
2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

CROPHE: Cross-Operator Dataflow Optimization
for Fully Homomorphic Encryption Accelerators

Xinhua Chen†§∗ Jiangbin Dong¶∗ Hongren Zheng‡ Tian Tang‡ Mingyu Gao‡†

Shanghai Qi Zhi Institute† Tsinghua University‡ Fudan University§ Xi’an Jiaotong University¶

xhchen21@m.fudan.edu.cn bill412@stu.xjtu.edu.cn zhenghr22@mails.tsinghua.edu.cn
tang-t21@mails.tsinghua.edu.cn gaomy@tsinghua.edu.cn

Abstract—Fully homomorphic encryption (FHE) enables the
protection of data privacy at the cost of significantly higher com-
putational demands. To alleviate its memory-bound bottlenecks,
dataflow optimizations that maximize on-chip data reuse and
minimize off-chip accesses could be leveraged. In this work, we
exploit the opportunities of cross-operator dataflow optimizations
in FHE accelerators, and propose a hardware-software co-design
called CROPHE. On the hardware level, instead of overly-
specialized functional units, CROPHE provisions a homogeneous
and unified architecture that allows for flexible resource alloca-
tion and operator mapping. On the software level, the scheduling
framework of CROPHE takes a comprehensive and systematic
approach to explore various spatial and temporal data pipelining
and sharing schemes across multiple operators, resulting in more
efficient dataflow than prior work. We also propose novel cross-
operator dataflow optimizations for the unique operators in FHE
including number theoretic transforms and homomorphic rota-
tions. The evaluation shows CROPHE significantly outperforms
state-of-the-art designs by 1.77× to 4.86×.

Index Terms—homomorphic encryption, domain-specific accel-
erator, dataflow

I. INTRODUCTION

With the rapid development of advanced machine learning
algorithms (e.g., large language models) and their deployment
on public cloud platforms, data privacy becomes a primary
concern when users send their private data and queries to cloud
servers. Privacy-preserving computing [17], [22], [38], [48]
emerges as a new paradigm, which leverages modern cryp-
tographic protocols to protect data during processing. Fully
homomorphic encryption (FHE) is one powerful category of
this kind [8], [9], [16], [20]. It can perform computations on
encrypted ciphertext data, and the decrypted results would
match those of the corresponding plaintext computations.

Despite the fascinating privacy-preserving capability, the
Achilles’ Heel of FHE is the excessive computational cost,
in terms of both the much more complicated ciphertext oper-
ations and the largely expanded ciphertext data volumes com-
pared to plaintext processing. Consequently, many domain-
specific hardware accelerators for FHE have appeared [2],
[3], [33]–[35], [49]–[51], [59]. They usually provision a large
number of specialized functional units for each FHE opera-
tion, with abundant on-chip data buffers to avoid excessively
accessing the slow and expensive off-chip memory.

Nevertheless, a critical issue of FHE algorithms, such as
the widely used CKKS protocol [16], is their memory-bound
∗Both authors contributed equally to this research.

nature [2]. Instead of relying on huge on-chip buffers and
expensive high-bandwidth off-chip memories, a more cost-
efficient approach is to optimize the dataflow scheduling of
FHE accelerators, in order to maximize their on-chip data
reuse and minimize the off-chip data accesses. Dataflow op-
timizations have been extensively studied and demonstrated
successful for deep neural network accelerators [10], [12],
[21], [37], [42], [55], [58]. In FHE algorithms, we find that
rather than intra-operator dataflow that mainly relies on loop
tiling and reordering within an operator, efficiently reusing
data across different operators is more critical, because there
are only few (e.g., two or three) loop dimensions in each opera-
tor, but the dependencies between operators are complex. Such
cross-operator dataflow techniques could include forwarding
the intermediate ciphertext data between adjacent operators
without spilling to off-chip, and sharing the commonly needed
auxiliary constant data among multiple co-running operators
of the same type.

While some prior designs [2], [35] have preliminarily started
to borrow the idea of cross-operator dataflow scheduling
from deep neural networks to FHE, their strategies still face
several inefficiencies. On one hard, their optimizations lack a
systematic perspective. They are limited to simple cases (e.g.,
a few manually-designed operator fusion schemes), and only
handle the intermediate ciphertext data but leave the other
auxiliary data uncovered. Moreover, they also lack effective
support for the unique operators in FHE, such as number
theoretic transforms (NTTs) and automorphisms. On the other
hand, existing designs all use several types of functional units
that are overly specialized to individual FHE operators, with
a fixed ratio of each type on the chip. This rigid architecture
cannot efficiently support cross-operator dataflow schemes that
require co-running various operators together on-chip. When
the scheduled FHE operators mismatch with the fixed ratio
of the accelerator’s functional units, some hardware resources
would be left underutilized with degraded performance.

In this work, we propose CROPHE, a hardware-software
co-design approach to exploit cross-operator data reuse with
optimized dataflow scheduling on FHE accelerators. On the
hardware level, CROPHE provisions a set of homogeneous
and unified processing elements (PEs), each of which can
be used to execute any type of FHE operator, without over-
specialization. Such flexibility of resource allocation and op-
erator mapping allows us to schedule arbitrary kinds and

amounts of operators to co-run on the chip while still maintain-
ing high utilization. This is necessary when supporting cross-
operator dataflow which involves many operators.

On the software level, CROPHE presents a comprehensive
hierarchical cross-operator dataflow design space. For the
intermediate ciphertext data between adjacent operators, we
support pipelining them from the producer to the consumer;
for the auxiliary constant data such as homomorphic evaluation
keys, we allow sharing them on-chip if they are needed
by multiple operators that are currently co-running. Such
pipelining and sharing can be realized either in a spatial
manner on multiple nearby hardware PEs, or in a temporal
way on the same PE. Furthermore, the key benefit is the ability
to pipeline/share in a fine granularity to save the required on-
chip buffer space to hold these reused data.

In addition, we also propose two novel dataflow optimiza-
tions that allow for pipelining/sharing of more operators in
finer granularities. The first one targets the NTT operation,
leveraging the widely known decomposition method in a
novel way to reduce the occurrences of data access pattern
changes, which would otherwise break fine-grained pipelining.
The second one targets the sharing of evaluation keys in
homomorphic rotations, combining two previous proposals [2],
[34] into a more balanced hybrid scheme, which also creates
cross-operator sharing opportunities that are previously absent.

We evaluate the optimized dataflow schemes systematically
discovered by CROPHE against several state-of-the-art accel-
erator designs [33]–[35], [51] and dataflow techniques [2].
With similar area budgets, CROPHE outperforms the best
among the baselines by 1.77× to 4.86× on several typical FHE
workloads. The benefits of CROPHE would increase if we
further shrink the on-chip SRAM capacity. These performance
improvements are mainly from the significant reduction of
data accesses to the on-chip global buffers and the off-chip
memory, which in turn results from the increased data reuse
in the corresponding cheaper levels of the memory hierarchy.

II. BACKGROUND AND RELATED WORK

In this section, we describe the fully homomorphic encryp-
tion (FHE) algorithms, and summarize the recent hardware
accelerator designs to alleviate their performance challenges.

A. Fully Homomorphic Encryption (FHE)

Common FHE schemes include BGV [8], B/FV [9], [20],
CKKS [16], etc. While the former two focus on integer data,
CKKS enables fixed-point arithmetics that are particularly
important for privacy-preserving data analysis applications,
e.g., private inference on deep neural networks (DNNs) [17],
[22], [38], [48]. Its approximate nature also enables much
better performance. Thus we choose CKKS as the state-
of-the-art FHE representative, but our techniques are also
conceptually applicable to other schemes.

Ciphertext format. In CKKS, a vector of values is first
encoded into a plaintext, and then encrypted into a cipher-
text ct = (b(X),a(X)) that consists of two polynomials in
ZQ[X]/(XN +1). Each of such polynomials has N coefficients

in ZQ (integers modulo Q). N is typically a power of 2
between 214 and 218 [35], and Q should be thousands of
bits long, both to meet the required security level. To avoid
expensive arithmetics on wide integers in ZQ, a standard
optimization is to leverage the Chinese Remainder Theorem
to construct a Residue Number System (RNS) [4], [5], [15].
Specifically, the large modulus Q is decomposed into the
product of ℓ+1 smaller (e.g., less than 64 bits) prime numbers
q0q1 . . .qℓ called the RNS bases, and correspondingly a number
in ZQ can be represented by ℓ+1 smaller numbers in Zq0 ×
Zq1×·· ·×Zqℓ . Moreover, additions and multiplications in ZQ
become element-wise additions and multiplications in the RNS
domain. In this way, each of b(X) and a(X) is decomposed to
ℓ+ 1 limb polynomials each with N coefficients, and can be
viewed as an (ℓ+1)×N matrix.

Homomorphic operations. CKKS allows certain homo-
morphic operations performed on ciphertexts, whose outputs,
after decryption, equal to the corresponding plaintext operation
results. For example, HAdd (homomorphic addition) adds
the polynomials ctadd = ct0 + ct1 = (b0(X)+ b1(X),a0(X)+
a1(X)). HMult (homomorphic multiplication) first does a
tensor product between ct0 and ct1

ct0×ct1 = (d0(X),d1(X),d2(X))

=(b0(X)·b1(X),a0(X)·b1(X)+b0(X)·a1(X),a0(X)·a1(X))

Then with the help of an evaluation key evk, a key-switching
primitive converts the above result into a ciphertext ctmult =
(d0(X),d1(X))+KeySwitch(d2(X)), which can be decrypted
by the original secret key.

KeySwitch(d(X)) = P−1(d(X) ·evk)) (1)

The polynomial multiplications in HMult can be optimized
using number theoretic transforms (NTTs) with O(N logN)
complexity. Similar to a fast Fourier transform (FFT), an NTT
converts a polynomial a(X) from the coefficient representation
to the NTT representation ã(X), using a set of constant twiddle
factors. Then, a polynomial multiplication in the coefficient
representation becomes an element-wise multiplication in the
NTT representation. Usually the polynomials in FHE process-
ing are kept in the NTT representation for efficient additions
and multiplications.

The key-switching flow is shown in Figure 1. The evaluation
key evk consists of two polynomials in ZPQ/(XN + 1) each
of shape (k + ℓ+ 1)× N, where P is a special modulus
decomposed to a set of extended RNS bases p0 p1 . . . pk−1.
Therefore, in Equation (1), d2 must be first converted from
ZQ to ZPQ through a process called base conversion (BConv),
then multiplied with evk, and finally converted from ZPQ back
to ZQ with BConv again. BConv requires data to be converted
back to the coefficient representation through the inverse-NTT
(iNTT) primitive. This results in a typical sequence of iNTT
→ BConv → NTT as shown in Figure 1.

To ensure sufficient security, the special modulus P must
be large enough compared to the ciphertext modulus Q,
resulting in high computation and storage cost. A critical
optimization is to decompose ct and evk into β = ⌈(ℓ+1)/α⌉

N

𝛼

𝛼

𝛼+ℓ+1

𝛼+ℓ+1 𝛼+ℓ+1

NiNTT BConv NTT

ModUp/ModDown

N

𝛼+ℓ+1

𝛽 N

𝛼+ℓ+1

N

𝛼+ℓ+1

N

ℓ+1

N

ℓ+1

N

𝛼

𝛽

ModUp

KSKInP

KSKInP

ModDown

ModDown

Decomp

N

𝛼+ℓ+1

𝛽

N

𝛼+ℓ+1

𝛽

N

𝛼+ℓ+1

evk
KSKInP

InP

Fig. 1. Computation and data patterns of key-switching.

digits, each corresponding to α limbs [25]. Then P only
needs to be larger than the product of the α RNS bases qi’s
within each digit rather than all qi’s, i.e., setting k = α when
p j’s and qi’s are close. This makes the evk shape become
2×dnum× (α + ℓ+1)×N, in which dnum is the maximum
β for ℓmax = L. BConv is now applied to each of the β

digits independently, multiplying each α ×N matrix with a
constant matrix to obtain a result matrix of (α+ℓ+1)×N. The
multiplication with evk is then an inner-product between two
β×(α+ℓ+1)×N tensors reducing along the β dimension. In
summary, key-switching involves multiple steps: digit decom-
position (Decomp), BConv to wider fields (ModUp), inner-
product with evk (KSKInP), and BConv back (ModDown).

Besides the above HAdd and HMult that work on two
ciphertexts, CAdd/CMult and PAdd/PMult process a ciphertext
with a constant scalar and a plaintext, respectively, using
simple element-wise operations. Also, HRot (homomorphic
rotation) circularly rotates the plaintext values across the
vector slots in a ciphertext. It consists of two steps. An
automorphism first permutes the coefficients of polynomial
a(X) with the index mapping i→ i ·5r, where r is the rotation
amount. The result is denoted as a(X5r

). Then a key-switching
as in Equation (1) is applied to obtain ctrot(r) = (b(X5r

),0)+
KeySwitch(a(X5r

)). Note that the HRot evk is different from
that of HMult. Actually, each rotation amount r requires a
different evk.

Multiplicative level and bootstrapping. Unfortunately, the
above homomorphic operations, especially CMult, PMult, and
HMult, would increase the noise in the ciphertext and even-
tually make it undecryptable. To mitigate this issue, CKKS
scales the ciphertext down after each multiplication to keep
the noise error tolerable. With RNS, such scale-down can be
efficiently realized as dividing the ciphertext by the last prime
modulus qℓ and removing it from the RNS bases, until there
is only one modulus q0, at which point we have to “refresh”
the ciphertext with a special procedure called bootstrapping.
We call the current number of ciphertext moduli ℓ as the
(multiplicative) level, and the maximum level is L. Essentially,
bootstrapping homomorphically transforms a ciphertext under
q0 into a new ciphertext under Π

L−Lboot
ℓ=0 qℓ. Note that bootstrap-

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

0
1
2
3
4
5

0
7
14
21
28
35

18
25
32
3
10
17

0
1
2
3
4
5

1
8
15
22
29
30

1
2
3
4
5
0

2
9
16
23
24
31

2
3
4
5
0
1

19
26
33
4
11
12

20
27
34
5
6
13

5
50
137
266
257
206

59
158
299
50
95
98

5
50
137
266
257
206

50
95
98
59
158
299

55
145
235
325
415
505

𝑛 = 𝑛!×𝑛"
6 3 2

Pre-rotate
plaintext matrix

Baby-step rotate vector by
1, 2, … , 𝑛! − 1

Giant-step rotate psum by
𝑛!, 2𝑛!, … , 𝑛!(𝑛" − 1)

Fig. 2. An example of PtMatVecMult using BSGS.

ping itself contains a number of multiplications (see below),
and consumes a certain number of levels Lboot.

The major parts of bootstrapping [7], [14], [25] transform
the coefficients of the plaintext polynomial to the ciphertext
vector slots (CoeffToSlot), homomorphically evaluate a mod-
ular reduction (EvalMod), and then transform the coefficients
back (SlotToCoeff). Both CoeffToSlot and SlotToCoeff involve
plaintext matrix-vector multiplications (PtMatVecMult), and
EvalMod uses a series of HMult and CMult operations to
calculate a high-degree polynomial function.

The PtMatVecMult kernel can be calculated in an optimized
way called baby-step giant-step (BSGS) [23], as shown in
Algorithm 1 and Figure 2. Essentially, for an n× n plaintext
matrix, we split n into n1×n2 where n1,n2∼

√
n. This reduces

the number of rotations from O(n) to O(
√

n).

Algorithm 1: PtMatVecMult using BSGS.
Input: a ciphertext ct encrypting a vector of length n, an

plaintext matrix M of size n×n and n = n1×n2.
Output: ct′ = M×ct.

1 for i← 1 to n1−1 do
2 cti = HRoti(ct); // baby-step rot

3 ct′← (0,0);
4 for j← 0 to n2−1 do
5 r← (0,0); // psum
6 for i← 0 to n1−1 do
7 r← HAdd(r,PMult(cti,Rot−n1· j(M

n1· j+i
diag));

8 ct′← HAdd(ct′,HRotn1· j(r)); // giant-step rot

9 ct′← HRescale(ct′);

Summary. In short, CKKS consists of the following basic
operators: element-wise tensor additions/multiplications, ma-
trix/tensor multiplications (e.g., BConv, inner-product), NTTs,
and automorphisms.

B. Hardware Acceleration for FHE

Modern FHE schemes commonly work on huge amounts
of data (e.g., N up to 218), with each data element being
a very wide integer number (e.g., logQ up to thousands of
bits) or dozens of narrow numbers if decomposed. These
characteristics put challenges on both computations and data
accesses. The numerous wide modular arithmetic operations

result in high computational demands; the large memory foot-
prints of up to GB-level data cause memory access bottlenecks.
Traditional CPUs have insufficient computation capabilities.
GPUs, while being highly parallel, lack specialized modular
arithmetic units as well as efficient memory hierarchy and data
communication optimizations. They also exhibit the general-
purpose overheads like register file access and instruction
control cost. As a result, many specialized accelerators have
been designed to boost the performance of FHE.

Early FHE accelerators [49], [54] were only designed
for specific parameters such as N and L. F1 [50] was the
first programmable FHE accelerator that supported flexible
parameters. It adopted many functional units for wide vector
modular arithmetics, as well as specialized units for NTT and
automorphism. BTS [35] and CraterLake [51] further enabled
efficient bootstrapping support to scale to more complex FHE
workloads. They introduced new hardware units and dataflow
schemes for key primitives like BConv, NTT, and automor-
phism. ARK [34] mainly focused on the memory bottleneck
due to large amounts of off-chip data accesses. It proposed
algorithm optimizations to improve data reuse and trade extra
computations for fewer data accesses. SHARP [33] exploited
the impact of machine word size choices and concluded that
36-bit words achieve the best balance. It also used a hierarchi-
cal microarchitecture together with careful data scheduling to
reduce the on-chip buffer capacity. BitPacker [52], on the other
hand, proposed algorithmic enhancements to CKKS to more
densely pack data into machine words, reducing unused bits
that waste datapath and storage resources. MAD [2] focused
on the memory bottleneck of FHE workloads, and proposed a
series of both hardware (e.g., data caching, operation fusion)
and algorithm (e.g., operation merging, hoisting) optimizations
to reduce off-chip memory accesses.

Poseidon [59] and FAB [3] were two FPGA-based FHE
accelerators. The former decomposed key homomorphic op-
erations into low-level primitives in order to share hardware
functional units; the latter proposed specific schemes to fit data
within limited FPGA on-chip SRAM and also explored multi-
FPGA scale-out solutions. There also have been accelerator
designs that support the new torus FHE (TFHE) protocols [1],
[18], [44], [45], [61], which are orthogonal to our work.

III. CROSS-OPERATOR SCHEDULING

A. Motivation

With the excessive volumes of ciphertexts and auxiliary
data such as evaluation keys and BConv constant matrices,
many FHE operators are highly memory-intensive, with low
compute-to-data ratios as demonstrated in prior work [2]. To
alleviate the memory bottleneck, an efficient approach is to
optimize the dataflow scheduling methods to maximize on-
chip data reuse and minimize off-chip memory accesses. Such
an approach has already been demonstrated successful for deep
neural network (DNN) accelerators, with extensive studies
exploring the rich design spaces of both intra-operator loop
transformations [12], [27], [29], [37], [39], [42], [58] and
cross-operator data forwarding [10], [21], [55].

When borrowing this idea from the DNN accelerators to
the FHE domain, we argue that we should primarily focus
on cross-operator data reuse rather than intra-operator reuse.
This is because the reuse patterns within most individual FHE
operators are relatively simple. For instance, element-wise
operators are streaming with no data reuse. For BConv, the
constant matrix of size (α + ℓ+1)×α is small enough (e.g.,
< 1000 elements for α and ℓ around 10s) to easily fit into the
on-chip buffers. The inner product with evk only reduces along
β , so it can stream in each chunk of β elements, following the
O(β) caching technique in MAD [2] to fully reuse all data.

In contrast, cross-operator dataflow is more critical in FHE.
On one hand, a typical FHE program could involve many
FHE operators with complex producer-consumer dependencies
between them, making data reuse across operators non-trivial
to optimize. On the other hand, the cross-operator intermediate
ciphertext data volumes are significant compared to the mostly
simple operators with no (e.g., element-wise) or small amounts
(e.g., BConv) of other constant data. Even for the large
evk, previous designs like SHARP have observed that the
working set size is more sensitive to the number of temporary
ciphertexts than the evk [33].

Limited dataflow techniques. Several designs have prelim-
inarily exploited cross-operator data reuse. For example, BTS
adopted a specific timing schedule to execute the operators in
an HMult [35]. MAD leveraged operator fusion to efficiently
cache the intermediate data across adjacent operators [2].
However these existing designs are rather limited and lack
systematic methodologies. First, their schemes are restricted
to a few special cases. The BTS schedule is only for HMult;
and MAD only proposes a few individual manually-designed
optimizations. Second, the existing operator fusion techniques
in MAD mainly target the intermediate ciphertexts, but not the
constant auxiliary data like evks, leaving ample opportunities
unexploited. Third, their designs only support regular com-
putations. When encountering operators that exhibit complex
data permutations, e.g., NTT and automorphism, operator
fusion must terminate, which reduces the data reuse scope.
To overcome these issues, we aim to propose a more compre-
hensive framework for more systematic dataflow scheduling.

Overly specialized hardware resources. Furthermore, to
maximally reuse data across operators, it is desired to be able
to flexibly group various numbers of operators for co-running
on-chip. With a fixed on-chip buffer capacity, operators with
few data to cache can form a larger group to simultaneously
reside on-chip, while we can only fit a few operators if each
needs massive data. This in turn requires us to flexibly allocate
the on-chip compute resources to the various number of opera-
tors. Unfortunately, most existing FHE accelerators use overly
specialized functional units for each operator type, with a fixed
ratio of different functional units provisioned on hardware. For
example, almost all state-of-the-art accelerators consist of sep-
arate functional units for element-wise addition/multiplication,
NTT, automorphism, and BConv [33]–[35], [50], [51]. MAD
does not specify their own hardware architecture but follows
the previous designs [2]. Even though Poseidon has lowered

M
ul
ti-
ba
nk

bu
ffe

r

Tr
an
sp
os
e
un

it

…

Reg
Reg
Reg
Reg

Reg
Reg

Bu
tt
er
fly

ne
t

… …

Re
du

ce
+
N
TT

+
au
to

ne
t

(a) Overall architecture (b) PE

Lane

… …

PE PE PE…

PE PE PE…

PE PE PE…
…

Cr
os
sb
ar

Cr
os
sb
ar

Fig. 3. Hardware architecture of CROPHE.

its representation level, it still uses specialized NTT and
automorphism units separate from the element-wise ones [59].
Such over-specialization would greatly limit the effectiveness
of cross-operator scheduling. On one hand, the fused operator
types must match the hardware functional units. If some
operator types are missing, their hardware units would be
left idle. On the other hand, with different data shapes and
algorithm parameters, different operator groups have diverse
computation demands for each type. It is unlikely that the
varying computation demands always match the hardware
resources, leading to resource underutilization.

B. Our Approaches

In this paper, we systematically study the cross-operator
dataflow scheduling problem, and propose CROPHE, a com-
prehensive framework to thoroughly explore the design space.
CROPHE is a hardware-software co-design. On the hardware
level (Section IV), we use a set of homogeneous and unified
processing elements (PEs), which are not overly specialized
to specific FHE operators, but any PE can be used to map any
operator. This allows for flexible resource allocations to co-run
arbitrary groups of operators on the accelerator chip, enabling
various cross-operator dataflow scheduling. On the software
level (Section V), we support a comprehensive hierarchical
cross-operator dataflow design space, with both temporal and
spatial operator mappings in both pipelining and sharing man-
ners, which support efficient cross-operator data reuse for both
intermediate ciphertext polynomials and auxiliary constant
data. We further propose two novel optimizations that allow
us to group more operators for higher reuse opportunities.

IV. HARDWARE ARCHITECTURE

We first introduce the hardware architecture of CROPHE,
which mainly consists of a set of homogeneous and unified
processing elements (PEs). The homogeneity allows for flex-
ible resource allocation to various numbers of operators in a
group, making the hardware efficient to support flexible cross-
operator dataflow schemes discovered by CROPHE.

A. Hardware Structures

Figure 3(a) shows the overall architecture of the accelerator
chip. The central part is a 2D array of processing elements
(PEs), connected in a mesh network-on-chip (NoC). The PEs
can access the shared multi-bank SRAM buffers through a
crossbar. On the other side of the chip, an SRAM-based

Tr
an
sp
os
e
un

it

M
ul
ti-
ba
nk

bu
ffe

r

Auto

col-iNTT
row-iNTT
BConv
row-NTT
col-NTT

Fig. 4. An example of mapping the first spatial pipeline in Figure 6 to an
8×8 PE array in CROPHE. Arrows show data transfer directions.

transpose unit [33], [50] is provisioned to support fast on-
chip data transposition, also connected to the PEs through a
crossbar. It only needs a few MB capacity, much (e.g., > 10×)
smaller than the data buffers and thus incurring small area
overheads. We optimize the mapping strategies to allow data
transpose operators to use the transpose unit while reducing
the data transfer distances on the NoC (Section IV-B).

Each PE follows the vector-style design and consists of
multiple (e.g., 256) lanes of modular arithmetic units [19],
as illustrated in Figure 3(b). Each lane contains one modular
multiplier, a few modular adders/subtractors, and a small reg-
ister file. We use Barrett reduction for modular arithmetics [6],
similar to previous designs [33], [35]. Each pair of neighbor
lanes can be combined to support the butterfly operation in
NTTs [19]. The inter-lane network across all lanes consists
of several stages of different networks, including a reduction
tree, a constant-geometry network for NTTs [11], [43], and
multiple levels of shift networks for automorphisms [19]. The
area cost of these inter-lane network stages is small compared
to the modular arithmetic units and register files.

The mesh NoC transfers data using lightweight packets,
following the data producer-consumer dependencies that are
statically determined by the operator mapping scheme. Specif-
ically, for each PE that produces some output data, the PEs that
consume these data to execute the next operators are statically
known. Thus the NoC is able to route the data packets cor-
rectly. The communication between the PEs and the transpose
unit is done similarly. Such a packet-based message passing
scheme handles inter-PE communication explicitly. Also note
that packets are transmitted hop-by-hop. Even the whole chip
may have a large scale, the wire length per hop is not very long
and will not become a clock frequency bottleneck. We further
support the multicast functionality in the NoC [13], [28], [31],
[53], which is useful for transferring data shared by multiple
PEs (Section V-A). Switching between operator groups is fully
synchronous; we wait for the completion of the previous group
on all PE, and then start the next group of operators with the
new mapping scheme. The above mechanisms are mature and
widely used in DNN accelerators [10], [21], [55].

B. Operator Mapping

The key feature of our homogeneous hardware architecture
is the ability to support all the various operators in FHE on
the unified PEs, so each PE can be flexibly allocated to any
FHE operator, with minimum resource idleness even when

the cross-operator dataflow varies broadly. We now describe
how to map each FHE operator to the PEs.

For element-wise operators like HAdd and PMult, they can
be directly mapped to the multi-lane PEs in a vector style.
For matrix multiplications like BConv, we further use the
reduction tree in the inter-lane network of each PE, and the
inter-PE NoC links, to reduce the partial sums after element-
wise multiplications. For NTTs, we apply multi-dimensional
decomposition [33], [35], [57], [60] to let the small sub-NTT
size match the number of lanes in a PE, and use the transpose
unit to conduct dimension transpositions. Each sub-NTT in one
PE uses the PE pairs for butterfly operations, and the constant-
geometry inter-lane network for data shuffles [11], [19], [43].
For automorphisms, we follow the prior design [19], which
uses multiple shift stages in the inter-lane network to realize
the required permutations.

CROPHE has two additional requirements. First, each op-
erator may be allocated with varying amounts of hardware
resources, depending on how many operators are co-running.
We allocate resources in the granularity of PEs, i.e., all
the lanes in a PE can be used by only one operator, not
shared by others. Our scheduling framework in Section V
determines the optimized number of PEs allocated to each
operator. Specifically, to ensure all the co-running operators in
a group have balanced throughput, we allocate their numbers
of PEs proportional to their computational loads [21]. Once
the resource allocation is decided, our mapping strategies
described above can be easily extended to use the provisioned
PEs. For example, assume each PE has 256 lanes. For an
element-wise operator with N = 214, we can either use a single
PE with 64 temporal iterations (214 = 256× 1× 64), or use
16 PEs with only 4 iterations (214 = 256× 16× 4). NTTs
and automorphisms also support similar multi-dimensional
decompositions [19], [35], [57] into the three levels of the
intra-PE network, inter-PE NoC, and temporal iteration.

Second, when mapping operators to PEs, we would like
to minimize the data transfer distances between adjacent
operators. We generally follow the horizontal direction to
map consecutive operators from left columns to right ones.
When the number of PEs for an operator is small, we also
allow mixing multiple operators in one column. For example,
Figure 4 maps the first spatial group of operators in Figure 6.
The first three operators, Auto, ⊗, and col-iNTT, follow the
aforementioned pattern. A specific issue to optimize is the
transpose operators, which must be executed on the rightmost
transpose unit. We therefore map the operators after the
transpose from right to left. In Figure 4, after col-iNTT, the
data are directly transferred to the transpose unit, while the
next row-iNTT receives the transposed result and sends its
output to the left. When there are multiple (but usually no
more than two) transpose operators, we split the PE array into
horizontal bands, with the number of rows proportional to the
computational demand of each segment. For example, Figure 4
has two transposes. In summary, the above mapping strategies
are heuristic but already work well. We leave more optimized
mapping as future work as it is not the focus of this work.

Intermediate data

Pipelining

Constant data

Sharing

PE PE

Op 1 Op 2a b c

a[0]⇒b[0]
a[1]⇒b[1]
a[2]⇒b[2]

b[0]⇒c[0]
b[1]⇒c[1]

Ti
m
e

Op 1 Op 2

a a'evk

PE PE

a[0]⊗evk[0]
a[1]⊗evk[1]
a[2]⊗evk[2]

a'[0]⊗evk[0]
a'[1]⊗evk[1]
a'[2]⊗evk[2]

Ti
m
e

PE

a[0]⊗evk[0]
a'[0]⊗evk[0]
a[1]⊗evk[1]
a'[1]⊗evk[1]

Op 1 Op 2

Ti
m
e

a a'evk

PE

Op 1 Op 2a b c

a[0]⇒b[0]
⇒c[0]

a[1]⇒b[1]
⇒c[1]Ti

m
e

Spatial Temporal

Fig. 5. Cross-operator dataflow taxonomy in CROPHE.

V. SCHEDULING FRAMEWORK

In this section, we introduce the scheduling framework of
CROPHE, which determines the cross-operator dataflow, i.e.,
which operators to group together for co-running, and how
many PEs to allocate to each operator. We first illustrate
a hierarchical taxonomy of cross-operator dataflow that is
highly flexible and more comprehensive than previous ad-hoc
optimizations [2], [35] (Section V-A). We next propose two
novel optimizations, targeting NTT and HRot, respectively,
to make them more friendly to cross-operator data reuse
(Sections V-B and V-C). Then we describe our scheduling
algorithm to identify optimized schemes for a given FHE
workload (Section V-D).

Note that while the cross-operator dataflow scheduling is
conceptually similar to those in DNN accelerators [10], [21],
[55], to our best knowledge it is the first time to formally and
systematically introduce such a framework for FHE accelera-
tors with the specific operator types. In particular, NTT and
HRot are unique in FHE and do not appear in DNNs. Our two
optimizations for them are novel.

A. Cross-Operator Dataflow

CROPHE focuses on cross-operator scheduling that has
multiple operators processed on-chip and shares data among
them. There are two types of data, the intermediate ciphertext
polynomials, and the auxiliary constant data such as evk and
the BConv matrix. We discuss two techniques that reuse these
two data types, respectively, as illustrated in Figure 5.

First, for intermediate polynomial data that are shared be-
tween their producer and consumer operators, we can forward
them between these operators without spilling to off-chip.
Depending on whether these operators are executed spatially
or temporally, we define two schemes, similar to those in DNN
accelerators [10], [21], [55] (Figure 5 top). First, multiple
operators can be spatially processed by different PEs of the
accelerator, with their intermediate data forwarded among the
PEs. This is called spatial pipelining. In contrast, we can also

temporally execute multiple operators one after another on the
same set of PEs, forming temporal pipelining.

Second, for auxiliary constant data that are shared by opera-
tors of the same type, we can schedule multiple such operators
to execute simultaneously on-chip. Then we can fetch the
auxiliary data only once to feed all the operators. Similarly, we
can also have spatial sharing and temporal sharing (Figure 5
bottom). In the spatial case, the fetched auxiliary data are
forwarded to multiple simultaneously running operators; in the
temporal case, the auxiliary data stay on-chip, and are used
by multiple sequentially executed operators.

Fine-grained pipelining/sharing. The key benefit of both
spatial and temporal pipelining and sharing is achieved when
data are forwarded among operators in a fine granularity rather
than as an entity [2], [21]. This can greatly reduce the on-
chip buffer space requirement and save the chip area. As a
simple example, assume two element-wise operators process
a ciphertext polynomial consecutively. With a spatial pipeline,
the second operator can start executing as soon as the first
one forwards a single element, instead of waiting for the full
(ℓ+ 1)×N matrix. This is illustrated in Figure 5 top as the
pipelining of b[0],b[1], Similarly, with a temporal pipeline,
the same PE processes each element of the matrix with the
two operators in turn. In both cases, we only need an on-
chip buffer keeping one element, and the full matrix can be
streamed from the off-chip memory. Actually, the techniques
of caching O(1) and O(β) limbs in MAD [2] are just special
cases of such fine-grained pipelining. Figure 5 bottom further
shows the streaming usage of evk[0],evk[1], . . . , as examples
for the fine-grained sharing of the constant auxiliary data.

To enable data pipelining/sharing at a fine granularity, the
co-running operators under pipelining/sharing must process
each data granule in the same order. The nested loop structure
is a common way to accurately describe how an operator
processes its data, i.e., the operator’s dataflow [42], [46], [58].
Most FHE operators have three loops, the slot dimension N,
the limb dimension ℓ and α , and the digit dimension β . These
loops can be further tiled (e.g., N = N1×N2) or reordered.
For example, with a loop order ℓ▷N (meaning outer ▷ inner),
we process all the N slots of each limb before going to the
next limb. Alternatively, an order N1 ▷ ℓ ▷N2 would process
each limb in a granularity of N2 slots. With this nested loop
notation, fine-grained pipelining/sharing requires the operators
to have the same loops in the same order at the top few
levels, i.e., the outer iterations of the execution match between
the operators. This condition ensures that these operators
produce/consume each chunk of data in exactly the same order,
so the data chunks can be pipelined through, without storing
them all in the buffers. For example, as in Figure 6 bottom
right, the two InP and the col-iNTT operators have the same
top-level loops of α ′ ▷β ▷N1 (here α ′ = α + ℓ+1 is the limb
count after ModUp). Therefore these operators stream every
chunk of N2 elements.

Hierarchical dataflow design space. The above spatial and
temporal pipelining/sharing can be flexibly composed together.
To simplify the dataflow design space while still retaining

…

Auto

𝜷⊳𝜶
⊳N2⊳N1

col-
iNTT

𝜷⊳𝜶⊳N1
⊳logN2⊳N2

T row-
iNTT

𝜷⊳N2⊳𝜶
⊳logN1⊳N1

BConv

𝜷⊳N2⊳𝜶
⊳𝛼′⊳N1

row-
NTT

𝜷⊳N2⊳𝛼′
⊳logN1⊳N1

T

BConv
𝜷⊳𝜶′⊳𝛼
⊳N2⊳N1

row-
NTT

𝜷⊳𝜶′⊳N2
⊳logN1⊳N1

T

col-
NTT

InPInP…

Transpose
T

Spatial

Temporal

Sequential

𝜶′⊳𝜷⊳N1
⊳N2

𝜶′⊳𝜷⊳N1
⊳N2

col-
iNTTT

𝛽⊳N1⊳𝛼′
⊳logN2⊳N2

𝜶′⊳𝜷⊳N1
⊳logN2⊳ N2

Fig. 6. A real-case example of the cross-operator dataflow scheme discovered
by the CROPHE scheduler.

iNTT BConv NTT

N⊳… …⊳logN⊳N N⊳𝛼⊳𝛼′ …⊳logN⊳N N⊳…

col-
iNTT BConvrow-

iNTT

N1⊳N2⊳…
N1⊳…⊳logN2⊳N2

N2⊳𝛼⊳logN1⊳N1

N2⊳N1⊳𝛼⊳𝛼′
row-
NTT

col-
NTT

N2⊳𝛼′⊳logN1⊳N1

N1⊳…⊳logN2⊳N2

N1⊳N2⊳…

𝛼

N2

N1 𝛼

N2

N1 𝛼′
N2

N1 Orientation switch
Element-wise

twiddle multiply

Fig. 7. Use NTT decomposition to improve pipelining, reducing orientation
switches by 2× in the sequence iNTT → BConv → NTT. Top: original.
Bottom: decomposed.

sufficient flexibility, we focus on a hierarchical scheme. At the
bottom level, we use spatial pipelining/sharing to fully utilize
all the PEs in the accelerator. The operators added in each
spatial group should share either intermediate or auxiliary data.
Then, multiple spatial groups can form a temporal pipelin-
ing/sharing group, i.e., they reuse the same accelerator chip
one after another. Note that either level can collapse; e.g., if
all the bottom spatial pipelines only contain a single operator,
these operators are simply a temporal group. Finally, for large
accelerators, even without fine-grained pipelining/sharing, the
buffer may still be able to fully cache the intermediate data.
Thus we add a top level in which adjacent operators exe-
cute sequentially with their intermediate/auxiliary data fully
materialized in the on-chip buffer. This results in a three-level
hierarchy: sequential execution→ temporal pipelining/sharing
→ spatial pipelining/sharing. Figure 6 illustrates an example
of the optimized scheme for HRotate discovered by our
scheduler, which exhibits the three levels.

Optimization goals and challenges. Recall that the goal
of CROPHE is to maximize data reuse with minimum buffer
space. This translates to adding as many operators into the
pipelining/sharing groups while using as fine data granularities
as possible. Our scheduling algorithm in Section V-D searches
for optimized dataflow schemes towards this goal. Before
that, we introduce two novel optimizations for intermediate
ciphertext polynomial pipelining and auxiliary constant data
sharing, respectively, which alleviate the bottlenecks when
grouping corresponding operators.

B. Optimization: NTT Decomposition

When pipelining intermediate data, we need to have as many
matched top-level loops as possible, with large loop sizes,

to achieve the finest granularities. Among the FHE loops,
N is usually significantly larger than the numbers of limbs
and digits, so we would like to keep the N loop or its tiled
subloops at the top level. This is easy for certain operators
like element-wise, BConv, and evk inner-product. But NTT
and automorphism exhibit inter-iteration dependencies across
the N loop, requiring accesses to some other or all N slots
to calculate a new slot. Specifically, as in Figure 7 top, while
the other operators can put the N loop at the outermost and
pipeline on it, iNTT and NTT need all N elements for the
N logN computations. Therefore forwarding and computing at
each slot granularity are not feasible. The mismatched top-
level loops between NTT/automorphism and other operators,
called orientation switches in MAD [2], limit the scope of
pipelining/sharing. If there is not enough SRAM buffer to
transpose the intermediate polynomials on-chip, each orienta-
tion switch would need to spill the data to the off-chip memory.
To avoid this cost, at least O(N) buffer space, e.g., tens to
hundreds of MB, is needed, even in MAD [2].

We leverage the widely known NTT decomposition method
in a novel way to alleviate this issue. NTT decomposition, also
known as four-step NTT, transforms the length-N data into a
2D shape, i.e., N = N1×N2. Then we sequentially perform
N1 instances of length-N2 column (i)NTTs, N1×N2 element-
wise twiddle multiplications, and N2 instances of length-N1
row (i)NTTs. Now the column and row (i)NTT steps have
N1 and N2 independent instances, respectively, and can thus
pipeline along these dimensions. Essentially, with our loop
order notation, we transform the logN ▷N loop nest into N1 ▷
logN2 ▷N2→ N1 ▷N2→ N2 ▷ logN1 ▷N1.

Although in this sequence the outermost loops N1 and N2
do not match, the column and row (i)NTTs can each pipeline
with their preceding and succeeding operators, respectively,
as in Figure 7 bottom. For example, the middle part forms a
row-iNTT→ BConv→ row-NTT pipeline, with a matched N2
outermost loop. If we look at the data access patterns at the
bottom of the figure, row-iNTT could stream in each of the
N2×α chunks one at a time, and perform the small length-
N1 row iNTT on it. BConv can access just α elements each
time, for N1×N2 iterations. Both operators save the on-chip
buffer capacity at least by a factor of N2. The beginning and
end parts also form two pipelines on the N1 loop and save
the buffer capacity by N1×. Orientation switches only happen
two times in the middle of each decomposition, a 2× saving
compared to the top original case. The top spatial pipeline in
Figure 6 also shows a real-case example. The values of N1,
N2 are parameters decided by our scheduler (Section V-D).

C. Optimization: Hybrid Rotation

Recall that sharing auxiliary data requires multiple operators
of the same type. The BSGS-based PtMatVecMult function
seems to be a good candidate for such dataflow, since it
contains many HRot operators with large evk constants, which
incur significant latencies to load from the off-chip memory
and dominate the bootstrapping performance. However, in
the state-of-the-art execution schemes, these HRots cannot

ModDown

Decomp

ModUp

KSKInP

Auto(1)

ModDown

Decomp

ModUp

KSKInP

Auto(1)

ModDown

Decomp

ModUp

KSKInP

Auto(1)

PMult & HAdd

Decomp

ModUp

KSKInP

Auto(1) Auto(2) Auto(r–1)…
KSKInP KSKInPSame evk

…

ModDownPMult & HAdd

…
Different evk

ModDown

Decomp

ModUp

KSKInP

Auto(rHyb)

ModDown

Decomp

ModUp

KSKInP

Auto(2rHyb)
…

Auto(1)

Auto(2)

KSKInP

KSKInP

KSKInP

…
Auto(rHyb–1)

…

Auto(1)

Auto(2)

KSKInP

KSKInP

KSKInP

…
Auto(rHyb–1)

PMult & HAdd

PMult & HAdd

ModDown

HAdd

…

(a) Min-KS (b) Hoisting

(c) Hybrid

Fig. 8. Use hybrid rotation (c) to improve data sharing, which combines
Min-KS by ARK [34] (a) and Hoisting by MAD [2] (b).

easily share the evk. ARK [34] proposed the Min-KS flow
shown in Figure 8(a). To obtain all the baby-step HRots for
i = 1,2, . . . ,n1−1 (Algorithm 1 Line 2), Min-KS sequentially
rotates a unit amount in each step with the same evk, but
these HRots have dependencies and can only execute one after
another. Unless the full evk is cached with a large buffer space,
we cannot reuse it with fine-grained sharing. MAD [2] pro-
posed the Hoisting optimization shown in Figure 8(b). It shares
(a.k.a., hoists) the common Decomp, ModUp, and ModDown
operations among different HRots, but these parallel HRots
have different rotation amounts and need different evks. Min-
KS works better in large-SRAM scenarios, whereas Hoisting
excels for small SRAM buffers [2].

We find that these two approaches can be combined into
a hybrid rotation scheme to achieve the best of both worlds,
as well as enabling evk sharing opportunities. As shown in
Figure 8(c), we follow the Min-KS flow to perform coarse-
step rotations, by distances of rHyb,2rHyb, Then, from each
of these results we use the Hoisting scheme to do fine-step
rotations by 1,2, . . . ,rHyb − 1. Here rHyb is a parameter to
adjust the balance between the two schemes, determined by
our scheduler (Section V-D). Note that this hybrid rotation
has a similar pattern to the BSGS method, but is applied
only to the baby steps, i.e., another decomposition within
BSGS. Specifically, for n1 baby steps in BSGS, there are
⌈n1/rHyb⌉−1 coarse steps following Min-KS, and each coarse
step has rHyb−1 fine steps following Hoisting.

Compared to pure Min-KS, our hybrid rotation uses rHyb
more evks, but saves n1−⌈n1/rHyb⌉ ModUp and ModDown
operations as the main benefits of using Hoisting. Compared to

pure Hoisting, hybrid rotation does more ModUp and Mod-
Down operations, but saves n1− 1− rHyb evks. In addition,
now the fine-step HRots across all the coarse steps can share
the same evks, providing more opportunities for our cross-
operator dataflow optimizations.

D. Scheduling Algorithm

With the cross-operator dataflow design space discussed
above, the CROPHE scheduler aims to identify the optimized
scheme for the given FHE workload on the specific hardware.
Following the three-level hierarchy of sequential execution →
temporal pipelining/sharing → spatial pipelining/sharing, the
scheduler builds all potential schemes in a bottom-up manner,
and uses an analytical hardware cost model to estimate their
performance to decide the best one. This scheduling approach
is widely used in DNN accelerators [21], [29], [37], [42], [58].
We currently use simple exhaustive search, which can handle
our workloads in reasonable time (e.g., searching ResNet-20 in
100 hours using a single CPU core). Scheduling is a one-time
offline cost. We leave more efficient search to future work.
Nevertheless, we already incorporate several techniques that
help alleviate the long scheduling time issue in our current
implementation, such as merging redundant computational
subgraphs to search only once, as described below.

Bottom-up dataflow scheme composition. Given the com-
putational graph of an FHE workload, we generate all sub-
graphs up to a certain size (number of operators, e.g., 7 to
10 in our experiments), and enumerate all loop tiling schemes
and orders for the operators in each sub-graph to compose
the spatial pipelining/sharing groups at the bottom level. The
number of possible loop orders is limited due to the few
loops, so the total number of candidates is not too huge.
For each spatial scheme, we pre-calculate its computation
latency, PE register usage, and global SRAM buffer usage. We
immediately discard the schemes whose data footprints exceed
the hardware register file and/or global buffer capacity.

Then, we use the spatial groups to further compose temporal
pipelining/sharing groups. We consider the spatial groups that
share the same inputs or have adjacent dependencies, and also
have some same top loops for fine-grained pipelining/sharing.
Their global SRAM buffer usages are added up and compared
to the hardware buffer capacity. Similarly, we compose the
top-level sequentially executing groups.

With the above candidates for different sub-graphs of the
workload, the final step is to concatenate them to cover the full
graph. We use dynamic programming to extend the currently
best dataflow scheme until a certain operator, with the next
sub-graph starting from its successor.

For large FHE workloads like ResNet-20 and ResNet-110,
the complete computational graph is too large to directly
consider all possible sub-graphs. We thus pre-partition the
graph into several smaller ones [41]. The above procedure
is then conducted on each partitioned graph. In many work-
loads, there exist significant redundancies in the computational
graphs; e.g., the same sub-graph of KeySwitch appears in
many places. Pre-partitioning also merges these redundant

cases and only searches once. The size limit of the partitioned
graph represents a trade-off between search time and dataflow
efficiency, and is set to 25 empirically in our implementation.

Support for novel optimizations. To support the NTT
decomposition in Section V-B, the scheduler exploits different
N = N1×N2 combinations when composing the spatial groups
containing an NTT operator. Each NTT can use different
decomposition. Different values of N1, N2 of an NTT would
generate separate spatial groups. Fortunately, N1 and N2 should
not be too small; otherwise the decomposed small NTTs
cannot fully utilize the multiple lanes in the PE. Therefore
the combinations are not many.

To support the hybrid rotation in Section V-C, the scheduler
should exploit different rHyb values for each BSGS HRot. This
requires significant graph-level transformations as in Figure 8.
Thus we enumerate it at the very beginning and generate one
computational graph for each rHyb. Then we conduct the above
search on each graph separately.

Hardware cost model. Our scheduler optimizes the end-
to-end execution time. For each spatial/temporal pipelin-
ing/sharing group, it carefully calculates its execution time
with full consideration of both the computation and memory
access latencies. The final time of a group is the maximum of
the two. For computation, the fine-grained pipelining/sharing
could partially overlap the execution of different operators. For
memory accesses, we use the data amount and the memory
bandwidth to derive the latency. Note that this simple analyti-
cal model is used only in the scheduler as an estimation. Our
evaluation is done with detailed cycle-accurate simulation.

VI. METHODOLOGY

Implementation. We implement the CROPHE scheduler as
described in Section V-D, which identifies the optimized cross-
operator dataflow for an FHE workload on a specific hardware
configuration. It is written in Python, with about 12890 lines
of code. The scheduler outputs a dataflow result file that details
the optimized spatial/temporal pipelining/sharing schemes for
all the operators in the workload.

Then we use a mapper to map the dataflow scheme to the
hardware accelerator. It follows the approaches described in
Section IV-B for PE allocation and operator placement. It
generates detailed trace files that describe the execution of
each operator, which can then be fed to our simulator below.

For the CROPHE hardware accelerator, we implement its
major logic units in RTL, and synthesize them using a 7 nm
process [56]. We use FN-CACTI [47] to model the SRAM
buffers and register files. The inter-PE NoC is modeled with
Orion 3 [32]. All components are scaled to 7 nm according to
the parameters from [48]. The PEs operate at 1.2 GHz in a fully
pipelined manner. The SRAM banks are single-ported and run
at doubled frequency of 2.4 GHz. The off-chip memory uses
HBM stacks [30] to offer 1 TB/s total bandwidth, same as the
baseline accelerators.

We also develop a cycle-accurate simulator for the CROPHE
hardware accelerator for performance evaluation. The simu-
lator takes the trace files generated by the mapper to drive

TABLE I
HARDWARE CONFIGURATIONS OF THE TWO CROPHE VARIANTS AND THE BASELINE ACCELERATORS.

BTS [35] ARK [34] CROPHE-64 CL+ [51] SHARP [33] CROPHE-36

Word length (bits) 64 64 64 28 36 36
Logic frequency (GHz) 1.2 1 1.2 1 1 1.2
Number of lanes - 256 256 512 256 256
Number of PEs (or clusters) 2048 4 64 8 4 128
DRAM bandwidth (TB/s) 1 1 1 1 1 1
SRAM bandwidth (TB/s) 38.4 + 292 20 + 72 39 + 314 84 36 + 36 44 + 354
SRAM capacity (MB) 512 + 22 512 + 76 512 + 16 256 180 + 18 180 + 8

Area w/o SRAM & PHY (mm2) 89.5 116.6 129.4 - 89.4 105.5
Area (mm2) 373.6 418.3 362.8 222.7 178.8 251.1
Power (W) 163.2 281.3 195.2 126.8 94.7 181.1

the execution. The operators on the PEs take pre-determined
latencies that match the RTL implementation. We model the
on-chip data transfers across the inter-PE NoC in a cycle-
accurate way. Following the packet-based data communication
scheme described in Section IV-A, the PEs transfer data
packets according to the statically determined data depen-
dencies between co-running operators. The off-chip memory
access latencies are obtained from Ramulator 2 [40], using the
specific memory access traces.

Configurations and baselines. We use two configurations
of CROPHE to compare with the previous baseline FHE
accelerators, as summarized in Table I. First, a 64-bit CROPHE
is used to compare with BTS [35] and ARK [34], both
of which also use 64-bit words. Second, a 36-bit CROPHE
matches SHARP [33], and the same configuration is scaled
to 28-bit (omitted in the table) to also compare with Crater-
Lake [51]. Only CraterLake was at 14 nm so we scale it to
7 nm as reported in [33], denoted as CL+. We configure the
two CROPHE variants to have similar area as the respective
baselines. Table II shows the detailed breakdown of CROPHE-
36. In Section VII-C we will reduce the global SRAM capacity
to demonstrate CROPHE also supports scenarios with limited
on-chip buffers. Note that from Table I it seems CROPHE has
much more lanes × PEs than the baselines. This is because a
CROPHE lane is very simple, only including a single modular
multiplier and a modular adder/substractor, while a lane in
the baselines may contain many dedicated functional units for
NTT, BConv, automorphism, etc. So the total logic capabilities
in CROPHE and baselines are still comparable.

For fair and comprehensive comparison, we carefully model
and reproduce all the baselines on our own simulators. The
reproduced results are slightly slower than those reported
in the original papers. We believe this is due to our more
realistic simulation of DRAM accesses in Ramulator. Fur-
thermore, we consistently apply the state-of-the-art scheduling
method, MAD [2], to all the baselines, further improving their
performance. We also apply several known optimizations to
all designs, such as on-the-fly limb extension (OF-Limb) for
plaintexts [34] and pseudo-random number generation (PRNG)
for evks [2], [51]. We use the same parameter set as each
baseline originally uses when comparing with each, as listed

TABLE II
AREA AND POWER BREAKDOWN OF CROPHE-36.

Component Area (µm2) Power (mW)

256 modular multipliers 337650.31 388.80
256 modular adders/subtractors 27784.55 33.79
64kB register files 67242.02 16.86
Inter-lane network 15806.76 58.17

PE 448483.64 497.62

Area (mm2) Power (W)

128 PEs 57.40 63.70
Inter-PE NoC & crossbars 40.70 67.40
Global buffer 116.05 15.34
Transpose unit 7.38 2.87
HBM PHY 29.60 31.80

Total 251.13 181.11

TABLE III
PARAMETER SETS WHEN COMPARING WITH EACH BASELINE.

Parameter set log2 N L Lboot dnum α

BTS (INS-2) 17 39 19 2 20
ARK 16 23 15 4 6
SHARP 16 35 27 3 12
CraterLake 16 59 51 1 60

in Table III. All of them are able to achieve 128-bit security.
Workloads. We evaluate four workloads, bootstrapping,

HELR1024, ResNet-20, and ResNet-110, as the standard set
of benchmarks used in the baselines. Bootstrapping measures
the end-to-end bootstrapping time, which is a commonly
used metric as many FHE workloads are dominated by the
bootstrapping latency [33]. We use the optimized sparse-
packed bootstrapping method [14]. HELR [24] trains a binary
classification model using logistic regression. A 196-element
weight vector is trained with a set of 14×14 MNIST images.
For consistency with previous studies [33], we use 1024
images and train 32 iterations, and report the average execution
time per iteration. ResNet-20 and ResNet-110 perform DNN
inference on 32× 32× 3 CIFAR-10 images [36] using the

BTS+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0

10
20
30
40
50
60

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ARK+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0.0
0.8
1.6
2.4
3.2
4.0
4.8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CL++MAD

CROPHE-28+MAD

CROPHE-28

CROPHE-p-28
0
5

10
15
20
25
30

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SHARP+MAD

CROPHE-36+MAD

CROPHE-36

CROPHE-p-36
0
2
4
6
8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

BTS+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0
8

16
24
32
40

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ARK+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0
2
4
6
8

10

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CL++MAD

CROPHE-28+MAD

CROPHE-28

CROPHE-p-28
0
4
8

12
16
20

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SHARP+MAD

CROPHE-36+MAD

CROPHE-36

CROPHE-p-36
0
1
2
3
4
5

Ex
ec

ut
io

n
Ti

m
e

(m
s)

BTS+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0

200
400
600
800

1000
1200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ARK+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0

40
80

120
160

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CL++MAD

CROPHE-28+MAD

CROPHE-28

CROPHE-p-28
0

80
160
240
320
400

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SHARP+MAD

CROPHE-36+MAD

CROPHE-36

CROPHE-p-36
0

40
80

120
160

Ex
ec

ut
io

n
Ti

m
e

(m
s)

BTS+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0

800
1600
2400
3200
4000
4800

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ARK+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64
0

100
200
300
400
500
600

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CL++MAD

CROPHE-28+MAD

CROPHE-28

CROPHE-p-28
0

400
800

1200
1600
2000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SHARP+MAD

CROPHE-36+MAD

CROPHE-36

CROPHE-p-36
0

100
200
300
400
500
600

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) Bootstrapping

(b) HELR1024

(c) ResNet-20

(d) ResNet-110

Fig. 9. Overall performance comparison between CROPHE and baselines.

CKKS implementation [38] of the corresponding ResNet mod-
els [26]. We specifically include ResNet-110 to demonstrate
our scheduling techniques can scale to large-scale workloads.

VII. EVALUATION

We now present the evaluation results of CROPHE when
compared to prior accelerators and scheduling techniques.
Besides the overall performance benefits (Section VII-A), we
particularly highlight the improvements on hardware resource
utilization (Section VII-B), the increasing contributions at
smaller on-chip SRAM capacities (Section VII-C), and the
effectiveness of individual hardware and scheduling optimiza-
tions proposed in this work (Section VII-D).

A. Overall Comparison

Figure 9 compares four designs: the baseline with MAD
scheduling, our CROPHE hardware with MAD scheduling,
CROPHE, and CROPHE-p. CROPHE-p statically partitions
the PEs on the accelerator chip into a few clusters (e.g., 2
or 4, automatically determined by the scheduler), with all the
clusters running the same workloads in a data-parallel fashion.
Each cluster is scheduled as before. We find this partitioning
helps better utilize the abundant hardware resources, and also
allows more sharing for the auxiliary constant data like evks
across clusters, as long as there exist independent input data.

TABLE IV
RESOURCE UTILIZATION ON DIFFERENT DESIGNS FOR RESNET-20.

Design PEs NoC SRAM DRAM
b/w b/w b/w

ARK+MAD 39.48% - 32.71% 68.54%
CROPHE-64 62.97% 64.45% 31.58% 61.32%
CROPHE-p-64 76.69% 72.72% 19.51% 70.62%

SHARP+MAD 41.73% - 63.44% 51.83%
CROPHE-36 56.53% 61.64% 61.35% 43.20%
CROPHE-p-36 65.46% 74.06% 45.66% 49.88%

Overall, CROPHE exhibits significant performance im-
provements. On the four workloads, CROPHE-64 achieves
3.60×, 3.21×, 3.00×, and 3.38× speedups over BTS+MAD,
and 1.71×, 2.97×, 1.45×, and 1.53× over ARK+MAD.
Similarly, CROPHE-36 outperforms SHARP+MAD by 1.55×,
1.15×, 1.36×, and 1.64×. The data-parallel CROPHE-p is
even faster, with 1.75×, 4.86×, 2.39×, and 2.39× speedups
over ARK+MAD, and 2.54×, 1.89×, 2.24×, and 2.70×
speedups over SHARP+MAD. These performance advantages
are mainly due to the better cross-operator dataflow that
significantly reduces data accesses to more expensive memory
levels (off-chip DRAM, global SRAM) for both intermediate
ciphertexts and auxiliary constants. More detailed data are in
Figure 11 in Section VII-D.

Note that sometimes using our hardware architecture with
MAD performs worse than the baselines, e.g., SHARP. This
is because the MAD dataflow only has limited operator fusion
and cannot create large operator pipelining/sharing groups to
fully utilize the large amount of PEs in our hardware. In
addition, when the intermediate data are not directly forwarded
between PEs, they need to be written to the SRAM buffer or
even the off-chip DRAM, and read back later. These problems
substantially degrade performance. The CROPHE dataflow
schemes are able to alleviate these issues, and thus necessary
to unlock the full potential of our hardware architecture.

B. Resource Utilization

Table IV shows the utilization of PEs, NoC bandwidth,
global SRAM buffer bandwidth, and off-chip DRAM band-
width when executing ResNet-20 on different designs. When
reproducing the baselines, for simplicity we assume idealized
NoC performance, so this utilization is not shown. The PE
utilization in CROPHE can reach 57% to 77%. The state-of-
the-art baselines like SHARP can have 65% utilization for their
NTT and element-wise engines, while the other dedicated units
for BConv and automorphism have much lower utilization
below 30% as reported in their original paper [33, Figure
6(b)]. This result demonstrates the benefit of higher resource
utilization from our flexible homogeneous architecture.

For SRAM and DRAM bandwidth, the utilization remains
similar to the baselines. This is because both the data access
amount and the execution time have reduced. The former is
because of the better cross-operator dataflow in CROPHE that
better reuses data on-chip, as illustrated in Figure 11. The

32 128 5120
4
8

12
16
20

Ex
ec

ut
io

n
Ti

m
e

(m
s)

45 90 180
SRAM Capacity (MB)

0
4
8

12
16
20
24

Ex
ec

ut
io

n
Ti

m
e

(m
s)

32 128 5120
4
8

12
16
20
24

45 90 180
SRAM Capacity (MB)

0
4
8

12
16
20

32 128 5120
80

160
240
320
400

45 90 180
SRAM Capacity (MB)

0
80

160
240
320
400
480

32 128 5120
400
800

1200
1600
2000 ARK+MAD

CROPHE-64+MAD

CROPHE-64

CROPHE-p-64

45 90 180
SRAM Capacity (MB)

0
400
800

1200
1600
2000
2400 SHARP+MAD

CROPHE-36+MAD

CROPHE-36

CROPHE-p-36

(a) Bootstrapping (b) HELR1024 (c) ResNet-20 (d) ResNet-110

Fig. 10. Performance comparison between CROPHE and baselines at smaller
SRAM capacities.

fewer accessed data can be fetched using the full bandwidth
in shorter amounts of time.

Finally, CROPHE has more intensive on-chip data transfers
due to more complex operator mapping. Therefore the NoC
bandwidth exhibits high utilization and potentially bounds the
performance. Fortunately, our heuristic mapping strategies in
Section IV-B are able to deliver sufficiently good efficiency.

C. Performance at Smaller SRAM Capacities

The key benefit of CROPHE is to exploit the fine-grained
data pipelining/sharing to reduce the required on-chip SRAM
buffer space. Figure 10 reduces the global buffer capacities
of the original 64-bit and 36-bit configurations, and compares
with the best baseline in each case, i.e., ARK and SHARP.
Generally, the speedups of CROPHE increase as the SRAM
shrinks. Between CROPHE-36 and SHARP, the speedups at
45 MB increase to 3.20×, 3.11×, 2.78×, and 3.42× from
1.55×, 1.15×, 1.36×, and 1.64× at 180 MB.

Note that one surprising result is that in Figure 10(c) and (d),
CROPHE-p-36 with 45 MB is even faster than SHAPR+MAD
with 180 MB. There are several reasons. First, as explained be-
fore, the CROPHE techniques significantly improve the cross-
operator data reuse and reduce the necessary SRAM capacity
to buffer intermediate data. We notice that in SHARP+MAD,
we only need about 90 MB to achieve near-minimal DRAM
accesses after applying MAD (the MAD paper uses even
more aggressive 32 MB designs [2]). The rest space is used
mainly to keep the many HMult/HRot evks. CROPHE uses
the hybrid rotation optimization to more efficiently handle
these evks. This makes the non-data-parallel CROPHE-36
with 45 MB perform similarly to SHARP+MAD with 180 MB.
Second, our data-parallel use of CROPHE further enables
sharing the expensive evks across multiple independent tasks.
This extra benefit makes CROPHE-p-36 even faster, eventually
outperforming SHARP+MAD.

D. Performance Breakdown

Finally, we break down the impact of our various novel
techniques for cross-operator dataflow scheduling in Figure 11,
which runs the bootstrapping workload on the two CROPHE
configurations at a small SRAM capacity. We first evaluate

ARK+MAD
MAD Base

NTTDec
HybRot

NTTDec+HybRot

(a) CROPHE-64 at 32MB

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

2.40x

1.00x
1.79x

2.33x

3.37x
3.96x

DRAM SRAM

0

50

100

150

D
at

a
Tr

af
fic

 (G
B

)

SHARP+MAD
MAD Base

NTTDec
HybRot

NTTDec+HybRot

(b) CROPHE-36 at 45MB

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

1.31x
1.00x

1.71x1.80x

3.72x
4.20x

0

50

100

150

D
at

a
Tr

af
fic

 (G
B

)

Fig. 11. Performance improvement breakdown of CROPHE techniques, and
the corresponding data access traffic to SRAM and DRAM. Running the
bootstrapping workload.

a design that only uses the CROPHE homogeneous hard-
ware architecture, with the prior MAD dataflow (denoted as
“MAD”). We use ARK’s Min-KS [34] for HRot in this design.
Performance drops by 2.40× and 1.31× compared to the
ARK and SHARP baselines. These results indicate that, while
the homogeneous architecture is simple to implement and
potentially allows for higher utilization, without a specially op-
timized dataflow scheme, performance would still suffer since
existing scheduling techniques fail to fully exploit its potential.
Thus, the homogeneous and unified hardware architecture and
the comprehensive cross-operator dataflow optimizations are
tightly coupled and should be jointly applied. Second, by
switching from MAD to our basic cross-operator dataflow in
Section V-A (denoted as “Base”), we can roughly match the
baselines, with 0.75× to 1.31× speedups. These are because
of the significant decreases in the SRAM and DRAM accesses
as shown in the figure. These results demonstrate that even the
basic cross-operator dataflow framework in CROPHE is more
comprehensive and optimized than the baseline MAD. Further
enabling the NTT decomposition (Section V-B, denoted as
“NTTDec”) and hybrid rotation (Section V-C, denoted as
“HybRot”) optimizations leads to further speedups and data
access reduction. Between the two, the benefits of hybrid
rotation are more significant than those of NTT decomposition,
as managing evks is highly critical with limited SRAM space.
In this scenario, CROPHE adaptively uses a hybrid rotation
scheme close to Hoisting to reduce computations, as the evk
cannot fit on-chip even with the Min-KS technique. Finally,
combining the two can result in the best performance, which
is 1.65× and 3.21× faster than the corresponding baselines.

VIII. CONCLUSIONS

We explore the opportunities of cross-operator dataflow
optimization for FHE accelerators in this paper, and present
the CROPHE framework. CROPHE discovers efficient cross-
operator dataflow schemes with spatial/temporal data pipelin-
ing/sharing among FHE operators, and maps them onto a
homogeneous and unified hardware architecture. Two novel
optimizations for NTT and HRot are also proposed to further
improve the efficiency. CROPHE is able to achieve better
performance with reduced data movement cost compared to
state-of-the-art accelerators and dataflow schemes.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable suggestions, and the Tsinghua IDEAL group
members for constructive discussion. Mingyu Gao is the
corresponding author.

REFERENCES

[1] R. Agrawal, A. Chandrakasan, and A. Joshi, “HEAP: A Fully Ho-
momorphic Encryption Accelerator with Parallelized Bootstrapping,” in
51st Annual International Symposium on Computer Architecture (ISCA),
2024, pp. 756–769.

[2] R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “MAD: Memory-Aware Design Techniques for
Accelerating Fully Homomorphic Encryption,” in 56th Annual Interna-
tional Symposium on Microarchitecture (MICRO), 2023, p. 685–697.

[3] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “FAB: An FPGA-based
Accelerator for Bootstrappable Fully Homomorphic Encryption,” in 29th
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 882–895.

[4] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and Performance Evaluation of RNS Vari-
ants of the BFV Homomorphic Encryption Scheme,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 2, pp. 941–956, 2021.

[5] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A Full RNS Variant
of FV Like Somewhat Homomorphic Encryption Schemes,” in Selected
Areas in Cryptography – SAC 2016, 2017, pp. 423–442.

[6] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor,” in
Advances in Cryptology – CRYPTO 1986, 1987, p. 311–323.

[7] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient Bootstrapping for Approximate Homomorphic Encryption
with Non-sparse Keys,” in Advances in Cryptology – EUROCRYPT
2021, 2021, pp. 587–617.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully Ho-
momorphic Encryption without Bootstrapping,” in 3rd Innovations in
Theoretical Computer Science Conference (ITCS), 2012, p. 309–325.

[9] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic
Encryption from (Standard) LWE,” Cryptology ePrint Archive, Paper
2011/344, 2011. [Online]. Available: https://eprint.iacr.org/2011/344

[10] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma, “Inter-layer Scheduling
Space Definition and Exploration for Tiled Accelerators,” in 50th Annual
International Symposium on Computer Architecture (ISCA), 2023.

[11] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, “High-Speed Polynomial Multiplication Ar-
chitecture for Ring-LWE and SHE Cryptosystems,” IEEE Transactions
on Circuits and Systems I: Regular Papers (TCAS-I), vol. 62, no. 1, pp.
157–166, 2015.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in 43rd
International Symposium on Computer Architecture (ISCA), 2016, pp.
367–379.

[13] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 2, pp. 292–308, 2019.

[14] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
Approximate Homomorphic Encryption,” in Advances in Cryptology –
EUROCRYPT 2018, 2018, pp. 360–384.

[15] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A Full RNS
Variant of Approximate Homomorphic Encryption,” in Selected Areas
in Cryptography – SAC 2018, 2019, pp. 347–368.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Advances in Cryptology –
ASIACRYPT 2017, 2017, pp. 409–437.

[17] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: An Optimizing Compiler
for Fully-Homomorphic Neural-Network Inferencing,” in 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2019, p. 142–156.

[18] X. Deng, S. Fan, Z. Hu, Z. Tian, Z. Yang, J. Yu, D. Cao, D. Meng,
R. Hou, M. Li, Q. Lou, and M. Zhang, “Trinity: A General Purpose FHE
Accelerator,” in 57th International Symposium on Microarchitecture
(MICRO), 2024, pp. 338–351.

[19] J. Dong, X. Chen, and M. Gao, “A Unified Vector Processing Unit
for Fully Homomorphic Encryption,” in Design, Automation & Test in
Europe Conference (DATE), 2025.

[20] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012.
[Online]. Available: https://eprint.iacr.org/2012/144

[21] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “TANGRAM:
Optimized Coarse-Grained Dataflow for Scalable NN Accelerators,” in
24th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2019, p. 807–820.

[22] K. Garimella, Z. Ghodsi, N. K. Jha, S. Garg, and B. Reagen, “Character-
izing and Optimizing End-to-End Systems for Private Inference,” in 28th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Volume 3, 2023, p.
89–104.

[23] S. Halevi and V. Shoup, “Faster Homomorphic Linear Transformations
in HElib,” in Advances in Cryptology – CRYPTO 2018, 2018, pp. 93–
120.

[24] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic Regression on
Homomorphic Encrypted Data at Scale,” in 31st Innovative Applications
of Artificial Intelligence Conference (IAAI), 2019, pp. 9466–9471.

[25] K. Han and D. Ki, “Better Bootstrapping for Approximate Homomorphic
Encryption,” in Topics in Cryptology – CT-RSA 2020, 2020, pp. 364–
390.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[27] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind Mappings: Enabling Efficient Algorithm-Accelerator
Mapping Space Search,” in 26th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2021, pp. 943–958.

[28] W. Hu, Z. Lu, A. Jantsch, and H. Liu, “Power-Efficient Tree-Based
Multicast Support for Networks-on-Chip,” in 16th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2011, pp. 363–368.

[29] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “CoSA: Scheduling by Constrained Opti-
mization for Spatial Accelerators,” in 48th International Symposium on
Computer Architecture (ISCA), 2021, pp. 554–566.

[30] JEDEC Solid State Technology Association, “High Bandwidth Memory
DRAM (HBM3) (JESD238),” JEDEC Standard, 2022.

[31] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual Circuit Tree Multicast-
ing: A Case for On-Chip Hardware Multicast Support,” in 35th Annual
International Symposium on Computer Architecture (ISCA), 2008, p.
229–240.

[32] A. B. Kahng, B. Lin, and S. Nath, “ORION3.0: A Comprehensive NoC
Router Estimation Tool,” IEEE Embedded Systems Letters, vol. 7, no. 2,
pp. 41–45, 2015.

[33] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “SHARP:
A Short-Word Hierarchical Accelerator for Robust and Practical Fully
Homomorphic Encryption,” in 50th Annual International Symposium on
Computer Architecture (ISCA), 2023.

[34] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H.
Ahn, “ARK: Fully Homomorphic Encryption Accelerator with Runtime
Data Generation and Inter-Operation Key Reuse,” in 55th International
Symposium on Microarchitecture (MICRO), 2022, pp. 1237–1254.

[35] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H.
Ahn, “BTS: An Accelerator for Bootstrappable Fully Homomorphic
Encryption,” in 49th Annual International Symposium on Computer
Architecture (ISCA), 2022, p. 711–725.

[36] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” Technical Report, University of Toronto, 2009.
[Online]. Available: https://www.cs.utoronto.ca/∼kriz/learning-features-
2009-TR.pdf

[37] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach,” in 52nd International Symposium
on Microarchitecture (MICRO), 2019, p. 754–768.

[38] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-Complexity Deep Convolutional Neural Networks on Fully Ho-

momorphic Encryption Using Multiplexed Parallel Convolutions,” in
39th International Conference on Machine Learning (ICML), 2022, pp.
12 403–12 422.

[39] L. Lu, N. Guan, Y. Wang, L. Jia, Z. Luo, J. Yin, J. Cong, and
Y. Liang, “TENET: A Framework for Modeling Tensor Dataflow Based
on Relation-Centric Notation,” in 48th International Symposium on
Computer Architecture (ISCA), 2021, pp. 720–733.

[40] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, and
O. Mutlu, “Ramulator 2.0: A Modern, Modular, and Extensible DRAM
Simulator,” IEEE Computer Architecture Letters, vol. 23, no. 1, pp. 112–
116, 2024.

[41] O. Moreira, M. Popp, and C. Schulz, “Graph Partitioning with
Acyclicity Constraints,” arXiv preprint arXiv:1704.00705, 2017.
[Online]. Available: https://arxiv.org/abs/1704.00705

[42] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” in 2019 Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), 2019, pp. 304–315.

[43] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel
Processing,” Journal of the ACM (JACM), vol. 15, no. 2, p. 252–264,
1968.

[44] Prasetiyo, A. Putra, and J.-Y. Kim, “Morphling: A Throughput-
Maximized TFHE-based Accelerator using Transform-Domain Reuse,”
in 30th International Symposium on High-Performance Computer Ar-
chitecture (HPCA), 2024, pp. 249–262.

[45] A. Putra, Prasetiyo, Y. Chen, J. Kim, and J.-Y. Kim, “Strix: An End-
to-End Streaming Architecture with Two-Level Ciphertext Batching for
Fully Homomorphic Encryption with Programmable Bootstrapping,” in
56th Annual International Symposium on Microarchitecture (MICRO),
2023, p. 1319–1331.

[46] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A Language and Compiler for Optimizing Par-
allelism, Locality, and Recomputation in Image Processing Pipelines,”
in 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2013, pp. 519–530.

[47] D. P. Ravipati, R. Kedia, V. M. Van Santen, J. Henkel, P. R. Panda,
and H. Amrouch, “FN-CACTI: Advanced CACTI for FinFET and
NC-FinFET Technologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 30, no. 3, pp. 339–352, 2022.

[48] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and Accelerating Homomorphic
Encryption for Private Inference,” in 27th International Symposium on
High-Performance Computer Architecture (HPCA), 2021, pp. 26–39.

[49] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture
for Computing on Encrypted Data,” in 25th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2020, p. 1295–1309.

[50] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption,” in 54th Annual International
Symposium on Microarchitecture (MICRO), 2021, p. 238–252.

[51] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “CraterLake:
A Hardware Accelerator for Efficient Unbounded Computation on
Encrypted Data,” in 49th Annual International Symposium on Computer
Architecture (ISCA), 2022, p. 173–187.

[52] N. Samardzic and D. Sanchez, “BitPacker: Enabling High Arithmetic
Efficiency in Fully Homomorphic Encryption Accelerators,” in 29th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Volume 2, 2024, p.
137–150.

[53] F. A. Samman, T. Hollstein, and M. Glesner, “Adaptive and Deadlock-
Free Tree-Based Multicast Routing for Networks-on-Chip,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 7,
pp. 1067–1080, 2010.

[54] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-Based High-Performance Parallel Architecture for Homomor-
phic Computing on Encrypted Data,” in 25th International Symposium
on High Performance Computer Architecture (HPCA), 2019, pp. 387–
398.

[55] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning,” in 23rd International Symposium
on High Performance Computer Architecture (HPCA), 2017, pp. 541–
552.

[56] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 Predictive Design
Kit Development and Cell Design Technology Co-optimization: Invited
Paper,” in 36th International Conference on Computer-Aided Design
(ICCAD), 2017, pp. 992–998.

[57] C. Wang and M. Gao, “SAM: A Scalable Accelerator for Number
Theoretic Transform Using Multi-Dimensional Decomposition,” in 42nd
International Conference on Computer Aided Design (ICCAD), 2023,
pp. 1–9.

[58] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
Halide’s Scheduling Language to Analyze DNN Accelerators,” in 25th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020, p. 369–383.

[59] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical Homomorphic Encryption Accelerator,” in 29th International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 870–881.

[60] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “PipeZK: Accelerating Zero-Knowledge
Proof with a Pipelined Architecture,” in 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, p. 416–428.

[61] M. Zhou, Y. Nam, X. Wang, Y. Lee, C. Wilkerson, R. Kumar, S. Taneja,
S. Mathew, R. Cammarota, and T. Rosing, “UFC: A Unified Accelerator
for Fully Homomorphic Encryption,” in 57th International Symposium
on Microarchitecture (MICRO), 2024, pp. 352–365.

