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Abstract
Approximate nearest neighbor search (ANNS) is a fundamental
operation in modern vector databases to efficiently retrieve nearby
vectors to a given query. On general-purpose computing platforms,
ANNS is found not only to be highlymemory-bound due to the large
amount of high-dimensional vectors to access, but also exhibits
very low utilization of the fetched data as many memory accesses
and computations are wasted on not-so-nearby vectors. To alleviate
these two inefficiencies, we propose a hardware-software co-design
that integrates near-data processing architectures with a novel
hybrid partial-dimension/bit early termination strategy. Distance
calculation and comparison in ANNS are offloaded to the near-data
processing units at the memory rank level. As a vector is being
gradually fetched frommemory, we conservatively estimate a lower
bound of its distance to the query using the partially fetched data,
e.g., a subset of dimensions and/or partial bits of each element. If this
lower bound already exceeds a threshold, we could early terminate
to avoid future unnecessary data accesses and computations. In
the presence of such irregular early termination execution flow, we
further optimize the data layouts within a single memory access and
across multiple memory ranks in the system, and handle efficient
coordination between the near-data units and the host processor
that executes the rest of index traversal and result sorting. With
all the above optimizations, our design demonstrates an average
5.26× speedup of using near-data processing, and another 1.52×
from enabling hybrid early termination on top of it.
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1 Introduction
High-dimensional vectors are powerful representations for text, im-
age, audio, and video data [61, 67]. Consequently, vector databases,
which facilitate the insertion and retrieval of high-dimensional vec-
tors, play a crucial role in applications such as search engines [29],
e-commerce platforms [53], and retrieval-augmented generation
(RAG) [9, 51]. The common operation is to find nearby vectors to a
given query vector according to a certain distance metric. However,
not only the number of vectors in the database but also the number
of dimensions in each vector is quite high in typical application
scenarios, hindering the use of direct brute-force search.

As a result, approximate 𝑘-nearest neighbor search (ANNS) be-
comes a prominent approach inmodern vector databases. ANNS has
many algorithm-level optimizations. One example is to use various
vector indexes, including trees [8, 12, 64], hash tables [20, 21, 34],
inverted lists [38], and graphs [22, 24, 58, 65], to organize vector
data in a structured way according to their similarities, and acceler-
ate the search by effectively identifying potentially nearby vectors
to the query. Nevertheless, even with effective indexing, we observe
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that ANNS still exhibits a highly memory-bound nature due to the
excessive data accesses to high-dimensional vectors and the low
arithmetic intensity of distance calculation and comparison. Fur-
thermore, a significant portion of the encountered vectors during
the search are actually not close, i.e., their distances to the query are
larger than the current threshold (e.g., the 𝑘th smallest distance),
making both data accesses and computations ineffectual.

In this work, we propose a set of hardware and software tech-
niques to improve the performance and efficiency of ANNS process-
ing. At the hardware level, we begin by adopting aDIMM-based near-
data processing (NDP) architecture, which has been extensively stud-
ied before for high-dimensional vector aggregation in recommenda-
tion systems and graph neural networks [4, 42, 47, 55, 66, 76, 82, 91].
We choose the DIMM-based implementation over other NDP vari-
ants because of its relatively less intrusive changes to the DRAM
chips and interface, and because of the high capacity (up to ter-
abytes, crucial to large vector databases) it could offer through
the commodity DRAM modules. Running the memory-intensive
distance comparison tasks on the DIMM-side NDP logic units can
benefit from the abundant data bandwidth and memory-level par-
allelism, thus improving performance and reducing energy.

Furthermore, ANNS exhibits unique algorithmic optimization
opportunities compared to other applications. At the software level,
we propose a novel hybrid partial-dimension/bit early termination
strategy to save unnecessary data accesses and computations in
distance comparison, if the partially fetched vector data and the
partially calculated result can already prove this vector is beyond
the current distance threshold. This is done by estimating a lower
bound on the distance between the vector and the query, using
the partial information retrieved so far and conservatively setting
the missing data. For example, we can prove that the minimum
distance between (1, 𝑥) and (4,−1) is obtained when 𝑥 = −1 (partial
dimensions), and that between 00␣␣2 and 01102 is when the missing
bits are 112 (partial bits). By always using lower bounds, our early
termination algorithm guarantees no accuracy loss. Existing early
termination approaches are at the vector level [13, 52, 87, 90] or
dimension level [25, 69, 86]. They either incur accuracy loss due to
aggressive predictions or result in limited fetch reduction with con-
servative strategies. In contrast, we introduce a novel bit-level early
termination mechanism in combination with partial dimensions,
achieving not only higher efficiency than previous early termination
schemes, but also with no accuracy loss.

We integrate the NDP hardware architecture and the early termi-
nation software technique into a coherent design called ANSMET.
ANSMET is a heterogeneous CPU+NDP platform. It offloads the
memory-intensive distance comparison tasks to its DIMM-based
NDP units while keeping the complex and irregular index traversal
and result sorting parts on the host CPU to be general for supporting
different index structures.

We further address several system-level challenges due to the
introduction of early termination. First, to maximize the effective-
ness of early termination and save as many subsequent accesses
as possible, we need to pick judiciously which partial data of a
vector to fetch in each 64 B memory access: either more dimen-
sions but fewer bits per dimension, or more bits of each dimension
but fewer dimensions. This affects directly which data should be

packed together in the data layout. We propose a lightweight of-
fline sampling-based approach to systematically explore the design
space and to effectively decide the optimized data layout.

Second, the global data layout across multiple memory ranks
in the system should be examined. Existing DIMM-based NDP
designs use a combination of vertical (splitting dimensions) and
horizontal (dividing vectors into groups) partitioning on the vector
database [76, 82, 91]. Such a hybrid way is still efficient for ANSMET,
but early termination shifts the sweet spot between the two schemes
and enables a simpler but more effective load-balancing technique.

Third, we propose an adaptive polling scheme to tackle the dif-
ficulty of retrieving results from the NDP side by the host CPU
under unpredictable processing latencies due to early termination.
The best polling period is accurately estimated using the same
sampling-based preprocessing above.

We evaluate ANSMET through cycle-accurate simulation on the
representative ANNS index, Hierarchical Navigable Small Worlds
(HNSW) [58]. Using NDP improves performance by 5.26× on av-
erage and up to 6.40× over the CPU baseline, by increasing the
theoretical available bandwidth to 8×. Our early termination fur-
ther brings an average 1.31× speedup on CPU and 1.52× on NDP,
thanks to the savings of unnecessary accesses and computations.

2 Background
We introduce the preliminaries of approximate nearest neighbor
search and near-data processing in this section.

2.1 Approximate Nearest Neighbor Search
The key operation for high-dimensional vectors in vector databases
is 𝑘-nearest neighbor (kNN) search, which identifies the 𝑘 closest
vectors to a given query vector. However, because the number of
vectors 𝑁 is usually at billion scales and their dimension 𝐷 could be
tens to hundreds in real workloads [17, 71], brute-force comparison
has prohibitively high time complexity of O(𝑁𝐷). Consequently,
approximate nearest neighbor search (ANNS) has been widely used
to find an approximation of the kNN result, reducing search com-
plexity at the expense of slightly decreased accuracy.

We mainly focus on the search phase (a.k.a., inference) of ANNS
in this paper. ANNS algorithms typically accelerate the search
process in two ways, by either reducing the number of accessed
vectors using vector indexing, or reducing the vector dimension
using vector quantization.

Vector indexing includes two general types of indexes. The
cluster-based indexes aim to place nearby vectors in the same cluster,
so only a few clusters need to be searched. Clusters can be organized
in tree structures like kd-trees and octrees [8, 12, 64], by hashing
functions like locality-sensitive hashing [20, 21, 34], or as inverted
file indexes [38]. For each query vector, a few closest cluster cen-
troids are identified using such indexes, and only the vectors in the
corresponding clusters are checked. We maintain a heap to keep
the 𝑘 nearest vectors during the search. The number of searched
clusters can be adjusted to trade between accuracy and query time.
However, cluster-based indexes may suffer from imbalanced cluster
sizes and low accuracy near the cluster boundaries [15].

On the other hand, graph-based indexes [22, 24, 58, 65] capture
the distance relationship using proximity graphs, where vectors
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are represented as graph vertices, and only close vectors are con-
nected by edges. ANNS is conducted through graph traversals. One
representative algorithm is Hierarchical Navigable Small Worlds
(HNSW) [58]. HNSW constructs multiple layers each associated
with a graph. The base layer contains all vectors as the vertices,
while each upper layer gradually contains only a subset of vectors
of its lower layer. The search starts at a deterministic entry point at
the top layer. Within each layer, the nearest neighbors of the entry
points are identified, while these neighbors are further used as the
entry points to the next layer. Greedy beam search is used to keep
the best candidates across layers, involving a search set and a result
set. The search set is an unbounded min-heap sorted by distances,
containing all vector candidates to search. The result set contains
the 𝑘′ nearest vectors visited thus far. Each time we pop a vector
from the search set, find its unvisited neighbors, and add them to
both sets if their distances to the query vector are smaller than the
maximum distance in the result set. Note that 𝑘′ can be larger than
𝑘 to allow a looser threshold to keep more candidates at the cost of
higher search time [25]. Graph-based indexes improve accuracy by
incorporating multi-hop distance information, but they are slower
and consume more memory due to the multiple proximity graphs.

Vector quantization compresses the vectors to reduce data size
and thus access cost. Scalar quantization converts the elements
of the vectors to lower precision, e.g., representing 16-bit floating-
point numbers in 8-bit unsigned integers. Product quantization [37]
divides the 𝐷-dimensional vector space into𝑚 subspaces. For each
subspace, a separate codebook is generated using clustering tech-
niques. During quantization, each vector is represented by the
codewords of the nearest cluster centroids to the sub-vectors in all
the subspaces. Since only the centroid codewords are used in the
representation, memoization can be used to store the distance be-
tween each centroid codeword and the querying sub-vector in every
subspace. The final distance computation then becomes selecting
from these memorized distances and aggregating them [50]. How-
ever, vector quantization may compromise accuracy, particularly
for out-of-distribution vectors [77].

Distance definitions. To calculate the distance between two
vectors, specific similarity metrics can be used. The Euclidean dis-

tance is a typical choice, computed as 𝑑 (𝐸 ) =

√︃∑𝐷−1
𝑖=0 (𝑎𝑖 − 𝑏𝑖 )2.

The inner-product distance is derived as 𝑑 (𝐼 ) = −∑𝐷−1
𝑖=0 𝑎𝑖𝑏𝑖 . The

cosine similarity further normalizes the inner product by the magni-

tudes of the vectors, as 𝑑 (𝐶 ) = 𝑑 (𝐼 )/
√︃∑𝐷−1

𝑖=0 𝑎2
𝑖

∑𝐷−1
𝑖=0 𝑏2

𝑖
. Note that

we can do this normalization during preprocessing, after which the
inner-product distance and the cosine distance become the same,
and we can avoid expensive division and square root at runtime.

2.2 Near-Data Processing
Near-data processing (NDP) brings processing logic closer to data
storage locations, e.g., main memory, in order to exploit higher
bandwidth and lower latency of data access. Such physical prox-
imity reduces the overheads associated with data movements in
memory-intensive applications. NDP systems targeting main mem-
ory can be broadly classified into two categories: those that retain
the traditional DIMM form factor, and those that utilize 3D-stacked
memories like High Bandwidth Memory (HBM) [36]. Although

HNSW
SIFT

HNSW
GIST

IVF
SIFT

IVF
GIST

0.00
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0.50

0.75

1.00
Dist. Comp. 
 (Rejected)

Dist. Comp. 
 (Accepted)

Index + Sort

Figure 1: Performance breakdown of IVF and HNSW indexes
on SIFT and GIST datasets, running FAISS [23] on CPUs.

3D-stacked NDP systems [2, 10, 18, 26, 27, 43, 45, 74, 84, 93] offer
extremely high bandwidth, they currently face limitations in the
capacity due to the challenges of die stacking and thermal manage-
ment. Their typical capacities, e.g., dozens of gigabytes [36, 59], are
much smaller than terabyte-scale vector databases.

In contrast, DIMM-based NDP integrates computing logic within
the conventional DRAM hierarchy. In each memory channel, sev-
eral DIMMs are connected to the host CPU via shared data (DQ) and
command/address (C/A) buses. Each DIMM is further organized
into ranks and banks, with each bank consisting of memory cells.
The NDP logic can be placed at the DIMM level in the separate
DIMM buffer chip [11, 19, 33, 42, 47, 62, 73], or near the DRAM
banks in the DRAM chips [28, 31, 41]. These logic units leverage
the rank/bank-level parallelism and the much higher internal band-
width. Compared to other choices, DIMM-based NDP incurs small
modifications to the commodity DRAM architecture and can also
support large capacity; e.g., Samsung recently announced a 1 TB
DDR5 module [70]. As a result, we argue that DIMM-based NDP
systems are more well-suited for ANNS tasks.

3 Motivation and Proposal
We first analyze the performance bottlenecks in ANNS to moti-
vate our design. We execute the popular vector search framework
FAISS [23] on a 14-core Intel Xeon 5120 CPU. We focus on represen-
tative cluster-based and graph-based indexes, i.e., IVF and HNSW.
Table 2 describes the datasets used in the experiments.

The performance breakdown is illustrated in Figure 1. We can see
that a significant portion of the execution time is spent on vector
distance comparison, including both fetching the vector data and
calculating the distance. Previous research has also observed this
trend [25, 35]. A closer look reveals that this stage is mainly bound
by the high memory access overheads caused by two reasons. First,
even with efficient indexes, each query still needs to access many
vectors. For instance, an average of 617 vectors are fetched per query
in HNSW-SIFT. Each vector contains tens to hundreds of elements,
leading to heavy data traffic (e.g., > 300 kB per query). Second,
the overall distance comparison has low arithmetic intensity with
modern SIMD instructions. For example, the Euclidean distance
requires one VSUBPS and one VMULPS instruction on x86 to calculate
the squares of differences for four FP16 elements, and several VDPPS
and one VSQRTSS for aggregation and square root, resulting in
0.125 op/byte for 128-dimension vectors. Other distancemetrics and
wider SIMD instructions exhibit even lower arithmetic intensity,
e.g., 0.093 op/byte for the inner-product distance.

We also observe in Figure 1 that 50% to over 90% of the distance
comparisons were “rejected”, i.e., the fetched vector is beyond the
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distance threshold — the maximum distance in the result set for
both IVF and HNSW (Section 2.1). As a result, a large portion of
the data accesses and computations are ineffectual. This calls for
algorithms to effectively identify and filter (i.e., early terminate)
these unnecessary data accesses and computations.

High-level ideas.We propose techniques in both hardware and
software to address the above issues of excessive memory accesses
and low fetch utilization, respectively. First, at the hardware level,
we propose to use a DIMM-based NDP architecture for ANNS. We
place specialized distance computing logic in the buffer chips of the
multiple DIMMs in the system. We offload the memory-intensive
distance comparison tasks in ANNS to such NDP logic to leverage
high bandwidth and parallelism. To the best of our knowledge, this
is the first DIMM-based NDP system specialized to ANNS.

While our NDP system looks similar to previous designs for rec-
ommendation systems [4, 42, 47, 55, 66, 82] that also process high-
dimensional embedding vectors, the algorithm difference poses a
new opportunity. Unlike recommendation systems that must ag-
gregate all required vectors and return the full result, ANNS only
needs the labels of the top-𝑘 vectors. Therefore, at the software
level, we propose a novel hybrid partial-dimension/bit early termina-
tion strategy to reduce unnecessary data fetches and improve data
utilization without sacrificing accuracy. We estimate the distance
lower bound using the partially fetched data and stop issuing future
accesses if this lower bound is already higher than the threshold.

Challenges. With the above high-level ideas, we still need to
resolve the following specific problems to realize an efficient system.
First, to maximize the effectiveness of early termination, we must
carefully decide what part of the vector to fetch first, so that we have
the best distance estimation to reject unpromising vectors as early
as possible. The choices include fetching a subset of the dimensions
of a vector or fetching partial bits from each dimension element.
We comprehensively consider the design space and propose an
effective sampling-based method to decide the data organization
for early termination with maximum savings.

Second, we must optimize the data layout across multiple DRAM
ranks to fully exploit the rank-level parallelism for NDP. For exam-
ple, we can place different vectors across ranks to allow accessing
them simultaneously [4, 47], e.g., for all vectors in a cluster, or
all neighbors in a proximity graph. Alternatively, we can split the
dimensions of a single vector [42, 66]. Assuming that we split a
128-dim FP32 vector into eight chunks and distribute them in differ-
ent ranks, we can perform eight 64 B accesses in parallel to get the
full vector. Moreover, data accesses would become irregular and
imbalanced with early termination, which further complicates the
decision. We thus revisit the prior hybrid data layouts that partition
at both the vector and dimension levels [76, 82, 91] under the new
tradeoffs brought by the unique characteristics of early termination.

Third, ANNS requires traversing the structure of clusters (cluster-
based) or the proximity graphs (graph-based) and sorting the can-
didates in the search/result sets. Index traversal and vector sorting
usually exhibit high dependencies, limited parallelism, and irregular
computation patterns. These characteristics make them ill-suited
for the NDP logic and better be executed on the CPU. We therefore
use CPU+NDP heterogeneous processing with a carefully managed
cooperation between the two sides to harmonize the execution of
index traversal and distance comparison.

S0 S1

S2 S3

Q

Neighbors Data In-Memory Format

S0 S1, S2 0001, 0000 00 00 01 00

S1 S3 0011, 0000 00 00 11 00

S2 S3 0000, 0000 00 00 00 00

S3 0011, 1101 00 11 11 01

Search SetResult Set
S0accept

S0 INF

S1 S2traverse

S1 S0 reject

S3traverse

S1 S0
Return top-2 vectors

accept

Q

S3

0010, 0010

0010, 0010

𝑑(Q, S0)
2.236

𝑑𝐿𝐵
0.0001st Fetch

0010, 1100 10.0002nd Fetch

𝑑𝐿𝐵 > 𝑑(Q, S0), early terminated
Save 2 memory accesses

Entry point

(c) ANNS workflow (d) Early termination example

(a) Proximity graph (b) Storage data and in-memory format for early termination

Early terminate

Figure 2: ANNS with early termination. (a) and (b) show an
example proximity graph and its storage format. (c) shows
the ANNS flow on this graph with query Q, while S3 triggers
an early termination in (d).

We integrate our hardware and software techniques into a com-
prehensive solution named ANSMET. Next, we present our early
termination algorithm details in Section 4, and then discuss the
architectural designs including data layout optimization and het-
erogeneous cooperation in Section 5.

4 Hybrid Early Termination Algorithm
A key contribution of ANSMET is the algorithm-level early ter-
mination technique that reduces the memory accesses to improve
the performance of distance comparisons in ANNS. For a high-
dimensional vector, we can estimate a lower bound of its distance
𝑑𝐿𝐵 to the given query vector even with only partial data fetched
(e.g., a subset of the dimensions or a subset of the bits in each di-
mension). For example, given a partial vector of (1, 2, 𝑥2, 𝑥3), the
Euclidean distance lower bound to a query (4,−2, 6,−1) would
be 𝑑 (𝐸 )

𝐿𝐵
=
√︁
(4 − 1)2 + (−2 − 2)2 = 5, when 𝑥2 = 6 and 𝑥3 = −1.

On the other hand, if we know a subset of bits in a vector, e.g.,
(00␣␣2, 01␣␣2), then its 𝑑 (𝐸 )

𝐿𝐵
to a query (01102, 01012) should be 3

if the vector is (00112, 01012). We call the above two cases partial
dimensions and partial bits, respectively. For ANNS, if 𝑑𝐿𝐵 already
exceeds the current threshold (e.g., the maximum distance in the
result set in HNSW), we can safely drop this vector and early ter-
minate its subsequent data fetches.

In this section, we first describe the overall execution flow of
our hybrid partial-dimension/bit early termination strategy (Sec-
tion 4.1). To achieve the best hybrid scheme between the two, we
propose a systematic sampling-based approach to determine the
optimized data layout in memory, which minimizes the number
of fetches needed (Section 4.2). Finally, we discuss more complex
layouts and compatibility with vector quantization (Section 4.3).

4.1 Overall Execution Flow
Figure 2 illustrates the algorithm details of ANNS with early termi-
nation.We use HNSW, a graph-based index as an example. Note that
early termination also applies to other indexes including cluster-
based ones. The graph structure and the vector data in Figure 2(a)
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are stored in memory as shown in (b). We assume 4 vectors with 2
dimensions each, and each element is 4-bit. While the plain data lay-
out continuously stores the bits of each element and the elements
in each vector, efficient early termination requires a transformed
layout that enables a hybrid of partial-dimension and partial-bit
fetches. In this example, assuming each data fetch obtains 2 bits (in
real hardware this is typically the 64-byte cacheline granularity),
we store the highest (most significant) 2 bits of both elements in
the vector sequentially, and then their rest 2 bits, as in Figure 2(b).
We discuss how to determine optimized data layouts in Section 4.2.

During the online search in Figure 2(c), we calculate the distance
between the query Q and the vector S𝑖 popped out from the search
set, and then compare it with the current threshold. Specifically,
the entry point S0 is within the initial distance threshold (i.e.,∞)
and thus brings its neighbors S1 and S2 into the search set. S1 is
accepted and brings in its neighbor S3, while S2 is rejected after
fetching the entire vector. Next, S3 triggers an early termination as
in (d). The current threshold is 𝑑 (Q, S0) = 2.236 since S0 is at the
tail of the result set. The first fetch gets the highest 2 bits of S3’s
first element, and estimates 𝑑𝐿𝐵 (Q, S3) = 0, which does not exceed
the threshold. The second fetch gets 2 more bits and refines 𝑑𝐿𝐵 to
10.000, which is higher than the threshold. S3 is therefore rejected,
and early termination saves half of the data traffic in this example.

Preprocessing cost. Both the layout exploration and the ac-
tual data transformation happen offline as preprocessing steps on
the vector database similar to vector quantization techniques [37].
The preprocessing cost is modest for several reasons. First, the pre-
processing time is usually amortized over long-time online ANNS.
Second, the layout transformation can be easily parallelized on
individual vectors. Third, the graph construction time in HNSW
constitutes the largest offline cost, where we find the vector data
layout transformation adds only 1.6% extra overheads.

How to set missing bits.When estimating the distance lower
bound, we need to properly set the missing elements/bits in the
partially fetched vector. The correct values depend on the distance
metric. For each distance metric, we use a unified way to han-
dle integer, fixed-point, and floating-point (FP32, FP16, BF16, etc.)
types, as they all follow the fact that, the bits having more impact
on distance calculation are towards the more significant positions and
fetched earlier ; e.g., the exponent is fetched before the mantissa.
For the Euclidean distance, we compare the already fetched (more
significant) bits and the corresponding bits in the query vector. If
they match, the missing (less significant) bits should be set to be
the same as the remaining bits in the query vector. If the partially
fetched bits are larger (resp. smaller), the missing bits should be all
0s (resp. 1s). For example, for a query 01012, the partially fetched
01␣␣2 should be set to 01012, 00␣␣2 to 00112, and 11␣␣2 to 11002.
Signed numbers are similarly handled. For the inner-product dis-
tance, bit 1 should be set for unsigned data and when the sign bits
are the same for signed data; otherwise use 0.

Comparison with prior early termination methods. Early
termination can be applied to ANNS at various levels. Previous work
uses machine-learning-based prediction models to bypass some in-
dex traversals and reduce the number of vectors accessed [13, 52,
87, 90], enabling early termination at the vector level. However,
these prediction-based methods usually incur accuracy loss. Other
designs use early termination at the dimension level, by scaling
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Figure 3: Prefix entropy and early termination (ET) frequency
distribution over different prefix lengths. The left-side yellow
area shows the low-entropy range. The middle pink area
shows the high-termination range.

partial distance results with random projection [25], or through
only partial-dimension fetches [69, 86]. Relying only on partial
dimensions can only use conservative distance lower bounds. For
example, with inner-product or cosine distances, the unfetched
dimensions may contribute negative values to the results. Further-
more, opportunities such as common prefixes are not exploited. We
are the first to enable early termination at both the bit and dimension
levels with hardware support. Our approach has no accuracy loss,
and can even be used in accurate search algorithms like kmeans
and kNN. We also combine partial dimensions and partial bits in
this work. If accuracy loss is allowed, our design can be further
combined with the aforementioned partial-vector methods.

4.2 Data Layout Optimization
In DRAM, each data fetch has a fixed granularity, typically 64 B.
Given the choices of partial dimensions and partial bits, we need
to decide which of the following two is more effective in terms of
minimizing the number of fetches: more bits per element but fewer
elements in one fetch, or fewer bits per element but more elements.
Within one element, the higher (more significant) bits, including
the sign bit for signed data and the exponent bits for floating-
point data, are more important and should be fetched first. On the
other hand, different dimensions are typically considered of equal
importance and are normalized and standardized during feature
extraction [56]. Thus, we apply the same partial-bit fetch pattern
across all dimensions. With these heuristics, the 𝑖th fetch would
contain𝑚𝑖 elements with the next high 𝑛𝑖 bits of each, where𝑚𝑖 =

⌊64 × 8/𝑛𝑖 ⌋. The transformed data layout should match the above
fetch granularity exactly, with padding if needed. For example, a
64 B chunk may contain the next highest 9 bits from 56 dimensions,
with 8 padding bits at the end. The remaining task is to determine
the value of 𝑛𝑖 for each step.
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Figure 4: Offline common prefix elimination to save the cost
of storing and accessing vector data. Outlier vectors are stored
in place as in (c).

Such an optimized fetch scheme is non-trivial to identify. For
instance, in datasets like DEEP and GIST, the highest 4 bits after the
sign bit of each element are often the same and contribute little dis-
crimination for early termination, making simple sequential fetch
suboptimal. While the optimal scheme would generally depend on
the dataset characteristics like data distribution, vector formats, and
distance metrics, we discover some general trends across datasets.
As we fetch from high to low bits, we care about the bit prefix of
each element value. For each prefix length, we define the prefix
entropy as −∑

𝑖 𝑃𝑖 log 𝑃𝑖 where 𝑃𝑖 is the frequency of the 𝑖th prefix
value appearing in the dataset, so it quantifies how diverse the
prefix pattern is. We also define the early termination frequency
as how often this prefix length can give a distance lower bound
that is higher than the threshold (the threshold selection and other
details are described below). Figure 3 illustrates the prefix entropy
and early termination frequency for each prefix length on several
datasets. We make three observations. First, the highest few bits
usually exhibit low entropy (yellow zone), meaning that they tend
to be similar, sharing a common prefix. We call it the low-entropy
range. Second, most early terminations happen in the middle of the
bit range (pink zone, early termination frequency > 1%), i.e., in the
high-termination range. In this region the bits become diverse, lead-
ing to noticeably different estimated distance bounds that can be
leveraged by early termination. Third, there are fewer early termi-
nations happening within the lowest few bits (grey zone). Although
the entropy remains high, these least significant bits have limited
impact on the distance results.

Consequently, we have the following heuristics. First, we should
quickly skip the common prefix in the low-entropy range, by mov-
ing over relatively more bits at the beginning. Second, we should
move slowly across the high-termination range, in which every ad-
ditional bit may trigger a successful termination. The exact number
of bits in each fetch step, i.e., 𝑛𝑖 , is determined through a sampling-
based approach, where a small number of vectors in the actual
dataset are used for two tasks: (1) deciding the (mostly) common
prefix to eliminate when storing data, (2) deciding the bit chunk
length in each fetch step. We empirically determine to use 100
vectors to balance sampling cost and accuracy, which is further
discussed in Section 7.3. Next, we describe the two tasks in detail.

Offline common prefix elimination. Inspired by the quanti-
zation methods that compress vector data, we can directly omit the
common prefix bits of each element, without even storing them in
the new layout. Instead, a single copy of this common prefix is kept

inside the on-chip compute logic, and concatenated to the fetched
bits when calculating distances, as shown in Figure 4(b).

We use the sampling set to determine the length of the common
prefix. However, the common prefix may not apply to every vector
in the full dataset or in a dynamically changing dataset, i.e., there
could exist outlier vectors [77]. To distinguish between normal and
outlier vectors, we add one OlVec bit per vector, thus the actual
saved space is (common prefix length× vector dimension− 1) bits.

Outlier vectors are stored in place, using a special format as in
Figure 4(c). Since not all elements of a vector are outliers, we further
use a per-element OlElm bit. Then, for those outlier elements, we
use the next log(common prefix length) bits to denote how many
bits of this outlier element match the common prefix. The remaining
bits are used to store the bits starting from the mismatched position.
In the figure, the prefix of V2 (11112) has two same bits as the
common prefix 11002, so the partially matched prefix length is 2,
and the remaining space stores the next bit 1. Due to the extra
metadata, several lowest bits of the outlier element are dropped.
These bits should be recovered similarly to the missing bits as
discussed in Section 4.1 when calculating distances, to ensure a
conservative lower bound. Solely using this format would slightly
sacrifice accuracy (Section 7.3). If we want to ensure no accuracy
loss, we can store the non-compressed original vector in a separate
place. When the compressed vector gives an in-bound result, we
re-check the non-compressed vector to filter out false positives,
at the expense of a few additional memory accesses. In this paper
we adopt this approach. Alternatively, the offline common prefix
elimination is optional and can be disabled to ensure accuracy.

Furthermore, even in the sampling set, we can also allow a small
number of outliers for a longer (mostly) common prefix and higher
savings for most of the normal vectors. Again we empirically select
the fraction of outlier elements in the sampling set as 0.1% (Sec-
tion 7.3), i.e., the number of individual outlier dimension elements
is no more than (0.1% × number of vectors × vector dimension).

Compared to traditional data quantization that inevitably affects
accuracy, our common prefix elimination enables flexible tradeoff
between efficiency and accuracy, even supporting no accuracy loss,
by adjusting the threshold for outliers. In addition, it is designed for
our early termination scheme, with which traditional quantization
is incompatible.

Dual-granularity fetch. To decide the bit step 𝑛𝑖 of each fetch,
we again rely on our previous observations and use the following
heuristic of dual granularities. That is, after the common prefix, we
first fetch with a coarse-grained bit step 𝑛𝐶 for𝑇𝐶 times (to quickly
move over the remaining low-entropy range), and then switch to a
fine-grained bit step 𝑛𝐹 in the high-termination range (to terminate
at the earliest with as few fetched bits as possible). Using such
different granularities is more efficient than simple uniform data
fetches. We have also explored more complex schemes for 𝑛𝑖 , such
as an arbitrary non-increasing series of bit steps with more than
two granularities, but found limited extra benefits.

To find the optimized values of 𝑛𝐶 , 𝑛𝐹 , 𝑇𝐶 parameters, we again
use the sampling set. More specifically, for a carefully selected
threshold (see below), we find the early termination position 𝑝ET
(i.e., the first bit position at which using all bits before it would
trigger an early termination) of each vector in the sampling set.
Then for a specific set of 𝑛𝐶 , 𝑛𝐹 ,𝑇𝐶 values, we calculate the amount
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of data needed to fetch. For example, if 𝑝ET is in the fine-grained
fetch range, the access cost is

64 ×
(⌈

𝐷

𝑚𝐶

⌉
×𝑇𝐶 +

⌈
𝐷

𝑚𝐹

⌉
×
⌈
𝑝ET − 𝑛𝐶 ×𝑇𝐶

𝑛𝐹

⌉)
(1)

where𝑚𝐶,𝐹 = ⌊64×8/𝑛𝐶,𝐹 ⌋; 𝐷 is the vector dimension. The ceiling
functions consider the data layout padding overheads. We sum up
the access cost over all the vectors in the sampling set. The 𝑛𝐶 ,
𝑛𝐹 , 𝑇𝐶 values that minimize this total access cost are chosen. Such
parameter selection is done fully offline.

The final question is which threshold to use when doing the
above parameter exploration. Strictly speaking, the threshold is
determined by both the query vector and the index structure, and
would vary along the search process. Nevertheless, in reality, the
query vector should be close to some vectors in the database (e.g.,
in HNSW, it should be close to the entry point of the graph). So we
use the distance distribution between pairs of vectors in the sam-
pling set to approximate this threshold. Specifically, we empirically
use the 10% largest distance (90% percentile) in this distribution,
following the experimental results in Section 7.3.

4.3 Discussion
Packing multiple vectors in one fetch. Currently, we only do
re-layout of bits within one vector. We may also consider packing
multiple vectors in one fetch, which could further improve effi-
ciency if the number of dimensions is small and/or the optimized
fetch bit step is small. However, if not all the packed vectors are
needed during index traversal, wemaywaste accessing unnecessary
data in this case. Note that here only when all the packed vectors
trigger early termination could we stop fetching, because they are
in one single memory fetch. For example, in HNSW graphs, neigh-
bors of a searched vector are usually all accessed next. But top-layer
graph vertices typically have fewer neighbors than bottom-layer
vertices. Even in the bottom layers with many neighbors for each
vertex, there could be multiple traversal paths getting to a vector,
i.e., it is a co-neighbor of multiple vertices, and may be packed with
different sets of other neighbors. This makes it hard to statically do
multi-vector packing during preprocessing. We thus do not explore
it further in this work.

Compatibility with vector quantization. Early termination
can also work under vector quantization, albeit with less efficiency.
For scalar quantization, we can still estimate themissing bits/elements
for the quantized data type, but quantization reduces the effective-
ness of prefix elimination. For product quantization, partial bits of
the codewords are not useful, but partial elements are beneficial.
We can look up a subset of the memorized subspace distances for
the partial elements and aggregate them for a distance lower bound.

5 Hardware Architecture
Next, we introduce the hardware architecture of ANSMET, which
leverages DIMM-based NDP for ANNS and supports early termina-
tion. We first describe the overall architecture and execution flow
in Sections 5.1 and 5.2. Then we discuss two specific issues, about
how to partition the vector data across multiple ranks (Section 5.3),
and how to synchronize the results between the host CPU and the
NDP units (Section 5.4).
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Figure 5: ANSMET hardware architecture. (a) Heterogeneous
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with extra NDP unit. (c) NDP unit design. (d) Distance com-
puting unit design. (e) NDP instruction format.

5.1 Architecture Overview
The search phase of ANNS includes two stages, index traversal and
distance comparison. From Section 3 we see distance comparison
is memory-bound and has high parallelism, and is thus well-suited
to memory-side NDP. In contrast, index traversal typically exhibits
limited parallelism and requires frequent control flow synchro-
nization. Furthermore, in ANNS there are various types of index
structures, including trees, hash tables, inverted lists, and graphs
(Section 2.1). To support such flexibility, index traversal should use
a general-purpose processor. Therefore, we run index traversal on
the host CPU, and only execute distance comparison on the NDP
units at the DIMM side, as in Figure 5(a). Such heterogeneity pro-
vides both generality and efficiency. We also separate the index data
(the graph topology, the inverted list, etc.) and the vector data into
different ranks to make host CPU accesses and NDP computations
independent. Alternative ways that support concurrent accesses
between host and NDP [16, 19, 33] may also be applicable.

The NDP units for distance comparison are added to the DIMM
buffer chip, as in Figure 5(b). Figure 5(c) further shows the detailed
design of an NDP unit, which contains a set of query status handling
registers (QSHRs), a distance computing unit, and corresponding
controllers for command parsing and generation. We use 32 QSHRs
in each NDP unit. Each QSHR stores the metadata and status for
the distance comparison tasks between one query vector and mul-
tiple vectors from the database under search (we call them “search
vectors” hereafter). Specifically, each QSHR contains the query
vector data, an array of 8 comparison tasks for this query (each
including the search vector address, the distance threshold, and the
result distance), the current vector data under comparison, and a
fetch counter. We describe their usage in Section 5.2. The query and



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yiwei Li, Yuxin Jin, Boyu Tian, Huanchen Zhang, and Mingyu Gao

search vector data fields are both 1 kB, which supports 256-dim FP16
or 512-dim UINT8 data types. Longer vectors are partitioned as de-
scribed in Section 5.3. The other distance and address values are 4 B
each. The overall capacity of QSHRs is 2148 bytes × 32 = 67.125 kB,
a hardware cost similar to or smaller than previous designs [19, 73].

The distance computing unit in Figure 5(d) calculates the (lower-
bound) distance between the query vector and a (partially fetched)
search vector. We use 16 adders and multipliers, each up to 32-bit
wide, to process multiple dimensions in parallel for each 64 B fetch.
Fewer resources can be used to reduce area at the expense of longer
compute latency, but we find this unnecessary for the DIMM buffer
chip. Section 6 shows the NDP unit area is minor compared to
the DIMM buffer chip total area. This unit is designed to support
multiple distance metrics, akin to prior work [35]. For example,
the adders are used to calculate the differences for the Euclidean
distance but skipped for the inner product.

For implementation, our NDP units assume a unified buffer chip
in the rank, consistent with prior NDP designs [42, 47]. To improve
signal integrity, Load-Reduced DIMMs in both DDR4 and DDR5
remove the global buffer chip and instead use separate data buffers
(DBs) and a register clock driver (RCD). We follow MEDAL [33] to
implement NDP on this DIMM type. Specifically, a distance com-
puting unit is added to each DB to compute a partial distance on the
sub-vector from its DRAM chip. The result is sent through the new
inter-chip hierarchical data bus added by MEDAL to the centralized
RCD, which aggregates them and decides early termination.

5.2 Execution Flow
During ANNS, the index traversal runs on the host CPU. When
it comes to the point at which multiple search vectors need to be
compared with the query vector, the host CPU offloads distance
comparison tasks to the NDP units on the DIMMs, through specially
encoded DDR commands as the NDP instructions summarized in
Figure 5(e). Initially, a configure instruction is issued to all NDP units,
specifying the element type, the vector dimension, the distance
metric, and the early termination parameters including the common
prefix length and the𝑛𝐶 ,𝑛𝐹 ,𝑇𝐶 values. It is encoded as a DDR WRITE
to a reserved address. To offload distance comparison, we use two
instructions. A set-query instruction writes the query vector data
(up to 1 kB) to a specific QSHR, with up to 16 DDR WRITE commands
that each transfers 64 B. The QSHR ID and the sequence number
are encoded in the address, with a reserved prefix. A set-search
instruction sends to the same QSHR up to 8 comparison tasks, each
with a 4-byte vector address and a 4-byte distance threshold, in one
64 B DDR WRITE. A QSHR that has received both instructions could
start its processing. An optimization here is to first issue set-search
and then set-query, so the NDP unit can start fetching the search
vector data while receiving the query data.

The comparison tasks in the same QSHR are processed one after
one, sequentially. However, different QSHRs can issue memory
accesses in parallel to maximize bandwidth utilization. For each
task, the NDP unit fetches each 64 B chunk from the transformed
layout (Section 4.2) of its search vector stored in the local DRAM
rank. The fetched data are restored to the original layout according
to the early termination parameters configured previously, and
written to the current vector data field of the QSHR. After each

fetch, we compute the distance lower bound and decide whether
to early terminate. The fetch counter is split into two sub-fields,
tracking both which task is being processed and how many fetches
have been done in the current task. If the final distance is within
the threshold, we write it to the result field, which was initialized
to an invalid MAX value. The host CPU polls the QSHR with the
poll instruction, as a DDR READ to a specific QSHR ID. More details
about polling are discussed in Section 5.4. Note that it is the host
program’s responsibility to allocate/free and keep track of QSHR
usage, using their IDs explicitly in the above NDP instructions.

5.3 Hybrid Partitioning for Vector Data
In a typical memory system with multiple ranks, the vector data
should be partitioned and placed across these ranks in an opti-
mized manner, to fully utilize their NDP units in parallel. Prior
DIMM-based NDP systems for recommendation systems have stud-
ied different schemes that can also be used by our system. The
vertical partitioning method splits the dimensions of each vector
and places each subset of dimensions into a different rank [42, 66].
To get one vector, all the ranks are accessed simultaneously, each
calculating a partial distance result, and they are aggregated by the
host CPU to derive the final distance. Vertical partitioning max-
imizes memory throughput, but it has several drawbacks. First,
it has limited scalability as the partitioned subset of each vector
becomes shorter and may not fully occupy the 64 B fetch granu-
larity. Second, the host CPU needs to do additional partial result
collection and aggregation, which is serialized across each rank. In
contrast, the horizontal partitioning scheme splits different vectors
into different ranks while all the dimensions of each vector stay
in the same rank [4, 47]. Each distance comparison only accesses
one rank, with a large access granularity of the full vector and
without extra host CPU aggregation. However, when there are few
on-the-fly comparison tasks, the other ranks may be underutilized.
When the vectors in some ranks are hot, severe load imbalance
could also limit the performance.

Given these tradeoffs, state-of-the-art solutions use hybrid parti-
tioning that combines the two [76, 82, 91]. We follow this approach,
which first splits each vector by dimensions into sub-vectors of
size 𝑆 and assigns them to a subset of ranks in one rank group
(by vertical partitioning), and then partitions by different vectors
among different rank groups (by horizontal partitioning). Previous
designs use a relatively small sub-vector size of 𝑆 = 64 B [82]. In
our case, the use of early termination has unique impact on the
above tradeoff. Specifically, early termination prefers horizontal
partitioning, because with a longer (sub-)vector, early termination
could save more future fetches of more dimensions. If the local rank
only has a few dimensions, the partial distance result on them may
not be enough to trigger early termination. Even if an early termina-
tion happens, it can only save future fetches on this local rank, but
cannot affect other ranks due to lack of fast cross-rank communica-
tion. As a result, ANSMET should use a larger sub-vector size than
previous designs. We find that 𝑆 = 1 kB achieves the best balance
(Section 7.3). We emphasize that we do not need to keep each full
vector in a single rank; our design is compatible with vertical parti-
tioning. Each sub-vector in each rank results in a partial distance
that is eventually merged by the host CPU. It is still possible to
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do early termination locally in each rank, by comparing its partial
distance of the sub-vector to the full distance lower bound, albeit
with reduced effectiveness.

Finally, we also replicate a small number of hot vectors to all rank
groups, in order to alleviate load imbalance, which is the main draw-
back of horizontal partitioning with a larger sub-vector size. ANNS
has a unique advantage over recommendation systems, which is
also one of our novel insights. While hot vectors are somewhat ar-
bitrary and hard to identify in recommendation systems, the index
structure of ANNS can provide clear hints, e.g., the entry points
and vertices in the top-layer graphs in HNSW, and the centroids in
IVF. So hot vector replication is more effective in ANSMET.

Specifically, we evaluate the GIST dataset with the above repli-
cation technique. Without replication, the query amount ratio be-
tween the most loaded NDP unit and the average is 1.49×. By
replicating the top four layers of the HNSW index, which are just
5.27MB and 0.14% of the total data, this ratio reduces to 1.05×, indi-
cating well balanced loads. We also generate a more skewed query
set with the zipf distribution (𝑎 = 2.0). Replication can effectively
reduce the above imbalance ratio from 2.19× to 1.09×.

5.4 Adaptive Result Polling
ANSMET intentionally separates distance comparison task offload-
ing and result collection. Polling is used by the host CPU to retrieve
the results of distance comparisons from the NDP units [28, 73, 92],
due to several reasons. First, the NDP unit supports simultaneously
processing multiple queries, which may affect each other’s tim-
ing. Second, even for a single query, early termination may cause
unpredictable latency that is shorter than full processing.

The key challenge is to determine when to poll, to balance be-
tween bandwidth overheads and unnecessary delays. In ANSMET,
we observe that the early termination frequency in Figure 3 also
serves as an indication for the probability distribution of distance
computing time. Therefore we leverage this distribution obtained
from the sampling-based preprocessing (Section 4.2) to calculate the
expected latency of each offloaded task. For multiple tasks, we use
the addition of their distributions, further considering their issue
time differences. This significantly improves the polling efficiency.

Note that some previous designs proposed to modify the DDR
protocol to support variable timing [3, 7, 48], and MEDAL [33] used
additional RFU (Reserved for Future Use) pins to proactively notify
the host CPU with a modified host memory controller. Our adaptive
probing method does not need such modifications.

6 Methodology
Simulation setup.We build a cycle-accurate simulator for ANS-
MET through modifying Ramulator 2.0 [57]. The detailed config-
urations are summarized in Table 1. We use 4 memory channels
and 2 DIMMs per channel. Each DIMM contains 4 ranks for par-
allel accesses. This configuration corresponds to previous DIMM-
based designs [19, 33, 73]. The memory energy is derived from
the Ramulator 2.0 DRAM power model. Other energy parame-
ters are detailed in Table 1. The latency and area for the QSHR
are derived from CACTI [5] under a conservative 22 nm technol-
ogy node. Each NDP unit consumes 0.06mm2, which is accept-
able compared to a 100mm2 typical area budget of the DIMM

Table 1: System configurations.

Host CPU

16 out-of-order cores, of 3.2 GHz, 7W per core
64 kB private L1-D/I cache, 8-way, 64 B cachelines, LRU
1MB private L2 cache, 8-way, 14-cycle, LRU
8MB shared LLC, 16-way, 60-cycle, LRU

Memory DDR5-4800, 4 channels × 2 DIMMs × 4 ranks,
8 bank groups × 4 banks, RCD-CAS-RP: 40-40-40

NDP units
32 NDP units in total, one per rank, 1.2 GHz
32-entry QSHRs, 1-cycle lookup latency
16-wide 32-bit multipliers & adders, 300mW

Table 2: ANNS datasets.

Dataset Distance Datatype # Dims # Vectors # Queries

SIFT L2 UINT8 128 1M 10K
BigANN L2 UINT8 128 1B 10K
SPACEV L2 INT8 100 1B 1K
DEEP L2 FP32 96 1B 10K
GloVe IP FP32 100 1.2M 1K
Txt2Img IP FP32 200 1B 10K
GIST L2 FP32 960 1M 1K

buffer chip according to existing DIMM-based NDP designs [19].
We have open-sourced the implementation of our simulator, in-
cluding early termination and data layout optimizations, at https:
//github.com/tsinghua-ideal/ANSMET.

Evaluated designs. We select the following designs for com-
parison. CPU-Base uses the host CPU to process all operations and
accesses the 4-channel memory system in the conventional way.
NDP-Base adds 32 NDP units in the memory for distance compari-
son while keeping index traversal on the host CPU. We adopt the
existing early termination schemes that only use partial-dimension
fetches on NDP as NDP-DimET. We also compare with BitNN [32],
which was designed for 3D point cloud kNN search and used bit-
serial computations with bit-level early termination. We adapt their
design to accelerate ANNS with a fixed 1-bit step (i.e., bit-serial),
denoted as NDP-BitET.

We then enable our hybrid partial-dimension/bit early termina-
tion design, as NDP-ET. It uses a simple heuristic data layout strat-
egy, where integers use 4-bit chunks and floating-point numbers
use 8-bit chunks. This strategy does not need any sampling-based
optimization but still needs to transform the data layout. We then
apply dual-granularity fetch in NDP-ET+Dual. Finally, we add of-
fline common prefix elimination in NDP-ETOpt, which becomes
the full design of ANSMET. Similarly, we also evaluate CPU-ET and
CPU-ETOpt. Hybrid partitioning is used for the vector data with
the best sub-vector size of 1 kB for all the above designs.

Datasets. We conduct our evaluation on several billion-scale
real-world datasets from public benchmarks [37, 38, 60, 67, 71]. The
dataset characteristics are summarized in Table 2, ordered by their
data element types and numbers of dimensions. We focus on the
HNSW index algorithm in our evaluation [23, 58]. To construct the
HNSW graph indexes, we set its parameter efConstruction to 500
and limit the maximum degree to 16 [25, 58]. We tune the other

https://github.com/tsinghua-ideal/ANSMET
https://github.com/tsinghua-ideal/ANSMET
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Figure 6: Performance comparison between ANSMET and the baselines with different datasets and result counts (𝑘). Normalized
to CPU-Base.

parameter efSearch (a.k.a., 𝑘′ in Section 2.1) until the recall rate
is over 80%, as recommended by previous work [25]. We further
study the impact of 𝑘′ in Figure 8.

7 Evaluation
In this section, we first compare the overall performance and energy
consumption between ANSMET and the baselines in Section 7.1.
Then we conduct detailed analysis of other performance metrics in
Section 7.2. Finally we study the impact of various design parame-
ters in ANSMET in Section 7.3.

7.1 Overall Comparison
We evaluate the CPU and NDP designs for HNSW-based ANNS
workloads that find the 𝑘 nearest neighbors, where we choose 𝑘 as
1, 5, 10 for different use cases corresponding to previous work [35].
Figure 6 shows the speedups normalized to CPU-Base. Different
𝑘 values exhibit similar results. For simplicity, in the following
analysis, we use𝑘 = 10 as suggested in the BigANN benchmark [71].

Compared to the CPU, simply offloading distance comparison
tasks to the NDP could significantly improve performance by lever-
aging intrinsic memory access parallelism, which brings a 5.26×
speedup on average, and up to 6.40× for DEEP. This is expected
as our rank-level NDP design has a theoretical 8× bandwidth in-
crease over the CPU. NDP-DimET, the existing early termination
using partial dimensions only, does not work for the datasets with
the inner-product metric (GloVe and Txt2Img). This is because un-
fetched dimensions could contribute negative values, and thus a
stable distance lower bound cannot be obtained. Even on the other
datasets, NDP-DimET achieves only a 5.9% speedup compared to
NDP-Base. NDP-BitET uses fixed single-bit early termination. It is
only effective for datasets with sufficiently large dimensions, e.g.,
GIST. Otherwise, e.g., for SIFT with 128 dimensions, each fetch
only contains 128 bits, which wastes 75% of a 64-byte access and
performs even worse than NDP-Base.

Our hybrid partial-dimension/bit early termination, together
with all the optimized data layout techniques (ETOpt), could save
unnecessary memory accesses and computations, obtaining a 1.64×
speedup on the CPU and 1.52× on the NDP. Note that the CPU
early termination results are somewhat optimistic, as we assume
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Figure 7: System energy comparison between ANSMET and
the baselines on different datasets. Normalized to CPU-Base.

similar dedicated logic to Figure 5(d) exists to avoid any bit recovery
overheads. Below we mainly discuss the NDP designs. Among all
the datasets, GIST achieves the highest speedup of 2.24× in NDP-
ETOpt over NDP-Base, in which 87.3% distance comparisons are
early terminated, and 53.0% memory accesses are saved. Both SIFT
and BigANN are UINT8 datasets with low dimensionality, so our
advanced bit-level optimizations including dual-granularity fetch
and common prefix elimination are not very effective. But fetching
partial bits in the simple way still improves performance by 10%
compared to 5% in NDP-DimET. Generally, ANSMET shows greater
improvements on datasets with 1) long bit widths (e.g., FP32) and
high dimensions; 2) same or similar prefixes followed by high-
entropy ranges, to enable dual-granularity fetch (e.g., DEEP and
GIST as in Figure 3); 3) uniform query loads to avoid imbalance.

We further show the benefit breakdown from our data layout
optimization techniques for early termination (Section 4.2). The
simple heuristic in NDP-ET can reduce memory accesses by 25.1%
on average. With dual-granularity fetch applied in NDP-ET+Dual,
we can use adaptive coarse/fine-grained bit chunks at different
ranges. It further reduces memory accesses based on the learned
distribution of the dataset, and brings an 8.2% average speedup
over the simple method. Eventually in NDP-ETOpt, we enable
outlier-aware common prefix elimination to further increase fetch
utilization, which brings another 18.8% speedup on average.
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Figure 7 shows the overall system energy comparison. NDP-Base
is more energy-efficient than CPU-Base with 77.8% less energy.
With fewer memory accesses, our simple early termination effec-
tively reduces the system energy by 18.3%, and dual-granularity
fetch and common prefix elimination further reduce the energy by
4.6% and 13.2%, respectively. We have also found that in the DEEP,
Txt2Img, and GIST datasets, NDP-Base consumes higher memory
energy than CPU-ET (not shown in the figure), because without
early termination, the NDP design needs to access and process
more data than the CPU despite having higher bandwidth. But the
overall energy is lower because the NDP is more performant.

Figure 8 shows the tradeoff between accuracy and search time
with different result queue sizes 𝑘′. We use the recall rate [35], i.e.,
how many true nearest neighbors are included in the approximate
output. ANSMET consistently outperforms NDP-Base and CPU-
Base at different accuracies. Besides the classic tradeoff between
accuracy and time, a smaller 𝑘′ also leads to a smaller distance
threshold and makes early termination more effective. This explains
the larger gaps between NDP-ETOpt and NDP-Base on the left side
of the figure. Note that early termination improves performance
without hurting accuracy.

7.2 Detailed Analysis
Figure 9 illustrates the latency breakdown of each query, in four de-
signs: CPU-Base, NDP-Base, NDP-ETOpt with conventional polling
of a simple fixed 100 ns interval, and with our adaptive polling
(Section 5.4). NDP-Base significantly reduces the total per-query
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Figure 10: Normalized access latency breakdown into effec-
tual (shaded regions) and ineffectual data fetches.

Table 3: Speedups of ANSMET over CPU-Base with different
numbers of NDP units.

CPU-Base 8 16 32 64

Speedup 1× 1.94× 3.72× 6.04× 7.60×

latency by 72.8% over CPU-Base, mainly from the faster distance
comparison. Moreover, the early termination algorithm effectively
reduces the distance comparison latency by saving unnecessary
computations and data accesses, resulting in a 20% end-to-end la-
tency reduction. However, the conventional polling method spends
13% time on collecting the results from the NDP units. By using
our adaptive result polling, this overhead is reduced by 62% and
the overall performance improves by another 6.8%. It has only 5.9%
overheads compared to an ideal method with zero result collection
and task offloading costs.

To see how early termination reduces unnecessary data fetches,
Figure 10 illustrates the data fetch utilization improvements by
attributing the total access latency to effectual (i.e., for accepted
vectors) and ineffectual fetches. The fetch utilization improves from
6.0% in NDP-Base to 9.0% in NDP-ET, and eventually achieves 11.1%
in NDP-ETOpt. The existing partial-dimension-only scheme obtains
a 6.6% utilization. We see that even with NDP-ETOpt, there are
still significant ineffectual data fetches. This gap is mainly due to
the over-estimated distance bounds at the beginning of each query,
during which the temporary nearest neighbors are still not close
enough, and the early termination thresholds derived from them
are too loose, yet to gradually converge.

ANSMET can adopt different numbers of parallel NDP units in
the memory system. To investigate the scalability, we scale the NDP
units and the corresponding ranks from 8 to 32 in Table 3. Overall,
the performance scales linearly within 32 NDP units, obtaining
speedups from 1.94× for 8 units to 6.04× for 32 units, compared to
CPU-Base which has 4 channels. However, from 32 to 64 units, the
speedup only slightly increases, due to the limited parallelism in the
index algorithm itself, such as the average number of neighbors in
the HNSW proximity graphs. Optimizations on the index structure,
e.g., allowing more neighbors per node in HNSW, are outside the
scope of this paper. At the architecture level, both horizontal and
vertical partitioning schemes have scalability bottlenecks. With
horizontal partitioning, load imbalance becomes more severe with



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yiwei Li, Yuxin Jin, Boyu Tian, Huanchen Zhang, and Mingyu Gao

Table 4: Preprocessing time of different datasets.

Dataset Preproc. time (s) Graph constr. time (s)

SIFT 1.28 240.91
BigANN 44.95 >5000
SPACEV 0.38 4393.14
DEEP 24.48 1350.62
GloVe 12.67 3305.69
Txt2Img 27.66 4784.04
GIST 2.99 287.61
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Figure 11: Impact of sampling parameters in preprocessing
of early termination. (a) Number of sampled vectors. (b) Dis-
tance threshold as a percentile of all pair-wise distances.
With the DEEP dataset. The figures compare the sampling
distribution of early termination under the default param-
eter to the true distribution of the full dataset. The tables
list the KL divergences between the true distribution and the
distributions under different parameters.

more NDP units. With vertical partitioning, the final reduction at
the CPU needs to collect more partial results from more NDP units.
We leave optimizations for large-scale NDP units to future work.

Table 4 shows that the extra preprocessing time for data layout
transformations in ANSMET is negligible, especially compared to
the existing graph construction time, adding a small < 1% cost.

7.3 Parameter Sensitivity and Selection
Sampling parameters in preprocessing of early termination.
We study the selection of two parameters in the sampling-based
preprocessing of our early termination strategy: the number of
sampled vectors, and the distance threshold (as a percentile in the
distribution of all pair-wise distances in the sampling set). Their us-
age is described in Section 4.2. We compare the sampled distribution
of early termination (similar to Figure 3) and the true distribution
(obtained by performing real query vectors on the full dataset),
using the Kullback–Leibler (KL) divergence which is a mathemat-
ical indicator to measure the difference between two probability
distributions [46]. In Figure 11(a), we see that using more sampled
vectors can get more close to the true case, and 50 to 100 vectors
are sufficient for billion-scale benchmarks (sampling rate = 1e−7).
Larger datasets may need slightly more samples. ANSMET uses 100
sampled vectors as default. In (b), we find that using the distance
at the 10% percentile as the threshold shows the most similarity to
the true case, with the smallest KL divergence. Here the threshold

Table 5: Impact of outlier-aware common prefix elimination.
With the SPACEV dataset at 𝑘 = 10.

Outlier % 0% 0.01% 0.1% 1% 20%

Speedup 11.4% 11.4% 32.0% 32.0% −1.1%
Saved space 25.0% 25.0% 37.5% 37.5% 50%

(a) Extra space 0% 0% 1.1% 1.1% 50%
Extra accesses 0.0% 0.0% 1.4% 1.4% 68.3%

(b) Accuracy loss 0% 0% −34.7% −34.7% −76.5%
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Figure 12: Impact of vector data partitioning schemes. With
the GIST dataset. Normalized to the default of Hybrid 1 kB.

should be set as close to the true case as possible; either smaller or
larger values would lead to more divergence. We also plot these dis-
tributions and see visually they are similar to the true distributions.

Outlier-aware common prefix elimination. Table 5 evaluates
the benefits and overheads of being outlier-aware in the common
prefix elimination process for different allowed fractions of out-
liers, compared to not using common prefix elimination. We use
the SPACEV dataset as an example with 𝑘 = 10. The rows of (a)
use our default setting that stores non-compressed outlier vectors
as backup to ensure no accuracy loss, while (b) allows accuracy
loss to save more space. A lower fraction results in fewer outliers
and fewer extra backup accesses, but also eliminates fewer bits
and saves less memory space and data traffic. Nevertheless, even
not allowing any outliers can still provide a 11.4% performance
improvement, because 2 prefix bits of each element are eliminated
in this case. On the other extreme, an overly high outlier fraction
aggressively prunes the prefix, but there is a high probability of
more extra accesses to backup outlier vectors. For example, with
20% outliers, the performance decreases by 1.1% because of 68.3%
more extra accesses. In addition, the extra space to store these
backup vectors could be substantial, totally offsetting the space
saving. Our 0.1% choice has good space saving and performance
speedup. The extra space and access overheads to backup vectors
are small. However, if we do not keep the backup data, the accuracy
could drop significantly, by 34.7%.

Hybrid partitioning of vector data. Figure 12 shows the im-
pact of vector data partitioning schemes. Clearly, neither purely
vertical nor purely horizontal partitioning achieves the optimal
performance because they bias either parallelism with low fetch
utilization, or high fetch utilization with long sequential accesses.
The hybrid scheme with a 1 kB granularity works best for ANSMET,
and is used as the default.
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8 Related Work
NDP for recommendation systems. There have been numerous
existing proposals using NDP architectures, mostly DIMM-based
ones, to accelerate high-dimensional vector aggregation in recom-
mendation system workloads [4, 42, 47, 55, 66, 82]. Our hardware
architecture is similar to these designs. However, ANNS differs
from recommendation systems in terms of its unique opportunity
of early termination, which is leveraged by ANSMET with addi-
tional software and hardware optimizations.

ANNS acceleration. Some prior designs used commodity hard-
ware to execute ANNS. For example, GPUs have been used to pro-
vide higher access bandwidth and exploit more parallelism [30, 40,
65, 88, 89]. DiskANN [72] and SpANN [14] utilized disk storage
to provide sufficient capacity. However, GPU memory is usually
too small, while disks are too slow. ANSMET uses DIMM-based
NDP that achieves a good balance between data capacity and ac-
cess performance for ANNS. FPGAs are also a promising platform
for acceleration. ANNA [50] and Abdelhadi et al. [1] accelerated
the product quantization implementation of ANNS using FPGAs.
DF-GAS [83] and Falcon [39] proposed FPGA frameworks for end-
to-end graph-based ANNS acceleration.

On the NDP regime, SSAM [49] was the first HMC-based NDP
solution for ANNS, but 3D memory has limited capacity. CXL-
ANNS [35] proposed a CXL-based system and offloaded compu-
tation tasks to the underlying CXL devices. Some designs, includ-
ing VStore [54], Starling [78], NDSearch [79], Proxima [81], Smar-
tANNS [75], and Kim et al. [44], utilized near-SSD computation.
Nevertheless, none of these NDP designs exploited the opportunity
of early termination as ANSMET does.

Other similarity search algorithms. Some designs [6, 12, 32,
68, 80] also accelerated large-scale low-dimensional vector search-
ing with various indexes. BitNN [32] adopted bit-serial computa-
tions with bit-level early termination, targeting 3D point cloud ap-
plications. Vector databases have much more (hundreds of) dimen-
sions than 3D, which motivates our hybrid partial-dimension/bit
early termination and hybrid partitioning techniques. Some work
incorporated vector search with conventional attribute matching
named hybrid search [63, 85]. The distance computation can still
be accelerated using ANSMET.

9 Conclusions
We proposed ANSMET, the first DIMM-based NDP system to accel-
erate ANNS with a novel early termination strategy. Using NDP al-
leviates the memory bottleneck of ANNS at the hardware level, and
early termination further saves unnecessary data accesses and com-
putations by identifying ineffectual vectors as early as possible at
the algorithm level. We also optimize the data layout and CPU+NDP
coordination carefully. ANSMET exhibits 5.26× and 1.52× speedups
from NDP and early termination, respectively. These benefits are
multiplicative to enable higher combined improvements.
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