
Baryon: Efficient Hybrid Memory Management
with Compression and Sub-Blocking

Yiwei Li† and Mingyu Gao†‡

Tsinghua University† Shanghai Qi Zhi Institute‡

liyw19@mails.tsinghua.edu.cn gaomy@tsinghua.edu.cn

Abstract—Hybrid memory systems are able to achieve both
high performance and large capacity when combining fast
commodity DDR memories with larger but slower non-volatile
memories in a heterogeneous way. However, it is critical to
best utilize the limited fast memory capacity and slow memory
bandwidth in such systems to gain the maximum efficiency. In
this paper, we propose a novel hybrid memory design, Baryon,
that leverages both memory compression and data sub-blocking
techniques to improve the utilization of fast memory capacity
and slow memory bandwidth, with only moderate metadata
overheads and management complexity. Baryon reserves a small
fast memory area to efficiently manage and stabilize the irregular
and frequently varying data layouts resulted from compression
and sub-blocking, and selectively commits only stable blocks to
the rest fast memory space. It also adopts a novel dual-format
metadata scheme to support flexible address remapping under
such complex data layouts with low storage cost. Baryon is
completely transparent to software, and works with both cache
and flat schemes of hybrid memories. Our evaluation shows
Baryon achieves up to 1.68× and on average 1.27× performance
improvements over state-of-the-art designs.

Index Terms—Hybrid memory, compression, sub-blocking

I. INTRODUCTION

With the surge of big data [40] and deep learning [41],
the performance and energy efficiency of processing these
memory-intensive applications in modern computer systems
are largely dominated by the prominent DRAM-based main
memory. To overcome the slowdown of DRAM scaling, a large
variety of non-volatile memory (NVM) technologies have been
developed [10], [25], [39], [42]. They are expected to offer
larger storage capacity thanks to better density scaling and
cost efficiency [42], [76], but also exhibit worse latency and
bandwidth than existing DRAM.

Consequently, architects start to heterogeneously combine
the regular DRAM-based fast memory and the emerging
NVM-based slow memory into a hybrid memory system [14],
[16], [30]–[32], [36], [38], [46], [51]–[53], [55], [62], [65]–
[67], [75], with the hope to achieve both high performance and
large capacity. Such hybrid memory systems can be managed
in different ways. We can either use the fast memory as a
cache [16], [30]–[32], [52], [65], [75], or as part of the physical
memory space [14], [36], [46], [51], [53], [55], [62], [66]. We
can coordinate data placement and migration with the help of
the operating system [2], [33], [37], [38], [46], [53], [69], [71],
[75], or hide these details completely in hardware [14], [16],
[30]–[32], [36], [51], [52], [55], [62], [67].

However, the performance and efficiency of hybrid memory
systems are largely restricted by the limited fast memory
capacity and slow memory bandwidth, which must be carefully
utilized. Two techniques could help. Memory compression
exploits the value similarities among neighboring data and
condenses multiple blocks into one, therefore reducing the
data size when fetched from the slow memory and stored in
the fast memory [5], [7], [17], [19], [20], [50], [57]–[59], [64],
[73], [74]. Sub-blocking (a.k.a., sectoring [54]) divides a data
block into multiple smaller chunks, and only fetches and stores
the actually demanded sub-blocks to improve bandwidth and
capacity utilization [32], [55], [67]. Consequently, the reduced
data size from compression and the better utilization from sub-
blocking both allow us to put more useful data in the fast
memory and transfer fewer data from the slow memory.

Nevertheless, efficient support for compression and sub-
blocking in hybrid memories is challenging. Both techniques
call for a much more fine-grained management due to the
smaller basic unit of data. With the same total memory
capacity, using a smaller data tracking granularity would
significantly increase the number of metadata entries for
address remapping in hybrid memory systems, resulting in
higher metadata storage overheads. This is unacceptable
because the metadata cost in existing hybrid memories is
already quite high and they can only be stored off-chip
and partially cached on-chip. Further increasing would result
in both storage and performance problems. In addition, the
compressed and sub-blocked memory layout would become
highly irregular and complex, with various-sized data from
multiple different source blocks squeezed in one space. When
data are constantly accessed and modified, the layout would
also frequently change, making it even more difficult to
efficiently cache and/or migrate data between the two memory
tiers and accurately track their status.

In this paper, we propose Baryon, a novel hardware-based
hybrid memory architecture that leverages both compression
and sub-blocking to better utilize both fast memory capacity
and slow memory bandwidth, with only moderate metadata
overheads and management complexity. Baryon is completely
transparent to system- and application-level software. It also
supports common hybrid memory schemes that either use the
fast memory as a cache or as part of the physical memory
space, or even a static combination of both. To our best
knowledge, Baryon is the first work to apply both compression
and sub-blocking to hybrid memory systems.

liyw19@mails.tsinghua.edu.cn
gaomy@tsinghua.edu.cn


We design Baryon based on a key insight. While the com-
pressed and sub-blocked data layouts are highly irregular and
complex, once the critical subset of data from a specific block
have been transferred to the fast memory, in most cases their
footprints and compression schemes would quickly stabilize
and do not significantly change afterwards. Consequently, we
reserve a small stage area in the fast memory to manage and
stabilize the compressed and sub-blocked layout of each data
block (i.e., the fetched block/sub-block IDs and their sizes
after compression) for a short period of time. We selectively
commit the block to the ordinary fast memory space based
on its final layout stability. Most complicated operations
due to compression and sub-blocking are restricted in the
small stage area, with efficient fetch and replacement policies.
Furthermore, we use a dual-format metadata scheme to
balance between fine-grained data remapping and metadata
storage cost. The stage area uses a highly flexible metadata
format with large entries, storing sub-blocks from arbitrary
blocks within a super-block. The stage area is small and only
incurs moderate overheads. In contrast, the rest of the memory
uses a more compact metadata format to save storage cost,
but sacrifices flexibility without affecting much performance,
because committed block layouts rarely change.

We evaluate Baryon against state-of-the-art hybrid memory
and DRAM cache designs [31], [67], [74] using various bench-
marks [9], [21], [29], [48] with GB memory footprints. Baryon
achieves up to 1.68× and on average 1.27× speedups over the
DRAM cache baselines [31], [74], and up to 2.50× and on
average 1.18× over a recent hybrid memory system [67]. The
speedups mainly come from the higher chances of locating
data in the fast memory due to better capacity utilization, and
the reduced memory traffic to both fast and slow memories.
These results demonstrate that Baryon is highly effective
for improving the fast memory capacity and slow memory
bandwidth utilization under fine-grained management.

II. BACKGROUND AND MOTIVATION

Hybrid memory is an emerging architecture that potentially
offers both high access performance and large storage capac-
ity. It smartly combines the conventional commodity DRAM
technology with new non-volatile memories (NVMs). In this
paper, we call the traditional DRAM as fast memory, and the
emerging NVM as slow memory.

A. Design Space of Hybrid Memory

Cache vs. flat schemes. Hybrid memory systems can be
organized in two forms: the cache (or vertical) scheme, and the
flat (or horizontal) scheme. In the cache scheme, the fast mem-
ory effectively becomes the last-level (DRAM) cache after the
processor’s cache hierarchy, buffering the most frequently used
data from the slow memory [16], [30]–[32], [52], [65], [75].
Such a scheme usually uses simple hardware management, and
is made transparent to the operating system (OS) where only
the slow memory is OS-visible. However, the lost capacity
of fast memory may be crucial for applications with large
memory footprints. To fully utilize all memory spaces, in the

flat scheme, both memories are OS-visible, composing a large
and unified physical address space [14], [46], [51], [53], [55],
[62], [66]. The tradeoff is that the flat scheme requires more
expensive swaps to migrate data in both directions between the
two memories, potentially doubling the traffic and resulting
in additional write-after-read dependencies [68]. Given these
tradeoffs, our work aims to support both schemes.

OS-based vs. hardware-based management. In both cache
and flat schemes, we need to dynamically identify the most
critical data, and cache or migrate them into the fast memory.
An address remapping mechanism is thus needed to flexibly
move and locate a data block at different places in fast and
slow memories. Such remapping could be done in the OS or in
hardware. The OS-based solutions directly change the physical
addresses in the page table by reusing the virtual-to-physical
address translation [2], [33], [37], [46], [53], [69], [71]. This
method has several limitations due to substantial software-level
overheads and coarse-grained 4 kB page-level management.
In contrast, OS-transparent, hardware-based hybrid memory
management typically keeps physical addresses unchanged,
and introduces another level of indirection with a physical-to-
“device” address remap table [14], [16], [30]–[32], [38], [51],
[52], [55], [62], [67]. When migrating data, only the device
addresses in the remap table are updated. These hardware
designs adapt more quickly to access patterns, and are fine-
grained to more efficiently utilize bandwidth and capacity.
Thus in this work we focus on hardware-based approaches.

B. Design Opportunities and Challenges

While the total memory capacity in the flat scheme is larger
than that of the cache scheme, the precious fast memory
capacity is kept the same, and usually more difficult to expand
than the slow memory as technologies advance further. In
addition, there is a significant bandwidth gap between the
two memory tiers. Therefore, to optimize the hybrid memory
performance, we must efficiently utilize the fast memory
capacity as well as the slow memory bandwidth.

However, in existing designs, these two utilizations usually
trade one for the other. In order to best utilize the fast memory
capacity, frequent data migration and replacement are needed
to keep only the most critical data and to adapt quickly to
access pattern changes [43], [51], [53], causing significant
traffic to the slow memory. On the other hand, some solutions
aim to balance the overall bandwidth usage with bypass,
selective, or epoch-based replacement policies [15], [16], [24],
[55], [75], which may sacrifice the fast memory hit rate.

In this work, we leverage two techniques to achieve better
utilization for both fast memory capacity and slow memory
bandwidth. First, we apply sub-blocking, which divides a data
block into multiple small sub-blocks. Based on runtime access
characteristics, it only fetches the actually needed subset of
sub-blocks into the fast memory, and thus saves the bandwidth
consumption for the unneeded data (Fig. 1(a)). Traditional sub-
blocking [32], [55], [67] leaves the fast memory space of the
unfetched sub-blocks unused; a recent sub-blocking proposal,
named micro-sector cache [12], improves the fast memory



A0 A2

B1 B2

C0 C3

D3D2

A0-A3 B0-B3

C0-C3

D0-D3

Available for
more data

A0 A2

C0 C3

B1
B2

D2
D3

Available for
more data

(a) Sub-blocking (b) Compression (c) Baryon

Fig. 1. Illustration of the fast memory data layouts with the three techniques.
(a) Sub-blocking leaves unfetched sub-blocks unused. (b) Compression wastes
space if blocks are not sufficiently compressible. (c) Baryon integrates sub-
blocking and compression to enable more available fast memory space.

capacity utilization by further allowing the fetched sub-blocks
from different blocks to share the same physical block.

Then, we increase the effective fast memory capacity using
data compression (Fig. 1(b)). Compression has been widely
studied in main memories [7], [17], [19], [20], [50], [64],
[73] and caches [5], [22], [57]–[59], [63], [74]. It exploits
the value similarities among neighboring data, a.k.a., the
compression locality, and condenses multiple data blocks in
a single physical block space. The same fast memory capacity
can thus store more data, usually by a factor of 1.5 to 2 [17],
[57], [59], [60]. Furthermore, when workloads exhibit spatial
locality, transferring multiple compressed data blocks as one
physical block also saves bandwidth usage [50], [61], [74].

Challenges. However, practically applying compression and
sub-blocking to hybrid memory still faces challenging issues.
First, by compressing or splitting a large block, both compres-
sion and sub-blocking effectively manage data in smaller units,
typically a few hundreds of bytes or even 64 B cachelines.
Such a granularity is much smaller than OS pages, and may
result in significant metadata storage overheads. Particularly,
the remap table, which is already large and cannot fit in on-
chip SRAM, now needs to keep one metadata entry for each
compressed sub-block of 64 to 256 B instead of one full block
(say, 2 kB). This immediately results in up to 32× growth
in size and can easily reach a few GB for even moderately
large memory capacities, eating up a non-negligible part of the
precious fast memory. Moreover, it also reduces the coverage
of the on-chip remap cache [38], [51], [62], [67], making it
less efficient to avoid off-chip metadata lookups.

Second, compression and sub-blocking also result in com-
plex, irregular, and varying data layouts, making system
management much more difficult. As data are fetched into the
fast memory in the sub-block granularity, and further com-
pressed into even smaller sizes, the layout of a physical block
can be quite complex and irregular, containing various sub-
blocks from different blocks, and with different compression
factors (Fig. 1(c)). Furthermore, as more data are continuously
accessed and modified, the set of cached/migrated sub-blocks
need to be adaptively updated, and may also be recompressed
into a different size that no longer fits in the original space.
Essentially, it is difficult to foresee how many sub-blocks
would be cached/migrated and what their compressed sizes
would be, making it challenging to efficiently manage data
layouts in the fast memory.

Processor LLC

Stage Tag Array Remap Cache

Remap Table

Memory Controller

Stage Area Cache/Flat Area

Flat Area

Fast Memory

Slow Memory

Remap miss

Metadata Lookup Path Data Access Path

Remap hit

Added by Baryon

Stage hit

Fig. 2. Design overview of Baryon. New changes in Baryon are highlighted.

III. DESIGN

We propose Baryon, which to our best knowledge is the
first hybrid memory architecture that supports both memory
compression and data sub-blocking, in order to maximize the
utilization of both fast memory capacity and slow memory
bandwidth. Baryon achieves better performance with only
moderate metadata overheads and management complexity.
The key ideas in Baryon are to use a novel dual-format meta-
data scheme to support both compression and sub-blocking
without excessive metadata storage, and to reserve a small
stage area in the fast memory with efficient fetch, replacement,
and commit policies to flexibly manage and stabilize the
compressed and sub-blocked data layouts.

Baryon is completely transparent to both system and ap-
plication software. It only modifies the hardware memory
controller, and manages data caching/migration through a
hardware-based physical-to-device address remap table. Un-
modified OS’es and applications could directly benefit from
Baryon. Baryon also supports both cache and flat schemes.

A. Baseline Hybrid Memory System

Fig. 2 shows a typical hybrid memory architecture [38],
[51], [62], [67], on top of which Baryon adds its new exten-
sions. The fast memory can be flexibly (but statically) parti-
tioned into cache and flat areas. We use 2 kB data blocks [38],
[55], [62], [67], to align with DRAM pages and reduce the
remap table size. The physical address of a data block is
translated through the hardware-managed remap table, into the
actual device address that may be in the fast memory cache
area (invisible to OS) or in the (either fast or slow) flat area.
The remap table resides in the fast memory, but its entries
can be cached in an on-chip SRAM remap cache. The remap
table uses a simple linear format: each data block in the entire
physical address space has an entry that contains a pointer to
the actual device address. In this baseline, each memory access
first probes the remap cache (and the off-chip remap table if
missed) to get the remapped device address, from which it
then accesses the actual data. If the data block is currently in
the slow memory, after responding to the processor last-level
cache (LLC), we may further cache or migrate the block into
the fast memory, according to the system policies.

To reduce complexity, the hybrid memory is organized as
set-associative, i.e., divided into multiple sets where each



includes a certain number of fast and slow blocks. We define
associativity as the number of fast blocks in a set. Caching and
migration only happen among blocks within a set. Therefore
the remap entry only needs to store a relative position within
a set. With a lower associativity (e.g., 1 to 4 fast blocks) [31],
[38], [52], [55], [62], this pointer can be much shorter than
the full address, and each remap entry is only a few bits. On
the other hand, highly/fully associative designs [44], [51], [67]
reduce conflicts at the expense of higher storage and lookup
overheads. For simplicity, Baryon uses a moderate associativ-
ity of 4. We discuss higher associativities in Section III-F.

Note that in this design, the remap table covers both
the cache and the flat area. Pure DRAM caches may use
conventional tag arrays (essentially the inverted mapping from
device to physical addresses) either in SRAM or embedded in
DRAM [23], [28], [45], [52], and may use a way predictor to
replace the remap cache [31], [55], [72]. These designs reduce
metadata lookup latency, but are limited to low associativities.
Baryon chooses not to use them.

B. Baryon Overview

Baryon extends the above baseline with compression and
sub-blocking. Baryon divides each 2 kB block into eight 256 B
sub-blocks. We choose 256 B as our sub-block size to balance
between spatial locality and bandwidth consumption [67].
We evaluate other sub-block sizes, e.g., 64 B [32], [55],
in Section IV. Baryon allows a subset of a block’s sub-
blocks to be cached or migrated into the fast memory. These
cached/migrated sub-blocks are organized into one or multiple
contiguous and aligned ranges [58], each of which is individu-
ally compressed and must fit in one sub-block space, realizing
a dense layout. This works well in practice because nearby
data usually have similar contents and can be effectively
compressed, known as the compression locality [50], [57].
Baryon therefore saves both fast memory capacity and slow
memory bandwidth for the rest rarely accessed data.

Following prior work [74], Baryon uses two compression al-
gorithms, FPC [4] and BDI [49], which have efficient hardware
implementations and offer a balance between compressibility
and cost. We feed to-be-compressed data into both hardware
modules and accept the one with the higher compression factor
(CF). Alternative schemes [6], [13], [34] can also be used and
the exact choices are orthogonal to our design. We support
three CFs of 1, 2, or 4, following prior observations [26], [27],
[57]–[59]. Therefore, each physical sub-block space may store
one uncompressed sub-block (CF = 1), two sub-blocks with
CF = 2, or four sub-blocks with CF = 4. Decompression is on
the critical path of fast memory access, but usually costs only
1 to 5 cycles [4], [13], [49], [74]. This is much lower than
the difference between typical fast and slow memory access
latencies, so Baryon decides to always enable compression in
the fast memory. Selective compression is promising to further
reduce this overhead, but may need software semantic hints
with extra design complexity. We leave it for future work.

Key innovation: stage area and selective commit. To
address the layout challenge in Section II-B, Baryon introduces

a small stage area in the fast memory (highlighted in Fig. 2)
to buffer (called stage) incoming data that are just fetched
from the slow memory and have not reached a stable layout.
It only takes a small portion (e.g., 64 MB) of the fast memory,
and is set-associative with 8192 sets and 4 ways per set. Each
stage set is shared by multiple cache/flat sets. Only after a
staged block is sufficiently stabilized, do we move it into the
fast memory cache or flat area (called commit). Commits are
selective; blocks that are still unstable when evicted out of the
stage area are put back to the slow memory.

The stage area relies on a key novel observation. While the
overall sub-blocked and compressed data layouts constantly
change, once all the sub-blocks of a specific block that should
be cached/migrated have been moved into the fast memory
after the initial cold misses, both its sub-block footprints
and compression factors would likely remain fairly stable
afterwards. In other words, when a data block is just fetched
into the fast memory, the unstable layout causes many data
replacements and misses to the slow memory. After we spend a
short period of time accumulating its frequently accessed data
in the stage area, very few later accesses to this block would
require a sub-block outside the accumulated subset, or make
the accumulated sub-blocks significantly less compressible
to not fit in their slots anymore. Therefore the number of
misses would significantly reduce. Previous work leveraged
the stabilization of simple sub-block footprints [32]; we extend
the observation to also cover compression and more complex
data layouts, with novel hardware designs.

To verify the above observation and the effectiveness of the
stage area, we analyze the SPEC CPU2017 workloads [48].
Fig. 3(a) shows that when a block is just staged (the “S”
bars), there are high chances for sub-block read/write misses,
as well as write overflows where updated data cannot fit in the
compressed space anymore. After commit (the “C” bars), both
of these ratios decrease, to less than 5% and 1% on average,
respectively. For example, the overflow rate of xz reduces
from 10.9% to 2.0%. Fig. 3(b) further uses different stage area
sizes from 16 MB to 128 MB. Larger stage area sizes reduce
the miss/overflow chances of commit blocks, while 64 MB is
generally sufficient. In Section IV, we demonstrate the end-to-
end performance benefits of using a stage area, which could
be up to 1.24× (Fig. 13(c)).

Fig. 4 further illustrates how the layout stability changes
across time during the stage phase, i.e., when blocks are in
the stage area. We sample 1k blocks and measure their stage
area MPKI values, and use the reduction of misses to reflect
the layout stability improvement. We aggregate the results of
all blocks at the same relative time of their stage phases, i.e.,
the x-axis of each block is normalized to its unique stage
phase length so that x = 1 indicates the time when the block is
commit/evicted out of the stage area. We can see that, blocks
have higher MPKI initially at x = 0, but the MPKI distribution
quickly reduces by an order of magnitude, and keeps low after
x = 0.5, i.e., halfway through the stage phase. This means that
the layouts of most blocks can sufficiently stabilize before
commit (x = 1). However, there still exist a small number of



gcc mcf lbm

omnetp
p

fotonik3d
roms xz

(a) Stage/Commit Phase

0.00

0.25

0.50

0.75

1.00

A
cc

es
s B

re
ak

do
w

n

S    C S    C S    C S    C S    C S    C S    C

gcc mcf lbm

omnetp
p

fotonik3d
roms xz

(b) Multiple Stage Area Sizes

0.00

0.25

0.50

0.75

1.00

A
cc

es
s B

re
ak

do
w

n
Read Hit
Write Hit (no overflow)

Read Miss
Write Miss

Write Overflow

Fig. 3. Breakdown of access types when using a stage area. SimPoint [70]
is used to identify a representative execution phase of each workload. Hit
means accessed data are in the fast memory. Write overflow means updated
data cannot be compressed to the original size. (a) When blocks are just
staged (S) and later just committed (C), using a 64 MB stage area. (b) When
blocks are just committed out of the stage area, using different stage area
sizes (16 MB, 32 MB, 64 MB, 128 MB).

0 0.1 0.3 0.5 0.7 0.9
Normalized Time

gcc

10−5
10−4
10−3
10−2
10−1
100

St
ag

e 
A

re
a 

M
PK

I

0 0.1 0.3 0.5 0.7 0.9
Normalized Time

omnetpp

10−5
10−4
10−3
10−2
10−1
100

St
ag

e 
A

re
a 

M
PK

I

0 0.1 0.3 0.5 0.7 0.9
Normalized Time

roms

10−5
10−4
10−3
10−2
10−1
100

St
ag

e 
A

re
a 

M
PK

I

0 0.1 0.3 0.5 0.7 0.9
Normalized Time

xz

10−5
10−4
10−3
10−2
10−1
100

St
ag

e 
A

re
a 

M
PK

I

Fig. 4. Stage area MPKI distribution trends of 1k sampled blocks observed
across their stage phases. The x-axis of each block is normalized to its unique
stage phase length so that x = 1 indicates the time of commit/eviction out
of the stage area. The box boundaries show the 25%/75% quartiles and the
whiskers show 5%/95% tails.

unstable blocks with high MPKI values even at x = 0.9 (the
95% tail is notably higher than the average), which motivates
a selective commit policy as discussed in Section III-E.

Key innovation: dual-format metadata scheme. Baryon
also uses a dual-format metadata scheme to alleviate the meta-
data overheads without sacrificing flexibility. First, the stage
area has a relatively small size (e.g., 64 MB), but the metadata
need to be frequently accessed and updated in response to
the rapidly changing data layouts. We therefore use an on-
chip stage tag array in the memory controller (highlighted in
Fig. 2), with one entry per stage area block. Each entry uses

a flexible and fine-grained metadata format that is friendly
to rapid data layout changes but requires significant size. In
order to reduce the stage tag array size, we further adopt a
hierarchy of multiple data granularities, with a few moderate
restrictions on which sub-blocks can be cached/migrated to
which locations. Eventually, each entry fits in 14 B and the
total stage tag array is 448 kB, with the identical set-associative
structure as the stage area.

On the other hand, the committed blocks in the cache/flat
areas use a more compact metadata format, similar to con-
ventional remap tables but also supporting sub-blocking and
compression. We again rely on the aforementioned insight that
committed block layouts are fairly stable, and translate the
metadata (and also the data layout of the block) into a format
that disables any further layout change, but saves over 7×
size than the stage tag (from 14 B to 2 B). This makes the full
remap table occupy only 0.1% of the total system memory
capacity, well fitting in a small portion of the fast memory.
We further use a customized remap cache of 32 kB, which can
achieve typical hit rates of over 90%. Together with the stage
tag array, the total SRAM usage in the memory controller is
480 kB, comparable with previous works [38], [51], [62], [67]
(see Table I for configuration details).

C. Data Layouts and Metadata Formats

Most previous sub-blocking designs only allow one fast
memory block space to contain sub-blocks from a single data
block [32], [55], [67], in order to share the same tag and remap
pointer to reduce metadata overheads, but with the drawback
of wasting the spaces for absent sub-blocks. Such space waste
would be even more significant if compression makes the
cached/migrated data even smaller.

To fully exploit the fast memory capacity benefits enabled
by sub-blocking and compression, Baryon allows many sub-
blocks from multiple data blocks to co-exist in one physical
block space (Fig. 1(c)). Naively doing so would unfortunately
enlarge the metadata size, as one entry for the physical block
needs to include multiple long tags and/or pointers to indicate
which blocks the sub-blocks come from. Baryon deals with
this challenge by adopting a dual-format metadata scheme.
The scheme uses two formats, for the stage tag array and the
remap table, respectively, with different tradeoffs between flex-
ibility and size. It also enforces a few moderate restrictions on
which sub-blocks can be cached/migrated to which locations,
and whether the data layouts are allowed to change.

Stage tag format. First, Baryon adopts an extra granular-
ity, by organizing multiple blocks into a super-block. Each
physical block space can only contain the sub-blocks from
a single super-block (Rule 1), and only one super-block tag
is needed [54], [58]. Based on the common statistics, typical
compression factors (CFs) are up to 4 [17], [26], [27], [57]–
[60], and usually less than half of the sub-blocks in one block
are cached/migrated [32]. We thus group eight blocks into a
16 kB super-block. We explore other super-block size choices
in Fig. 13(b). Note that Baryon still allows the data from
one super-block to occupy more than one physical blocks,



Stage Tag

21b 3b 3b

D

CF=1

BlkOff

3b1b

SubOff

3b

1

1b

Sub-blocksTag LRU FIFOV

8b * 81b

D BlkOff

3b1b

SubOff

2b

01

2b

CF=2

D BlkOff

3b1b

SubOff

1b

001

3b

CF=4

Not Used

4b

000

3b

Invalid / Zero Block

In total
~ 14 B

2b8b

Remap Entry

In total 16 bits
~ 16 B per super-block

4b 2b

Slow Memory

Super-block 𝜱

Fast Memory (Stage Area)

A0 A1 A2 A3 AA4 A5 A6 A7

B0 B1 B2 B3 BB4 B5 B6 B7

C0 C1 C2 C3 CC4 C5 C6 C7

H0 H1 H2 H3 HH4 H5 H6 H7

A2
H2
H3

B3 A0Y B1
E2
E3

A4-
A7

_

Fast Memory (Cache Area)

A0 A2
A4-
A7

B1 B3
B4-
B7

E2
E3

H2
H3

Commit

D6
D7

C4
C5

F0
F1

G0-
G3

X
C2
C3

_ _ _ Evict

PointerRemap bits CF2 bits CF4 bits

…

…
A

B

H

Z

Tag LRU FIFO

𝜱 000 1111

Sub-blocksV

PointerRemap bits CF2 bits CF4 bits

PointerRemap bits CF2 bits CF4 bits

Block Z10101111 0000 01

Block Z01011111 0000 01

Block Z00110000 0100 00

…

Y

0 000 0101 0 111 0101 000 00000…

0 001 1001

(b) Remap entry metadata format..(a) Stage entry metadata format. 

(c) Slow memory layout. Since sub-block B4 is accessed, 
the adjacent sub-blocks are prefetched if compressible.

(d) Stage area layout. The metadata of the newly staged four 
sub-blocks are updated.

(e) Cache area layout, which contains committed blocks whose 
layouts are fixed.

+ LRU for blocks in the fast cache/flat area
+ Tag, LRU in Remap Cache

Z

1b

MissCnt

2B

Fig. 5. Data layouts and metadata formats in the stage area and the cache/flat areas. A, B are data blocks; A0, B0 are sub-blocks; X, Y are physical blocks.

e.g., physical blocks X and Y for data from super-block Φ in
Fig. 5(d). Such cases are rare (1.12% in our experiments), but
nevertheless helpful if some super-blocks have many hot data
that are less compressible.

Additionally, we further require that the cached/migrated
sub-blocks are organized in contiguous and aligned ranges
(Rule 2). With three possible CFs in Baryon, the ranges could
be a single uncompressed sub-block (e.g., A0 in Fig. 5(d)),
two aligned sub-blocks with a CF of 2 (e.g., H2-H3), or
four aligned sub-blocks with a CF of 4 (e.g., A4-A7). Under
such restrictions, we can store shorter sub-block offsets and
no explicit sub-block numbers in the metadata, both implied
by the CF. These restrictions have minor impacts in practice
(Fig. 12), thanks to the high spatial locality and value com-
pression locality in many workloads [50], [57].

Consequently, the metadata format of the stage tag array
is shown in Fig. 5(a). Each entry represents a 2 kB physical
block in the stage area. There is a single super-block Tag (Rule
1, 48− log(16kB)− log(8192sets) = 21bits) and a valid bit
V. Each of the eight sub-block spaces can store a contiguous
and aligned range of sub-block data (Rule 2), with CF as 1, 2,
or 4. Each range is encoded into 8 bits following one of the
four types, with the CF code, a dirty bit D, the block offset
within this super-block (BlkOff), and the starting sub-block
offset within this block (SubOff). The number of sub-blocks
is implicitly determined by the CF. A special encoding with
the Z bit supports all-zero blocks. Finally, the entry uses a 3-
bit LRU field and a 3-bit FIFO field for two-level replacements,
and a 2 B MissCnt for selective commits, both discussed in
Section III-E. In total, each entry needs 108 bits or 14 B.

Fig. 5(d) also shows an example. The physical block Y
contains only sub-blocks from the super-block with tag Φ. Its
sub-block space, e.g., the second one for H2-H3, is encoded
with 01 (for CF = 2), 0 (clean), 111 (the 8th block H), and

01 (the 2nd aligned range of 2 sub-blocks).
Remap entry format. While the small stage area can use

a longer and more flexible format, the large number of remap
table entries must use a more compact representation to save
space. In a conventional remap table, each data block entry
contains one pointer to its cached/migrated location [38], [55].
We enforce the same requirement, i.e., all sub-block data from
the same block, if present in the fast memory, must reside in
the same physical block space (Rule 3). Furthermore, we also
leverage the observation that committed data have relatively
stable layouts that rarely change. Therefore, when a block is
committed from the stage area into the fast memory cache/flat
areas, we sort its compressed sub-blocks and fix the sorted
layout to disallow any further layout change (Rule 4). There-
fore, the remapped sub-block location could be determined by
how many sub-blocks from the blocks before this one in the
same super-block are also remapped to this physical block.

As a result, a more compact but less flexible format is used
for the remap entry, as shown in Fig. 5(b). We still associate
one remap entry with each block. Eight Remap bits indicate
which sub-blocks have been cached/migrated, whose locations
are recorded by the single Pointer field (Rule 3); other sub-
blocks remain in their original locations. The Pointer is short
in low-associative designs (2 bits for 4-way). If it points to an
OS-visible address, this is a migrated block to the flat area;
otherwise it is in the cache area. Additional CF2 and CF4 bits
denote the corresponding contiguous and aligned ranges (Rule
2). A special invalid state of CF2 and CF4 (i.e., all 1’s) encodes
the all-zero case if the Z bit is set. Note that we may also need
dirty bits and LRU information for replacement and writeback,
but these metadata are per physical block (blocks X, Y, Z in
Fig. 5), in contrast to the remap entry which is per logical data
block (blocks A, B, C in Fig. 5). So we store them in another
table, separately from the remap entries.



To look up the location of a cached/migrated data sub-block,
we first get all entries for the blocks in the same super-block
(only tens of bytes). We keep those that are before the target
block and have the same Pointer as the target block. We then
check the Remap and CF2/CF4 bits in these entries to detect how
many sub-blocks are in the same physical block pointed by
Pointer, and how much space they occupy before the target
sub-block. Then we can know the position of the target sub-
block given the sorted layout. As an example, to search B3 in
Fig. 5(e), we realize both A and B blocks have sub-blocks in
the same physical block Z. The Remap and CF2/CF4 bits say
A0, A2, A4-A7, and B1 each takes one sub-block space. So B3
is in the 5th sub-block of Z. Generally, the remapped location
is equal to the number of valid remap bits, minus valid CF2
bits, and minus 3× valid CF4 bits, all from the remap entries
of the super-block before the current block.

The remap cache is correspondingly modified to better
support this format. First, we organize the remap cache in
the super-block granularity instead of individual blocks. This
means each line contains eight entries (16 B, which are read
together as mentioned before) plus a super-block tag. Then we
add the logic to do the above sub-block position calculation
from one super-block line, which is essentially eight parallel
decoders and a prefix sum unit. Such logic has a minor delay.
Such changes neither significantly impact the hit rate nor the
hit latency. Our 32 kB remap cache is still comparable to the
conventional one, with over 90% hit rates.

D. Access Flow

We now illustrate the detailed access flow of Baryon,
especially the operations to the newly introduced stage area
and stage tag array described above.

To access a physical address, we start by looking up the
associated metadata in the stage tag array and the remap cache.
We use the super-block tag to associatively search these two
on-chip SRAM structures in parallel (the orange arrows in
Fig. 2). For all matched entries (usually one but occasionally
multiple) in the stage tag array, we further examine the eight
sub-block fields. Because the stage tag array entries and the
stage area blocks are one-to-one corresponded, a hit/miss in
the stage tag array guarantees the sub-block is in or not in the
stage area. On the other hand, if we miss in the remap cache,
we need to probe the off-chip remap table in the fast memory.
The Remap bit of the target sub-block determines whether it
is remapped to the location pointed by Pointer, or in the
original place. Stage tag array hits have higher priority than
remap cache/table entries. Based on the metadata outcome, we
have the following five cases as Fig. 6.

Case 1: block in stage area, and sub-block hit. The data
are already in the stage area, so we can directly perform read
or write. For writes, we recompress the updated data, and if
they exhibit a different CF, we remove and insert them as if
they are a newly fetched range (see case 3 below).

Case 2: block in cache/flat area, and sub-block hit. We
directly access the data in the fast memory. Note that this
means data in the fast memory (originally, or after committed)

Lookup stage tag array &
 

rem
ap cache/table

Block in
stage area

Sub-block hit Case 1 Access fast memory
Recompress if overflow

Sub-block miss Case 3 Stage
May trigger replacement

Block in 
cache/flat area

Sub-block hit Case 2 Access fast memory
Evict if overflow

Sub-block miss Case 4 Bypass to slow memory

Block miss Case 5 Stage
May trigger replacement

Fig. 6. Access flow in Baryon. Cases are elaborated in Section III-D.

are not further staged. One key difference from case 1 is that,
the data layout cannot change now (Rule 4). If a write makes
the sub-block data overflow its original CF and not fit in the
block, we have to evict them to the slow memory. Because the
remap entry format is sorted and dense (Rule 4), the whole
block layout becomes invalid, unless the evicted sub-block is
the last one. So we must evict the whole block. Fortunately,
such evictions only happen in less than 1% of all memory
accesses (Fig. 3), incurring minor performance loss.

Case 3: block in stage area, and sub-block miss. In
this case, we fetch the sub-blocks and immediately return the
demanded 64 B cacheline to the processor LLC. In the back-
ground, we compress the sub-blocks and try to append them
into the stage area block space with other sub-blocks from the
same data block, i.e., a stage operation. Fig. 5(c) shows this
case: an access to B4 finds block B in the stage area but the
sub-block misses, so we fetch B4 together with its neighbors.
We always fetch the maximum contiguous and aligned range
(Rule 2; B4-B7 here) that can be compressed into one physical
sub-block space. In other words, compression enables a form
of slow-to-stage prefetching. More specifically, at the first
time when data from the slow memory are prefetched in the
above way, we try all possible CFs and choose the maximum
one. Section III-F introduces an optimization that keeps these
fetched data in the compressed form when they are evicted
back to the slow memory. As a result, the next time when
the same data are fetched to the stage area, they are already
grouped as the desired range for slow-to-stage prefetching,
and do not need repetitive trials. If the physical block does
not have an empty place, the fetch may trigger a replacement,
which we discuss in detail shortly.

Case 4: block in cache/flat area, and sub-block miss.
Because the committed block layout is finalized (Rule 4),
we cannot add the sub-block to this block. Because some
other sub-blocks in this target data block have already been
remapped to this physical block in the fast memory, we cannot
stage this sub-block to the stage area, otherwise violating Rule
3. Therefore, we directly access the data from the slow mem-
ory. This case is also rare (4.9% in Fig. 3), because the stage
phase is able to capture the most frequently accessed footprint.
Such bypassing may sometimes be beneficial, leading to more
balanced fast/slow memory bandwidth usage [1], [15], [55].

Case 5: block miss in the fast memory. We fetch the data
from the slow memory similar to case 3, and also try to stage
it and its neighbors. The fetched data go to the physical block



Send 64 B
back to LLC

Extra LLC
installs

Fetch compressed
256 B (CF=4)

A0 A1 A2 A3 A0 A2 A3A1

256

A0 A1 A2 A3

???0 0 256128 19264

Decompress to
1024 B

A0 A1 A2 A3

Send 64 B
back to LLC

Fetch compressed
64 B (CF=4)

Decompress to
256 B

256 B compression unit 64 B compression unit

Fig. 7. Original vs. cacheline-aligned compression. Left: Without knowing
the exact boundaries in the compressed data, all 256 B must be fetched. Right:
By enforcing to compress into individual 64 B, fewer data are fetched.

in the stage area if there is already one for its super-block, or
require allocating a new physical block. This may also trigger
replacements. In rare cases when there are multiple physical
blocks staging this super-block, we randomly select one to
append. This heuristic attempts to balance the block staging
lifetime, and has no metadata cost.

E. Stage Area Fetch/Replacement/Commit Policies

Cacheline-aligned compression. Baryon uses a sub-block
size of 256 B, larger than the 64 B cacheline and DDRx access
granularity. As a result, at an LLC miss, we must transfer at
least a compressed sub-block back to the memory controller,
decompress it, and retrieve the demanded cacheline. The rest
cachelines, which can be up to 1024 B with CF = 4, result in
bandwidth waste and may pollute the LLC (Fig. 7 left).

Baryon uses cacheline-aligned compression to alleviate this
issue [50]. In particular, we require that each individual 64-
byte chunk in the compressed sub-block can be independently
decompressed. This means that, while originally 256n-byte
data are compressed into one sub-block to get a CF of n
(n = 1,2,4), now each chunk of 64n-byte data (4 such chunks
in n sub-blocks) must be individually compressed with a CF
of n, as shown in Fig. 7. This is a stronger compression
restriction, as typically smaller chunks are harder to compress
than larger chunks. However, we find the actual CF loss (from
1.78 to 1.63) and the hit rate degradation (3%) are marginal,
matching the observation in previous work [50]. There are
enough compression opportunities even within each cacheline.
Most hardware compression algorithms for caches/memories,
including those we adopt, are designed to work sufficiently
well at the cacheline granularity [4], [13], [47], [49], [78].

With cacheline-aligned compression, each data access only
transfers a 64-byte compressed data chunk, compatible with
DDRx. This piece of data may be decompressed into multiple
cachelines (up to 4), which are all installed into the LLC to
benefit from spatial locality, same as in previous work [50],
[74]. Such memory-to-LLC prefetching is bandwidth-free and
could increase the LLC hit rate by up to 5% for workloads
with high spatial locality [74].

Two-level replacements. Staging newly fetched sub-blocks
into the stage area may need to first evict other sub-blocks or
blocks (cases 3 and 5 in Fig. 6). If there are already other sub-
blocks from the same data block existing in the stage area, the

Stage Area (Fast Memory)

A0 C4
C5 B1 A2

Stage
Block Y B3 C2

C3
A4-
A7

B4-
B7

C0
C1

C4
C5 B1 A2Stage

Block Y B3 C2
C3

A4-
A7

B4-
B7

Sub-block-level
Replacement

C0
C1

C2
C3

C4
C5 _

Stage
Block X _ _ _ _

Block-level
Replacement A0 _ B1 A2

Stage
Block Y B3 _ A4-

A7
B4-
B7

FIFO

Fig. 8. Two-level (sub-block- and block-level) replacements in the stage area.

incoming new sub-block must go to that physical block (Rule
3), and may trigger a sub-block-level replacement. Otherwise,
the new sub-block, as the first fetched one from a data block,
may choose either a sub-block-level replacement, or to allocate
a new physical block space (a block-level replacement).

Baryon relies on a two-level replacement policy to effi-
ciently handle these scenarios. The block-level replacements
follow a standard LRU policy, using the LRU bits in the stage
tag entry (Fig. 5(a)). For sub-block-level replacements, we use
a 3-bit FIFO pointer to the next sub-block victim, so new
data sub-blocks are appended sequentially, and wrap back
if overflowed. A simple FIFO policy reduces the metadata
size, and works sufficiently well because compression and
sub-blocking make sub-block-level replacements much more
infrequent than ordinary cache evictions.

For those scenarios that can use either level of replacement
(i.e., case 5), we use the following heuristic. If the physical
block suffering from a sub-block-level replacement is the LRU
one, we prefer a sub-block-level replacement that only evicts
a sub-block to the slow memory. As the top in Fig. 8 shows,
C0-C1 replaces A0 in block Y. However, if the block is not
LRU, we prefer a block-level eviction to the LRU block, which
represents a less frequently/recently accessed super-block. The
incoming sub-blocks are inserted into the new block space,
e.g., C0-C1 in Fig. 8 bottom; additionally, the other sub-blocks
in the same data block as the incoming ones, e.g., C2-C3 and
C4-C5, are also moved to the new block to satisfy Rule 3.
Now two physical blocks are used for this super-block. While
this rearrangement seems costly, it is actually beneficial in the
perspective of decreasing fragmentation, where the sub-blocks
belonging to the same data block have a higher chance to be
re-grouped together and even recompressed to a smaller size.
In either case, the replacements are off the critical path.

Selective commits. A block-level replacement in the stage
area could choose to commit the victim block, i.e., putting
it into the fast memory, or directly evict the victim block
to the slow memory. In the first case, to make room for the
committed block, a block in the cache/flat area is selected for
evicting to the slow memory in the same way as the baseline
fast-to-slow eviction, which can use policies such as LRU,
LFU, CLOCK, and even random [31], [43], [55], [62]. This
is orthogonal to Baryon. We choose LRU for low-associative
cases and FIFO for high-associative.



To decide whether to evict the stage area victim block or the
cache/flat area LRU block to the slow memory, Baryon uses
a selective commit policy based on a novel stability-aware
heuristic cost model. Traditional policies like Hybrid2 [67]
mainly consider the writeback traffic, where the two candidates
are compared based on their numbers of dirty sub-blocks.
In Baryon, we further incorporate the block layout stability,
because committing an unstable block would inefficiently
cause many sub-block misses and write overflows later in the
fast memory. Following the idea in Fig. 4, we approximate
the benefit of committing a block using the reduction of
misses during the stage phase. Essentially, the miss rate at
the beginning indicates the situation where blocks are not
committed but accessed from the slow memory, and the miss
rate at the end of the stage phase represents the expected miss
rate after we commit the compressed block to the fast memory.
Their difference reflects the saving from committing.

We add a 2 B MissCnt in each stage tag array entry to count
the sub-block misses to this block (case 3 in Section III-D).
We also add a same-size MRUMissCnt per each set, which
counts the misses to the MRU position in this set, including
block-level misses (case 5), and sub-block misses (case 3) to
the current MRU block. All these counters age themselves
by right shifting one bit every 10000 accesses to this set.
When we need to decide whether to commit a block, its own
MissCnt represents the recent miss count close to the end of its
stage phase, while the MRUMissCnt divided by the associativity
estimates the miss count of a just staged block. These are
the two statistics needed by our policy. Therefore the commit
benefit is given as

B= k×(
MRUMissCnt

assoc
−MissCnt)+(#Dirtystage−#Dirtycache/flat) (1)

The first term considers the layout stability as discussed above.
The second term adds the write traffic cost [67], where #Dirty
is the number of dirty sub-blocks that need writeback in the
candidate block. For the flat area, all sub-blocks need to be
swapped and so all are treated as dirty. Our policy uses a
parameter k to measure the importance of the two factors.
If B ≥ 0, committing is more beneficial; otherwise the block
should be directly put back to the slow memory.

Obviously the value of k is critical to the effectiveness of
this policy. When k = 0, the policy only cares about the write
traffic similar to Hybrid2 [67]; when k = ∞, it only considers
the layout stability. In Section IV-D, we empirically find that a
k value slightly larger than 1 (e.g., 4 as the default in Baryon)
works well. This is because the writes are mostly off the
critical path so we should put a heavier weight on the misses.

F. Additional Discussion and Optimizations

Supporting high associativities. Hybrid memories with
higher associativities address conflict misses and exhibit higher
fast memory hit rates [51], [66], [67]. However, cache-style
inverted (device-to-physical) tag arrays cannot be used any-
more because of impractical associative search, and forward
(physical-to-device) remap tables become the only choice.
Baryon uses such a remap table for the fast memory areas,

thus easily supporting high associativities. The stage area,
on the other hand, is independent and uses its own low-
associative structure. Another issue of highly associative fast
memory is that, during replacement, it is hard to know the
original location of the victim only from the remap table, and
an inverted table is needed with extra overheads [51], [67].
Baryon makes this orthogonal issue neither better nor worse.

Supporting the flat scheme. Baryon manages its fast
memory similarly to previous work [38], [51], [62], [67].
However, for the flat scheme, if a fast memory block space
is selected to hold a migrated data block, its original content
must be swapped to the slow memory. This could raise issues
in Baryon when we allow for sub-block-level fetches that may
not leave a full empty block in the slow memory. For example,
in Fig. 5, now assume Block Z is in the fast memory flat
area into which we would commit a stage area Block Y. The
original block Z data must be swapped to the slow memory.
However, as in Fig. 5(c), none of the eight block spaces in the
super-block is completely available; each has some sub-blocks
that are not migrated, e.g., A1, B0, C0, etc. We cannot swap
the original Block Z into any single one of them.

Baryon instead spreads the swapped block into the many
free individual sub-block spaces in the super-block. Note that
to have a full compressed Block Y to be committed, we
must have migrated a sufficient number of sub-blocks from
that super-block, which is typically larger than a block size
due to further compression (we never stage fast memory
data, so all sub-blocks should come from a slow memory
super-block according to Rule 1). These available sub-block
spaces are already accurately recorded in the remap entry after
committed. For example, in Fig. 5(e), Block A has Remap
bits 10101111, meaning the sub-block spaces with 1 bits
are available for swapped content. We thus choose the first
eight sub-block spaces to hold the swapped block. This also
works even if multiple compressed blocks are committed (e.g.,
Blocks X and Y in Fig. 5(d)); the victim of each can go to
their disjoint sets of slow memory sub-block spaces.

When the chosen victim in the flat area is not an original
fast block, but another committed compressed block, Baryon
follows the widely used slow swap mechanism [55], [62] that
requires data originally from the slow memory to only be
evicted to their original locations, not any other slow memory
space. This avoids chains of swapping that may go arbitrarily
long and complicate metadata tracking. The cost is a three-
way swap that moves more data. Following our example in
Fig. 5(e), say now we want to commit Block X to the space
of Block Z, but Z contains the committed data as shown in
the figure. The original content of Z is now spread over the
super-block Φ. (1) We first move the original content of Z
to the sub-block spaces corresponding to the data in the to-
be-committed new Block X. (2) Then we evict the previously
committed data currently in Block Z to their original slow
memory locations, which are just freed up in the last step. (3)
Now Block X can use Block Z space. The final state is the
same as if we only had committed Block X. So the Baryon
metadata scheme can directly support it.



TABLE I
SYSTEM CONFIGURATIONS.

Cores x86-64, 3.2 GHz, 16 cores
L1I 4-way, 32 kB per core, 64 B cachelines, LRU
L1D 8-way, 64 kB per core, 64 B cachelines, LRU
L2 8-way, 1 MB per core, 9-cycle latency, LRU

LLC 16-way, 16 MB shared, 38-cycle latency, LRU

Stage tag array 8192 sets, 4-way, 5-cycle latency

Remap cache 256 sets, 8-way, 8 entries per line, 3-cycle latency

Compressor FPC/BDI, 2 B/4 B/8 B segments, 5-cycle decompr.

Fast memory
DDR4-3200, 4 channels, 2 ranks, 16 banks;
RCD-CAS-RP: 22-22-22;
RD/WR: 5.0 pJ/bit, ACT/PRE: 535.8 pJ

Slow memory NVM, 1333 MHz, 4 channels, 1 rank, 8 banks;
read 76.92 ns, 14 pJ/bit; write 230.77 ns, 21 pJ/bit

Fast-to-slow writeback with compressed data. To further
reduce slow memory bandwidth consumption, we can keep
data compressed when they are written back from the fast
memory to the slow memory. When doing such fast-to-slow
writeback, we clear the Remap bits, but keep the CF2/CF4 bits
which indicate what data are compressed. Another benefit is
that these CF2/CF4 bits also act as slow-to-stage prefetching
and compression hints, when the sub-blocks are fetched again
in the future. We find this small optimization reduces band-
width by 7.2% and improves performance by 3.1%.

IV. EVALUATION

A. Experimental Setup

Simulated configurations. We use zsim [56], a Pin-based
simulator, to evaluate Baryon on a 16-core system summarized
in Table I. We use DDR4 as the fast memory and an NVM
as the slow memory, with a capacity ratio of 1:8, i.e., 4 GB
and 32 GB, respectively. They are modeled from commercial
datasheets as well as previous literature and open-source
implementations [11], [35], [67], [68], [77]. We extend zsim
to support both cache and flat modes. In the flat mode,
the blocks are initially placed in the fast memory until the
space is used up. We use CACTI [8] to model the additional
SRAM structures, including the stage tag array and the remap
cache. We conservatively use a 5-cycle decompression latency
on the critical path, though more aggressive designs showed
decompression down to a single cycle [4], [13], [49].

Workloads. We use benchmarks from a subset of SPEC
CPU2017 [48] whose data footprints are larger than the fast
memory capacity, graph algorithms (pagerank and cc) from
GAP [9] on real-world graphs (twitter and web-sk-2005),
neural network inference (resnet50 and resnext50) using
Intel OneDNN [29], and memcached key-value store [21] with
YCSB [18]. SPEC workloads are executed in the rate mode
with 16 copies; other workloads use 16 threads each. For
SPEC workloads, we fast forward the first 5 to 50 billion
instructions until they are fully initialized, and simulate the
next 5 billion instructions. They use 5.8 GB (557.xz r) to
13.4 GB (549.fotonik3d r) memory space. We simulate

50
2

50
3

50
5

50
7

51
9

52
0

52
7

54
9

55
4

55
7

cc
.tw

i
pr

.tw
i

cc
.w

eb
pr

.w
eb

re
sn

et
50

re
sn

ex
t5

0
Y

C
SB

-A
Y

C
SB

-B
G

eo
m

ea
n

0
1
2
3
4
5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce 5.23

6.03
4.98
5.57

Unison Cache DICE Baryon-64B Baryon

Fig. 9. Performance comparison between Baryon and the baselines in the
low-associative cache mode. Normalized to Simple (not shown).

50
2

50
3

50
5

50
7

51
9

52
0

52
7

54
9

55
4

55
7

cc
.tw

i
pr

.tw
i

cc
.w

eb
pr

.w
eb

re
sn

et
50

re
sn

ex
t5

0
Y

C
SB

-A
Y

C
SB

-B
G

eo
m

ea
n

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

2.50
Hybrid2 Baryon-FA

Fig. 10. Performance comparison between Baryon and the baseline in the
fully-associative flat mode. Normalized to Hybrid2.

iterations 2 to 5 of each GAP workload, with up to 34.6 GB
footprints. The neural network inference tasks run four batches
of size 64 each, with 14.6 GB to 18.6 GB memory usage. For
memcached with YCSB, we generate 30 million records of
1 kB size (in total 30 GB) and run 30 million queries of type
A (50%/50% read/write) and B (95%/5% read/write). Both the
loading and transactional phases are simulated.

Baselines. For the cache mode, we mainly compare with
Unison Cache [31] and DICE [74]. Unison Cache uses
2 kB blocks with 64 B sub-blocking, but does not support
compression. We enlarge its on-chip SRAM (way predictor
and footprint history table) proportionally to match our fast
memory size. DICE is a state-of-the-art compressed DRAM
cache using 64 B blocks without sub-blocking. We assume
DICE has the same 5-cycle decompression latency as Baryon.
We set Unison Cache and Baryon to 4-way set-associative,
while DICE is limited to direct-mapped but we optimistically
use a perfect way predictor. We also include a Simple DRAM
cache with neither compression nor sub-blocking. It uses 2 kB
blocks and an associativity of 4 fast memory ways.

For the flat mode, we choose Hybrid2 [67] with 2 kB block
size as the state-of-the-art baseline. Same as Hybrid2, we
make Baryon fully-associative (named Baryon-FA) for fair
comparisons. Both designs use 256 B sub-blocking.

B. Overall Comparison

Fig. 9 shows the performance improvements of Baryon
in the low-associative cache mode over the DRAM cache
baselines. All performance numbers are normalized to Simple.
Baryon outperforms Unison Cache and DICE by 1.38× and
1.27× on average, and up to 2.46× and 1.68×. To isolate the
impact of different sub-block granularities (256 B in Baryon



505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean
0%

20%
40%
60%
80%

100%

Fa
st

 M
em

 S
er

ve
 R

at
e

505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean
0

1

2

3

4

B
an

dw
ith

 B
lo

at
 F

ac
to

rUnison Cache DICE Baryon-64B Baryon

Fig. 11. Performance analysis. Left: the percentage of memory accesses
served by the fast memory (higher is better). Right: the ratio between total
fast memory traffic (including migration/swapping with the slow memory) and
useful data traffic to the LLC (bandwidth bloat factor [15], lower is better).

vs. 64 B in the baselines), we also include Baryon-64B which
uses 64 B sub-blocking. Most of the speedup of Baryon is
from its compression and sub-blocking features (1.27× and
1.13× from Unison Cache and DICE to Baryon-64B), while
a more optimized granularity provides another 12.2%. Note
that the optimal sub-block size for each workload depends on
its locality behavior. Some workloads, e.g., 557.xz r, exhibit
low spatial locality and prefer a smaller sub-block size like
Baryon-64B. On the other hand, using a larger sub-block size
always helps reduce the overall metadata storage cost.

In general, Baryon delivers higher benefits on 1) workloads
with large datasets, e.g., pr.twitter and YCSB-A, because
there is more stress on fast memory capacity and slow memory
bandwidth; 2) workloads with highly compressible data, e.g.,
549.fotonik3d r, which has a high average CF of 2.42.
Baryon is only slower than Unison Cache on 519.lbm r.
This is because this workload is highly write-intensive and
there is very limited compression opportunity with a nearly
1.0 CF. Therefore, compression only adds overheads in DICE
and Baryon, making them slower than Unison Cache.

Fig. 10 shows the speedup of Baryon-FA over Hybrid2, on
average 1.18× and up to 2.50×, for the fully-associative flat
mode. The trend is similar to the cache mode.

We also compare the memory system energy of Baryon
and baselines. The energy savings correlate well with the
performance improvements, where on average Baryon reduces
energy by 31.9% over Unison Cache and 13.0% over DICE,
and Baryon-FA reduces energy by 14.5% over Hybrid2. Most
energy savings are due to lower traffic to the slow memory.

C. Performance Analysis

We now make an in-depth analysis of the performance gains
enabled by Baryon, using representative workloads from each
domain under the low-associative cache mode as examples.
In each figure we also include the geometric mean results of
all workloads. From Fig. 11 left we can see that, most of
the speedups in Baryon are from the increased fast memory
serve rates (the percentages of memory accesses served by
the fast memory). For example, in pr.twi, Baryon fits most
of its working set in the fast memory and achieves a serve
rate of 77%. This is in sharp contrast to 37% in Unison
Cache and 44% in DICE. With more efficient sub-blocking
and compression, we have placed more data in the fast

505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean
0.00
0.25
0.50
0.75
1.00
1.25

N
or

m
al

iz
ed

 S
pe

ed
up

0

1

2

3

C
om

pr
es

si
on

 F
ac

to
r Baryon

No Zero Block Opt

Not Cacheline-aligned

No Decomp Cost

Arbitrary CF Mixing

Compression Factor

Fig. 12. Impacts of different compression schemes on performance and
compression factors in Baryon.

memory to exhibit lower latency, and also have reduced the
amount of slow memory traffic due to misses. This explains
the bandwidth bloat factor decreasing of pr.twi from 3.2
in Unison Cache and 2.4 in DICE to 1.8 in Baryon. In
other words, Baryon improves the utilization of both memory
capacity and bandwidth. For 520.omnetpp r, on the other
hand, compared to DICE, the fast memory serve rate is already
high and does not increase much, but Baryon saves 49% fast
memory bandwidth usage as in Fig. 11 right, due to reduced
evictions and writebacks. This leads to a 1.64× speedup.

Fig. 12 justifies our specific choices of compression schemes
in Baryon. First, the zero block support with the Z bit (Fig. 5)
is a simple optimization without any metadata size overhead.
It improves the CF from 1.85 to 2.00 and leads to 8% better
performance in YCSB-A. Second, enforcing cacheline-aligned
compression (Section III-E) decreases the CF noticeably in
some workloads like 505.mcf r but only slightly in oth-
ers like pr.twi and resnet50. However, without cacheline-
aligned compression, the performance always drops signif-
icantly (11% to 61%), due to wasted data fetch and LLC
pollution. Third, the 5-cycle decompression latency in Baryon,
though it is already a conservative assumption compared to
other work [4], [13], [49], has a negligible impact of less than
1% on the overall performance. Fourth, the metadata format in
Baryon (Fig. 5) only allows adjacent blocks being compressed
with the same CF. This restriction greatly saves metadata size,
but decreases the achievable CF. We show that empirically the
lost performance is small, only up to 12% in 520.omnetpp r.

D. Design Parameter Exploration

Our two-level replacement policy for the stage area, and
particularly the choice between sub-block-level and block-
level replacements, is important, as it not only reduces data
fragmentation, but also allows multiple fast block spaces to
keep critical data from one hot super-block. Fig. 13(a) shows,
if we disable block-level replacements and only evict sub-
blocks within a block (so that only one block space can be
used for data from a super-block), the performance would
significantly degrade by about 25%.

Fig. 13(b) shows the impact of super-block sizes. Baryon
already allows multiple physical block spaces to buffer data
from one super-block, so larger super-block sizes do not help
much. Furthermore, a large super-block size sometimes de-
creases performance, e.g., 505.mcf r loses 50% performance
with a very large super-block size, due to indexing many



505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean

(a) Two-level Replacement Policy

0.00
0.25
0.50
0.75
1.00
1.25

N
or

m
. P

er
fo

rm
an

ce

505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean

(b) Super-block Size

0.00
0.25
0.50
0.75
1.00
1.25

N
or

m
. P

er
fo

rm
an

ce

505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean

(c) Stage Area Size

0.00
0.25
0.50
0.75
1.00
1.25

N
or

m
. P

er
fo

rm
an

ce

505 520
pr.tw

i

res
net5

0

YCSB-A

Geomean

(d) Selective Commit Policy

0.00
0.25
0.50
0.75
1.00
1.25

N
or

m
. P

er
fo

rm
an

ce

Sub-block Replacement Only
Two-level Replacement (Baryon)

1
4
8 (Baryon)

12
16

No Stage Area
8MB
16MB

32MB
64MB (Baryon)
128MB

0
1
2

4 (Baryon)
inf
100% commit

Fig. 13. Impacts of (a) two-level replacement policy, (b) super-block size (in
blocks), (c) stage area size, and (d) selective commit policy parameter. All
performance numbers are normalized to the default Baryon configuration.

adjacent blocks within one set which increases conflict misses.
Grouping 8 blocks as a super-block is sufficient in Baryon.

The stage area size also affects performance as Fig. 13(c)
shows. A larger stage area can more effectively stabilize data
layouts and result in better performance, but also requires more
metadata (on-chip stage tag array). We see that even a small
8 MB stage area performs well enough for some workloads
like 505.mcf r, but a moderately larger 64 MB size offers
24% speedup in 520.omnetpp r. These results again validate
our key observation in Section III-B, i.e., a relatively small
stage area is quite effective to stabilize compressed and sub-
blocked data layouts. Note that if we do not use any stage
area, then nearly every data insertion/replacement needs to
re-sort the data block layout, as required by the compact and
sorted remap entry format. This incurs significant performance
degradation of 34.5% on average.

Fig. 13(d) evaluates the commit policy. The selective com-
mit policy parameter k (Section III-E) affects the tradeoff
between layout stability and dirty data write cost. Choosing a
proper k outperforms either policy that only considers one of
the two factors (k = 0 or k = inf). Nevertheless, the policy is
insensitive to the exact k value, as 1, 2, and 4 perform similarly.
Finally, committing selectively is better than committing all
blocks regardless of the stability and the write overhead.

V. RELATED WORK

To our best knowledge, Baryon is the first architecture to
support both memory compression and sub-blocking on hybrid
memory systems. There are large bodies of previous proposals
regarding each of the three domains.

Hybrid memory combines two or more heterogeneous
memory technologies to exploit their latency, bandwidth, and
capacity advantages. Early designs [33], [46], [53] used OS
page tables for data migration and thus suffered from long

migration intervals and coarse granularities. Later hardware-
based architectures [14], [36], [51], [55], [62], [66], [67]
were able to realize high associativity, fine granularity, and/or
high fast memory utilization. These designs either used the
fast memory as an additional level of cache, or as part of
the main memory visible to software. Some recent proposals
supported both schemes. Hybrid2 provisioned a fixed cache ca-
pacity [67]. Chameleon sought help from the OS for memory
allocation [38]. Stealth-Persist also mixed the two schemes,
but focused on persistency, not fast memory utilization [3].

Sub-blocking is a well-known optimization for caches and
hybrid memories. It was initially used in sector caches [54].
Footprint Cache introduced it to DRAM caches [32]. SILC-FM
used it for flat schemes in hybrid memories [55]. Micro-sector
cache further allowed sub-blocks from multiple blocks to pack
together, with another associativity dimension, in order to save
capacity as well as bandwidth [12]. But it had significant meta-
data tag overheads. We use specific optimizations to reduce tag
space, and also support more complex data compression.

Memory compression brings both capacity and bandwidth
gains. There exist a wide range of compression algorithms,
offering wide tradeoffs for compression ratio, latency, and
hardware design cost [4], [6], [13], [34], [47], [49], [50],
[78]. These algorithms are orthogonal to our design. Regard-
ing metadata management, super-blocks have been used in
compressed caches to group several neighboring blocks for
flexible compaction [57]–[59]. In contrast, other designs used
shortened tags to compact blocks from arbitrary addresses not
necessarily nearby [26], [27], [73]. We follow the first category
as it is simpler and corresponds well with current hybrid
memory address remapping. Some other papers also aimed at
memory compression under hybrid memory systems [7], [19],
but mainly to reduce traffic to the slow memory, especially
writes to NVMs to avoid wear-out issues. We instead compress
data in the fast memory, to optimize for higher fast memory
utilization and hence performance.

VI. CONCLUSIONS

We propose Baryon, a novel hybrid memory system archi-
tecture that supports fine-grained data compression and sub-
blocking with moderate metadata overheads and management
complexity. Baryon is OS and software transparent, and can
work with either cache or flat scheme of hybrid memory
systems. The benefits of Baryon are mostly enabled by a dual-
format metadata scheme and the stage area which effectively
manages the complex, irregular, and fast-changing data layouts
after compressed and sub-blocked. Baryon significantly im-
proves performance on memory-intensive multi-program and
multi-threaded workloads.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-
able suggestions, and the Tsinghua IDEAL group members
for constructive discussion. This work was supported by the
National Natural Science Foundation of China (62072262) and
Huawei. Mingyu Gao is the corresponding author.



REFERENCES

[1] N. Agarwal, D. W. Nellans, M. O’Connor, S. W. Keckler, and T. F.
Wenisch, “Unlocking Bandwidth for GPUs in CC-NUMA Systems,” in
21st International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE Computer Society, 2015, pp. 354–365.

[2] N. Agarwal and T. F. Wenisch, “Thermostat: Application-Transparent
Page Management for Two-tiered Main Memory,” in 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2017, pp. 631–644.

[3] M. Al-Wadi, V. R. Kommareddy, C. Hughes, S. D. Hammond, and
A. Awad, “Stealth-Persist: Architectural Support for Persistent Appli-
cations in Hybrid Memory Systems,” in 27th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2021, pp.
139–152.

[4] A. Alameldeen and D. Wood, “Frequent Pattern Compression: A
Significance-Based Compression Scheme for L2 Caches,” University
of Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2004.

[5] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression
for High-Performance Processors,” in 31st International Symposium on
Computer Architecture (ISCA). IEEE Computer Society, 2004, pp.
212–223.

[6] A. Arelakis, F. Dahlgren, and P. Stenström, “HyComp: A Hybrid Cache
Compression Method for Selection of Data-Type-Specific Compression
Methods,” in 48th International Symposium on Microarchitecture (MI-
CRO). ACM, 2015, pp. 38–49.

[7] S. Baek, H. G. Lee, C. Nicopoulos, and J. Kim, “A Dual-Phase Compres-
sion Mechanism for Hybrid DRAM/PCM Main Memory Architectures,”
in Great Lakes Symposium on VLSI 2012 (GLSVLSI). ACM, 2012, pp.
345–350.

[8] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 14:1–14:25, 2017.

[9] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,”
arXiv preprint arXiv:1508.03619, Aug 2015.

[10] C. Cagli, “Characterization and Modelling of Electrode Impact in HfO2-
Based RRAM,” in Workshop on Innovative Memory Technologies, 2012.

[11] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM Sys-
tem for GPUs,” in 23rd International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, 2017, pp.
73–84.

[12] M. Chaudhuri, M. Agrawal, J. Gaur, and S. Subramoney, “Micro-Sector
Cache: Improving Space Utilization in Sectored DRAM Caches,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 14,
no. 1, pp. 7:1–7:29, 2017.

[13] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-Pack:
A High-Performance Microprocessor Cache Compression Algorithm,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 18, no. 8, pp. 1196–1208, 2010.

[14] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level
Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache,” in 47th International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2014, pp. 1–
12.

[15] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for
Mitigating Bandwidth Bloat in Gigascale DRAM Caches,” in 42nd
International Symposium on Computer Architecture (ISCA). ACM,
2015, pp. 198–210.

[16] C. Chou, A. Jaleel, and M. K. Qureshi, “BATMAN: Techniques for Max-
imizing System Bandwidth of Memory Systems with Stacked-DRAM,”
in 3rd Internatinoal Symposium on Memory Systems (MEMSYS). ACM,
2017, pp. 268–280.

[17] E. Choukse, M. Erez, and A. R. Alameldeen, “Compresso: Pragmatic
Main Memory Compression,” in 51st International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2018, pp. 546–
558.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in 1st ACM
Symposium on Cloud Computing (SoCC). ACM, 2010, pp. 143–154.

[19] Y. Du, M. Zhou, B. R. Childers, R. G. Melhem, and D. Mossé, “Delta-
Compressed Caching for Overcoming the Write Bandwidth Limitation

of Hybrid Main Memory,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 55:1–55:20, 2013.

[20] M. Ekman and P. Stenström, “A Robust Main-Memory Compression
Scheme,” in 32st International Symposium on Computer Architecture
(ISCA). IEEE Computer Society, 2005, pp. 74–85.

[21] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[22] A. Ghasemazar, P. J. Nair, and M. Lis, “Thesaurus: Efficient Cache
Compression via Dynamic Clustering,” in 25th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2020, pp. 527–540.

[23] N. D. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth,”
in 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2014, pp. 38–50.

[24] D. Gureya, J. Neto, R. Karimi, J. Barreto, P. Bhatotia, V. Quéma,
R. Rodrigues, P. Romano, and V. Vlassov, “Bandwidth-Aware Page
Placement in NUMA,” in 34th IEEE International Parallel & Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 546–556.

[25] F. T. Hady, A. P. Foong, B. Veal, and D. Williams, “Platform Storage
Performance With 3D XPoint Technology,” Proceedings of the IEEE,
vol. 105, no. 9, pp. 1822–1833, 2017.

[26] S. Hong, B. Abali, A. Buyuktosunoglu, M. B. Healy, and P. J. Nair,
“Touché: Towards Ideal and Efficient Cache Compression By Mitigating
Tag Area Overheads,” in 52nd International Symposium on Microarchi-
tecture (MICRO). ACM, 2019, pp. 453–465.

[27] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K. Kim, and M. B.
Healy, “Attaché: Towards Ideal Memory Compression by Mitigating
Metadata Bandwidth Overheads,” in 51st International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 2018, pp. 326–
338.

[28] C. Huang and V. Nagarajan, “ATCache: Reducing DRAM Cache Latency
via a Small SRAM Tag Cache,” in 23rd International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM,
2014, pp. 51–60.

[29] Intel, “oneDNN Documentation,” https://oneapi-src.github.io/oneDNN/.
[30] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee,

“Efficient Footprint Caching for Tagless DRAM Caches,” in 22nd
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2016, pp. 237–248.

[31] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache,” in 47th International
Symposium on Microarchitecture (MICRO). IEEE Computer Society,
2014, pp. 25–37.

[32] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for
Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” in 40th International Symposium on Computer Architecture
(ISCA). ACM, 2013, pp. 404–415.

[33] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “HeteroOS: OS
Design for Heterogeneous Memory Management in Datacenter,” in 44th
International Symposium on Computer Architecture (ISCA). ACM,
2017, pp. 521–534.

[34] J. Kim, M. B. Sullivan, E. Choukse, and M. Erez, “Bit-Plane Compres-
sion: Transforming Data for Better Compression in Many-Core Archi-
tectures,” in 43rd International Symposium on Computer Architecture
(ISCA). IEEE Computer Society, 2016, pp. 329–340.

[35] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letter, vol. 15, no. 1,
pp. 45–49, 2016.

[36] D. Knyaginin, V. Papaefstathiou, and P. Stenström, “ProFess: A Proba-
bilistic Hybrid Main Memory Management Framework for High Per-
formance and Fairness,” in 24th International Symposium on High
Performance Computer Architecture (HPCA). IEEE Computer Society,
2018, pp. 143–155.

[37] A. Kokolis, D. Skarlatos, and J. Torrellas, “PageSeer: Using Page
Walks to Trigger Page Swaps in Hybrid Memory Systems,” in 25th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 596–608.

[38] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T. Kan-
demir, “CHAMELEON: A Dynamically Reconfigurable Heterogeneous
Memory System,” in 49th International Symposium on Microarchitec-
ture (MICRO). IEEE Computer Society, 2018, pp. 533–545.

[39] E. Kultursay, M. T. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an Energy-Efficient Main Memory Alterna-

https://oneapi-src.github.io/oneDNN/


tive,” in IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE Computer Society, 2013, pp.
256–267.

[40] A. Labrinidis and H. V. Jagadish, “Challenges and Opportunities with
Big Data,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
2032–2033, 2012.

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[42] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase
Change Memory as a Scalable DRAM Alternative,” in 36th International
Symposium on Computer Architecture (ISCA). ACM, 2009, pp. 2–13.

[43] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A Write-History-
Aware Page Replacement Algorithm for Hybrid PCM and DRAM
Memory Architectures,” IEEE Transactions on Computers, vol. 63,
no. 9, pp. 2187–2200, 2014.

[44] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee,
“A Fully Associative, Tagless DRAM Cache,” in 42nd International
Symposium on Computer Architecture (ISCA). ACM, 2015, pp. 211–
222.

[45] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block
Sizes for Very Large Die-Stacked DRAM Caches,” in 44th International
Symposium on Microarchitecture (MICRO). ACM, 2011, pp. 454–464.

[46] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-Stacked and Off-Package Memories,” in 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2015, pp. 126–136.

[47] B. Panda and A. Seznec, “Dictionary Sharing: An Efficient Cache
Compression Scheme for Compressed Caches,” in 49th International
Symposium on Microarchitecture (MICRO). IEEE Computer Society,
2016, pp. 1:1–1:12.

[48] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade:
Did SPEC CPU 2017 Broaden the Performance Horizon?” in 24th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2018, pp. 271–282.

[49] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” in 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT). ACM,
2012, pp. 377–388.

[50] G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly Compressed Pages: A Low-
Complexity, Low-Latency Main Memory Compression Framework,” in
46th International Symposium on Microarchitecture (MICRO). ACM,
2013, pp. 172–184.

[51] A. Prodromou, M. R. Meswani, N. Jayasena, G. H. Loh, and D. M.
Tullsen, “MemPod: A Clustered Architecture for Efficient and Scal-
able Migration in Flat Address Space Multi-level Memories,” in 23rd
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2017, pp. 433–444.

[52] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in 45th International Symposium
on Microarchitecture (MICRO). IEEE Computer Society, 2012, pp.
235–246.

[53] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in 25th International Conference on Supercomputing
(ICS). ACM, 2011, pp. 85–95.

[54] J. B. Rothman and A. J. Smith, “Sector Cache Design and Performance,”
in 8th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE
Computer Society, 2000, pp. 124–133.

[55] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “SILC-
FM: Subblocked InterLeaved Cache-Like Flat Memory Organization,”
in 23rd International Symposium on High Performance Computer Ar-
chitecture (HPCA). IEEE Computer Society, 2017, pp. 349–360.

[56] D. Sánchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in 40th International
Symposium on Computer Architecture (ISCA). ACM, 2013, pp. 475–
486.

[57] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed Compressed Caches,”
in 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2014, pp. 331–342.

[58] S. Sardashti, A. Seznec, and D. A. Wood, “Yet Another Compressed
Cache: A Low-Cost Yet Effective Compressed Cache,” ACM Transac-
tions on Architecture and Code Optimization (TACO), vol. 13, no. 3, pp.
27:1–27:25, 2016.

[59] S. Sardashti and D. A. Wood, “Decoupled Compressed Cache: Exploit-
ing Spatial Locality for Energy Optimization,” in 46th International
Symposium on Microarchitecture (MICRO). ACM, 2013, pp. 62–73.

[60] S. Sardashti and D. A. Wood, “Could Compression Be of General Use?
Evaluating Memory Compression across Domains,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 14, no. 4, pp. 44:1–
44:24, 2017.

[61] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip:
Exploring Unconventional Benefits from Memory Compression,” in 20th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE Computer Society, 2014, pp. 638–649.

[62] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Trans-
parent Hardware Management of Stacked DRAM as Part of Memory,”
in 47th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2014, pp. 13–24.

[63] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-Level Cache
Deduplication,” in 28th International Conference on Supercomputing
(ICS). ACM, 2014, pp. 53–62.

[64] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, and P. M. Bland, “IBM Memory Expan-
sion Technology (MXT),” IBM Journal of Research and Development,
vol. 45, no. 2, pp. 271–286, 2001.

[65] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Decoupled
Fused Cache: Fusing a Decoupled LLC with a DRAM Cache,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 15,
no. 4, pp. 65:1–65:23, 2019.

[66] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “LLC-
Guided Data Migration in Hybrid Memory Systems,” in 33rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS).
IEEE, 2019, pp. 932–942.

[67] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2:
Combining Caching and Migration in Hybrid Memory Systems,” in 26th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 649–662.

[68] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and Modeling Non-Volatile Memory Systems,” in 53rd
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 496–508.

[69] W. Wei, D. Jiang, S. A. McKee, J. Xiong, and M. Chen, “Exploiting
Program Semantics to Place Data in Hybrid Memory,” in 24th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE Computer Society, 2015, pp. 163–173.

[70] Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John, “Invited Paper for
the Hot Workloads Special Session Hot Regions in SPEC CPU2017,” in
International Symposium on Workload Characterization (IISWC). IEEE
Computer Society, 2018, pp. 71–77.

[71] Z. Yan, D. Lustig, D. W. Nellans, and A. Bhattacharjee, “Nimble
Page Management for Tiered Memory Systems,” in 24th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2019, pp. 331–345.

[72] V. Young, C. Chou, A. Jaleel, and M. K. Qureshi, “ACCORD: Enabling
Associativity for Gigascale DRAM Caches by Coordinating Way-Install
and Way-Prediction,” in 45th International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, 2018, pp. 328–339.

[73] V. Young, S. Kariyappa, and M. K. Qureshi, “Enabling Transparent
Memory-Compression for Commodity Memory Systems,” in 25th In-
ternational Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 570–581.

[74] V. Young, P. J. Nair, and M. K. Qureshi, “DICE: Compressing DRAM
Caches for Bandwidth and Capacity,” in 44th International Symposium
on Computer Architecture (ISCA). ACM, 2017, pp. 627–638.

[75] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-Efficient DRAM Caching via Software/Hardware Coopera-
tion,” in 50th International Symposium on Microarchitecture (MICRO).
ACM, 2017, pp. 1–14.

[76] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny,
and E. Nicolle, “Macro-Model of Spin-Transfer Torque Based Magnetic
Tunnel Junction Device for Hybrid Magnetic-CMOS Design,” in 2006
IEEE International Behavioral Modeling and Simulation Workshop.
IEEE, 2006, pp. 40–43.



[77] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology,” in
36th International Symposium on Computer Architecture (ISCA). ACM,
2009, pp. 14–23.

[78] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.


	Introduction
	Background and Motivation
	Design Space of Hybrid Memory
	Design Opportunities and Challenges

	Design
	Baseline Hybrid Memory System
	Baryon Overview
	Data Layouts and Metadata Formats
	Access Flow
	Stage Area Fetch/Replacement/Commit Policies
	Additional Discussion and Optimizations

	Evaluation
	Experimental Setup
	Overall Comparison
	Performance Analysis
	Design Parameter Exploration

	Related Work
	Conclusions
	References

