tions. Femur offers two optional retrieval schemes: plaintext download with no extra parameters,

and variable-range PIR, which requires three cryptographic parameters: 𝑁 , 𝑝 , and 𝑞 (as detailed

in Section 8.2). The client then constructs the public and private cryptographic keys needed to

encrypt/decrypt queries in the variable-range PIR scheme. Upon completing this step, the client

sends its cryptographic public key to the server. The server retains each client’s public key for

future interactions.

The auxiliary index structure provided by the server is the PGM-index, a space-efficient learned

index that does not store the actual key values but only the model parameters (e.g., slopes, intercepts,

and partitioning keys). This reduces the data transmitted to clients to tens of KB to a few MB,

greatly cutting initialization overhead.

If the key-value store is updated (usually periodically by the server; Section 3), the initializa-

tion phase needs to be re-executed. Particularly, the new auxiliary index structure needs to be

synchronized with the clients. Section 9 further discusses the details.

5.2 OnlineQuery Phase
The online phase includes the entire query lookup process. After determining the querying key 𝑘

and the desired privacy level 𝑡 , the client generates a secure query range utilizing three components

provided by Femur: key-to-position conversion, obfuscated range generation, and scheme selection.

The obfuscated range boundaries and the selected retrieval scheme are then sent to the server. The

server processes the query using the specified scheme and returns the corresponding key-value

pairs. Finally, the client retrieves the desired value by performing a simple verification. Below we

briefly describe the main building blocks of Femur, as shown in Figure 1.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:9

5.2.1 Key-to-Position Conversion. We employ the PGM-index, a learned index, to map the user’s

querying key to its possible locations within the dataset (Section 6). It guarantees that the key will

be found within these positions unless it does not exist in the database. The parameter 𝜀data in the

PGM-index determines the range of possible positions. For a given key 𝑘 , the PGM-index outputs a

predicted position 𝑦, and the possible locations are then bounded by [𝑦 − 𝜀data, 𝑦 + 𝜀data].

5.2.2 Obfuscated Range Generation. In this step, we efficiently convert the range [𝑦−𝜀data, 𝑦+𝜀data]
into an obfuscated range [𝑙, 𝑟] = [𝑦 − 𝜀data − 𝑡𝑙 , 𝑦 + 𝜀data + 𝑡𝑟]. Specifically, this obfuscated range is

generated using a noise generation mechanism that satisfies distance-based indistinguishability

(Section 7). It ensures that the server cannot infer the real key being queried, while eliminating the

need for all data points to be involved in the computation.

5.2.3 Scheme Selection. Once the obfuscated range is determined, our framework uses a cost model

to select the most efficient retrieval scheme for the current query between plaintext downloads

and variable-range PIRs (Section 8). The cost model is lightweight and can be executed efficiently

on the client side, leading to minimal overhead. For plaintext downloads, only the unencrypted

boundaries 𝑙 and 𝑟 are sent to the server. For variable-range PIRs, besides 𝑙 and 𝑟 , the left boundary

(𝑦 − 𝜀data) of the predicted range is encrypted and also sent to the server.

5.2.4 Server-Side Query Processing. Upon receiving the query request, the server processes the

query using the designated retrieval scheme (Section 8). For plaintext downloads, the server

sends the key-value pairs in the range [𝑙, 𝑟] directly back to the client in unencrypted form. For

variable-range PIR, the server performs homomorphic encryption computations and returns a

single ciphertext containing all key-value pairs in [𝑦 − 𝜀data, 𝑦 + 𝜀data]. We carefully control 𝜀data
and the plaintext encoding scheme to ensure that the queried pair is always returned. Note that

the server is unaware of the specific granularity of the querying key or the user’s privacy settings

throughout the retrieval and transmission process.

6 Key-to-Position Conversion
To facilitate privacy-preserving data retrieval on the server side, the querying key needs to be

converted into the corresponding position of the key-value pair in the dataset, as in traditional

keyword PIR schemes. Database index structures [15, 21, 33, 40, 53, 84, 89–92] are exactly designed

for such key-to-position conversion. In Femur, we propose to apply PGM-indexes to perform this

conversion on the client side, allowing direct processing of the querying key in plaintext. We will

discuss the advantages and disadvantages of storing index structures on the client side in Section 6.1,

along with the specific requirements for selecting a suitable index structure for our scenario. Then,

we introduce the details of our choice, the PGM-index, in Section 6.2.

6.1 Client-Side Indexes
In Femur, while the index structure used for key-to-position conversion resides on the client side, it

is created and maintained by the server, with the client only storing a static copy. This static copy

requires no maintenance on the client side and functions like pre-downloaded hints in other PIR

schemes [25, 31, 45]. Sharing this index of the public database poses no security concerns.

The benefits of this approach align with those of PIR schemes, as static index copies can be

downloaded during the initialization phase and serve as a local cache to accelerate query execution

during the online phase. Specifically, in Femur, the client-side index efficiently maps query keys to

predicted locations, which are then expanded using our obfuscated range generation method. This

narrows the range of key-value pairs involved in subsequent computations, significantly enhancing

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:10 Jiaoyi Zhang et al.

lookup 𝑘!"

𝑀#,%
(𝑘!", 𝑠𝑙, 𝑖𝑐)

𝑀#,#
(𝑘#$, 𝑠𝑙, 𝑖𝑐)

𝑀#,&
(𝑘", 𝑠𝑙, 𝑖𝑐)

𝑀#,'
(𝑘!%$, 𝑠𝑙, 𝑖𝑐)

𝑀#,(
(𝑘!&', 𝑠𝑙, 𝑖𝑐)

𝑀#,"
(𝑘%(, 𝑠𝑙, 𝑖𝑐)

𝑀#,!
(𝑘!'', 𝑠𝑙, 𝑖𝑐)

𝑀%,%
(𝑘#$, 𝑠𝑙, 𝑖𝑐)

𝑀%,#
(𝑘!%$, 𝑠𝑙, 𝑖𝑐)

𝑀%,&
(𝑘", 𝑠𝑙, 𝑖𝑐)

𝑀%,"
(𝑘!'', 𝑠𝑙, 𝑖𝑐)

𝑀&,&
(𝑘", 𝑠𝑙, 𝑖𝑐)

𝑘𝑣" … 𝑘𝑣!" … … 𝑘𝑣#$ … 𝑘𝑣%(𝑘𝑣𝟔𝟑 𝑘𝑣%+ 𝑘𝑣%$ 𝑘𝑣%% … 𝑘𝑣!"# … 𝑘𝑣!$% … 𝑘𝑣!%%

…

1

4 5

6

23

Linear Key Search
Model Prediction1 3 5

2 4 6

Fig. 2. An Example of the PGM-index.

query performance. In contrast, prior schemes speed up computations by pre-computing parts of

the lookup process but fail to reduce the overall data volume processed.

The main drawback of storing a static copy on the client side is the potential for index staleness

due to database updates. Similar to PIR solutions [66], Femur restricts to periodic batch updates

for keys (Section 9). Thus the overhead for the client to fetch the latest index from the server is

insignificant. Moreover, selecting a compact index could mitigate this issue by reducing the time

required to download updated versions, further improving efficiency.

Consequently, we have two requirements for the index structure. First, to map querying keys

to database locations, the index should provide item-level granularity rather than block-level

granularity. This allows each data point to be obfuscated at the finest granularity, thus reducing

the noise (i.e., the number of fake queries) needed for indistinguishability. Traditional structures

like B+trees [21], which organize data into pages or large leaf nodes, map querying keys to page

IDs. Even if key-value pairs are evenly distributed, noise must be introduced at the page level to

satisfy privacy requirements, forcing the obfuscated range to include entire pages and increasing

the volume of accessed data. Second, the size of the index must remain small to reduce the overhead

of the client when downloading the index during initialization and after database updates. Large

structures (e.g., hints in the offline phase of many PIR schemes [25, 31, 45, 60, 95]) can become

bottlenecks, especially in scenarios where multiple clients simultaneously access the server, leading

to bandwidth constraints.

We find that learned indexes can effectively fulfill these two requirements. First, learned indexes

directly map a querying key to a predicted position in the entire sorted array, providing item-level

prediction granularity. We will thoroughly discuss the theoretical differences between adding noise

to these two indexes in Section 7. Second, they consume significantly less memory compared to

B+trees, achieving compression rates for non-leaf nodes up to 2,000× smaller than the internal

nodes of a B+tree [58, 84, 92].

6.2 PGM-Indexes
We integrate a state-of-the-art space-efficient learned index, the PGM-index [40], into Femur to

facilitate key-to-position conversion with item-level granularity flexibility. As in Figure 2, the

PGM-index consists of multiple layers of simple linear regression models, where each model node

is defined by only two parameters: slope and intercept (i.e., 𝑦 = slope×𝑘 + intercept), as well as the
minimum key (partitioning key) of the sub-dataset it manages. The index has two hyperparameters:

𝜀model and 𝜀data, which determine the maximum allowable prediction errors for all non-leaf nodes

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:11

and all leaf nodes, respectively. For a predicted position 𝑦, the desired key-value pair is guaranteed

to reside in the range [𝑦 − 𝜀data, 𝑦 + 𝜀data], otherwise this pair is not in the key-value store.

We provide an example of the PGM-index with 𝜀model = 1 and 𝜀data = 2 in Figure 2. To look

up a given key 𝑘63, model 𝑀0,0 uses its slope and intercept to predict the next layer’s position:

𝑦 = 𝑠𝑙 · 𝑘63 + 𝑖𝑐 = 2. The next-layer models within the range [𝑦 − 𝜀model, 𝑦 + 𝜀model] = [𝑀1,1, 𝑀1,3]
are searched, locating𝑀1,1 (since 𝑘35 ≤ 𝑘63 ≤ 𝑘165). Then,𝑀1,1 predicts [𝑀2,1, 𝑀2,3] for layer 2 and
𝑀2,3 is identified similarly. Recursively,𝑀2,3 predicts position 64, narrowing the last-mile search

range to [𝑘𝑣62, 𝑘𝑣66] with ±𝜀data. Finally, 𝑘𝑣63 is successfully located using binary search.

For each fixed dataset, the PGM-index is constructed using a bottom-up hierarchical approach.

The bottom layer scans the ordered key-value pairs with a greedy algorithm of time complexity

𝑂 (𝑛). As described in [40], constructing the linear models reduces to constructing the convex hull of

a set of points. Starting at index 𝑖 = 0, the algorithm checks whether the current 𝑖-th key-value pair

can be added to the current latest 𝑗-th model without exceeding 𝜀data. If true, it moves to the next

key-value pair. Otherwise, a linear model (i.e., slope and intercept) is determined by the line that

splits the rectangle into two equal-sized halves. Then, a new model 𝑗 + 1 is initialized starting from

index 𝑖 . This ensures that each model manages key-value pairs constrained by a rectangle of height

2𝜀data. This process continues until all key-value pairs are scanned. Upper layers follow a similar

approach but operate on sub-datasets, where prediction errors are constrained by 𝜀model. For example,

when constructing layer 0, the algorithm processes the pairs {{𝑘0, 0}, {𝑘35, 1}, {𝑘165, 2}, {𝑘199, 3}}.
Construction continues until a single model remains at the top layer. More details are provided

in [40]. To maintain simplicity within Femur, we use the default values of the PGM-index (𝜀data = 64,

𝜀model = 4) across all datasets, avoiding parameter tuning complexity.

The PGM-index is compact, reducing communication overhead during initialization. During the

online phase, it can quickly convert a queried key to a predicted range containing the desired key’s

location. The size of this range is 2 × 𝜀data + 1, where all positions except the correct one act as
fake queries. However, the predicted range does not yet satisfy distance-based indistinguishability,

which will be addressed in the next section.

7 Obfuscated Range Generation
In this section, we describe how to generate obfuscated ranges that satisfy distance-based indistin-

guishability. Femur allows users to flexibly specify a relaxed security level for each query. It then

employs a noise-generation mechanism, which expands the predicted range [𝑦 − 𝜀data, 𝑦 + 𝜀data],
derived from the key-to-position conversion step, to a wider obfuscated range [𝑙, 𝑟]. To achieve both
high performance and sufficient security, the length of the obfuscated range is set to the minimum

value that still ensures distance-based indistinguishability depending on the user-specified security

level. Specifically, any two queries whose keys are within a specified distance 𝑡 are indistinguishable

to the adversary. Larger 𝑡 requires a wider obfuscated range. Then, 𝑙 and 𝑟 are sent to the server,

and only data points within this range need to be involved in the computation and communication.

We first employ the exponential mechanism, a widely used approach in differential privacy,

to generate noise. The exponential mechanism assigns probabilities to points in a given set D,
typically based on the distance between the point 𝑖 ∈ D and the real value 𝑥 :

𝑝𝑥,𝑖 = Pr[𝑜 = 𝑖] = 𝑒−|𝑥−𝑖 | ·𝜖dp/4𝑡∑
𝑗∈D 𝑒

−|𝑥− 𝑗 | ·𝜖dp/4𝑡 (4)

Points closer to the real value would have higher probabilities of being chosen, thereby maintaining

indistinguishability while reducing the impact on performance. A point is then randomly sampled

as the new boundary based on these probabilities. This process is carried out independently for

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:12 Jiaoyi Zhang et al.

the left and right boundaries, with [0, 𝑦 − 𝜀data] and [𝑦 + 𝜀data, 𝑛) as the given D, respectively, and
produces the obfuscated range [𝑙, 𝑟]. We then have the following theorem for the privacy guarantee.

Theorem 2. The exponential mechanism described above provides 𝜖dp-dist indistinguishability
privacy guarantee for any pair of values 𝑥, 𝑥 ′ ∈ D, where |𝑥 − 𝑥 ′ | ≤ 𝑡 , and, 𝑡, 𝜖dp > 0.

Proof. In our scenario, the observations𝑂 visible to the adversary consist of the boundaries (i.e.,

the outputs 𝑙 and 𝑟). We show that our algorithm provides a

𝜖dp

2
-dist indistinguishability privacy

guarantee for each boundary. Let 𝑜 be one of the two boundaries 𝑙 or 𝑟 , and D be the set of potential

new values that it is obfuscated to (i.e., [0, 𝑦 − 𝜀data] or [𝑦 + 𝜀data, 𝑛)).

Pr[𝑂 = 𝑜 |𝑥]
Pr[𝑂 = 𝑜 |𝑥 ′] = 𝑒

𝜖
dp

4𝑡
(|𝑥 ′−𝑜 |− |𝑥−𝑜 |) ·

∑
𝑗∈D 𝑒

−|𝑥 ′− 𝑗 | ·𝜖dp/4𝑡∑
𝑗∈D 𝑒

−|𝑥− 𝑗 | ·𝜖dp/4𝑡
(5)

By applying the triangle inequality |𝑥 ′ − 𝑜 | = |𝑥 ′ − 𝑥 + 𝑥 − 𝑜 | ≤ |𝑥 ′ − 𝑥 | + |𝑥 − 𝑜 |, we can get:

𝑒
𝜖
dp

4𝑡
(|𝑥 ′−𝑜 |− |𝑥−𝑜 |) ≤ 𝑒

𝜖
dp

4𝑡
|𝑥 ′−𝑥 | ≤ 𝑒

𝜖
dp
·𝑡

4𝑡 (6)

Similarly, −|𝑥 ′ − 𝑗 | ≤ |𝑥 ′ − 𝑥 | − |𝑥 − 𝑗 |, and we get:∑︁
𝑗∈D

𝑒−|𝑥
′− 𝑗 | ·𝜖dp/4𝑡 ≤

∑︁
𝑗∈D
(𝑒 |𝑥 ′−𝑥 | ·𝜖dp/4𝑡 · 𝑒−|𝑥− 𝑗 | ·𝜖dp/4𝑡)

≤ 𝑒 |𝑥 ′−𝑥 | ·𝜖dp/4𝑡 ·
∑︁
𝑗∈D

𝑒−|𝑥− 𝑗 | ·𝜖dp/4𝑡

≤ 𝑒
𝜖
dp
·𝑡

4𝑡 ·
∑︁
𝑗∈D

𝑒−|𝑥− 𝑗 | ·𝜖dp/4𝑡

(7)

Combining both terms, we have the overall bound:

Pr[𝑂 = 𝑜 |𝑥]
Pr[𝑂 = 𝑜 |𝑥 ′] ≤ 𝑒

𝜖
dp
·𝑡

4𝑡 · 𝑒
𝜖
dp
·𝑡

4𝑡 ≤ 𝑒
𝜖
dp

2 (8)

Since the exponential mechanism is used for both boundaries, the overall algorithm satisfies the

𝜖dp-dist indistinguishability. □

The ratio of the distance 𝑡 and the privacy parameter 𝜖dp controls the size of the obfuscated range.

For smaller
𝑡
𝜖dp

, the obfuscated range is probabilistically reduced, which provides more relaxed

privacy but saves the computational and communication costs.

It is worth noting that the exponential mechanism involves calculating probabilities for all

points in D and then sampling from them, which is costly. To address this issue, we simulate the

exponential mechanism by employing the widely used discrete Laplace mechanism [54], as defined

in Definition 3, with 𝜆 = 2𝑡/𝜖dp. The process for obfuscated range generation using the discrete

Laplace mechanism is outlined in Algorithm 1.

Definition 3 (Discrete Laplace Distribution). The discrete Laplace distribution with a scale
parameter 𝜆 is denoted as LapZ (𝜆), where Z represent the set of integers. If a random variable𝑋 follows
LapZ (𝜆), its probability distribution is defined as:

∀𝑥 ∈ Z, Pr[𝑋 = 𝑥] = 𝑒1/𝜆 − 1
𝑒1/𝜆 + 1

· 𝑒−|𝑥 |/𝜆 (9)

We then prove that adding noise according to a discrete Laplace distribution satisfies distance-

based indistinguishability.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:13

Algorithm 1 LapZ-based Obfuscated Range Generation

Input: 𝑦, 𝜀
data

, dataset size 𝑛, privacy parameter 𝜖
dp

> 0, 𝑡 > 0

Output: obfuscated range [𝑙, 𝑟]
1: functionModularLapZ(D, 𝜖dp, 𝑡)
2: 𝑥 ← 𝐿𝑎𝑝Z (2𝑡𝜖dp)
3: 𝑥 ← 𝑥% |D|
4: return D[𝑥]
5: end function
6: D𝑙 ← [𝑦 − 𝜀data, · · · , 1, 0, 𝑛 − 1, 𝑛 − 2, · · · , 𝑦 + 𝜀data]
7: D𝑟 ← [𝑦 + 𝜀data, · · · , 𝑛 − 2, 𝑛 − 1, 0, 1, · · · , 𝑦 − 𝜀data]
8: 𝑙 ← ModularLapZ (D𝑙 , 𝜖dp, 𝑡)
9: 𝑟 ← ModularLapZ (D𝑟 , 𝜖dp, 𝑡)
10: if 𝑙 ≤ 𝑦 − 𝜀

data
≤ 𝑦 + 𝜀

data
≤ 𝑟 then

11: return [𝑙, 𝑟]
12: else if 𝑟 < 𝑙 ≤ 𝑦 − 𝜀

data
or 𝑦 + 𝜀

data
≤ 𝑟 < 𝑙 then

13: return [𝑙, 𝑛 − 1] ∪ [0, 𝑟]
14: else
15: return [0, 𝑛 − 1]
16: end if

Theorem 3. LapZ-based Obfuscated Range Generation provides 𝜖dp-dist indistinguishability
privacy guarantee for any pair of values 𝑥1, 𝑥2, where |𝑥1 − 𝑥2 | ≤ 𝑡 , and 𝑡, 𝜖dp > 0.

Proof. This algorithm provides a

𝜖dp

2
-dist indistinguishability privacy guarantee for each bound-

ary (i.e., 𝑦 − 𝜀data, 𝑦 + 𝜀data). Let 𝑙1 and 𝑙2 be the left boundaries of 𝑥1 and 𝑥2. The probability ratio of

𝑙1 and 𝑙2 being randomized to the same output value 𝑜 is:

Pr[𝑙1 + 𝑁1]
Pr[𝑙2 + 𝑁2]

=
Pr[𝑁1 = 𝑜 − 𝑙1]
Pr[𝑁2 = 𝑜 − 𝑙2]

=
𝑒−|𝑜−𝑙1 |/𝜆

𝑒−|𝑜−𝑙2 |/𝜆
≤ 𝑒

𝜖
dp

2 (10)

where 𝑁1 and 𝑁2 follow LapZ (𝜆). Since this mechanism is used for both boundaries, the overall

algorithm satisfies the 𝜖dp-dist indistinguishability
1
: 𝜖overall = 𝜖𝑙 + 𝜖𝑟 = 𝜖dp/2 + 𝜖dp/2 = 𝜖dp. □

Theorem 3 guarantees that for any two queries, 𝑞𝑖 and 𝑞 𝑗 (|𝑖 − 𝑗 | ≤ 𝑡), the probability of

distinguishing between them is bounded by 𝑒𝜖dp . This covers two cases: when 𝑞𝑖 ≠ 𝑞 𝑗 and when

the same query is submitted repeatedly (i.e., 𝑞𝑖 = 𝑞 𝑗). In both cases, the adversary will be unable to

distinguish the queries.

Since the negative numbers sampled from LapZ (𝜆) are modulo positive, the expected amount of

noise added to one boundary is E[𝑋 | 𝑋 > 0] = 1

1−𝑒−1/𝜆 ≈ 2𝑡/𝜖dp. Accounting for both boundaries,

the expected length of the obfuscated range becomes 4𝑡/𝜖dp + 2𝜀data + 1, where the last two terms

specify the output range from the PGM-index. This length is capped at the total number of key-value

pairs, i.e., 𝑛. The total number of fake queries equals this length minus one.

Discussion. Below, we analyze why B+tree requires more noise compared to PGM-indexes. The

B+tree index only needs to transfer non-leaf nodes to the client, who uses it to obtain the ID of the

leaf node (i.e., page ID) containing the querying key, as well as the IDs of the key-value pairs at

the left and right boundaries of this page (𝑙B+tree and 𝑟B+tree). Note that noise must be added at the

1
Note that our proof now demonstrates that distance-based indistinguishability holds for two boundaries derived from

the predicted positions (�̂�). For practical use, the user should set 𝑡 ′ = 𝑡 − 2𝜀
data

as the final distance. Since

���̂�𝑖 − �̂� 𝑗

�� ≤
|𝑖 − 𝑗 | + 2𝜀

data
≤ 𝑡 + 2𝜀

data
, this guarantees that the proposed mechanism preserves distance-based indistinguishability

when applied to queries.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:14 Jiaoyi Zhang et al.

page-level granularity. Otherwise, the adversary may infer that the querying key is not located in

any incomplete page within the range (e.g., the first or last page), leaking information.

Assume𝑚 is the number of key-value pairs per page, and key-value pairs are evenly distributed

within each page. Thus page ID = item ID

𝑚
. The distance in the B+tree can be defined as 𝑡 ′ = ⌈ 𝑡

𝑚
⌉. The

boundaries 𝑙B+tree and 𝑟B+tree are then extended using the same noise mechanism (LapZ (𝜆′)), where
𝜆′ = 2𝑡 ′/𝜖dp. Consequently, the expected length of the obfuscated range becomes

4𝑚
𝜖dp
· ⌈ 𝑡

𝑚
⌉ +𝑚.

Compared to the PGM-index, the B+tree generally requires more noise. For example, the leaf

nodes of a B+tree typically occupy 4 KB, containing 256 key-value pairs of 16 bytes each. When

using default parameters (𝜀data = 64, 𝜖dp = 2
−6
) and a user-selected 𝑡 = 100, the expected obfuscation

range length for a B+tree is 65,792, while for a PGM-index, it is 25,729. When 𝑡 = 10, 000, the

expected lengths increase to 2,621,696 for a B+tree and 2,560,129 for a PGM-index, respectively,

indicating that the PGM-index requires less noise overall, especially for fine-grained security levels.

More empirical results are provided in Section 10.3.4.

8 Key-Value Retrieval
In this section, we describe our server-side adaptive key-value retrieval module, including two

schemes: plaintext download and variable-range PIR. Additionally, we present a lightweight cost

model to help make fast and efficient decisions between these two schemes based on query charac-

teristics and system configurations.

8.1 Plaintext Download
Plaintext download is a straightforward method for retrieving key-value pairs, where the server

directly sends the key-value pairs within the obfuscated range to the client, which performs the

searches locally. The client only needs to provide the boundaries 𝑙 and 𝑟 . This approach satisfies

the security requirements, as the server only sees the boundaries that have been obfuscated to

ensure distance-based indistinguishability, and remains unaware of the exact key the client intends

to retrieve.

The main advantage of plaintext download is server-side efficiency, as the server can imme-

diately transmit the specified key-value pairs over the network without additional computation.

However, this approach is bandwidth-intensive, which can lead to performance bottlenecks in

low-bandwidth or high-traffic environments. Besides, plaintext download can further reduce the

data to be transferred through compression techniques [5, 55, 70, 88]. Although we do not apply

compression in our experiments, it can be integrated as an optional optimization.

8.2 Variable-range PIR
To handle low-bandwidth scenarios, we propose a novel variable-range PIR scheme. This enhanced

scheme allows performing “tiny PIR” on a specific range of each querywithout re-preprocessing. Our

design significantly improves server-side computational efficiency when querying large datasets

with relaxed privacy levels.

8.2.1 Underlying Cryptography. We leverage the SEAL FHE library, which is based on the BFV

FHE cryptosystem, to perform “tiny PIR”. This method encodes several data points into a single

plaintext, enabling vectorized homomorphic operations. Furthermore, each retrieval returns the

key-value pairs packed within the same plaintext, facilitating simultaneous retrieval of multiple

key-value pairs. The number of key-value pairs (denoted as𝑀) that a single plaintext can hold is

determined by:𝑀 = 𝑁
⌈𝑘𝑣bits/log2 𝑝 ⌉

, where the polynomial degree 𝑁 and the plaintext modulus 𝑝 are

both internal parameters of the FHE scheme. The modulus 𝑞, which governs the noise capacity

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:15

𝐸 𝑠 :

𝑙!" =
5
2 = 2

𝑟!" =
11
2 = 5

0 0 0𝟏
2 3 54

𝑘𝑣# 𝑘𝑣$ 𝑘𝑣%& 𝑘𝑣%%
𝑘𝑣%& 𝑘𝑣%% 𝑘𝑣%' 𝑘𝑣%(
𝑘𝑣%' 𝑘𝑣%(/ /

𝑘𝑣& 𝑘𝑣% 𝑘𝑣' 𝑘𝑣(
𝑘𝑣' 𝑘𝑣(𝑘𝑣) 𝑘𝑣*
𝑘𝑣) 𝑘𝑣* 𝑘𝑣+ 𝑘𝑣,
𝑘𝑣+ 𝑘𝑣, 𝑘𝑣# 𝑘𝑣$

Plaintexts
in the server

4

5

6

0

1

2

3𝑬(𝒔) ⋅
𝑬 [𝒌𝒗𝟖, 𝒌𝒗𝟏𝟏]

𝑙, 𝑟 = 5,11
PGM: 𝟖, 10

Fig. 3. An Example of Data Encoding andQuery Processing in Variable-Range PIR.

and the overall security, can be derived from 𝑁 and 𝑝 . We use the recommended default values of

𝑁 = 4096 and log
2
𝑝 = 20. More details can be found in the original paper [13, 27, 38].

8.2.2 PGM-Oriented Misaligned Encoding. One specific challenge in our framework is that we

must return the key-value pairs in the range [𝑦 − 𝜀data, 𝑦 + 𝜀data] as predicted by the PGM-index,

rather than a single record as in classical PIR schemes. Without a careful design, the key-value

pairs in this range may cross two or multiple plaintexts, all of which need to be transmitted to

the client. For example, if𝑀 = 4 and we need to fetch [𝑘𝑣6, 𝑘𝑣9], two plaintexts corresponding to

[𝑘𝑣4, 𝑘𝑣7] and [𝑘𝑣8, 𝑘𝑣11] must be returned.

We introduce a PGM-oriented misaligned encoding scheme. As illustrated in Figure 3, only𝑀/2
key-value pairs are encoded into each plaintext, with the second half containing a duplicate of

the first𝑀/2 pairs from the next plaintext. This ensures that, as long as the PGM-index satisfies

2𝜀data + 1 < 𝑀
2
+ 2, all required key-value pairs can be retrieved in a single plaintext. This condition

is easily satisfied with typical configurations, e.g., usually 𝜀data = 64 and 𝑀 = 4096

⌈128/20⌉ = 585.

Furthermore, this misaligned encoding can be generalized to support longer predicted ranges

by increasing the overlap between adjacent plaintexts. With𝑚 key-value pairs overlapped, the

condition would become 2𝜀data + 1 < 𝑚 + 2.

8.2.3 Query Processing. Recall that [𝑦 − 𝜀data, 𝑦 + 𝜀data] is enlarged to [𝑙, 𝑟] to ensure distance-based
indistinguishability. While only the key-value pairs in the first (smaller) range are returned to

the user, all the pairs in the second (larger) range must be uniformly accessed and processed to

obscure sensitive access patterns. The size of this larger range can vary significantly with different

user-specified security requirements. This requires that the underlying PIR scheme should encode

plaintexts independently (e.g., SealPIR [13] and OnionPIR [64]) without pre-computation involving

the client. In this paper, we use SealPIR. But Femur can incorporate more advanced PIR interfaces

in the future.

Figure 3 illustrates the steps in processing a lookup query with our variable-range PIR based

on the misaligned encoding. Both the predicted and obfuscated ranges are first converted to the

plaintext IDs at the client side using the encoding information (e.g.,𝑀) obtained during initialization.

Here with𝑀 = 4, 𝑙 = 5, and 𝑟 = 11, the plaintext IDs are 𝑙pt = 2 and 𝑟pt = 5, involving four plaintexts

in the computation. The predicted range is encoded into a one-hot vector 𝑠 of length (𝑟pt − 𝑙pt + 1),
where 1 indicates the target plaintext and 0 represents the others. In this case, the third element

of 𝑠 is set to 1, corresponding to the 4th plaintext. The client sends 𝑙pt, 𝑟pt, and the homomorphic

encryption of 𝑠 , 𝐸 (𝑠), to the server. Note that the server performs homomorphic operations only

on the obfuscated range. Specifically, a homomorphic inner product is performed between 𝐸 (𝑠)
and the plaintexts in [𝑙pt, 𝑟pt], producing an encrypted output containing the retrieved key-value

pairs (i.e., [𝑘𝑣8, 𝑘𝑣11]), which is then returned to the client.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:16 Jiaoyi Zhang et al.

Our variable-range PIR enables relaxed lookup queries with flexible security requirements with-

out requiring re-encoding, improving utility and scalability. Additionally, misaligned encoding

ensures efficient retrieval of key-value pairs in a single PIR call, reducing communication over-

heads. However, compared to plaintext downloads, it increases server-side computation due to the

homomorphic encryption operations required for PIR requests.

8.3 Scheme Selection
We employ a cost model to efficiently choose between the two schemes. The model calculates the

latency for each scheme using the following formula, as latency is the primary concern for clients:

𝐶 =
Comm

bandwidth

+𝐶compute (11)

where Comm represents the total communication amount of the scheme, and 𝐶compute denotes the

server-side computation time. This cost model is broadly applicable to many retrieval schemes.

For plaintext downloads, the communication cost is 𝑤 × 𝑘𝑣bits, where 𝑤 is the length of the

obfuscated range, and the computation time is negligible. In contrast, for variable-range PIR, the

communication cost includes the encrypted one-hot vector and the ciphertext returned by the

server. Its computation time is𝑤 ×𝐶FHE, where𝐶FHE is the time needed to perform a homomorphic

computation operation on a single plaintext, which increases with the number of plaintexts involved.

Both bandwidth and 𝐶FHE can be pre-determined, facilitating quick decisions during the online

phase. By leveraging this cost model, we can efficiently combine different retrieval schemes, enabling

faster privacy-preserving retrieval for users.

9 Supporting Updates
As discussed in Section 3, in our scenarios, database updates are performed by the server, not by

the clients. This setting aligns with existing PIR schemes [25, 31, 45, 66], in which any modification

necessitates re-initializing the entire PIR scheme, including re-running the offline phase. In Femur,

we support two strategies to handle updates, i.e., real-time updates for values and periodic batch

updates for keys. We also leverage multi-version control to synchronize server updates with clients.

For value updates, the plaintext of the updated key-value pair is retrieved from the key-value

store, modified in real-time, and then stored back. Since the PGM-index is constructed based on

keys only, it remains unchanged during value updates. Throughout this process, client lookup

queries continue to operate as usual. If the obfuscated range of a lookup query overlaps with the

updated plaintext, read-write locks are employed to ensure consistency.

For key updates, we employ periodic batch updates via a copy-on-write model. In this approach,

the server initiates a new cloud instance or background thread to merge the existing key-value

store with new key-value pairs, performing necessary inserts, deletes, and re-encoding operations.

Only key-value pairs that need to be moved to maintain order are re-encoded. For example, if

an insertion occurs at position 7 in a dataset of 10 key-value pairs, the plaintexts of the first 6

pairs remain unchanged and do not require re-encoding. Once the merge is complete, the server

constructs a new PGM-index for the updated dataset. This process is done asynchronously (or

offline) and does not disturb services on older versions. After the update, the server broadcasts

the new PGM-index and version information to all connected clients, or clients can request it on

demand. If a client queries using the old version, the server returns results from that version while

notifying the client of the version inconsistency and providing the latest PGM-index. The client

can then either use the old version’s results or re-execute the query using the new index. In our

experiments, clients re-execute queries with the latest version. Once all clients have confirmed that

they have switched to the new version, the old key-value store is deleted.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:17

10 Evaluation
In this section, we conduct a comprehensive evaluation of Femur using experiments on multiple

datasets. Section 10.1 outlines the experimental setup, while Section 10.2 provides an in-depth

analysis of end-to-end performance. Section 10.3 presents the explorations of the impact of various

factors. Finally, Section 10.4 evaluates a realistic scenario involving Redis and update operations.

10.1 Experimental Setup
We conduct experiments on a machine with two Intel

®
Xeon

®
Platinum 8474C CPUs (2.10 GHz, 48

cores per socket) and 512 GB of RAM. All end-to-end evaluations in Section 10.2 are performed using

8 threads, and the remaining experiments use a single thread. We select the commonly used WAN

setting (50 Mbps bandwidth with 30 ms roundtrip latency) as the default configuration [48, 49, 63].

We provide two additional bandwidth setups in Section 10.3.2, 100 Mbps and 10 Mbps, all with a

roundtrip latency of 30 ms.

Datasets and Workloads.We use the real-world Open Street Map Coordinates (OSMC) dataset

from the SOSD benchmark [58]. It contains 200 million key-value pairs representing real geographic

positions. In contrast, existing PIRs [7, 25, 66] often use randomly generated datasets with at most

a few million data points and thus fail to fully capture the complexity of large-scale, real-world

applications. Both keys and values are 8-byte unsigned integers. This uniform length, consistent

with PIR schemes, prevents the server from inferring querying keys based on lengths. We use the

200M key-value pairs in Section 10.2. We randomly select 100 keys (similar to [25]) from the dataset

for client lookups during the online phase. We use a subset of the datasets in other experiments.

Metrics. Our evaluation includes four main metrics: offline/online communication volume and

offline/online execution time. Communication volume refers to the total amount of data transferred

between the server and the client at each phase, measured in megabytes (MB). The execution time

includes both the client/server computation time and the network data transmission time, providing

an end-to-end performance measure.

Femur and Baselines.We implement Femur and two keyword-PIR baselines, Chalamet [25]

and Pantheon [7], in Java. Since the original Rust implementation of Chalamet does not include

network communication, it cannot be evaluated directly under our client-server experiment setting.

To enable a fair end-to-end evaluation, we reimplemented Chalamet in Java
2
based on its open-

source implementation [2]. Both Chalamet and Pantheon are fully secure schemes, while Femur

can support different security granularities. As discussed in Section 4.1.2, we keep 𝜖dp = 2
−6
, and

specify three representative security levels as high (𝑡 = 1, 000, 000), medium (𝑡 = 10, 000), and

low (𝑡 = 100). We build the PGM-indexes using the complete datasets of the respective size (e.g.,

200 million key-value pairs in the end-to-end evaluation) with parameters set to default values

(𝜀model = 4, 𝜀data = 64). To support variable-range PIR in Femur, we employ Java Native Interface

(JNI) technology to call the Microsoft SEAL library (v4.1) [73] and use default settings for the BFV

scheme. Our source code is publicly available [3].

10.2 End-to-End Evaluation
We perform an end-to-end evaluation using the 200M-record OSMC dataset. In this experiment,

the client continuously issues 100 queries in a pipeline manner to the server. We compare the

total execution time (from the generation of the first query to the client receiving all responses) of

Femur against the baselines. Femur is evaluated at full security and eight different security levels

2
In our tests with a 2

20 × 256 byte dataset, we observe that network communication, along with serialization and deserial-

ization, account for more than 72% of the total execution time. Since the computational functionality of the Rust code is not

the bottleneck, rewriting it in Java has minimal impact on the overall performance.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:18 Jiaoyi Zhang et al.

10.7K

Full High Medium Low
0

0.3K
0.6K
0.9K
1.2K
1.5K

Security Level

To
ta

l T
im

e
(s

ec
) Pantheon

Chalamet
Femur

Fig. 4. Total Online Execution Time for 100Queries – Femur uses 8 relaxed security levels besides full security.

Pantheon and Chalamet encountered out-of-memory issues on 8 threads, so their results are ideally scaled

from single-thread time. Pantheon failed to complete on this large dataset after running 24 hours using a

single thread, so we mark its (lower-bound) time as 24/8 = 3 hours.

Table 1. Total Offline Time for 100 Queries (in seconds) – Femur only needs to be initialized once to support

all security-level queries, so different 𝑡 values produce similar offline latencies.

Pantheon Chalamet Femur
With Relaxed Security Level (Various 𝑡)

Full Security 1M 500K 100K 50K 10K 5K 1K 100

55.5 16214.3 697.5 697.2 703.2 697.3 698.2 694.6 702.1 696.2

with varying 𝑡 values of 1M (high), 0.5M, 0.1M, 50K, 10K (medium), 5K, 1K, and 100 (low), which

correspond to the average number of data points in Femur’s computations of 256M
3
, 128M, 25.6M,

12.8M, 2.56M, 1.28M, 256K, and 25.6K data points, respectively (plus an additional 129 data points

generated by the PGM-index for each case).

We present the online execution time for Femur and the two baselines in Figure 4, and their

offline execution time in Table 1. The results clearly show that relaxing the security significantly

enhances the online runtime, with speedups of 1.11×, 1.65×, 5.71×, 13.4×, 44.6×, 66.8×, 131.1×, and
163.9× over Chalamet, which provides full security. Even at the same full security level, Femur is

slightly faster than Chalamet (1.05×) and significantly outperforms Pantheon (over 7.71×). Femur

reduces the average execution time per query from 14 seconds under full security to 89.6 ms

at a relaxed security level that guarantees indistinguishability among 100 neighboring queries.

This demonstrates an effective trade-off between security and performance, enabling significant

speedups when users are willing to relax their privacy requirements.

Pantheon is extremely slow on large datasets, primarily due to its reliance on a slow homomorphic

equality check during the online phase to locate the querying key. In contrast, Femur employs

the PGM-index for rapid key location, at the slight cost of sending a small amount of data during

initialization. Even with the default value of 𝜀data = 64, which is relatively small, the size of the

PGM-index is only 5MB on the 200 million records. While Chalamet performs close to Femur

with full security level, it must transfer 858.5 MB of ciphertext results, which can significantly

delay query responses in bandwidth-constrained scenarios. Unlike Pantheon and Chalamet, whose

computation or transmission times grow with dataset size, Femur maintains a constant online

3
Note that this is a theoretical expectation. Since the OSMC dataset contains only 200M keys, any obfuscated range exceeding

200M will be capped at 200M.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:19

220 222 224 226

Dataset Size (#Key-Value Pairs)

102

103

104

105

106

On
lin

e
Ti

m
e

(m
s,

lo
g-

sc
al

e)

1X

1X

1X

1X

1.
1X 1.

4X 1.
5X 1.

3X

0.
4X 0.

3X 0.
3X 0.

3X

1.
1X 1.

9X

7.
2X

26
.2

X

0.
4X 0.

5X

1.
9X

7.
5X

4.
5X

16
.6

X

64
.2

X

23
3.

3X

5.
8X

21
.7

X

99
.9

X

36
2.

5X

Pantheon
Chalamet

FemurVarPIR (High)
FemurPlainDL (High)

FemurVarPIR (Medium)
FemurPlainDL (Medium)

FemurVarPIR (Low)
FemurPlainDL (Low)

Fig. 5. Online Execution Time for Each Query on Different Dataset Sizes – The number above each bar

represents the speedup over Chalamet. Pantheon timed out on datasets of size 2
24

and 2
26
. The shadowed

area represents the server-side computation time, including the time required to serialize the data to be sent.

transfer time, limited to two ciphertexts (for query and response), with computation time dependent

solely on the user-specified security level.

Chalamet suffers from a significantly slower offline phase, requiring 4.5 hours to pre-process 200

million key-value pairs as shown in Table 1. This makes Chalamet impractical in scenarios where

updates or inserts are needed, as even batch updates require re-processing all data points, leading

to substantial delays. In contrast, Femur completes the offline phase in 11.5 minutes, significantly

faster than Chalamet. Besides, our update strategies in Section 9 further reduce the re-initialization

time by minimizing the number of key-value pairs that need to be re-encoded. Note that to support

the flexibility of different privacy levels in Femur, we do not need to re-execute the initialization

phase. Pantheon’s offline initialization time is short because it only requires the user to upload the

two parameters for the underlying homomorphic encryption scheme. However, its online query

processing time is significantly longer.

10.3 Impact of Various Factors
Starting from this section, we focus on the performance breakdown of individual queries and the

impact of various factors on performance. Therefore, each query is run individually with a single

thread, and the online execution time reflects the performance of a single query. Unless otherwise

stated, other parameters remain the same as previously described.

10.3.1 Impact of Dataset Sizes. In this section, we evaluate the performance of each scheme across

various dataset sizes. Specifically, we conduct experiments on a subset of the OSMC dataset of

sizes 2
20
, 2

22
, 2

24
, and 2

26
. We also test smaller datasets, which are not included here due to space

limitations, and observed conclusions consistent with the results presented. We select three security

levels for Femur, corresponding to the expected length of obfuscated ranges of 256 million, 2.56

million, and 25600, to evaluate both Femur PlainDL and Femur VarPIR schemes. If the expected length

exceeds the total number of data points in the dataset, the current scheme is the same as full security

(i.e., high level for all, and medium level for 2
20
).

Figure 5 illustrates the online time for each method across various dataset sizes, which mainly

consists of the server-side computation time and the communication time to transmit data between

the two parties. The online latency of Chalamet increases linearly with dataset size, rising from 1.02

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:20 Jiaoyi Zhang et al.

Table 2. Online Communication perQuery (in MB) – including the query keys/parameters uploaded by the

client and the query results downloaded from the server.

Dataset
Size

Baselines on

Full Security

Femur on
High Security

Femur on
Medium Security

Femur on
Low Security

Pantheon Chalamet VarPIR PlainDL VarPIR PlainDL VarPIR PlainDL

2
20

3.5 4.5 0.43 16 0.43 16 0.43 0.39

2
22

3.5 18 0.43 64 0.43 39 0.43 0.39

2
24

3.5 72 0.43 256 0.43 39 0.43 0.39

2
26

3.5 288 0.43 1024 0.43 39 0.43 0.39

220 222 224 226

Dataset Size (#Key-Value Pairs)

103

104

105

106

107

Of
fli

ne
 T

im
e

(m
s,

lo
g-

sc
al

e)

15
.9

X

21
.4

X

10
9.

3X

44
3.

9X1X 1X

1X

1X

10
7.

8X

45
.5

X 57
.1

X 60
.1

X

10
39

.2
X

29
9.

0X

42
2.

3X 39
2.

6X

10
7.

8X

45
.5

X 57
.1

X 59
.5

X

10
39

.2
X

29
9.

0X

42
2.

3X 39
4.

0X

10
7.

8X

45
.8

X 58
.4

X 58
.8

X

10
39

.2
X

30
7.

8X 37
5.

0X 39
0.

2X

Pantheon
Chalamet

FemurVarPIR (High)
FemurPlainDL (High)

FemurVarPIR (Medium)
FemurPlainDL (Medium)

FemurVarPIR (Low)
FemurPlainDL (Low)

Fig. 6. Offline Time for Each Query on Different Dataset Sizes – The number above each bar is the speedup

ratio of each scheme compared to Chalamet.

seconds for 2
20
key-value pairs to 53.7 seconds for 2

26
key-value pairs. This linear growth is not only

due to the increased computation but also due to the linear increase in online communication, as

shown in Table 2. Pantheon shows a significant computation time despite constant communication

volumes (3.5 MB), with one query on 2
22
entries taking an impractical 2,261 seconds. In contrast,

Femur’s online response time remains independent of dataset size at fixed security granularity.

This is because the security requirements for the client typically do not escalate with the dataset

size. Compared to Chalamet, Femur achieves a maximum speedup of 362.5× by relaxing security

to ensure distance-based indistinguishability with 𝑡 = 100 and 𝜖dp = 2
−6
. Furthermore, the online

communication cost of Femur VarPIR is fixed at 0.43 MB (i.e., the size of a ciphertext), regardless of

dataset size or security granularity. Similarly, the online communication cost of Femur PlainDL does

not increase with dataset size for the same security levels, remaining at 0.39 MB for all low-security

experiments. Note that for higher security levels in Table 2, the expected length exceeds the size of

certain datasets, causing the online communication to degrade to the entire dataset size.

Among our two schemes, Femur PlainDL scheme is more sensitive to bandwidth. It does not involve

plaintext/ciphertext computations, so its query time is determined by the bandwidth and the byte

size of the data. In contrast, Femur VarPIR is compute-intensive. Owing to our encoding design, the

network transmission involves only uploading a query and downloading a result, whose time is

minimized and remains constant at 63 ms. Consequently, its overall runtime is almost dominated

by computation. In Femur, the cost model automatically selects the faster scheme between the two.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:21

100 Mbps 50 Mbps 10 Mbps
Bandwidth

10−1

100

101

102

103

On
lin

e
Ti

m
e

(s
ec

, l
og

-s
ca

le
)

30
.3 53

.7 25
0.

5

42
.6

42
.7

43
.110

7.
8

19
0.

1 88
4

2.
0

2.
0 2.
34.

1 7.
2

33
.8

0.
2 0.
23 0.

52

0.
12 0.
15 0.

41

FemurVarPIR (High)
FemurPlainDL (High)

FemurVarPIR (Medium)
FemurPlainDL (Medium)

FemurVarPIR (Low)
FemurPlainDL (Low)

Chalamet

Fig. 7. Online Execution Time per Query at Various Bandwidths – The number above each bar is the latency.

Particularly, Chalamet and Femur VarPIR (both High and Medium) on the dataset size with 2
20

provide comparable online end-to-end latency, with the same level of full security. However, in the

offline phase, our Femur VarPIR offers a 107.8× speedup compared to Chalamet, as shown in Figure 6,

by only encoding the records into FHE plaintexts and efficiently building and transmitting the

PGM-index. Since the shorter offline phase of Femur PlainDL only accomplishes tasks that are a

subset of Femur VarPIR (i.e., transmit PGM-index), Femur’s overall offline time is determined by

Femur VarPIR. Notably, our offline time remains constant across different security levels, as it depends

solely on the size of the public key-value store. Clients download the PGM-index once and can

then use Femur for queries with different security requirements, whereas Chalamet and Pantheon

rigidly support only fully secure queries.

10.3.2 Impact of Bandwidth. Figure 7 illustrates the online latency across different bandwidths for

the dataset of 2
26
key-value pairs. We evaluate three security levels of Femur: high, medium, and

low. The high level aligns with the full security level of the baselines, as the expected length of

the obfuscated range exceeds 2
26
. Bandwidth has less impact on Femur VarPIR compared to both

Femur PlainDL and Chalamet. Femur PlainDL is bandwidth-intensive and becomes faster with higher

bandwidth. Chalamet, which transfers 288 MB of data, is similarly limited by bandwidth. At 10

Mbps, it takes 250.5 seconds to respond to a query. In contrast, Femur VarPIR is able to transfer only

one ciphertext due to its misaligned encoding, and it is bound by the FHE computations rather

than data transfers.

In summary, Femur, leveraging our cost model, adapts to various network environments and

automatically selects the optimal solution between Femur VarPIR and Femur PlainDL. Femur achieves

response times ranging from 0.12 to 42.6 seconds, depending on the available bandwidth and the

specified security level.

10.3.3 Impact of Value Size. Figure 8 illustrates the changes in both online and offline execution

times for each scheme as the byte length of each value varies. The dataset consists of 2
20
key-value

pairs, with fixed 8-byte keys and the low security level for Femur.

The online execution time of Femur increases as the value length grows, but it continues to

show advantages. This increase is due to the larger total byte size, which leads to more encoded

plaintexts and also slows down the plaintext encoding process during the offline phase. When the

value length is 8 bytes, Femur uses the PlainDL scheme. As the values become larger, PlainDL’s

performance degrades rapidly with more transmitted data. Thus, Femur switches to the VarPIR

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:22 Jiaoyi Zhang et al.

8B 128B 256B 512B 1024B

100

101

102

103

104

To
ta

l T
im

e
(s

, l
og

-s
ca

le
)

Online Phase
Pantheon Chalamet Femur

8B 128B 256B 512B 1024B

Offline Phase
Pantheon Chalamet Femur

Fig. 8. Online/Offline Execution Time at Various Value Size (in bytes) – Both graphs share the same y-axis.

Table 3. Average Length of Obfuscated Ranges with Various Security Levels

Distance (𝑡) 10 100 1000 10000

B+tree 65541.46 65552.8 262088.2 2621408.6

PGM-index 2715.12 25740.2 256135.1 2559313.1

Ratio 24.1394× 2.5461× 1.0233× 1.0243×

scheme at 128-byte values. Chalamet’s online time increases slightly with the value length, but its

offline time grows significantly, from 201.7 seconds to 6.02 hours. This is due to the rapid growth

in computational cost caused by the larger key-value pair length, with most of the computation

shifted to the offline phase. In contrast, Pantheon’s bottleneck lies in the equality check between

the querying key and all keys. Since the key length remains constant, its online processing time

increases only slightly, from 609 seconds to 729 seconds.

10.3.4 Comparison of Client-Side Indexes. To demonstrate the benefits of using PGM-indexes,

we compare PGM-indexes and B+trees based on the length of the obfuscated ranges generated

and the index size. The obfuscated range length directly impacts the data volume downloaded

or processed on the server. The index size determines the amount of data required for clients to

download from the server during the offline phase, which is also crucial especially in scenarios

with update operations.

We first implement the noise generation algorithm described in Section 7 on the B+tree and

evaluate both indexes under various security levels. For each index, we process 10 million queries,

converting querying keys into obfuscated ranges and measuring the average length of the resulting

ranges. As shown in Table 3, when the security requirements are low, the obfuscated ranges

generated by the B+tree are 24.14× longer than those generated by the PGM-index. Even as the

security requirements increase, the PGM-index consistently reduces approximately 60,000 injected

noise. These results demonstrate that the PGM-index, which operates at item-level granularity, is

effective in minimizing injected noise while satisfying the same security requirements.

To evaluate the effects of data distribution and dataset size on index sizes, we construct both

indexes using three datasets from the SOSD benchmark [58], each containing 200 million key-

value pairs (two real-world datasets and one synthetic dataset following a normal distribution).

Besides, we test index sizes on OSMC datasets of varying sizes. For the B+tree, only internal nodes

are counted, and for the PGM-index, we measure sizes across different values of 𝜀data. As shown

in Table 4, the PGM-index is significantly smaller than the B+tree, even with small 𝜀data and on the

OSMC dataset that is less friendly to learned indexes. Based on these results, we set the default

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:23

Table 4. Index sizes of B+trees and PGM-indexes (in MiB) – The bolded numbers are the index sizes used in

our previous experiments, indicating the network required to transmit the index.

Size Dataset B+tree
PGM-index (With Various 𝜀data)

512 256 128 64 32

200 million

Wiki 11.93 0.11 0.17 0.29 0.58 1.31

OSMC 11.93 0.65 1.28 2.55 5.13 10.3

Normal 11.93 0.01 0.01 0.01 0.01 0.02

2
20

OSMC 0.13 0.01 0.01 0.02 0.03 0.07

2
22

OSMC 0.50 0.01 0.03 0.06 0.11 0.22

2
24

OSMC 2.00 0.06 0.12 0.24 0.47 0.93

2
26

OSMC 8.01 0.25 0.50 0.98 1.95 3.91

Low-Level Security Medium-Level Security High-Level Security

102

103

To
ta

l T
im

e
(s

, l
og

-s
ca

le
)

0%

0%

1%

0%

1%

3%w/o updates
w/ update values
w/ update keys

Fig. 9. Online Execution Time for 100Queries on Redis and with Updates – Each number above the bar is the

ratio of the additional time caused by updates to the time without updates.

value of 𝜀data to 64 to balance the index size and the length of the predicted range. Meanwhile,

𝜀model has a smaller impact on the index size, so we adopt the default value [40] of 4.

10.4 Evaluation on Redis
To evaluate the performance and usability of Femur in real-world scenarios, we implemented

Femur on Redis, a widely used key-value store, using Jedis (the Redis Java client) [4]. The server

also continuously updates its key-value pairs while serving private queries from clients. During

lookup and update operations, we use the Jedis interface to retrieve data within the specified range

and write updated plaintext back to Redis. To ensure uninterrupted client queries during updates,

we employ Multi-Version Concurrency Control (MVCC) to manage multiple Redis instances, as

detailed in Section 9. We conduct experiments by executing 100 lookup queries on this Redis-based

version of Femur under three scenarios: (1) no updates, (2) real-time updates for values with a

1-second interval between updates, and (3) periodic batch updates for keys with a 1-second delay

between completing one update and initiating the next. The dataset size is 2
24
, and queries are

performed at three security levels: low, medium, and high.

As shown in Figure 9, updates cause at most a 3% increase in total query time. This minor delay

arises because some queries require fetching the updated PGM-index after a version switch, ensuring

that all lookup results remain up-to-date. We also track the number of update operations performed

during the execution of 100 queries. In the high-security evaluation, the server completes 1,120

real-time value updates and 24 periodic batch updates for keys/databases. The real-time updates

take only 70 ms each, including reading plaintext from Redis, updating it, and writing it back to

Redis. A periodic batch update takes approximately 60 seconds, however, we use MVCC to further

reduce the impact of update operations by performing most tasks asynchronously in background

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

162:24 Jiaoyi Zhang et al.

threads. Compared to Chalamet, which requires 1.5 hours to reinitialize a database of the same size,

Femur significantly reduces update cycles, making it more practical for real-world scenarios.

11 Related Work
Relaxed Security in Query Processing. Several works [19, 34, 39, 41, 56, 71, 72, 80, 82, 93, 94]
have applied differential privacy (DP) to data management to provide relaxed security models

with theoretical guarantees for secure query processing, thus enhancing performance. Specifically,

Shrinkwrap [19] introduces DP-based noise to intermediate results, concealing the true size of

the intermediate data and improving overall performance by eliminating the need for worst-case

padding after each operator’s execution. Adore [71] and Doquet [72] address access pattern leakage

during relational operations and join queries using differentially oblivious operators and private

data structures. Longshot [94] tackles the challenges of indexing a growing database by combining

DP with secure multiparty computation (MPC). While prior work primarily targets scenarios

involving online analytical processing (OLAP) or encrypted data, Femur enables private queries on

public key-value stores, offering relaxed security with theoretical guarantees, ensuring that each

query is indistinguishable from its neighbors.

Privacy Enhancements in DBMS. In recent years, significant efforts have focused on enabling

clients to outsource private data while ensuring secure query processing [16, 17, 37, 68, 69, 74, 79].

These approaches typically involve encrypting data, storing it on a cloud server, and using tech-

niques such as order-preserving encryption [6], homomorphic encryption [67, 79, 83], searchable

encryption [24] and Trusted Execution Environments (TEE) [18, 20, 30, 75, 76, 81, 96] to achieve

this goal. In contrast, Femur is designed for public datasets, which focuses on query privacy. Many

works align with our goal [8, 10, 13, 59, 60, 62, 66, 95], mainly based on homomorphic encryption.

For example, Pantheon [7] and Constant-weight PIR [57] implement equality-checking operators

and invoke traditional PIR schemes for homomorphic operations. While our framework supports

similar homomorphic operations to return target key-value pairs, it also offers the flexibility to

utilize other schemes, such as direct downloads when bandwidth is sufficient. Moreover, existing

PIR schemes typically require all data to participate in computation or communication, resulting in

poor scalability and limited support for large datasets. However, our scheme allows for flexibility

in adjusting the range of data participation in computations without requiring re-encoding. This

works seamlessly with our definition of distance-based indistinguishability. By offering users the

ability to relax security and select different levels of security guarantees based on their needs,

Femur significantly accelerates query response, making Femur a more practical solution.

12 Conclusion
We present Femur, a framework that enables users to perform secure queries on public key-value

stores, while empowering users to tailor privacy protections to their specific requirements. By

employing the novel concept of distance-based indistinguishability and an adaptive retrieval

mechanism supporting both direct downloads and an enhanced PIR scheme, Femur achieves a fine

balance between privacy and performance. Our evaluations confirm that Femur efficiently supports

a wide range of security configurations while maintaining practical query response times, even on

large datasets.

Acknowledgments
This work was partially supported by the Shanghai Qi Zhi Institute Innovation Program (SQZ202406

& SQZ202314) and the National Social Science Foundation of China (Grant No. 22 & ZD147).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:25

References
[1] 2009. Redis. https://redis.io/

[2] 2024. Chalamet. https://github.com/claucece/chalamet.

[3] 2024. Femur. https://github.com/alibaba-edu/mpc4j.

[4] 2024. Jedis. https://github.com/redis/jedis.

[5] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compression and execution in column-oriented

database systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago,
Illinois, USA, June 27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis (Eds.). ACM, 671–682.

doi:10.1145/1142473.1142548

[6] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004. Order preserving encryption for numeric

data. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (Paris, France) (SIGMOD
’04). Association for Computing Machinery, New York, NY, USA, 563–574. doi:10.1145/1007568.1007632

[7] Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta. 2022. Pantheon: Private Retrieval from

Public Key-Value Store. Proc. VLDB Endow. 16, 4 (dec 2022), 643–656. doi:10.14778/3574245.3574251
[8] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta. 2021. Addra: Metadata-

private voice communication over fully untrusted infrastructure. In 15th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 21).

[9] Ahmet Aktay, Shailesh Bavadekar, Gwen Cossoul, John Davis, Damien Desfontaines, Alex Fabrikant, Evgeniy

Gabrilovich, Krishna Gadepalli, Bryant Gipson, Miguel Guevara, et al. 2020. Google COVID-19 community mo-

bility reports: anonymization process description (version 1.1). arXiv preprint arXiv:2004.04145 (2020).
[10] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth, and Kevin Yeo. 2021.

{Communication–Computation} trade-offs in {PIR}. In 30th USENIX security symposium (USENIX Security 21). 1811–
1828.

[11] Mário Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Anna Pazii. 2018. Invited Paper: Local Differen-

tial Privacy on Metric Spaces: Optimizing the Trade-Off with Utility. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF). 262–267. doi:10.1109/CSF.2018.00026

[12] Kareem Amin, Jennifer Gillenwater, Matthew Joseph, Alex Kulesza, and Sergei Vassilvitskii. 2022. Plume: differential

privacy at scale. arXiv preprint arXiv:2201.11603 (2022).
[13] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with compressed queries and amortized query

processing. In 2018 IEEE symposium on security and privacy (SP). IEEE, 962–979.
[14] Sebastian Angel and Srinath Setty. 2016. Unobservable communication over fully untrusted infrastructure. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 551–569.
[15] Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann, and Alfons Kemper. 2022. Adaptive Hybrid

Indexes. In SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1626–1639. doi:10.1145/3514221.3526121

[16] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish Gupta, Rajat Jain, Raghav Kaushik, Hanuma

Kodavalla, Donald Kossmann, Nikolas Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil Vaswani,

Ramarathnam Venkatesan, and Mike Zwilling. 2020. Azure SQL Database Always Encrypted. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 1511–1525. doi:10.1145/3318464.3386141

[17] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravishankar Ramamurthy, and Rama-

rathnam Venkatesan. 2013. Orthogonal Security with Cipherbase.. In CIDR.
[18] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda, and Kapil Vaswani. 2019. Speicher:

securing LSM-based key-value stores using shielded execution. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (Boston, MA, USA) (FAST’19). USENIX Association, USA, 173–190.

[19] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. 2018. Shrinkwrap: efficient SQL

query processing in differentially private data federations. Proc. VLDB Endow. 12, 3 (Nov. 2018), 307–320. doi:10.14778/
3291264.3291274

[20] Ilaria Battiston, Lotte Felius, Sam Ansmink, Laurens Kuiper, and Peter Boncz. 2024. DuckDB-SGX2: The Good, The

Bad and The Ugly within Confidential Analytical Query Processing. In Proceedings of the 20th International Workshop
on Data Management on New Hardware (Santiago, AA, Chile) (DaMoN ’24). Association for Computing Machinery,

New York, NY, USA, Article 14, 5 pages. doi:10.1145/3662010.3663447

[21] Rudolf Bayer. 1972. Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta informatica 1, 4
(dec 1972), 290–306. doi:10.1007/BF00289509

[22] Nikita Borisov, George Danezis, and Ian Goldberg. 2015. DP5: A private presence service. Proceedings on Privacy
Enhancing Technologies (2015).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

https://redis.io/
https://github.com/claucece/chalamet
https://github.com/alibaba-edu/mpc4j
https://github.com/redis/jedis
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1007568.1007632
https://doi.org/10.14778/3574245.3574251
https://doi.org/10.1109/CSF.2018.00026
https://doi.org/10.1145/3514221.3526121
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.14778/3291264.3291274
https://doi.org/10.14778/3291264.3291274
https://doi.org/10.1145/3662010.3663447
https://doi.org/10.1007/BF00289509

162:26 Jiaoyi Zhang et al.

[23] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) fully homomorphic encryption without

bootstrapping. ACM Transactions on Computation Theory (TOCT) 6, 3 (2014), 1–36.
[24] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and Michael

Steiner. 2014. Dynamic searchable encryption in very-large databases: Data structures and implementation. Cryptology
ePrint Archive (2014).

[25] Sofía Celi and Alex Davidson. 2024. Call Me By My Name: Simple, Practical Private Information Retrieval for Keyword

Queries. Cryptology ePrint Archive (2024).
[26] Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and Catuscia Palamidessi. 2013. Broadening

the Scope of Differential Privacy Using Metrics. In Privacy Enhancing Technologies, Emiliano De Cristofaro and Matthew

Wright (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 82–102.

[27] Hao Chen, Kim Laine, and Rachel Player. 2017. Simple encrypted arithmetic library-SEAL v2. 1. In Financial Cryptog-
raphy and Data Security: FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta,
April 7, 2017, Revised Selected Papers 21. Springer, 3–18.

[28] Benny Chor, Niv Gilboa, and Moni Naor. 1997. Private information retrieval by keywords. (1997).

[29] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private information retrieval with sublinear online time. In Advances
in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer, 44–75.

[30] Victor Costan. 2016. Intel SGX explained. IACR Cryptol, EPrint Arch (2016).

[31] Alex Davidson, Gonçalo Pestana, and Sofía Celi. 2023. Frodopir: Simple, scalable, single-server private information

retrieval. Proceedings on Privacy Enhancing Technologies (2023).
[32] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. 2018. PIR-PSI: scaling private contact discovery. Proceedings

on Privacy Enhancing Technologies (2018).
[33] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli,

Johannes Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA)
(SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 969–984. doi:10.1145/3318464.3389711

[34] Wei Dong, Dajun Sun, and Ke Yi. 2023. Better than Composition: How to Answer Multiple Relational Queries under

Differential Privacy. Proc. ACM Manag. Data 1, 2, Article 123 (June 2023), 26 pages. doi:10.1145/3589268
[35] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy. Foundations and Trends®

in Theoretical Computer Science 9, 3–4 (2014), 211–407.
[36] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Randomized Aggregatable Privacy-Preserving

Ordinal Response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New York, NY, USA, 1054–1067. doi:10.

1145/2660267.2660348

[37] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: oblivious query processing for secure databases. Proc. VLDB
Endow. 13, 2 (Oct. 2019), 169–183. doi:10.14778/3364324.3364331

[38] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive (2012).

[39] Juanru Fang and Ke Yi. 2024. Privacy Amplification by Sampling under User-level Differential Privacy. Proc. ACM
Manag. Data 2, 1, Article 34 (March 2024), 26 pages. doi:10.1145/3639289

[40] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-Dynamic Compressed Learned Index with

Provable Worst-Case Bounds. Proceedings of the VLDB Endowment 13, 8 (apr 2020), 1162–1175. doi:10.14778/3389133.
3389135

[41] Congcong Fu, Hui Li, Jian Lou, Huizhen Li, and Jiangtao Cui. 2023. DP-starJ: A Differential Private Scheme towards

Analytical Star-Join Queries. Proc. ACM Manag. Data 1, 4, Article 238 (Dec. 2023), 24 pages. doi:10.1145/3626725
[42] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM

symposium on Theory of computing. 169–178.
[43] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Christian Weinert. 2021. PrivateDrop:

Practical Privacy-Preserving Authentication for Apple AirDrop. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 3577–3594. https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich

[44] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nickolai Zeldovich. 2023. Private Web Search

with Tiptoe. In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP ’23).
Association for Computing Machinery, New York, NY, USA, 396–416. doi:10.1145/3600006.3613134

[45] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikuntanathan. 2023.

One Server for the Price of Two: Simple and Fast Single-Server Private Information Retrieval. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3889–3905. https://www.usenix.org/conference/

usenixsecurity23/presentation/henzinger

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3589268
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1145/3639289
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/3626725
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://doi.org/10.1145/3600006.3613134
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:27

[46] Noah Johnson, Joseph P. Near, Joseph M. Hellerstein, and Dawn Song. 2020. Chorus: a Programming Framework

for Building Scalable Differential Privacy Mechanisms. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). 535–551. doi:10.1109/EuroSP48549.2020.00041

[47] Noah Johnson, Joseph P. Near, and Dawn Song. 2018. Towards practical differential privacy for SQL queries. Proc.
VLDB Endow. 11, 5 (jan 2018), 526–539. doi:10.1145/3187009.3177733

[48] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster Malicious Arithmetic Secure Computation

with Oblivious Transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA, 830–842. doi:10.1145/2976749.

2978357

[49] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ great again. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer, 158–189.

[50] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private blocklist lookups with checklist. In 30th USENIX security
symposium (USENIX Security 21). 875–892.

[51] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In

Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 489–504. doi:10.1145/3183713.3196909

[52] Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2015. Riffle: An efficient communication system

with strong anonymity. (2015).

[53] Hai Lan, Zhifeng Bao, J. Shane Culpepper, and Renata Borovica-Gajic. 2023. Updatable Learned Indexes Meet Disk-

Resident DBMS - From Evaluations to Design Choices. Proceedings of the ACM on Management of Data 1, 2, Article 139
(jun 2023), 22 pages. doi:10.1145/3589284

[54] Xiaochen Li, Yuke Hu, Weiran Liu, Hanwen Feng, Li Peng, Yuan Hong, Kui Ren, and Zhan Qin. 2022. OpBoost: a

vertical federated tree boosting framework based on order-preserving desensitization. Proc. VLDB Endow. 16, 2 (Oct.
2022), 202–215. doi:10.14778/3565816.3565823

[55] Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2024. LeCo: Lightweight Compression via Learning Serial Correlations.

Proc. ACM Manag. Data 2, 1 (2024), 65:1–65:28. doi:10.1145/3639320
[56] Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, and Feifei Li. 2023. Secure Sampling for Approximate Multi-party Query

Processing. Proceedings of the ACM on Management of Data 1, 3 (2023), 219:1–219:27.
[57] Rasoul Akhavan Mahdavi and Florian Kerschbaum. 2022. Constant-weight PIR: Single-round Keyword PIR via

Constant-weight Equality Operators. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,

Boston, MA, 1723–1740. https://www.usenix.org/conference/usenixsecurity22/presentation/mahdavi

[58] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper, Thomas Neumann,

and Tim Kraska. 2020. Benchmarking Learned Indexes. Proceedings of the VLDB Endowment 14, 1 (sep 2020), 1–13.

doi:10.14778/3421424.3421425

[59] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. 2016. XPIR: Private information

retrieval for everyone. Proceedings on Privacy Enhancing Technologies (2016), 155–174.
[60] Samir Jordan Menon and David J Wu. 2022. Spiral: Fast, high-rate single-server PIR via FHE composition. In 2022 IEEE

Symposium on Security and Privacy (SP). IEEE, 930–947.
[61] Solomon Messing, Christina DeGregorio, Bennett Hillenbrand, Gary King, Saurav Mahanti, Zagreb Mukerjee, Chaya

Nayak, Nate Persily, Bogdan State, and Arjun Wilkins. 2020. Facebook Privacy-Protected Full URLs Data Set. Version
DRAFT VERSION (2020).

[62] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. 2011. {PIR-Tor}: Scalable
anonymous communication using private information retrieval. In 20th USENIX security symposium (USENIX security
11).

[63] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework for Machine Learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 35–52. doi:10.1145/3243734.3243760

[64] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response efficient single-server PIR. In

Proceedings of the 2021 ACM SIGSAC conference on computer and communications security. 2292–2306.
[65] Muhammad Haris Mughees and Ling Ren. 2023. Vectorized batch private information retrieval. In 2023 IEEE Symposium

on Security and Privacy (SP). IEEE, 437–452.
[66] Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Don’t be dense: efficient keyword PIR for sparse databases. In

Proceedings of the 32nd USENIX Conference on Security Symposium (Anaheim, CA, USA) (SEC ’23). USENIX Association,

USA, Article 216, 18 pages.

[67] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: an encrypted database using semantically secure

encryption. Proc. VLDB Endow. 12, 11 (July 2019), 1664–1678. doi:10.14778/3342263.3342641

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

https://doi.org/10.1109/EuroSP48549.2020.00041
https://doi.org/10.1145/3187009.3177733
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3589284
https://doi.org/10.14778/3565816.3565823
https://doi.org/10.1145/3639320
https://www.usenix.org/conference/usenixsecurity22/presentation/mahdavi
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.14778/3342263.3342641

162:28 Jiaoyi Zhang et al.

[68] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protecting

confidentiality with encrypted query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Machinery, New York, NY, USA, 85–100.

doi:10.1145/2043556.2043566

[69] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure Database Using SGX. In 2018 IEEE
Symposium on Security and Privacy (SP). 264–278. doi:10.1109/SP.2018.00025

[70] Yiming Qiao, Yihan Gao, and Huanchen Zhang. 2024. Blitzcrank: Fast Semantic Compression for In-memory Online

Transaction Processing. Proc. VLDB Endow. 17, 10 (2024), 2528–2540. doi:10.14778/3675034.3675044
[71] Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. 2022. Adore: Differentially

Oblivious Relational Database Operators. Proc. VLDB Endow. 16, 4 (Dec. 2022), 842–855. doi:10.14778/3574245.3574267
[72] Lina Qiu, Georgios Kellaris, Nikos Mamoulis, Kobbi Nissim, and George Kollios. 2023. Doquet: Differentially Oblivious

Range and Join Queries with Private Data Structures. Proc. VLDB Endow. 16, 13 (Sept. 2023), 4160–4173. doi:10.14778/
3625054.3625055

[73] SEAL 2022. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA..

[74] Mo Sha, Yifan Cai, Sheng Wang, Linh Thi Xuan Phan, Feifei Li, and Kian-Lee Tan. 2024. Object-oriented Unified

Encrypted Memory Management for Heterogeneous Memory Architectures. Proceedings of the ACM on Management
of Data 2, 3 (2024), 155.

[75] Mo Sha, Jialin Li, Sheng Wang, Feifei Li, and Kian-Lee Tan. 2023. TEE-based General-purpose Computational Backend

for Secure Delegated Data Processing. Proceedings of the ACM on Management of Data 1, 4 (2023), 263:1–263:28.
[76] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building enclave-native storage engines for practical

encrypted databases. Proc. VLDB Endow. 14, 6 (Feb. 2021), 1019–1032. doi:10.14778/3447689.3447705
[77] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and Xiaofeng Wang. 2017. Privacy loss in apple’s

implementation of differential privacy on macos 10.12. arXiv preprint arXiv:1709.02753 (2017).
[78] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Borbala Benko,

Tadek Pietraszek, Sarvar Patel, Dan Boneh, et al. 2019. Protecting accounts from credential stuffing with password

breach alerting. In 28th USENIX Security Symposium (USENIX Security 19). 1556–1571.
[79] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013. Processing analytical queries over

encrypted data. Proc. VLDB Endow. 6, 5 (March 2013), 289–300. doi:10.14778/2535573.2488336

[80] Leixia Wang, Qingqing Ye, Haibo Hu, and Xiaofeng Meng. 2024. PriPL-Tree: Accurate Range Query for Arbitrary

Distribution under Local Differential Privacy. Proc. VLDB Endow. 17, 11 (Aug. 2024), 3031–3044. doi:10.14778/3681954.
3681981

[81] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan Zhang, Yubing Ma, Lie Yan, Yuanyuan

Sun, Xuntao Cheng, Xiaolong Xie, and Yu Zou. 2022. Operon: an encrypted database for ownership-preserving data

management. Proc. VLDB Endow. 15, 12 (Aug. 2022), 3332–3345. doi:10.14778/3554821.3554826
[82] Yilei Wang, Xiangdong Zeng, Sheng Wang, and Feifei Li. 2025. Jodes: Efficient Oblivious Join in the Distributed Setting.

In Proceedings of the 51st International Conference on Very Large Data Bases (VLDB 2025). London, United Kingdom.

[83] Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, and Siu Ming Yiu. 2014. Secure query processing with

data interoperability in a cloud database environment. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,

USA, 1395–1406. doi:10.1145/2588555.2588572

[84] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and Tianzheng Wang. 2022. Are Updatable

Learned Indexes Ready? Proceedings of the VLDB Endowment 15, 11 (jul 2022), 3004–3017. doi:10.14778/3551793.3551848
[85] David J Wu, Joe Zimmerman, Jérémy Planul, and John C Mitchell. 2016. Privacy-preserving shortest path computation.

arXiv preprint arXiv:1601.02281 (2016).
[86] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. 2021. Updatable Learned Index with

Precise Positions. Proceedings of the VLDB Endowment 14, 8 (apr 2021), 1276–1288. doi:10.14778/3457390.3457393
[87] Kevin Yeo. 2023. Lower bounds for (batch) PIR with private preprocessing. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 518–550.
[88] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and Huanchen Zhang. 2023. An Empirical

Evaluation of Columnar Storage Formats. Proc. VLDB Endow. 17, 2 (2023), 148–161. doi:10.14778/3626292.3626298
[89] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, and Rui Shen. 2016. Reducing the

Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma

Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 1567–1581. doi:10.1145/2882903.2915222

[90] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2020.

Order-Preserving Key Compression for In-Memory Search Trees. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/3675034.3675044
https://doi.org/10.14778/3574245.3574267
https://doi.org/10.14778/3625054.3625055
https://doi.org/10.14778/3625054.3625055
https://github.com/Microsoft/SEAL
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.14778/3681954.3681981
https://doi.org/10.14778/3681954.3681981
https://doi.org/10.14778/3554821.3554826
https://doi.org/10.1145/2588555.2588572
https://doi.org/10.14778/3551793.3551848
https://doi.org/10.14778/3457390.3457393
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.1145/2882903.2915222

Femur: A Flexible Framework for Fast and SecureQuerying from Public Key-Value Store 162:29

Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1601–1615.

doi:10.1145/3318464.3380583

[91] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a Cost-Based Construction Algorithm.

Proceedings of the VLDB Endowment 15, 11 (jul 2022), 2679–2691. doi:10.14778/3551793.3551823
[92] Jiaoyi Zhang, Kai Su, and Huanchen Zhang. 2024. Making In-Memory Learned Indexes Efficient on Disk. Proc. ACM

Manag. Data 2, 3, Article 151 (may 2024), 26 pages. doi:10.1145/3654954

[93] Shufan Zhang and Xi He. 2023. DProvDB: Differentially Private Query Processing with Multi-Analyst Provenance.

Proc. ACM Manag. Data 1, 4, Article 267 (Dec. 2023), 27 pages. doi:10.1145/3626761
[94] Yanping Zhang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala. 2023. Longshot: Indexing Growing Databases

Using MPC and Differential Privacy. Proc. VLDB Endow. 16, 8 (April 2023), 2005–2018. doi:10.14778/3594512.3594529
[95] Mingxun Zhou, Andrew Park, Wenting Zheng, and Elaine Shi. 2024. Piano: extremely simple, single-server PIR with

sublinear server computation. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE, 4296–4314.
[96] Yu Zou, Yiran Li, Sheng Wang, Le Su, Zhen Gu, Yanheng Lu, Yijin Guan, Dimin Niu, Mingyu Gao, Yuan Xie, and

Feifei Li. 2024. Salus: A Practical Trusted Execution Environment for CPU-FPGA Heterogeneous Cloud Platforms.

In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2024). San Diego, USA.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 162. Publication date: June 2025.

https://doi.org/10.1145/3318464.3380583
https://doi.org/10.14778/3551793.3551823
https://doi.org/10.1145/3654954
https://doi.org/10.1145/3626761
https://doi.org/10.14778/3594512.3594529

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Private Retrieval From Public Data
	2.2 Differential Privacy
	2.3 Learned Indexes

	3 Motivation
	4 Relaxed Security for Private Retrieval
	4.1 Problem Formulation
	4.2 Threat Model

	5 Design Overview
	5.1 Offline Initialization Phase
	5.2 Online Query Phase

	6 Key-to-Position Conversion
	6.1 Client-Side Indexes
	6.2 PGM-Indexes

	7 Obfuscated Range Generation
	8 Key-Value Retrieval
	8.1 Plaintext Download
	8.2 Variable-range PIR
	8.3 Scheme Selection

	9 Supporting Updates
	10 Evaluation
	10.1 Experimental Setup
	10.2 End-to-End Evaluation
	10.3 Impact of Various Factors
	10.4 Evaluation on Redis

	11 Related Work
	12 Conclusion
	Acknowledgments
	References

