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Abstract—Dynamic architecture neural networks (DynNNs)
are an emerging type of deep learning models that can leverage
different processing difficulties of data samples to dynamically
reduce computation demands at runtime. However, current GPUs
and specialized accelerators lack the necessary architecture and
dataflow support to achieve the promised theoretical efficiency
improvements due to the high dynamism in DynNN execution.
We propose Adyna, a novel hardware-software co-design solution
to efficiently support DynNN inference. Adyna uses a unified
representation to capture most existing DynNNs to enable a
general design. It features a dynamism-aware, multi-kernel selec-
tion paradigm, in which the dataflow scheduler makes resource
allocation decisions according to the distribution of dynamic
size values, and the hardware architecture keeps multiple pre-
compiled kernels and selects the best matching one to process
each specific data sample according to its dynamic size. Adyna
further uses an effective kernel sampling algorithm to carefully
choose the set of kernels to load onto the hardware. Evaluated on
various DynNN models, Adyna can outperform state-of-the-art
multi-tile and multi-tenant accelerators by 1.70× and 1.57× on
average, and up to 2.32× and 2.01×.

Index Terms—dynamic architecture neural network, domain-
specific accelerator, scheduling

I. INTRODUCTION

Deep neural networks (DNNs) are arguably the most impor-
tant applications today [35]. Recently, a new type of DNNs
named dynamic architecture neural networks (DynNNs) have
emerged in computer vision and natural language process-
ing [12], [14], [19], [42], [59], [70]. Instead of keeping a static
specification of the model topology and the involved operators,
DynNNs allow for dynamic decisions at runtime about what
computations to execute for each input data sample, in order
to best leverage the different difficulties of processing different
data. Various DynNN proposals incorporate different types
of dynamism in the model, including dynamic numbers of
operators, dynamic operator sizes, and dynamic data process-
ing paths in the model. By dynamically adapting the amount
of computations to each data sample, DynNNs are able to
save unnecessary computations and improve efficiency without
sacrificing model accuracy [24]. Specifically, HydraNets [42]
could reduce inference cost by 4× with negligible accuracy
loss; PABEE [70] is 1.62× faster and has even better accuracy.

However, from a system perspective, the theoretical savings
in computation demands of DynNNs may not realize practical
performance improvements. DynNNs introduce significantly

more dynamic runtime behaviors compared to conventional
static DNNs, making it challenging to execute them efficiently
in today’s hardware. For example, when executed on GPUs,
batching becomes inefficient for most DynNNs; hence most
existing implementations are limited to batch-1 execution and
underutilize the available parallel computing resources [59],
[63], [70]. On one hand, the diversification of different data
samples in the same batch leads to severe branch diversifica-
tion [66], which is a well-known inefficiency. On the other
hand, GPUs lack flexible control and usually need to ask the
host CPU to make dynamic decisions, causing frequent CPU-
GPU synchronization overheads.

Since DynNNs typically split data samples into smaller
subsets that execute along different branches in the model,
the computation load of each operator would decrease and
cannot fully utilize the hardware resources. It is thus preferred
to enable spatially co-located execution of multiple operators
to share the chip. Three types of existing architectures have
this potential, including multiplexable GPUs [43], [45], [60],
multi-tenant DNN accelerators [22], [33], and multi-tile DNN
accelerators [6], [18]. However, they all lack certain critical
features or cannot support them efficiently for DynNN execu-
tion. Only multi-tenant designs can adjust resource allocation
at runtime quickly enough to efficiently balance the highly
varying dynamic workloads. Only multi-tile accelerators can
directly forward data among multiple on-chip operators to
reduce off-chip access overheads. None of them can efficiently
select among multiple kernels for each operator that are
optimized for different dynamic data sizes, or support flexible
and dynamic on-chip communication that matches the input-
dependent data splitting and routing in DynNNs.

In this work, we propose Adyna, a novel hardware-software
co-design to efficiently support DynNN inference. We make
the following technical contributions at multiple levels, from
algorithm representation, dataflow scheduling, to hardware
architecture, in order to address the aforementioned challenges
and avoid the inefficiencies in existing GPUs and accelerators.

First, to support diverse DynNN types, we propose a novel
unified representation that captures almost all known DynNN
models, including dynamic model depths, dynamic operator
sizes, and dynamic execution paths (Section IV). Our rep-
resentation transforms all types of dynamism in the original
computation graph onto the batch dimension, and introduces
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a new switch operator to dynamically split the data samples
in a batch. The unified representation enables a general and
simplified hardware architecture design.

Second, we enhance the offline dataflow scheduling tools
to be dynamism-aware (Section V). Instead of allocating
resources and compiling dataflow schemes based on the worst-
case maximum size, our scheduler uses a frequency-weighted
approach based on the expectation of the computation load
of each dynamic operator, which is calculated as the average
size weighted by the occurrence frequency of each possible
value. The occurrence frequencies are collected by a hardware
profiler on our accelerator, and sent back to the software
scheduler on the host CPU. We further propose optimizations
to reduce the runtime instantaneous load variation, as well as
the resource idleness for extremely rarely used operators.

Third, we add new hardware mechanisms to the state-of-the-
art multi-tile DNN accelerators [17], [18], [50], [55] to better
support DynNN processing (Section VI). The key idea is to
keep multiple kernels that are optimized for different dynamic
sizes in each compute tile, and dynamically select the best
matching kernel for processing based on the actual size. To
limit the on-chip storage of these many kernels, we implement
a template kernel in the hardware control logic, and only store
the metadata, such as loop dimensions and orders, to reduce
the kernel size to only 128 bytes. We further modify the on-
chip interconnect to support dynamic data routing and proper
synchronization across the tiles.

Fourth, Adyna also features a novel multi-kernel sampling
algorithm in its scheduler (Section VII), which effectively se-
lects only a subset of kernels that are most likely to match the
real execution distribution. This further restricts the number of
kernels on the hardware and reduces the on-chip buffer size.
Such kernel sampling also uses the runtime kernel occurrence
frequency information collected by the hardware profiler.

We compare Adyna against the state-of-the-art multi-tile and
multi-tenant DNN accelerators on various types of DynNNs
that exhibit four types of dynamic behaviors. Adyna achieves
1.70× and 1.57× speedups on average, and up to 2.32×
and 2.01×, over multi-tile and multi-tenant accelerators. A
static version of Adyna with multi-kernel hardware selection
and resource allocation contributes to an average 1.41× per-
formance improvement. Further enabling dynamic scheduling
adjustment at runtime brings another 1.21× speedup, and
can approach the ideal case within only a 13% performance
gap on average. We also demonstrate that the offline ap-
proach in Adyna is a better and more practical choice to
support DynNNs. An alternative online approach that produces
dataflow kernels in real time after knowing the actual dynamic
sizes would need to finish kernel compilation within 0.39 ms
to be competitive, which is an unrealistically high bar today.

II. BACKGROUND AND MOTIVATIONS

A. Dynamic Architecture Neural Networks

Traditional deep neural network (DNN) models are mostly
static, i.e., the computation graphs and the involved operators
are fixed and must all be executed. Dynamic architecture
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Fig. 1. An example DynNN model.

neural networks (DynNNs) [12], [14], [19], [24], [28], [42],
[59], [61], [70], in contrast, leverage the fact that input
samples are not equal and require different processing efforts.
They thus adapt the computation graph topologies and/or the
operator shapes to each specific input sample, and dynamically
save a significant portion of computations. For example in
Figure 1, the bottom dog image is much easier to classify
than the top one, allowing us to use fewer feature extraction
layers to classify the simpler images.

As shown in Figure 2, based on the taxonomy in [24], we
categorize DynNNs into four typical types: dynamic depth, dy-
namic width, dynamic routing, and dynamic region. Dynamic
depth networks (Figure 2(a)) vary on the number of layers each
sample goes through [14], [32], [59]. When a sample reaches
a special gate layer, the gate will make a prediction based on
the current intermediate activation tensor and decide whether
to continue extracting features or to directly output a result.
Dynamic width networks selectively compute the channels of a
layer [9], [19]. As in Figure 2(b), before feeding an activation
tensor to a convolutional layer, the unimportant channels will
be pruned. Such pruning is done dynamically on a per-sample
basis, in contrast to static pruning. Dynamic routing networks
(Figure 2(c)) route each sample to one or multiple branches.
It is based on the assumption that different branches are
trained as experts for different tasks [28], [29], [42]. Dynamic
region networks restrict computations only to certain carefully
selected informative regions. In Figure 2(d), only two out
of the four regions (called patches) are actually used by
the succeeding layer blocks. Some other DynNNs mix these
four types for better performance. For example, AdaViT [40]
combines layer skipping (dynamic depth) and patch selection
(dynamic region). These four types cover most DynNNs in
the survey [24] except element/neuron skipping networks.
Element-wise dynamism/sparsity usually uses specialized data
encoding (e.g., CSR and bitmap), and they are better supported
by existing sparse DNN accelerators (Section X).

In this paper, we select five representative DynNNs listed in
Table I as our workloads. For dynamic depth, SkipNet [59] and
PABEE [70] use layer skipping and early exiting, respectively.
For dynamic width, we choose FBSNet [19] that uses dynamic
channel pruning. Tutel-MoE [28] is selected as a representative
dynamic routing model, which is an implementation of Mix-
ture of Experts (MoE). Lastly, for dynamic region, we use
the differentiable patch selection (DPS) network [12]. These
DynNNs cover the fields of computer vision (CV) and natural
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Fig. 2. Four typical categories of DynNNs.

TABLE I
EVALUATED DYNNNS IN THIS WORK.

Category Network Mechanism Fields

Dynamic depth SkipNet [59] Layer skipping CV
PABEE [70] Early exiting NLP

Dynamic width FBSNet [19] Channel pruning CV

Dynamic routing Tutel-MoE [28] Mixture-of-Experts CV

Dynamic region DPSNet [12] Patch selection CV, NLP

language processing (NLP) and are based on various backbone
models including ResNet, BERT, and ViT [16], [26], [32].

B. Multi-Tile Accelerators and Dataflow

The importance of DNNs has made them an emerging
domain for specialized hardware acceleration. Many existing
DNN accelerators are derived from a common spatial architec-
ture consisting of an array of processing elements (PEs) and a
hierarchy of on-chip buffers including scratchpads and register
files [8], [31]. As more complex and deeper DNNs require
continuously increasing amounts of computations, recent DNN
accelerators have to scale their computing capabilities. A com-
mon way to do so is to adopt a parallel, multi-tile architecture
on a single chip or across multiple chips/chiplets [6], [17],
[18], [50], [55]. As shown in Figure 3, a multi-tile accelerator
connects a group of tiles and multiple off-chip memories
using a network-on-chip (NoC). Compared with GPUs and
spatial accelerators like TPUs where cores/PEs synchronize
through off-chip memories, the most intriguing feature of
multi-tile accelerators is inter-operator pipelining. By mapping
consecutive operators (layers) to different tiles and directly
forwarding intermediate data between tiles, pipelining could
save off-chip memory transfers and improve performance.

With the abundant computing and data buffering resources
offered by modern DNN accelerators, finding the best dataflow
schemes to schedule various DNN layers to achieve high uti-
lization becomes a critical task. Following prior wisdom [18],
[47], [64], we abstract the dataflow scheduling of multi-tile
accelerators into three levels: graph segmentation, operator
pipelining, and kernel generation. At the graph segmentation
level, the computation graph of the DNN model is partitioned

M
EM

 SPad

SPad

SPad

SPad

SPad

SPad

SPad

SPad

M
EM

 

Fig. 3. A multi-tile DNN spatial accelerator. Each tile has an array of PEs,
one register file per PE, and an SRAM scratchpad.

TABLE II
COMPARISON OF DYNNN SUPPORT ON CANDIDATE ARCHITECTURES.

Feature GPU M-tenant M-tile Adyna

F1. Spatial parallelism ✓ ✓ ✓ ✓
F2. Fast runtime adjustment ✗ ✓ ✗ ✓
F3. Operator pipelining ✗ ✗ ✓ ✓
F4. Multi-kernel selection ✗ ✗ ✗ ✓
F5. Dynamic data routing ✗ ✗ ✗ ✓

into different groups (each called a segment) of consecutive
operators. Segments are executed one after another on the
accelerator. At the operator pipelining level, the operators in
a segment are spatially scheduled to different tiles of the
accelerator. The intermediate activation tensors are stored in
the on-chip scratchpads and directly forwarded through the
NoC between tiles in a pipelined manner, without swapping
to memory. At the kernel generation level, we decide PE
mapping, loop transformation, and parallelization across tiles
for each operator. Such intra-operator schemes are commonly
represented as nested-loop programs, which we call kernels.

C. Motivation

While DynNNs can reduce computations and data accesses,
efficiently executing DynNNs is challenging with both GPUs
and existing domain-specific accelerator designs. DynNNs
introduce significant diversification among data samples in a
batch, which effectively reduces the computation load of each
operator and makes it more challenging for each individual
operator to fully utilize the hardware resources in a large
chip. In other words, instead of being processed by a single
common operator, the samples in a batch are now diversified
to multiple operators parallel to each other. Therefore, a highly
desired architectural feature is to support spatial multi-operator
parallelism, i.e., simultaneously running multiple operators on
the hardware (F1 in Table II).

There are mainly three candidate architectures with such
spatial parallelism support, namely multiplexable GPUs [43],
[45], [60], multi-tenant DNN accelerators (M-tenant) [22],
[33], and multi-tile DNN accelerators (M-tile) [2], [6], [18],
[69], as listed in Table II. Multiplexability allows a single GPU
to be used simultaneously by multiple operators. This can be
achieved through several ways, such as Multi-Instance GPUs
(MIG) [10], [11], multiple CUDA streams [60], or CUDA
dynamic parallelism (CDP) [45]. M-tenant can flexibly par-
tition its computing and memory resources with various pre-
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scheduled schemes to support multiple DNN models running
simultaneously. M-tile can parallelize operators in one DNN
in a pipelined manner as in Section II-B.

However, for efficient DynNN execution, these architectures
all lack some necessary features or cannot support them
efficiently (Table II F2 to F5). First, DynNNs exhibit input-
dependent computation load distribution among different op-
erators, and thus the hardware resources that are allocated
to these operators need to be fast and flexibly adjusted at
runtime to adapt to the dynamic loads (F2). M-tenant could
support fast runtime resource re-partitioning, after identifying
which DNN models are currently running together [22], [33].
In contrast, multiplexible GPUs and M-tile cannot support
sufficiently fast runtime adjustment. MIG needs up to several
seconds to re-partition resources [36], [43]. The control flow
between multiple CUDA streams requires frequent cross-
stream synchronization, which needs to involve the host CPU
with severe CPU-GPU synchronization overheads, up to 75%
of the end-to-end latency [66]. While CDP supports runtime
adjustment through conditionally invoking child kernels and
allows dynamically determining the grid and threadblock
sizes of each operator [45], it cannot fully avoid CPU-
GPU synchronization and still suffers from data copy and
kernel launch costs [7]. Besides, CDP treats the local and
shared memories private in the parent and child kernels [45].
Thus intermediate data can only communicate through the
global memory. Futhermore, CDP has additional overheads
like runtime linking and register spilling [44], which may
cause 20% slowdown [7], [30], [54], [58]. M-tile assumes
static DNNs with known amounts of computations and pre-
compiled mapping schemes [6], [18], lacking on-chip control
to support runtime dynamism. For example, AMD XDNA [3],
[52] is essentially an M-tile architecture and relies on the
compiler toolchain for reconfiguration [3], which takes up to
minutes and cannot serve real-time adjustment [4].

Furthermore, as DynNNs execute multiple operators to-
gether on-chip, inter-operator pipelining (F3) that directly
forwards intermediate data among them is a natural choice
to reduce off-chip accesses. Only M-tile, e.g., XDNA [52],
supports it by design. Multiplexable GPUs and M-tenant both
assume the co-executing kernels are loosely related, e.g., from
different CUDA streams or different DNN models, and can
only communicate through the global memory.

Finally, there are DynNN-specific requirements that none
of the three architectures supports. When we look at a single
DynNN operator, usually one of its dimensions is dynami-
cally determined at runtime (e.g., batch for dynamic depth,
channel for dynamic width), which leads to varying shapes
and favors different optimized dataflow schemes, i.e., kernels.
Using a large one-size-fit-all kernel will lead to suboptimal
and sometimes redundant computations and memory accesses.
Consequently, each operator should be associated with multi-
ple kernels that the hardware needs to store on-chip and select
dynamically at runtime (F4). Moreover, DynNNs usually fork
into and merge from multiple branches with irregular and
input-dependent data division and reduction [12], [28], [59].
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Fig. 4. Adyna overview and its overall workflow.

This requires flexible and efficient on-chip data routing support
in the hardware to properly forward data between operators
and eliminate redundant data transfers (F5).

III. ADYNA OVERVIEW

We propose Adyna, a hardware-software co-design solution
for DynNN model inference. Adyna is optimized for DynNNs
and supports all missing features of previous architectures in
Table II. The overall workflow of Adyna is shown in Figure 4.

First, Adyna uses a novel representation called dynamic
operator graphs to handle various DynNN types in Table I
in a unified manner (Section IV). The DynNN model is first
processed by the model parser to analyze its operators, depen-
dencies, and routing policies to construct the dynamic operator
graph. Instead of having all diverse dynamic behaviors in
Figure 2, the dynamic operator graph unifies them into a single
type with only dynamic sizes on the batch dimension, serving
as a unified foundation for our hardware and software designs.

The dynamic operator graph is then fed into the scheduler.
The scheduler searches for optimized dataflow schemes with a
hardware cost model [8], [34], [64]. The scheduler leverages a
new dynamism-aware multi-kernel execution paradigm to en-
able fast runtime adjustment (F2). It combines statistic-based
offline scheduling and real-time online adjustment, to deal
with long-term and short-term dynamic variations, respectively
(Section V). This achieves a good tradeoff between scheduling
cost and load imbalance. Specifically, Adyna collects the
distributions of runtime dynamic values using a hardware-
based profiler. It periodically calculates the expectation of each
operator’s workload and accordingly allocates resources. To
further alleviate real-time load imbalance at runtime, Adyna
adopts two additional techniques: tile sharing to adjust re-
source partitioning between branches, and branch grouping to
improve the scheduling of related and sparse branches.

The scheduled dataflow schemes are loaded to the hardware
to execute. The Adyna hardware (Section VI) is based on
multi-tile accelerators with inter-operator pipelining (F3), and
extended to further support multi-kernel selection of each
operator (F4) and dynamic data routing between operators
(F5). For each operator, Adyna uses a space-efficient format
to maintain multiple kernels with different allocated resources,
optimized for different dynamic dimension sizes. When en-
countering a concrete size at runtime, the best-matching kernel
is dynamically selected by a kernel dispatcher and interpreted
as instructions to orchestrate computations. Between operators,
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the hardware features an enhanced NoC interface for flexible
data routing across tiles.

Finally, we notice that the possible sizes of the dynamic
dimension in an operator, and correspondingly the number of
kernels, could be quite large (hundreds to thousands). This
makes it impossible to store all of them on-chip. Thus Adyna
proposes a multi-kernel sampling technique (F4). Based on the
collected value distribution of the dynamic size, the scheduler
decides which kernels among all the possible ones are most
likely used at runtime and should be compiled and stored
in the accelerator (Section VII). As observed in previous
works [13], [25], the value distribution can change over time.
To be adaptive to dynamic shifts in the value distribution,
such kernel selection is also periodically re-sampled by the
scheduler after receiving the report from the hardware profiler.

IV. UNIFIED REPRESENTATION

Different types of DynNNs cause different dynamic behav-
iors in graph topologies and operator shapes, which makes
it difficult to perform static scheduling during compile time.
In Adyna, we propose a novel approach to transform these
diverse types of dynamism into a unified representation called
dynamic operator graphs, enabling us to handle all DynNNs in
the same way, simplifying the software and hardware designs.

To capture the fact that different data samples may take
different execution paths, we first introduce a new switch
operator. A switch operator is configured to switch the input
tensor along a given dimension dyn dim into multiple output
tensors for the succeeding selectively executed operators along
different branches. As shown in the center of Figure 5,
the switch operator receives an input tensor and a routing
mask. The mask is generated using other operators in the
DynNN model, e.g., fully connected operators in the figure.
It represents which branches are activated for each sample in
the batch. For example, the routing mask in Figure 5 indicates
that sample 0 activates branches 0 and 1, sample 1 only
activates branch 1, and sample 2 activates branch 2. Based
on the routing mask, the input tensor is split along dyn dim
and routed to different succeeding operators. Compared with
conventional tensor split [46], the switch operator allows for
non-sequential and non-uniform tensor splitting and broadcast-
ing across multiple divisions, while conventional split only
follows a sequential, predefined manner.

Now we could keep all selectively executed operators in
the computation graph of a DynNN as multiple branches after
a switch operator, and maintain a static topology. We call
such a transformed graph a dynamic operator graph. When
defining a DynNN model, the user only needs to use the
customized switch and merge operators to specify the dynamic
structures, while still reusing existing APIs from mainstream
frameworks for the rest static operators. For example, to use
a switch, the user should specify the dynamic dmension,
as well as both the input data tensor and the routing mask
generated from standard conv2d or matmul operators. The
operator will generate a dynamic tensor object which should
connect to all the succeeding operators. Under the hood, the

model parser automatically tracks the propagation of dynamic
dimensions, and analyzes the operators, dependencies, and
routing policies to construct the dynamic operator graph.
Existing DNN frameworks lack a standard way to implement
various DynNNs, and usually require users to write low-level
if-else-like code structures. Thus we expect the new switch
operator is easy to use and does not complicate programming.

However, the challenging part is that different DynNN types
have different dyn dims, complicating hardware and software
support. Our key insight is that we are able to transform all
types of dynamism in various DynNNs only onto the batch
dimension, thus enabling unified designs. Figure 5 illustrates
how we are able to represent all the DynNNs listed in Table I
in such a way. (a) Early exiting can be represented using a
switch operator to either a sink or the subsequent operators.
(b) MoE is a switch operator followed by multiple branches.
To represent channel pruning, we divide the convolutional
operator into several sub-operators along the input channel
dimension, and treat each as a separate branch selected by
the switch operator. Each sub-operator is a dense operator but
with a dynamic size. (c) Layer skipping can be represented
by adding a shortcut beside the backbone operators after the
switch operator. (d) For patch selection, we fold the iteration
over patches into the batch dimension, and use a sink operator
to discard those unimportant patches.

Note that the selectively executed branches after the switch
operator may have drastically varying values in their dyn dim
(i.e., batch) sizes (some could even be empty), which leads to
imbalanced computation and memory access demands. This
dynamism will be passed to all subsequent operators until a
merge point. All such operators with dynamic batch sizes are
marked with shadows in Figure 5. To precisely characterize the
dynamism, we further enhance each of these operators to track
the value frequencies of their dyn dim sizes when executing
on hardware, as shown in Figure 5 left. This frequency track
table will be filled in by the hardware profiler and used by the
software scheduler.

To construct a dynamic operator graph, the model parser
inserts necessary switch operators and makes certain trans-
formations similar to Figure 5. It then traverses the graph to
convert corresponding operators (e.g., those between switch
operators and merge points) to dynamic, i.e., adding a dyn dim
and initializing a frequency track table in software. Currently,
we only allow each operator to have at most one dyn dim.
We disallow one operator on multiple branches of a switch
operator unless it is a merge with a matched dyn dim. We
also disallow one operator to be the common successor of
two switch operators, unless one switch operator is the suc-
cessor of the other. Our representation is expressive enough
to cover both the four basic types of DynNNs introduced in
Section II-A as well as their hybrid ones like AdaViT [40].

V. DYNAMISM-AWARE SCHEDULING

The dynamic operator graph of a DynNN is processed
by the Adyna scheduler to determine the optimized resource
allocation and dataflow schemes. Similar to the static cases,
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Fig. 5. Dynamic operator graph representation. Operators with dynamic dimensions are marked with shadows. Non-linear operators are omitted for simplicity.

our scheduler also works on the following three levels: graph
segmentation, operator pipelining, and kernel generation.

A. Frequency-Weighted Segmentation and Allocation

The common practice of mapping a DNN model onto
an accelerator is to first partition the model into multiple
segments, each of which contains multiple operators to be
executed on-chip simultaneously in a pipelined way. Each
operator is allocated a certain number of accelerator tiles.
Determining optimized segmentation and pipelining schemes
requires information on the operator shapes and their depen-
dencies [18], [55]. Such size information is trivial to obtain in
static DNNs. But for DynNNs, these sizes are only known at
runtime. A naive way is to assume the maximum (i.e., worst-
case) value for each dynamic dimension (dyn dim). Figure 6
top illustrates a layer skipping block with two branches,
B1 with one convolutional operator and B2 with two. The
total dyn dim size is 8. To schedule on an 8-tile accelerator,
the static approach assumes the same dyn dim size for both
branches to derive the computation demand ratio, which is
1 : 2 for B1 vs. B2. So 3 tiles are allocated to B1 and 5 to B2.

However, if we analyze a real execution trace, e.g., doing
inference of SkipNet [59] on ImageNet [15], we find that the
actual dyn dim values on the two branches are quite different.
As in Figure 6 bottom, the horizontal axis represents a series of
batches. Each bar represents the normalized per-tile workload
of a batch, assigned to either branch. In the static allocation
case, on average 5.03 samples out of 8 in a batch use B1, while
the rest 2.97 follow B2. Consequently, in most batches, B1
suffers from more workloads per tile than B2 in Figure 6(a) if
using the static allocation strategy. Such load imbalance causes
resource underutilization and degrades performance.

To solve this, we propose frequency-weighted segmentation
and allocation. Instead of using the maximum value for
segmentation and allocation, we use the expectation of the
dyn dim value based on its collected distribution from the on-
chip profiler. The demand resource is allocated proportional
to this expectation. Back to the prior example, the dyn dim
expectations of B1 and B2 are 5.03 and 2.97, respectively,
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Fig. 6. Frequency-weighted allocation and tile sharing. The trace shows the
workload per tile of each batch for two branches B1 and B2.

while B1 has 1 operator and B2 has 2. So their resource
ratio should be (1× 5.03) : (2× 2.97), approximately 4 tiles
allocated to each. Figure 6(b) shows that the frequency-
weighted strategy achieves a more balanced workload per tile.

B. Optimizations for Runtime Adjustment

Tile sharing. While frequency-weighted allocation im-
proves load balance in the average case, the dyn dim values
can still exhibit significant variations for each specific batch
and diverge from the calculated expectation. Figure 6(b) high-
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lights one such case with a red circle, in which B2 temporarily
has more workloads than expected. To deal with this runtime
variation, we further propose the tile sharing optimization,
which allows one tile to be allocated to multiple operators
on different branches succeeding the same switch operator.
At runtime, when the actual dyn dim values are known, we
decide which operator to execute on this shared tile to achieve
the best balance. Essentially, tile sharing is one kind of work
stealing. Our hardware design in Section VI supports such
capability of dynamically selecting which kernel to execute.

A key point is that we must limit the degree of sharing
to avoid excessive on-chip storage overheads. In the extreme
case, all tiles can be shared by all branches, but this would
result in too many kernels buffered in each tile. It is also
unnecessary because of the diminishing improvements as
sharing increases. We apply the following restrictions. First,
we only share a tile among at most two branches, which are the
two branches that are least likely to be activated at the same
time. This helps complement their resource requirements and
reduce contention. Second, we decide the number of shared
tiles by only supporting three cases: the ratio of the two
branches’ average computation demands a : b, and two nearby
ratios 2a : b and a : 2b. As in Figure 6(c), tile sharing leads
to three ratios of 5.03 : 5.94, 10.06 : 5.94, and 5.03 : 11.88,
corresponding to tile allocations of 4 : 4, 5 : 3, and 2 : 6,
requiring 3 shared tiles. From the trace we see that such
tile sharing can substantially reduce most workload variations,
especially the temporary spikes.

Branch grouping. In some cases, e.g., FBSNet [19], the
loads of the branches are highly skewed, i.e., some branches
are not even executed once in a batch, or only at very low
frequencies. In these cases, the tiles allocated to the unexecuted
branches are underutilized. We thus use branch grouping to
group these low-frequency branches together and execute them
on the same tiles temporally. For example, if two branches
are rarely executed, i.e., their activated frequencies are below
a predefined threshold, we use the sum of their expected
workloads for allocation and use the allocated tiles for both
branches temporally. The tile hardware stores the kernels of
both branches and executes them as needed (Section VI). This
is different from the spatial allocated tile sharing described
before, where different branches always use a disjoint set of
tiles. Grouped branches temporally use the same tile.

C. Scheduling Overheads

Dynamism-aware scheduling introduces small overheads for
runtime performance. The frequency-weighted segmentation
and allocation are performed peridoically and would cause
hardware reconfiguration including pipeline draining, but this
happens in a coarse granularity (e.g., every 40 batches in
Section VIII) and incurs less than 2.4% overheads in our
evaluation. The tile sharing and branch grouping techniques
are achieved through pre-compiled kernels as introduced in
Section VI. During runtime, only the routing mask matching
in switch operators and the multi-kernel selection are needed,
which have negligible time cost.

VI. HARDWARE ARCHITECTURE

The Adyna hardware is optimized on top of the baseline
multi-tile architecture. We support multi-kernel selection in-
side each tile by adding a kernel dispatcher and carefully man-
aging the space to buffer multiple kernels (Section VI-B). We
also enhance the NoC to dynamically split and route data and
synchronize execution progress across tiles (Section VI-C).

A. Overall Architecture and Execution Flow

As in Figure 7 left, the tiles are placed in a 2D layout,
connected through a 2D-torus NoC (for simplicity the loop-
back connections are not shown in the figure) with on-chip
routers to transfer data across tiles. We adopt X-Y routing to
avoid deadlocks. Each tile can also reach the closest memory
interface for off-chip data accesses.

Figure 7 right shows the tile design. Each tile consists of a
PE array and a scratchpad as in the baseline. It adds three
components specially designed for DynNNs: a kernel dis-
patcher, a network interface, and an integrated controller and
profiler. The kernel dispatcher interprets the runtime dyn dim
value and dynamically selects the most appropriate kernel to
execute. The network interface supports dynamic data splitting
and routing for the switch operators, and prepares the data
packets sent to the router. The profiler tracks the dyn dim
value distributions and periodically reports to the scheduler
for resource allocation and kernel re-sampling (Section VII).

Similar to the baseline multi-tile architecture, at runtime,
each operator is mapped to multiple tiles, so that each tile
processes a partition of an operator, by executing a specific
kernel compiled by the scheduler and locally stored in the tile.
The kernel execution is triggered by the arrival of input data
from the NoC. Each tile is also made aware of the information
of its succeeding operators, including which tiles are allocated
to them, and how the current output data should be partitioned
among these tiles. Hence the tile knows how to send its output
data to the other tiles through the NoC.

B. Multi-Kernel Selection in a Tile

To support dynamic data sizes at runtime, each tile allocated
to a dynamic operator would keep multiple kernels optimized
for different dyn dim values. These kernels are stored in the
scratchpad, sharing the same buffer space with the data. At
runtime, when the input data arrive, the metadata in the first
packet contain the actual dyn dim value, which is used by the
kernel dispatcher to search among the locally stored kernels
and select the best matching one, i.e., the kernel with the
smallest dyn dim value that is no less than the actual value.
The profiler tracks the invocation frequencies of all the kernels,
and periodically sends the distribution to the scheduler.

The key challenge to supporting multi-kernel execution is
the limited on-chip space to store the many different kernels
in a tile. In our current design, the scratchpad in each tile has
512 kB. To avoid interference with data buffering, we restrict
the maximum capacity occupied by the kernels to be less than
5% of the scratchpad, i.e., 25.6 kB. This is a rather small
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instruction buffer, which limits the number of kernels each
tile can support as well as the size of each kernel.

Adyna uses two techniques to address this issue. First, the
scheduler conducts kernel sampling to carefully select which
kernels to buffer in each tile to restrict the number of kernels,
which will be discussed in Section VII. Second, we use tem-
plate kernels to reduce the size of each kernel. Figure 8 shows
the generic kernel template, which is essentially a classical
nested loop structure that reads input data, does matrix/tensor
multiplications, and writes output data back. The number of
loop levels matches the number of memory hierarchy levels,
following DNN loop blocking techniques [34], [47], [64]. Each
blocked data dimension at a loop level contains the blocking
factor (16 bits), the iteration stride (4 bits), and its order at this
level (4 bits). We also specify the total size of each dimension,
e.g., Cdim (16 bits). In this way, we only need to store these
small metadata to represent a kernel, instead of a large, full
program. For 7 dimensions and 5 loop levels, such kernel
metadata only take about 128 bytes.

The kernel dispatcher implements this generic template as a
finite state machine in hardware, i.e., the instruction issuer in
Figure 7. After loading the metadata of a kernel, the instruction
issuer iterates over the loops and generates corresponding
instructions. We use an address generator to calculate the data

access addresses from the blocking factors and strides. The
instruction issuer is also responsible for transferring the output
data to the next tiles, for which it issues unicast or multicast
instructions to the network interface.

The instruction issuer is also able to do runtime kernel-
fitting to further eliminate unnecessary computations and data
movements caused by the gap between the kernel and the real
dyn dim value. It compares the current loop indices with the
actual loop bounds determined by the real dyn dim value. If
exceeded, it will not generate the instructions to fetch the data
and skip the computations.

Our kernel templates support common element-wise and in-
place kernel fusion, e.g., pooling and layer normalization, by
optionally issuing corresponding instructions in the predefined
nested loops. Arbitary kernel fusion is not supported, as known
to be a common limitation of domain-specific hardware that
has fixed instruction sets [8], [18], [31].

C. Dynamic Data Routing across Tiles

The dynamic execution in DynNNs also results in varying
communication patterns on the inter-tile NoC. We introduce
the network interface unit in each tile to support dynamic data
routing and efficient synchronization across tiles.

To support dynamic data routing, the hardware specially
handles the switch operator. It is fused into the tiles of its
preceding operator who generates the tensor to be dynamically
split. These tiles will use the routing mask computed elsewhere
to configure their network interface units. As shown in Fig-
ure 7 middle, the network interface is responsible for setting
the routing destinations and packing the data. To accurately
route the right range of data to the correct destination, the
controller first infers the best-fit kernel of each succeeding
operator, based on the actual dyn dim value it has. From
these concrete succeeding kernels we know the exact data
layouts in the destination tiles. Then, we derive the range
of the output tensor to be sent to each tile, by applying the
succeeding operator’s intra-operator parallelization scheme to
the output tensor dimension range. Finally, we use the desired
data layout of the destination tile to generate the sequence of
data addresses, which are used by the data collector to fetch
data from the local buffer and send out through the NoC.
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Different from static on-chip pipelining execution with a
fixed latency at each stage, the dynamic data sizes may cause
the pipeline stages to exhibit varying execution times. Proper
synchronization between adjacent stages is thus needed. When
a tile finishes a kernel and is about to transfer the output data to
another tile, it will first send a special probing packet to query
the destination tile. The destination tile only acknowledges the
probing packet with a response when it is ready to accept
the data in its local scratchpad. The source tile does not start
transferring data until it receives the acknowledgment.

VII. MULTI-KERNEL SAMPLING

As Section VI-B discussed, we need to restrict the number
of kernels in each tile. Given the allowed kernel storage space
25.6 kB and the size of each kernel 128 bytes, we can at most
store 200 kernels in each tile. Also considering the tile sharing
in Section V-B amplifies the number of kernels by a factor of
6 (sharing 2 operators with 3 allocation ratios), the maximum
kernel count is about 32. On the other hand, both the range
and the variance of dyn dim distributions can be large. For
example, DPSNet [12] folds its dynamic dimensions into the
batch dimension, further increasing the dyn dim size up to
8192, making it impossible to keep all the kernels on-chip;
meanwhile, the variation in its patch selection is also very large
since the objects can be in arbitrary regions. The scheduler
thus needs to determine which subset of kernels to buffer in
each tile to maximize the overall efficiency. It makes these
decisions based on the dyn dim value frequency distribution
periodically reported by the hardware profiler. Essentially, we
prefer to keep the kernels optimized for the most frequently
occurring dyn dim values, while sacrificing the efficiency of
the rare values. We call this process multi-kernel sampling.

Algorithm 1 Multi-kernel sampling
Require: Sampled values of dyn dim vals[], and their frequencies freq[].
Ensure: Re-sampled values new vals[].

1: new vals← vals; new freq← freq
2: for N iterations do
3: ▷ Remove the value with the least punishment.
4: punish← CALCPUNISH(new vals,new freq)
5: rm pos← ARGMIN(punish)
6: rm val← new vals.REMOVE(rm pos)
7: ▷ Add the value with the most saving.
8: saving← CALCSAVING(new vals,new freq)
9: in pos← ARGMAX(saving)

10: in val← (new vals[in pos−1]+new vals[in pos])/2
11: if in val= rm val or in val is invalid then
12: ▷ Recover the removed value.
13: new vals.INSERT(rm pos,rm val)
14: break
15: else
16: new vals.INSERT(in pos,in val)

17: ▷ Redistribute the frequencies (Algorithm 2).
18: new freq← REDISTFREQ(vals,freq,new vals)
19: vals← new vals; freq← new freq

Initially, we start with a set of kernels uniformly spanned
between 1 and the maximum dyn dim value. During execution,
after the profiler sends a copy of the tracked frequency distri-
bution back to the scheduler on the host CPU, the scheduler
re-samples a new set of kernels that better match with the

Algorithm 2 Redistribution of frequencies
Require: Sampled values of dyn dim vals[] and their frequencies freq[],

re-sampled values new vals[].
Ensure: Redistributed frequencies new freq[] for re-sampled values.

1: Initialize new freq to all 0 with same length as freq
2: for pos in 0 to LEN(freq) do
3: f ← freq[pos]
4: ub← vals[pos]
5: if ub < new vals[0] then
6: Add f to new freq[0]
7: continue
8: lb← LOWERBOUND(vals,pos)
9: samples← new vals.FILTER(lambdax : x > lb∧ x≤ ub)

10: pv← lb
11: for p, v in ENUMERATE(samples) do
12: f ′← f × (v− pv)/(ub− lb)
13: Add f ′ to new freq[p]; pv← v

runtime distribution. Algorithm 1 summarizes the sampling
algorithm for a dynamic operator, which takes in the current
set of sampled dyn dim values (sorted) and their frequencies,
and outputs a new set of re-sampled values. The algorithm
executes iteratively. In each iteration, we try to remove a
value and insert a new one, by evaluating the punishment of
removing a sample value and the saving of inserting a new
value (Lines 4 and 8). To define the punishment and the saving,
we use the difference between the actual dyn dim value v̂
and the best matching sample value vi (the closest one that
is no less than v̂), vi− v̂, which represents the loss of using
this kernel for this dyn dim value. Suppose the real frequency
distribution of v is φ(v). In the range of vi−1 to vi, the total loss
is ∑

vi
v=vi−1

φ(v)(vi− v). If we remove vi, the dyn dim values in
the above range need to instead use the kernel for vi+1. So the
loss increases by

∆(vi) =
vi

∑
v=vi−1

φ(v)(vi+1− v)−
vi

∑
v=vi−1

φ(v)(vi− v)

=
vi

∑
v=vi−1

φ(v)(vi+1− vi)

(1)

Similarly, if we insert a new vi between two adjacent values
vi−1 and vi+1, the loss reduces by ∆(vi), same as Equation (1).

However, because the hardware profiler only provides us the
frequencies of the current dyn dim value samples, we do not
know the real φ(v) of every v. We make a simple assumption
that the frequency distribution in each range (vi−1,vi] is
uniform. Then we can derive the punishment of removing each
vi based on Equation (1). We can further derive the optimal
position to insert a new sample in each range, which is the
center (vi−1 + vi)/2, and the corresponding saving.

At the end of each re-sampling iteration, we need to
redistribute the frequencies from the old samples to the new
samples (Algorithm 1 Line 18). This procedure is shown in
Algorithm 2. We iterate through all the old frequencies in
freq. For each old frequency f for a value vi, we identify
the range (vi−1,vi], i.e., (lb,ub] (Lines 4 to 8), and filter the
new samples falling into this range (Line 9). Following the
uniform distribution assumption, we uniformly distribute f to
these new samples (Lines 10 to 13).
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TABLE III
HARDWARE CONFIGURATIONS OF ADYNA.

Tiles 12×12
PEs per tile 32×32

PE FP16 MAC, 1 GHz, 64 B registers
Scratchpad 512 kB per tile, 72 MB total

Memory 6 HBM2 stacks, 1842 GB/s total
NoC 2D torus, 192 GB/s per tile

VIII. METHODOLOGY

Configurations. Table III shows the default configurations
of Adyna in our evaluation. The overall accelerator contains
12× 12 tiles and runs at 1 GHz. All the tiles are connected
by a 2D-torus-based NoC. We set each tile to have a 32×32
PE array and a 512 kB scratchpad, following [6]. We use 6
HBM2 stacks as the off-chip memory. These configurations
offer 295 TFLOPs peak throughput and 1842 GB/s memory
bandwidth, close to an NVIDIA A100 GPU (80 GB PCIe
version). We use CACTI 7.0 [5] to model the area and power
of the scratchpads. For other key components including the
PE array, the kernel dispatcher, the network interface, etc.,
we implement RTL and synthesize them in the TSMC 28 nm
technology. The RTL designs of the PE array and the router
are extended from previous work [21], [68].

To analyze the dynamic operator graph and do design space
exploration, we develop the model parser, the scheduler, and
the cost model (Figure 4) in Rust. The generated multi-
kernel schemes are then fed into a cycle-accurate simulator for
hardware performance evaluation. The simulator is developed
on SimPy [39] and its components are calibrated to the
RTL. Re-scheduling and re-sampling are performed on the
host CPU. Reconfiguration will first cause pipeline draining,
whose performance impact is considered in the simulator. The
reconfiguration is performed every 40 batches, so the incurred
overheads are relatively low.

Workloads. The evaluated workloads are listed in Table I.
The models are set up and trained using the original open-
source code bases or following the instructions in the original
papers. We train CV models on ImageNet [15] and NLP
models on GLUE [56]. For Tutel-MoE, we implement a model
similar to [41] that can be fully pipelined and fill up the on-
chip buffer of a single chip. We use the test datasets in the
corresponding benchmarks for evaluation and set the default
batch size to 128, following [13], [66]. Other batch sizes are
evaluated in Figure 13.

Baselines. The baseline M-tile accelerator in Figure 3 has
the same configurations as Adyna, except for the newly pro-
posed support for dynamic operators. The DynNN models are
scheduled as static operator graphs with all the dyn dim sizes
set to the maximum. For M-tenant, we model Planaria [22]
as a multi-tile accelerator with the same resources as Adyna.
Its tiles (subarrays) can be flexibly partitioned into separate
groups, while branches are modeled as individual tenants
mapped to these tile groups. Switch and merge operators are
done on the host CPU. We oppotimistically assume it could

TABLE IV
AREA AND POWER BREAKDOWN OF AN ADYNA TILE.

Components Area (mm2) Power (mW)

PE array 1.981 1,156.355
Scratchpad 1.413 247.927

Dispatcher + controller 0.148 10.409
Router + network interface 0.025 1.646

Total 3.567 1,416.34

pre-compile [47] multiple kernels for each operator under
different resource amounts, so at runtime it directly selects
the best one to execute.

To illustrate the effectiveness of runtime adjustment in the
scheduler, we compare with an Adyna (static) setting, which
supports multi-kernel execution and dynamic data routing,
uses frequency-based scheduling with an initial profiling re-
sult, but does not do re-sampling or tile sharing at runtime.
To show the effectiveness of the multi-kernel re-sampling
mechanism, we also use an idealized full-kernel setting, where
all kernels are generated and available on-chip despite the
unrealistic buffer requirement. We assume data buffering is
not affected in this case, so this setting provides an upper
bound for our multi-kernel scheme.

We also compare Adyna with a commodity GPU baseline
of NVIDIA A100. As specified above, Adyna is configured to
have similar peak FLOPs and memory bandwidth to A100
for fair comparison. To our best knowledge, most existing
open-source DynNN GPU implementations either only support
batch size 1 [13], [66], or simply discard redundant results
without saving computations [59], [70]. Therefore, we trans-
plant the switch (ScatterRouter) and merge (GatherRouter)
implementations from Brainstorm [13], and extend the host
CPU control code to support batched DynNN execution.

Adyna follows the philosophy of offline scheduling and
buffering carefully selected, pre-compiled kernels on-chip. An-
other potential approach to supporting DynNNs is to do online
real-time scheduling. We simulate this setting and compare
it with Adyna. With real-time scheduling, the best matching
kernel is searched every time before executing a dynamic
operator. In this case, the kernel execution efficiency should be
optimal, but additional online scheduling costs would occur.

IX. EVALUATION

A. Area and Power

Table IV shows the area and power of an Adyna tile. Both
are primarily dominated by the PE array and the scratchpad,
similar to previous DNN accelerators. To support DynNNs, the
dispatcher, the controller (including the profiler), and the mod-
ified network interface logic are introduced and occupy only
4.9% chip area and 0.085% power on average. The dynamic
book-keeping overheads mainly include the template kernels
and the parallelization schemes of succeeding operators for
dynamic routing, which are buffered in the on-chip scratchpads
and occupy about 1.9% chip area and 0.088% power.
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Fig. 9. Performance comparison among the GPU, the M-tile and M-tenant
baselines, Adyna (static), the full-kernel setting, and Adyna.

B. Overall Performance

In Figure 9, we compare the performance among the GPU,
the baseline M-tile and M-tenant, Adyna (static), the full-
kernel setting, and Adyna. M-tenant is 1.09× slightly better
than M-tile. It supports runtime adjustment (F2 in Table II)
to reduce unnecessary computations, but lacks on-chip inter-
operator pipelining (F3), so it performs worse than M-tile in
cases like PABEE where the intermediate tensors are large.
Compared with the baseline M-tile, Adyna (static) brings
an average 1.41× speedup, which indicates that supporting
multiple kernels per operator and dynamic data routing in the
hardware (F4, F5) can bring significant speedups. Similarly,
compared with M-tenant, Adyna (static) is 1.30× faster. Then,
Adyna further incorporates runtime adjustment techniques
(F2) including real-time tile sharing and multi-kernel re-
sampling to improve load balance. This brings another 1.21×
speedup on average. In total, Adyna is on average 1.70× and
up to 2.32× faster than M-tile, and on average 1.57× and
up to 2.01× faster than M-tenant. The speedups on DPSNet
are particularly high, because DPSNet folds the dynamism of
other data dimensions all to the batch dimension, resulting in
a very large aggregated batch size that benefits substantially
from our techniques.

To further validate the effectiveness of the re-sampling
algorithm, in Figure 9, we compare Adyna with the idealized
full-kernel setting, which can always execute the optimal
kernel for any value of dyn dim. Adyna performs close to the
full-kernel scheme and reaches on average 87% and up to 90%
of this upper-bound performance for multi-kernel execution.

Compared with the GPU, Adyna achieves an average 11.7×
speedup, which results from a joint effect including domain-
specific designs, multi-tile operator pipelining, and the opti-
mizations for dynamism in Adyna. For DynNNs that have
many routing operators like SkipNet, Adyna can deliver over
30× speedups via its on-chip dynamic routing capability. Even
for highly GPU-optimized Tutel-MoE, Adyna is still 4.2×
faster. Considering Adyna is based on a 28 nm technology and
consumes 201 W, while A100 uses 7 nm [11] and consumes
350 W, Adyna is also more energy-efficient.

Fig. 10. PE utilization and memory bandwidth utilization of M-tile, M-tenant,
Adyna (static), and Adyna.
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Fig. 11. Energy breakdown of M-tile, M-tenant, Adyna (static), and Adyna,
corresponding to L, N, S, and A in each bar group, respectively.

C. Improvement Analysis and Breakdown

To further analyze the performance differences, we measure
the PE utilization and the memory bandwidth utilization of
different designs in Figure 10. First, Adyna (static) and Adyna
show lower PE utilizations than M-tile. This is because they
reduce the unnecessary computations in DynNNs, while M-
tile always processes the worst-case maximum data sizes. M-
tenant also reduces unnecessary computations, but due to the
lack of inter-operator pipelining, its execution is often blocked
by memory accesses, which reduces the utilization. Between
the two DynNN-aware designs, Adyna has higher utilizations
than Adyna (static), because Adyna eliminates a large portion
of PE idleness caused by runtime workload imbalance.

Regarding the memory bandwidth, two factors contribute
to the utilization differences. First, compared with M-tile,
Adyna (static) and Adyna are able to reduce unnecessary off-
chip data fetches when the actual dyn dim is smaller than
the maximum. Second, for memory-bound models like Tutel-
MoE and PABEE, with profiling-guided multi-kernel sampling
and dynamism-aware scheduling in Adyna, PE utilizations can
increase (see above) and thus more memory bandwidth is
demanded, which in turn improves the bandwidth utilization.

Figure 11 shows the energy breakdown results. Multi-kernel
execution helps reduce energy consumption from all sources
including memory access, SRAM access, and PE computation.
In most cases M-tenant has slightly lower HBM energy than
M-tile due to the elimination of redundant data accesses,
while in PABEE the increased inter-operator communication
outweighs the above saving. For workloads that are dominated
by the HBM energy, e.g., PABEE, Adyna effectively removes
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Fig. 12. Real-time scheduling over-
head analysis.

Fig. 13. Speedup of Adyna over
M-tile under different batch sizes.

the redundant memory accesses; for those dominated by the
on-chip PE and SRAM energy like DPSNet, Adyna removes
the redundant computations and SRAM fetches. Compared
with Adyna (static), runtime adjustment allows for more
balanced use of scratchpads, leading to more on-chip data
reuse, especially in DynNNs with more variations like FBSNet
and DPSNet.

D. Discussion

Comparing to real-time scheduling. We make a com-
parison between the two approaches to supporting DynNNs,
namely offline scheduling as in Adyna vs. online real-time
scheduling. We use the performance of the full-kernel setting
to simulate the optimal execution of real-time scheduling, and
add extra scheduling overheads before each dynamic operator.
We sweep different latencies for this online scheduling cost.

From Figure 12, as the scheduling overhead increases, the
speedup of real-time scheduling vs. Adyna decreases in a
nonlinear form of TAdyna/(Topt + tsched) where TAdyna/Topt =
0.87 as from Figure 9. Adyna does not do scheduling on
the critical path, so its performance remains unaffected. The
performance cross-point of the two designs corresponds to
an online scheduling latency of only 0.39 ms, i.e., only when
we can make a scheduling decision within 0.39 ms, real-time
scheduling could outperform Adyna. This is very difficult to
achieve, if not impossible. The fastest scheduler at present,
as far as we know, CoSA [27], takes about 0.1 s to produce
a valid (not yet optimal) solution for an operator, implying a
gap of three orders of magnitude.

Different batch sizes. Adyna mostly targets relatively large
batch sizes to ensure full utilization of hardware resources.
For completeness, we also evaluate smaller batch sizes. Fig-
ure 13 shows Adyna’s speedups with batch sizes 1, 4, 16,
64, and 128. The average speedups are 1.29×, 1.37×, 1.49×,
1.61×, and 1.70×, respectively. As expected, since Adyna
is better at alleviating larger dynamic variations caused by
larger batches, the performance advantage of Adyna increases
as the batch size grows, but is relatively consistent even with
small batches. SkipNet is bottlenecked by the frequent off-
chip transmissions of intermediate results. At batch size 1,

the smaller intermediate data size allows more operators to
pipeline on-chip, leading to more opportunities for Adyna’s
optimizations and thus higher performance.

X. RELATED WORKS

System designs for dynamic neural networks. There
are several recent designs that optimize dynamic neural net-
works on GPUs. Brainstorm [13] alleviated dynamic load
imbalance by fusing different branches and doing profiled-
based speculative execution. Cocktailer [66] was a compiler
that fused control flow and data flow operators in a fine-
grained way to leverage low-level parallelism. However, they
only supported batch-1 execution when running on a single
GPU. SmartMoE [65] optimized the distributed placement
of multiple experts adaptively towards the data distribution.
The scheduling of Adyna also targets load balance and thus
shares similar optimizations. However, since scheduling must
be performed at the single-chip level instead of the system
level, both the resources and the latency budget are limited.

Some of Adyna’s techniques can be applied to optimize
dynNNs on GPUs. For example, the dynamic operator graphs
together with the profiler can be implemented in software
running on the GPU, which improves load balance but has
higher overheads than the hardware-assisted way in Adyna.
Similarly, the multi-kernel mechanism and the kernel sampling
algorithm can also be adopted by GPUs. However, as discussed
in Section II-C, this software implementation is fundamentally
constrained by the hardware, e.g., the limited GPU registers.

Accelerators for sparse neural networks. Among recent
sparse neural network accelerators, some were for unstruc-
tured sparsity [1], [23], [48], [49], [67], e.g., SCNN [48]
skipped computations when either model weights or activation
values were zero. In contrast, structured sparse DNNs are
usually accelerated with algorithm-hardware co-design [20],
[53], [71], [72]. For example, a specially designed pruning
algorithm and a tightly-coupled accelerator were proposed in
DPACS [20]. For attention-based models, SpAtten [57] and
Sanger [38] modeled sparse attention into sampled dense-
dense matrix product and sparse matrix multiplication. Graph
neural network accelerators [37], [51], [62] are proposed to
deal with the sparsity and irregularity of graphs.

XI. CONCLUSION

We present a software-hardware co-design approach,
Adyna, to accelerate dynamic architecture neural networks.
Adyna uses a novel unified representation to express various
DynNN types, and adopts a dynamism-aware, multi-kernel
execution paradigm with hardware and software optimizations.
Compared with conventional multi-tile and multi-tenant accel-
erators, Adyna is on average 1.70× and 1.57× faster.
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