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ABSTRACT
Near-Data Processing (NDP) has been a promising architectural
paradigm to address the memory wall challenge for data-intensive
applications. Typical NDP systems based on 3D-stacked memo-
ries contain massive parallel processing units, each of which can
access its local memory as well as other remote memory regions
in the system. In such an architecture, minimizing remote data
accesses and achieving computation load balance exhibit a funda-
mental tradeoff, where existing solutions can only improve one
but sacrifice the other. We propose ABNDP, which leverages novel
hardware-software co-optimizations to simultaneously alleviate
these two issues without making tradeoffs. ABNDP uses a novel and
efficient distributed DRAM cache to allow additional data caching
locations in the system, where the computation load at the original
data hotspots can be distributed and balanced, without significantly
increasing remote accesses. ABNDP also adopts a hybrid task sched-
uling policy that considers both the remote access cost and the load
imbalance impact, and exploits the flexibility of the multiple data
caching locations to decide the best computation place. Our eval-
uation shows that ABNDP successfully achieves the two goals of
minimizing remote access cost and maintaining load balance, and
significantly outperforms the baseline systems in terms of both
performance (1.7×) and energy consumption (25%).

CCS CONCEPTS
• Computer systems organization→ Parallel architectures; •
Hardware→ Emerging architectures.
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1 INTRODUCTION
In modern computing systems, data accesses from/to the main
memory have been an increasingly critical bottleneck in terms of
both performance and energy. From the hardware perspective, the
efficiency gap between processors and memories has been steadily
growing over decades, known as the “memory wall” problem [64].
From the software perspective, data volume is expanding explo-
sively in the big data era, resulting in many emerging data-intensive
workloads in various application domains. Therefore, new architec-
tures should focus on optimizing the memory access cost at least
as importantly as accelerating the computation, if not more.

Near-Data Processing (NDP) is one of such new architectural
paradigms [6]. By moving the computations closer to the data
locations in the main memory, the latency and energy overheads
due to data movements can be greatly reduced. We can also better
utilize the internal data bandwidth and the short access path inside
thememory devices. Currently, NDP has been realized using various
memory technologies, including 3D-stacked memories [2, 12, 14, 24,
31, 33–35, 52, 67, 84, 91, 95–97], DDR DIMMs [4, 5, 25, 32, 50, 51, 56,
69, 85, 87], and near the DRAM banks inside a memory chip [1, 38,
57]. Many NDP architectures, especially those based on 3D-stacked
memories, leverage a large number of parallel processing units that
are distributed across the system. Each unit could access its local
memory directly, or go through the system interconnect to access
other remote memory regions.

Unfortunately, there is a fundamental tradeoff in such NDP
systems between minimizing expensive remote data accesses and
achieving load balance across all processing units. With skewed
real-world datasets, executing computation tasks closer to their
data locations would lead to hotspots with imbalanced loads. In
contrast, dynamically scheduling tasks to ensure load balance in-
evitably moves some computations further away from the preferred
locations of their data, incurring more remote accesses. Existing
techniques [13, 55, 59, 70, 88] must sacrifice one in order to improve
the other, restricting the performance and energy benefits of NDP.

In this paper, we propose ABNDP, an optimized NDP architecture
with co-designed hardware and software techniques, in order to
simultaneously alleviate the aforementioned remote access and load
imbalance issues without making tradeoffs. ABNDP is implemented
on top of a task-based executionmodel [45, 46, 78] that best supports
the data-centric and parallel processing characteristics of typical
NDP applications. The proposed techniques in ABNDP only affect
the hardware and the scheduling policy, and incur minimal changes
to the user programs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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On the hardware side (Section 4), ABNDP uses a novel distributed
DRAM cache design, Traveller Cache, which reserves a small portion
of the local DRAMat each processing unit to cache data from remote
memories. Instead of allowing data to be freely cached everywhere,
we restrict the caching of each data block to a limited number
of camp locations spread across the NDP system. Cached data in
a camp location are shared by multiple nearby processing units,
improving cache space utilization and data reuse times while still
ensuring short access distances. We further use skewed mappings
for different camp locations, so that cache conflicts can be reduced.
Traveller Cache only needs a small amount of metadata that can be
stored in SRAM with simple and low-cost management.

On the software side (Section 5), ABNDP adopts a hybrid task
scheduling policy that considers both the remote access cost and
the load imbalance impact to decide the best processing unit for
executing a task. A key insight is that the scheduling policy is metic-
ulously co-designed with the above DRAM cache. Themultiple camp
locations to cache data offer higher flexibility when scheduling a
task besides the original memory location, which can better spread
the heavy computations on hot data for more balanced loads. The
skewed camp location mapping scheme also simplifies the schedul-
ing of tasks that access multiple data. It becomes more likely that
at least one of the diverse mappings can locate the multiple data
more closely, reducing the total remote access distances in a task.

We evaluate ABNDP on a set of widely recognized NDP-friendly
applications. We show that ABNDP can successfully achieve the
two goals of minimizing remote access cost and maintaining load
balance, and realize significant performance and energy advantages.
ABNDP achieves on average 1.7× and up to 2.2× performance
improvements, and on average 25% and up to 40% energy reduction.
These results are much better than previous strategies, which only
schedule tasks based on data locations with work stealing, and thus
only make one of the data access and load balance issues better
and harm the other. The combined benefits of ABNDP hardware-
software optimizations are alsomuch higher than the two individual
designs, demonstrating the necessity of our co-design approach.

We summarize our main contributions in this paper:

• We illustrate a fundamental tradeoff in large-scale NDP ar-
chitectures between minimizing remote data accesses and
achieving computation load balance, where existing solu-
tions can only improve one but sacrifice the other.
• We present ABNDP, which synergistically uses novel hard-
ware and software solutions to simultaneously alleviate the
remote access and load imbalance issues in NDP architec-
tures without making tradeoffs.
• We propose a new distributed DRAM cache design, Traveller
Cache, to keep the few frequently accessed data locally at
each processing unit. Traveller Cache restricts data caching
to limited, deterministic, shared, and skewed camp locations.
It realizes high data reuse with small metadata cost and
enables better task scheduling.
• We propose a hybrid task scheduling policy to co-optimize
remote accesses and load imbalance. The policy is aware of
the Traveller Cache design, exploiting the multiple camp
locations for flexible scheduling, and leveraging the skewed
mapping to better schedule tasks involving multiple data.
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Figure 1: NDP system architecture based on 3D-stacked mem-
ory technologies.

• Wedemonstrate the benefits of ABNDP onwidely recognized
NDP-friendly applications, with on average 1.7× and up to
2.2× performance improvements, and on average 25% and
up to 40% energy reduction.

2 BACKGROUND AND MOTIVATION
2.1 Near-Data Processing (NDP) Architectures
Near-Data Processing (NDP) has been a promising solution to al-
leviate the memory access bottleneck. The general idea of NDP
is to move the computing logic closer to the locations where data
are stored, such as near the internal banks of DRAM [1, 38, 57], on
the bottom logic die of a 3D-stacked memory [2, 12, 14, 24, 31, 33–
35, 52, 67, 84, 91, 95–97], or in the buffer chip on a DDR DIMM [4, 5,
25, 32, 50, 51, 56, 69, 85, 87]. By placing processing logic near data,
NDP systems could make efficient use of the abundant bandwidth
and the shorter access path internal to the memory structures, and
save expensive data movements between the processor and the
memory over the narrow and distant memory channels.

In this work, we mainly focus on NDP systems based on 3D-
stacked memories like Hybrid Memory Cube (HMC) [65] and High-
Bandwidth Memory (HBM) [44, 49], as they offer a balance be-
tween technology maturity and performance benefits. As shown
in Figure 1, such an NDP system is typically composed of multiple
memory stacks connected with each other, forming a memory net-
work [53, 71, 94]. Each stack consists of several DRAMdies vertically
layered on top of a logic die. Through-silicon vias (TSVs) connect
different dies with low latency and high bandwidth, e.g., hundreds
of GB/s to several TB/s. HMC and HBM use different organizations
inside the memory stack. HBM partitions each DRAM die and treats
different partitions on different dies as independent memory chan-
nels [44, 49]. HMC also divides the DRAM dies, but instead collects
the corresponding partitions at the same position on all dies into a
vault [65], which is similar to a traditional memory channel and can
be independently accessed. The NDP system associates the com-
puting logic to each HBM channel or HMC vault, either by directly
putting logic at the bottom die in a true 3D manner, or with 2.5D
interposer-based integration. We assume general-purpose, energy-
efficient cores are used as the NDP logic [2, 12, 14, 24, 33, 67, 84, 95–
97], though other types such as reconfigurable logic [31, 34] and
ASIC [35, 52, 91] also fit in our architecture.
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We call each memory channel/vault, together with its own com-
puting logic, as an NDP unit that operates independently from each
other. Each NDP system has multiple stacks, connected through the
inter-stack memory network. Each stack contains multiple NDP
units, which can also communicate via an intra-stack interconnect.
Both levels offer great parallelism. Actually, near-bank and DIMM-
based NDP systems also have the similar high-level architecture
with many parallel NDP units, but usually lack the direct unit-to-
unit communication capability like the memory network in Figure 1.
We expect the techniques proposed in this work could also benefit
those systems once given more efficient communication support.

2.2 Target Applications of NDP
Previous research has demonstrated the benefits of NDP for a di-
verse set of parallel data-intensive applications, including MapRe-
duce [33, 73], graph analytics [2, 24, 67, 96, 97], sparse matrix-vector
multiplication (SpMV) [91], neural networks (NNs) [35, 52], genome
analysis [17, 54], and database [15, 30]. We summarize two key char-
acteristics that make these workloads particularly suitable to NDP.

First, NDP applications usually adopt data-centric execution, i.e.,
certain computation tasks are performed on each individual data
element. For example, in graph analytics, the basic elements are
graph vertices and edges. The vertex- and edge-centric paradigms
apply operations on every single vertex or edge [63, 76]. In SpMV,
each row of the sparse matrix becomes an element, and a task
involves the multiplication between each row and the input vector.

Second, NDP applications should also exhibit high degrees of par-
allelism, in order to fully utilize the hundreds of parallel units in an
NDP system (Section 2.1). Ideally, each task should mostly process
its local data without much communication needed between each
other. This requires the tasks on the data to be relatively indepen-
dent without complex dependencies or fine-grained synchroniza-
tion. The bulk synchronized execution model is thus widely used
in these NDP designs [24, 96, 97].

2.3 Motivation: A Critical Tradeoff in NDP
Nevertheless, despite the more efficient data movements, NDP sys-
tems face two critical issues thatmay limit their overall performance
and energy efficiency.

Remote accesses. To map an application to an NDP system,
the data of the application need to be partitioned among the NDP
units to exploit parallel processing. There are thus two types of
memory accesses: local accesses to the DRAM in the same NDP
unit, and remote accesses to other NDP units. The data of a remote
access are transferred through the inter/intra-stack interconnects,
which incur extra cost depending on the distance. Therefore, the
task mapping strategy should maximally co-locate the tasks with
their data, i.e., following the “near-data” philosophy. Note that a
task may need to access multiple data elements in different units
besides the main element it processes; e.g., in Page Rank, a vertex
as well as its neighbors is accessed when computing the new rank.
We thus must minimize the total distance to all accessed data.

Load imbalance. To fully utilize the massive parallelism in NDP
systems, we also need to uniformly assign tasks to all NDP units
with balanced loads. This is sometimes quite challenging. At the
algorithm level, loads of different tasks can be drastically different,
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Figure 2: Effects of lowest-distancemapping (LDM) andwork-
stealing scheduling (WS) on remote accesses (in terms of
interconnect hops) and load imbalance (in terms of execution
time on all units), when running Page Rank. In the right
figure, the box boundaries show the 25%/75% quartiles and
the whiskers show the min/max of the execution cycles on
all NDP units.

e.g., a Page Rank task for a vertex with more neighbors would
involve more memory accesses and more computations. Simply
assigning an equal number of tasks to each unit does not work well.
At the hardware level, the performance of a task also depends on
which exact NDP unit it is executing on in the overall interconnect
topology. Averagely speaking, the NDP units closer to the center can
access most data in the system faster than those units on the corners.
Static workload partitioning may analyze the characteristics of the
input data, the algorithm, and the system, in order to find the
best strategy [26, 55, 59, 70, 88]. A more robust approach is to
dynamically schedule the tasks, e.g., with work stealing from the
busier units [13, 81], to ensure load balance.

The tradeoff. Unfortunately, though there exist solutions to
either of the above two issues, none of previous approaches can
address both at the same time. Even worse, the two issues exhibit
a fundamental tradeoff; mitigating one problem often results in
exacerbating the other, as we show below.

As a reference for comparison, we start with an intuitive and
widely used task mapping scheme as the baseline [2, 91, 96]. It
evenly distributes all data elements among the NDP units in the
system. Each task is assigned to the unit in which its associated
element (e.g., the to-be-updated vertex in Page Rank) is stored. We
use the NDP system shown in Figure 1, with 16 stacks and 8 NDP
units per stack. See Section 6 for the detailed methodology. We
count the sum of interconnect hops needed for all data accesses as
the metric of remote accesses, and use the execution cycles (not
task counts) on different units to reflect load imbalance.

Figure 2 shows the effects of two representative techniques that
optimize each issue individually. First, the lowest-distance map-
ping considers all data accessed in each task and minimizes their
total remote distances, therefore the number of interconnect hops
reduces compared to the baseline. However, this strategy greatly
exacerbates the load imbalance problem, as the busiest NDP unit
now slows down by 1.43×, hindering the overall performance. This
is due to the different hotness of each data element. In real-world
graphs with power-law distributions [37], a small amount of ver-
tices have large numbers of neighbors, and thus are accessed by
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more tasks than other vertices. If we map tasks solely based on
data locations, the NDP units that contain hot vertices would pro-
cess more tasks than others, creating hotspots and thus imbalance
in computation loads. On the other hand, dynamic work-stealing
scheduling is able to help with load balancing, and hence the end-
to-end performance could improve, which can be seen from the
reduction of the maximum execution time in Figure 2. However,
scheduling tasks away from their preferred locations to better uti-
lize the otherwise idle NDP units would inevitably introduce more
remote accesses to the data, causing higher energy consumption as
well as memory access latency overheads.

In summary, there exists a tradeoff between the remote access
cost and the load imbalance issue. Existing techniques must sacrifice
one aspect in order to optimize the other. In this paper, we aim to
propose a combination of hardware and software optimizations to
resolve such a conflict, and improve the performance and energy
efficiency of NDP systems.

3 SYSTEM OVERVIEW
In this section, we first introduce the task-based programming
model and the baseline hardware architecture of our NDP system.
Then we provide an overview of our proposed hardware-software
co-optimizations in ABNDP to address the conflicting issues of
remote accesses and load imbalance.

3.1 Task-Based Model for Programming and
Execution

As we have summarized in Section 2.2, NDP-friendly applications
usually follow the data-centric execution paradigm with high de-
grees of parallelism among the computation tasks applied to differ-
ent data elements. We therefore adopt a task-based programming
and execution model, which is natural for this data-centric para-
digm. For example, in SpMV, each task processes the inner product
between one sparse matrix row and the vector, with different rows
(tasks) processed in parallel on different NDP units. Using the task
abstraction offers several benefits to our NDP system. First, the
task-based model allows more flexible scheduling of the computa-
tion loads in an application, providing the foundation we need to
balance the remote access and load imbalance issues. This is espe-
cially important for NDP systems, which consist of hundreds of
parallel NDP units. Second, as described below, our task abstraction
can easily embed data access information, especially the addresses
of all the data elements to be accessed in a task. This information is
of particular importance and needs to be made visible to the system
runtime when optimizing the remote access cost.

Our task-based model is similar to Swarm [45, 46, 78]. A task
has the following attributes: a function pointer, a timestamp to rep-
resent dependencies, a hint that encapsulates various information
(described later), and any number of additional arguments. Tasks
with the same timestamp can run in parallel. Our execution model
is bulk synchronized; output data remain unchanged when running
tasks with the same timestamp, and all updates are bulk applied
at the end after all these tasks complete. A task can dynamically
generate any number of child tasks with the enqueue_task API:

enqueue_task(func_ptr, timestamp, hint, args...)
Generated tasks are first scheduled by the scheduler using the hint

information, and then dequeued and executed by the corresponding
threads running on the NDP units. Algorithm 1 shows an example
of a task in the Page Rank algorithm using our task-based model.
Each task updates the Page Rank value of a vertex in each iteration.
The timestamp represents the current iteration number.

Algorithm 1: Task in Page Rank.
1 function TaskPageRank(ts, 𝑣):

input: timestamp ts, vertex 𝑣.
data: damping factor 𝛼 , total number of vertices 𝑁 ,

convergence threshold 𝜀 .
2 var← 0;
3 for 𝑛 in 𝑣.neighbors do
4 var← var + 𝑛.currPr/𝑛.outDegree;
5 𝑣.nextPr← 𝛼 × var + (1 − 𝛼 )/𝑁 ;
6 if |𝑣.nextPr − 𝑣.currPr | < 𝜀 then
7 hint← /* compose task hint ... */;
8 enqueue_task(TaskPageRank, ts + 1, hint, 𝑣);

Encapsulating data access and computation load informa-
tion with task hints. To better schedule the tasks in our NDP
system, we use hints to include the necessary information of a task
that will be needed by the scheduler. The first part of a hint is
the data access information, formatted as a list of single cacheline
addresses or address ranges that are accessed by a task. We sup-
port two ways to generate such information. First, programmers
can insert the accessed addresses manually to a hint as pointers or
object references. In the Page Rank example, the addresses to be
accessed are the addresses of neighbor vertices of the processing
vertex, which can be easily obtained from the vertex neighbor list.
Second, we can also enhance the compiler to automatically generate
the address list. We provide two pragmas called #HINT_BEGIN and
#HINT_END. The memory accesses in between are treated as the
hint addresses of the task.

One thing worth noting is that we limit our hint addresses to the
primary data of the NDP application, and omit the other auxiliary
data such as temporary and local variables and data on the thread
stack. The primary data are the core part of the application and
consistently occupy most of the memory footprint during the execu-
tion. They are our main focus for saving data access cost with NDP
techniques. In contrast, the auxiliary data are short-lived and only
introduce local accesses. It is usually easy to identify the primary
data from the program semantics. For example, in graph analytics,
the primary data are the graph topology and properties. In SpMV,
they are the sparse matrix and the input vector. In recommendation
systems, the embedding tables are the primary data.

Another information the hint can optionally cover is the com-
putation load of a task, which facilitates estimating the execution
time. Programmers can set the value hint.workload to reflect the
task complexity. If missing, the scheduler will use the total memory
access cost of all the primary data addresses in the hint to estimate
the load. In either case, the estimation only needs to be approximate
(see details in Section 5).

Overheads. There are mainly two aspects of overheads for using
a task-based model: the task scheduling cost and the programming
burden. Both are acceptable in our case. For scheduling, we only
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add simple logic (a task queue and a scheduler to each NDP unit;
see Section 3.2) to do fast scheduling in hardware, in parallel with
task computations with minor extra delays. For programming, our
model, following Swarm, is simple and widely applicable, especially
for the NDP applications mentioned before. Many applications have
been implemented using this model in previous work [45, 46, 78].

Another potential concern is the bulk synchronized model. Com-
pared to more fine-grained dataflow task models [22, 23, 86], bulk
synchronization will not lead to severe performance loss because
load imbalance could be effectively alleviated by our scheduling
method (Section 5). On the other hand, it could greatly simplify
data coherence in our architecture (Section 4.4).

3.2 Baseline Hardware Architecture
Figure 3 illustrates the hardware architecture in our NDP system.
The system is composed of several memory stacks which form a
memory network similar to Figure 1. We use a mesh topology for
the inter-stack interconnect, with a default scale of 4 × 4 stacks.
Each memory stack consists of 8 NDP units, which are connected
by a crossbar-based intra-stack network-on-chip (NoC). There are
in total 128 NDP units in the system. We assume 4GB capacity
in each stack, which means 64GB in total, and 512MB per NDP
unit. Notice that the hardware architecture does not rely on any
particular memory technologies and interconnect topologies. Our
design can use HMC, HBM, and other 3D memories as long as they
exhibit the similar structure. We also focus only on homogeneous
NDP units with general-purpose cores. Specialized NDP logic and
heterogeneous designs with both cores and accelerators are left as
future work, though we believe the key insights would be similar.

We first describe the basic design of the NDP unit in our baseline,
and leave the newly proposed components to Section 3.3. As shown
in Figure 3, an NDP unit has multiple simple in-order cores (default
two [33]), each with its private L1 caches for instructions and data.
The cores use the DRAM controller and the router to access data
in the local and remote memories. Each core uses a local TLB to
translate virtual addresses to physical addresses [33, 41, 68]. To
support task-based execution in Section 3.1, the NDP unit also
contains the following logic components. A task queue maintains
all the enqueued tasks. When a core finishes executing its current
task, the task queue will dequeue a new task and send it to the
core. A task scheduler manages the tasks based on the scheduling
policy, such as forwarding newly generated tasks to other NDP

Task......

Prefetch 
Window

Task Queue

Other
Tasks

......

Scheduling 
Window Core-0

Core-1

Cores

......

Figure 4: Task management in the task queue. The phase
highlighted in red is newly introduced in ABNDP.

units, or stealing from others. With the help of the task hints, the
scheduler knows the data access addresses and the computation
load of each task, facilitating its scheduling decisions. We consider
both lowest-distance mapping and work stealing in Section 2.3 in
the baseline. We note that there is no global task queue or central
scheduler; task scheduling is done locally at each NDP unit.

Since the accessed data address hint is buffered together with
the task in the task queue, we can prefetch these data before the
task gets executed on the cores to hide memory access latencies. As
shown in Figure 4, we specify a prefetch window in the front of the
task queue. A prefetch unit issues prefetch requests for the tasks
in this window according to their hints, and the prefetched data
are stored into an SRAM prefetch buffer. We do not prefetch into
the small L1 caches to avoid interference and pollution. Hits in the
prefetch buffer also bypass the L1 caches. Similar to the message-
triggered prefetching in Tesseract [2], our prefetching is exact, but
based on task hints instead of remote functions calls.

The baseline architecture is highly optimized to support efficient
task-based execution. Nevertheless, it still suffers from the issues
discussed in Section 2.3, with the tradeoff between remote accesses
and load imbalance.

3.3 ABNDP Summary
We propose ABNDP, which is built on top of the previous baseline
design with additional hardware and software optimizations that si-
multaneously alleviate the remote access and load imbalance issues
without compromising one for the other. On the hardware side,
ABNDP adopts a novel distributed DRAM cache design, Traveller
Cache, to additionally cache data in other NDP units besides the
original memory locations. On the software side, ABNDP uses a
hybrid scheduling policy that balances the effects of memory ac-
cesses and computation loads, in order to decide the best NDP unit
to execute a task.

More specifically, as in Figure 3, ABNDP reserves a small portion
(e.g., 1/64) of the local DRAM in each NDP unit to be used as a cache
space (Section 4). This allows the remote data from other NDP units
to be stored closer to where the task will be executed, reducing
the remote access overheads. Furthermore, having multiple places
across the system for each data element allows for more flexible
scheduling, opening up hardware/software co-design opportunities.
We further propose a camp location design to optimize the cache
efficiency, using simple and low-cost metadata schemes.

In addition, ABNDP uses a more effective task scheduling policy
that takes both the data access distances and the computation loads
into consideration (Section 5). As shown in Figure 4, we further
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specify a scheduling window in the task queue. The task scheduler,
which operates in parallel with the computing cores, examines the
tasks in the scheduling window, and makes decisions about where
to execute them. The scheduler considers both the data access
and computation load information encapsulated in the task hint
(Section 3.1) to balance the two factors. The scheduling policy also
works compatibly with the Traveller Cache with combined benefits.

The changes in ABNDP are limited to the hardware and the
runtime software, and largely transparent to the user program
(Algorithm 1). The usermay need to optionally supplymore detailed
hint information, but this is not required as ABNDP can make its
own estimation.

4 TRAVELLER CACHE
At the hardware level of ABNDP, we propose a novel distributed
DRAM cache scheme called Traveller Cache. Using a small portion
of the DRAM in each NDP unit as a cache effectively reduces the
remote data access cost, and also allows for more flexibility to
schedule tasks near one of the multiple data locations. We choose
DRAM-based caching in ABNDP because the stringent area limit of
3D-stacked memory prohibits us from realizing large SRAM caches.

4.1 Design Challenges
There have been numerous studies about DRAM caches in conven-
tional processor-centric architectures, which use faster on-die or
in-package DRAM as caches of traditional slower DDR and non-
volatile memories [21, 39, 42, 47, 58, 61, 62, 66, 74, 83, 93]. Neverthe-
less, applying DRAM-based caching to NDP systems is significantly
different. Particularly, we use local DRAM to reduce data accesses
to other remote memory regions with all memories in the same
system level that is 3D stacked, while conventional DRAM caches
have two separate tiers of fast and slow technologies.

As a result, we must deal with several unique challenges. Specifi-
cally, the capacity of 3D-stacked memory is limited. Each NDP unit
only has 512MB local DRAM, among which the DRAM cache space
can only occupy a small portion. On the other hand, typical NDP
systems contain hundreds of NDP units (e.g., 128 in our system).
Using a small fraction of one unit space to cache data from so many
units requires efficient use of the cache space. This is further compli-
cated by the fact that each task may access multiple data elements
(e.g., neighbor vertices and edges), all of which prefer to stay in
the limited local DRAM cache. However, NDP applications usually
exhibit relatively low data locality, where each data element may
not be reused as much as in conventional processor-side DRAM
caches. Finally, we also need an efficient metadata scheme in such a
distributed cache design, both to accurately track the locally cached
data and to be aware (or not aware) of the states of other caches.

4.2 Camp Locations
In Traveller Cache, instead of allowing a data block to be freely
cached in any NDP unit, we restrict a limited number of locations
where a data block can stay. These places are called its camp lo-
cations, and the original memory location is called its home. The
number of camp locations of each data block, denoted by 𝐶 , is a
hyperparameter in ABNDP. We spread the camp locations of each
data block across the memory network, so every NDP unit can have
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Figure 5: Camp location mapping in the mesh topology. All
NDP units are divided into four groups. The camp locations
of the two data elements (red and green) are designated in
different ways based on their address hashing results.

a nearby camp location. The NDP units around a camp location
will all use this single cached data copy instead of independently
and repeatedly caching it. Sharing the camp locations in this way
improves the cache space utilization as well as the reuse times of the
cached data. The access distance only increases slightly compared
to local caching, as long as the camp locations are well distributed.

Specifically, we use the cacheline granularity to designate camp
locations. Each camp location of a cacheline-sized data block is in
the form of {unit ID, set ID}, specifying the NDP unit that is allowed
to cache the data, and which cache set in that unit the block is
mapped to. Both are computed deterministically from the (physical)
address. The cache set mapping follows traditional caches, using
the lower bits in the address as the set ID (Figure 5 bottom).

On the other hand, the unit IDmapping scheme ismore involving.
To uniformly distribute the camp locations across the whole system,
we divide all the NDP units into 𝐶 + 1 localized groups (number of
camp locations + one home) according to their mutual distances
in the interconnect topology. We number the units consecutively,
first in each stack, then in each group, and finally across groups.
Figure 5 top illustrates an example of the inter-stack mesh with
𝐶 = 3. Other topologies can be similarly processed by grouping
and numbering the NDP units in a similar way. In each group, each
data block has either one camp location or the home location, from
which all the units in the group can get the data.

Rather than treating all the groups identically, we intentionally
assign the unit ID of the camp location in each group in different
ways, by using different bit slices in the remained address bits
(Figure 5 bottom). This is essentially similar to skewed associative
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caches [79], where each group uses a different mapping for the same
data address. Such skewedmapping for the unit ID has the following
benefits. First, as in skewed associative caches, making each group
use a different mapping reduces cache conflicts. Even though in
one group the critical data elements are mapped to the same NDP
unit and compete for its limited cache space, in another group they
are likely mapped differently and spread to different units without
conflicts. Second, for the multiple data elements accessed in one
task, the skewed mapping allows them to be cached more closely
in at least one of the groups, so we can find a place to execute the
task near most of the data. For example in Figure 5, assume a task
needs both the red and green data elements. Their home locations
are distant. Even with caching, their camp locations in a group may
not be close enough (e.g., the bottom left group). But since we have
multiple groups, their minimum distance across all the groups is
likely to be small (e.g., the bottom right group). In this example,
we can use any NDP unit between 112 and 119 to process this task
with minimum total remote accesses. Section 5 will discuss how
our scheduling policy could make such an optimized decision.

Benefits. We complete this part by summarizing the benefits of
the camp location design. First, it makes more efficient use of cached
data both locally and in neighbors, reducing duplicated caching.
This is important for NDP because of the limited 3D memory ca-
pacity. Second, the more determinism in the mapping of unit/set
IDs saves metadata lookup and storage overheads (Section 4.3).
Otherwise, freely caching requires larger metadata storage in each
NDP unit and more times of DRAM cache probing. Finally, the
skewed camp location mapping reduces conflicts, and also offers
flexible scheduling opportunities to find better places to execute
tasks involving accesses to multiple different data.

4.3 Metadata Schemes
Local cache tags. The DRAM cache space in each NDP unit needs
an efficient metadata scheme to track the tags for all of its locally
cached data blocks. There are several commonly used approaches.
Using SRAM to store the cache tags [42] is the simplest and has
the best access latency, but the size is strictly limited by the tight
area constraint of 2.5D/3D integration. Placing the tags in DRAM
with the data [47, 48] avoids this limit, but incurs extra latency and
energy overheads, especially for data misses. Techniques to predict
hit/miss status and data locations can be used [62, 74, 93]. But in
our distributed DRAM cache, we must predict both which of the
many NDP units has the data and the data location in that unit. It
is difficult to make sufficiently accurate predictions, especially for
low-locality NDP applications.

In the Traveller Cache design, we choose to use SRAM to store
the cache tags. This method is simple, fully accurate, and has the
lowest extra latency and energy cost. Our camp location design
further reduces the storage cost to be practical to fit in the limited
3D-stacked die area, since it restricts the number of data blocks that
can be cached at a certain location.

To show this, we calculate the tag storage size with the default
system configuration in Section 3.2, i.e., 128 NDP units with 64GB
capacity in total. We assume 1/𝑅 = 1/64 of the 512MB in each
NDP unit is used as the DRAM cache, whose associativity is 𝐴 = 4
(Section 4.4). So there are 𝑁set = 512MB/64 B/𝑅/𝐴 = 32768 cache

sets per unit. First, without the camp location restriction, all the
address bits except for the 6-bit block offset (for 64-byte cachelines)
and the 15-bit set ID (for 32768 sets) must be stored as the tag,
which is log(64GB) − 6 − 15 = 15 bits. When using the camp
location mapping, the unit ID bits can be taken out of the tag, as it
is known when probing a location in a specific unit. Since we have
128/𝐶 = 32 NDP units in each group, this enables us to save 5 bits
and only use 10 bits for each tag, corresponding to a 1.5× reduction.
The total tag size for the 𝑁set ×𝐴 = 128 k cache blocks in one NDP
unit is 160 kB, which is an acceptable SRAM size comparable to the
total capacity of the two cores’ L1 caches.

Our tag scheme has nice scalability. An important observation
is that, when we keep 𝐶 unchanged and increase the number of NDP
units by using more memory stacks, the tag size in each unit keeps
constant. Even if we also proportionally increase the number of
groups, the tag size only grows logarithmically. The total tag size
does scale linearly with the cache ratio 𝑅 and the per-unit memory
capacity, both of which are unlikely to increase drastically even
with future technologies.

Information of remote caches. In Traveller Cache, each NDP
unit only tracks its locally cached data, without knowing any infor-
mation about whether a data block is cached in another unit or not.
Tracking the states of the many remote caches not only requires
significant metadata storage in each unit, but also incurs metadata
traffic among the units to keep the states up-to-date. Both are too
expensive. Instead, when an NDP unit wants to access a data block,
we make it always probe only the nearest camp location. On one
hand, compared to the baseline where the access request directly
goes to the home memory location, the extra cost in terms of in-
terconnect hops is small, because the camp location is close to the
requesting NDP unit. On the other hand, it is usually unnecessary
to probe other distant camp locations, since they may not be much
closer than the home memory location.

4.4 Cache Organization and Policies
Cache organization.Weuse a default 4-way set-associative scheme
for the DRAM cache in each NDP unit. Higher associativities in-
crease the tag size (by reducing the number of sets). Furthermore,
since the memory accesses can be distributed among the many NDP
units, each unit does not need to have very high associativities. We
empirically evaluate the impact of the associativity in Section 7.2.

Replacement policy. We adopt a probabilistic insertion policy
to insert cachelines into the DRAM cache [10]. In another word,
each data block has a certain probability of bypassing the DRAM
cache, which is empirically set to 40% in our system (Section 7.2).
This is motivated by the power-law data distribution in most of our
target applications [37], where most cache hits are to a small subset
of the overall dataset. Using a probabilistic insertion policy filters
out most of the low-reuse data, while the frequently accessed data
will eventually be cached after a few trials.

Because we use SRAM-based tags, our DRAM cache can easily
adopt any replacement policy without complex metadata manage-
ment. Nevertheless, we find that there is little performance differ-
ence between an LRU and a random policy. The small amount of
critical data can be stably cached regardless of the policy choice.
Therefore, to avoid extra metadata, we use random replacement.
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Cache coherence. As described in Section 3.1, the task-based
execution model uses bulk synchronization, where the primary
data remain unchanged within each timestamp, and we atomically
switch to the newly updated data at the end of each timestamp. Our
Traveller Cache only stores these read-only primary data, therefore
greatly simplifying the coherence requirement. Data writes bypass
the DRAM cache and directly go to the home memory locations. All
cached data are bulk invalidated, e.g., by clearing the SRAM-based
tags, at the end of each timestamp. No writeback is needed.

Overall access flow.We summarize the end-to-end operation
flow of Traveller Cache. When a prefetch request from the prefetch
unit is issued (Section 3.2) or an L1 cache miss occurs in an NDP
unit, the data access request first traverses to the nearest camp
location (a small detour), where it efficiently checks the SRAM tags
to see whether the data block is cached. If yes, it is returned to the
requesting NDP unit and put into the prefetch buffer or the cache.
Otherwise, i.e., a DRAM cache miss, the request continues to the
home location to obtain the data. Besides returning the data block
to the requesting NDP unit, we also try to insert it to the previously
probed camp location, subject to the probabilistic insertion policy.

5 HYBRID TASK SCHEDULING POLICY
To effectively balance the remote access and load imbalance issues,
ABNDP uses a hybrid task scheduling policy, which incorporates
both factors into a score-based scheduling mechanism. As shown
in Figure 4, each NDP unit actively makes scheduling decisions for
the tasks in the scheduling window of its task queue, by scoring
each NDP unit in the system to reflect how efficient it is if using
this unit to execute the task.

5.1 Impact of Traveller Cache
The scheduling policy is meticulously co-designed with our hard-
ware Traveller Cache. Essentially, the Traveller Cache design offers
several desired features to facilitate better scheduling. First, there
are now multiple camp locations where a data block can be cached
besides the original home memory location, providing high sched-
uling flexibility. This is especially important for our hybrid policy.
Specifically, for a hot data element that originally causes a task
execution hotspot around its home memory location, we can now
dispatch some of its tasks to the other camp locations to improve
load balance, while still ensuring the task execution is close to the
(cached) data. Second, the skewed camp location mapping scheme
(Section 4.2) can help those tasks with multiple accessed data. With
diverse mappings among all the groups, there will likely be at least
a group in which the multiple data elements are sufficiently close
to each other, and we can find a proper NDP unit to execute the
task at that place.

5.2 Scheduling Algorithm
We now describe the detailed scheduling algorithm. At the high
level, given a task 𝑡 in the scheduling window of the task queue,
the scheduler computes a score for each NDP unit 𝑢 in the system.
The unit with the lowest score will be the target for executing
this task. The estimated score is a weighted sum of two parts: one
for the remote memory access costmem, and the other for the load

imbalance costload. Specifically,

𝑢target = argmin
∀𝑢

{costmem (𝑡,𝑢) + 𝐵 × costload (𝑡,𝑢)} (1)

where 𝐵 is the hybrid scheduling weight that combines the two
cost terms. We discuss it later.

Remote memory access cost. To calculate costmem, we simply
use the average distance from the target NDP unit to all the data
elements accessed by the task. Here we heuristically use the camp
location (or the home) of the data element nearest to the target
unit (not the scheduling unit) as the data location. Recall that we
cannot know the contents of remote caches (Section 4.3), so we
cannot accurately know whether a data block is cached or not. This
estimation is acceptable for our main focus of high-reuse data. If we
mispredict and it is a DRAM cache miss, the data will be brought
into the cache so in the future our cost calculation becomes correct.

We distinguish the data transfers within the local unit, to a
different unit in the same stack, and to another stack, each with
cost 𝐷local, 𝐷intra, 𝐷inter. These numbers are directly set to the
relative hardware costs. They do not need any hyperparameter
tuning. In our specific architecture, because we use a crossbar for
the intra-stack NoC, 𝐷intra is constant. In contrast, 𝐷inter denotes
the cost of one hop in our inter-stack mesh.

costmem (𝑡,𝑢) =
1

|𝑡 .hint.data| ×∑︁
𝑎∈𝑡 .hint.data


𝐷local 𝑎 is local to 𝑢
𝐷intra 𝑎 is intra-stack to 𝑢
𝐷inter × 𝑁hops 𝑎 is inter-stack to 𝑢

(2)

Notice that by considering all NDP units in all groups, the above
cost model automatically leverages the skewed mappings in dif-
ferent groups, and is able to find the one with the minimum total
distance.

Load imbalance cost. To minimize load imbalance, we assign
lower (better) scores for more idle NDP units. Specifically, the idle-
ness of a target unit is captured as

costload (𝑡,𝑢) =𝑊𝑢/𝑊 − 1 (3)

where𝑊𝑢 is the sum of the workloads of all future tasks in the local
task queue of unit 𝑢, and𝑊 is the average over all units. Each NDP
unit maintains its own𝑊𝑢 by incrementing it by 𝑡 .hint.workload
when a task is enqueued, and decrementing when dequeued. Be-
cause the scheduler also needs the𝑊𝑢 values of other units, we
let all units periodically exchange their workload information. The
communication happens hierarchically [96], where the units in a
stack first communicate to collect all𝑊𝑢 values internal to the stack,
and then only one unit sends the collection to other stacks. The
workload information exchange only needs to be infrequent, with
a large time interval, much longer than the task execution time.
For example, we set it to 100,000 cycles, during which each unit
can typically execute over thousands of tasks (Section 7.2). The
exchange also happens in the background without blocking the
normal task execution, since the workload information does not
need to be accurate for execution correctness.

Hybrid scheduling weight 𝐵. Finally, we discuss how to select
the hybrid scheduling weight, which is the only hyperparameter
in our scheduling algorithm. A larger 𝐵 weighs more on the load
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Table 1: System configurations.

NDP system 4 × 4 stacks in mesh, 8 NDP units per stack;
64GB in total, 512MB per unit

NDP core 2GHz, 2 cores per NDP unit (256 in total)
L1-D cache 64 kB, 4-way, 64 B cachelines, LRU
L1-I cache 32 kB, 2-way, 64 B cachelines, LRU

Prefetch buffer 4 kB, 64 B blocks, FIFO

DRAM channel 128 bits; 𝑡CAS = 𝑡RCD = 𝑡RP = 17 ns;
5.0 pJ/bit RD/WR, 535.8 pJ ACT/PRE

Intra-stack net 128-bit link; 1.5 ns/hop; 0.4 pJ/bit
Inter-stack net 32GB/s per direction; 10 ns/hop; 4 pJ/bit

Traveller Cache 1/𝑅 = 1/64 of local mem. capacity, 4-way;
𝐶 = 3 camp loc.; random repl., 40% bypass

Scheduler 100,000-cycle workload exchange interval;
hybrid scheduling weight 𝐵 = 3𝐷inter

balance goal to get higher performance, while a smaller 𝐵 mainly
optimizes the remote memory accesses and saves energy consump-
tion. Intuitively, 𝐵 means how far the highly idle target unit can
be away from the data location. For example, assume a totally idle
unit 𝑢 with𝑊𝑢 = 0. Its load imbalance cost costload = −1. This
results in a reduction of 𝐵 on the remote access term costmem. If its
distance to the data is within this gap compared to the best unit
with the shortest data distance, then its total score will be better
and it will be selected as the target NDP unit. Therefore, we set
𝐵 = 𝐷inter × 1

2𝑑 where 𝑑 is the diameter of our inter-stack network
(e.g., 6 for the 4 × 4 mesh), indicating that we allow an idle unit to
overcome half of the maximum hop distance in the system. We also
empirically evaluate its impact in Section 7.2.

6 METHODOLOGY
System models.We use zsim [77], a fast and accurate Pin-based
simulator to model our NDP system. We extend zsim with the
hierarchical interconnection, and support task-based execution
similar to Swarm [92]. Table 1 summarizes the key configurations
of our system. We model the NDP logic as simple in-order cores
at 2 GHz, consuming 163 µW at idle and 371 pJ per instruction [89].
We use CACTI 7 [7] tomodel the timing and energy of SRAM caches,
prefetch buffers, and the tag storage for Traveller Cache. The DRAM
channel in each NDP unit follows the HBM characteristics [18].
The intra-stack NoC and intra-stack link models are from [80].

Workloads.We evaluate eight data-intensive parallel applica-
tions: BFS (bfs), single-source shortest path (sssp), Page Rank (pr),
graph convolutional neural network (gcn), A* search (astar), K-
nearest neighbors (knn), sparse matrix-vector multiplication (spmv),
and K-means (kmeans). We port the workloads into our task-based
model, similar to existing parallel benchmark suites [23, 63, 82, 91].
We use real-world graphs [60] and datasets [27] for the graph appli-
cations and spmv, and construct synthetic datasets as the input for
kmeans and knn. We manually add the data access hint in each task,
but leave the workload hint unspecified, so our scheduler makes
estimation as in Section 3.1.

Baseline designs. We compare ABNDP with five baseline NDP
designs, as summarized in Table 2. The baseline B assigns a task

Table 2: Evaluated system designs.

Design Task scheduling DRAM caches

H Use host CPU only

B Co-locating with one data element No
Sm Lowest-distance No
Sl Lowest-distance + work-stealing No
Sh Hybrid (ours) No
C Lowest-distance Yes (ours)

O Hybrid (ours) Yes (ours)

to the location of its main data element. Sm (m for “memory”) is
the lowest-distance mapping in Section 2.3 considering all data
elements in a task, and Sl (l for “load”) further adds work-stealing
to balance load. Sh uses our hybrid scheduling in Section 5, but
without DRAM caching.C uses our Traveller Cache in Section 4, but
only with basic lowest-distance task mapping. Finally, O combines
both optimizations in ABNDP. Notice that all the configurations
are based on the task-based architecture in Section 3.2 and already
support data prefetching to the SRAM buffers. Besides the above
NDP architectures, we also include a non-NDP system H that only
uses the host CPU to execute the same task-based benchmarks. The
host CPU has 16 out-of-order cores at 2.6 GHz, a 20MB last-level
cache, and 4 channels of DDR4-2400 memory.

7 EXPERIMENTAL RESULTS
We begin by presenting the overall performance and energy com-
parison results in Section 7.1, and then show the detailed studies of
each design choice in Section 7.2.

7.1 Overall Comparison
Figure 6 shows the overall performance comparison of different
system designs. We further illustrate the amount of remote accesses
in terms of the total number of inter-stack mesh hops in Figure 8,
and the workload distribution across all NDP units in terms of their
active processing cycles in Figure 9, for selective representative
workloads in our benchmark suite.

By considering all data locations in a task, Sm reduces the total
remote accesses by 7% over B on average (Figure 8), but it actually
results in 14% average performance degradation. This is because the
load imbalance issue (Figure 9) gets exacerbated due to skewed data
hotness, similar to the results in Figure 2. Adding work-stealing
in Sl helps alleviate load imbalance, and thus achieves an aver-
age 14% performance improvement over B. But it also causes up
to 2× remote accesses (Figure 8), as some tasks are scheduled to
remote locations, limiting the benefits. These results of Sm and
Sl clearly illustrate the tradeoff we elaborate before. Our hybrid
task scheduling policy Sh is able to balance the two problems, with
fewer remote accesses than Sl and better load balance than Sm,
and achieves higher speedups than both, 23% on average. This is
because its score function is a weighted sum of the two aspects,
and hence neither a scheduling choice that incurs too many remote
accesses nor the one with significant load imbalance could result
in the best score. Nevertheless, it still leads to 45% more remote
accesses than the baseline.
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Figure 6: Overall performance comparison between ABNDP and the baselines. Normalized to B.
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Figure 7: Overall energy comparison between ABNDP and the baselines. Normalized to B.
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Figure 8: Remote accesses in terms of total inter-stack hops.

On the other hand, if we use Traveller Cache in C without any
scheduling optimization, the remote accesses can be reduced by 21%
over B. Traveller Cache could store the critical data elements in the
camp locations closer to the computing units, therefore reducing
the data transfer distances. However, because the basic scheduling
policy does not take the computation loads into consideration, the
overall performance still suffers from severe load imbalance and
sometimes even degrades.

Finally, ABNDP (O) combines the benefits of Traveller Cache
and the hybrid task scheduling, and leads to on average 1.68× and
up to 2.19× performance improvements. Its load balance behavior
is close to the dynamic work-stealing Sl design. The amount of
remote accesses is also significantly less than both Sl and Sh, and
only slightly higher than C. We remark that the combined perfor-
mance benefit in ABNDP is much higher than the two individual
techniques Sh and C. This is because the two techniques work in
tandem with each other as a direct result of our hardware-software
co-optimization. Traveller Cache offers more high-quality choices
to the hybrid scheduling policy, including the scenarios where the
hotspot loads on some data elements are more evenly distributed
to the multiple camp locations besides the home, and where the
camp locations of the multiple accessed data elements in a task are
sufficiently close to each other.

Among the workloads, kmeans exhibits little difference across
system designs, because its tasks are fully independent and process
separate local data. There are no remote access or load imbalance
issues to begin with. For knn, however, because of the skewed distri-
bution in our synthetic dataset, the workload is highly imbalanced.
Designs without load balancing considerations (Sm and C) perform
substantially worse. There are also significant remote accesses from
the KD-tree traversal and the linear search in the leaf nodes. So
using Traveller Cache has a large impact in Figure 8.

To be complete, we also compare the performance of our NDP
systems against a host-only design H where the same task-based
applications are executing on a typical server-class CPU. The base-
line NDP design B is 3.70× faster than H. These relatively limited
performance gains are mostly due to the irregular applications we
use, which cannot fully utilize the NDP benefits due to load imbal-
ance and remote access overheads. By effectively alleviating exactly
these bottlenecks, ABNDP magnifies the speedup to 6.29× over H.

Energy. The energy consumption of each design is shown in
Figure 7, which breaks down into four components, for 1) the NDP
cores and SRAM caches, 2) the DRAM cache and memory accesses,
3) the interconnect transfers, and 4) the static energy. The intercon-
nect energy highly correlates to the remote access hops in Figure 8.
The DRAM energy increases in designs that use Traveller Cache
because of extra DRAM cache insertions. But this overhead is well
compensated by the reduction in the interconnect energy. The static
energy follows the performance trend. Overall, ABNDP consumes
the minimum energy over all designs, with on average 24.6% and
up to 40.1% reduction compared to the baseline.

Scalability. Figure 10 evaluates the scalability of ABNDP by
using 2 × 2, 4 × 4 (default), and 8 × 8 stacks, corresponding to 32,
128, and 512 NDP units (two cores per unit). We keep the number
of groups unchanged (𝐶 = 3). As discussed in Section 4.3, the
required tag storage in SRAM keeps the same. As the system scale
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Figure 9: Workload distribution in terms of active cycles on all NDP cores. The horizontal axis is all the NDP cores, sorted by
their numbers of active cycles in the ascending order, independently in each design. For gcn, the line of B is almost invisible
because it overlaps with the line of Sm.
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Figure 10: Scalability comparison when running Page Rank.

grows, remote accesses become more expensive due to larger inter-
stack networks, and load imbalance also gets more serious due
to more processing units. The optimizations in ABNDP therefore
become more critical. We can see that both the speedup and energy
reduction of O compared to B get larger when the system scales up.
The other NDP baselines scale significantly worse than O. Sm and
C reduce the remote access cost, but may further aggravate load
imbalance, making their scalability even worse than B. Sl and Sh
alleviate the load imbalance issue in the system. Nevertheless, they
only show slightly better scalability than B. This is because of the
increasing remote access cost due to larger interconnect diameters,
which restricts more NDP units from working together efficiently.

In addition, the ABNDP caching and scheduling techniques
themselves have good scalability. Traveller Cache uses efficient
logarithmic-size metadata to locate data in the distributed environ-
ment. The scheduling decisions are made within each NDP unit,
requiring no centralized control.

We also note that for ABNDP of even larger scales, remote data
accesses remain to be a critical bottleneck. As in Figure 10a, using
8×8 stacks only leads to a less than 15% performance gain compared
to 4 × 4 stacks. This is also probably why most of the previous
designs constrained their NDP systems to 16 stacks [2, 24, 33, 96]
or communicated asynchronously [97] to hide long remote access
latencies in large systems.

7.2 Design Choice Studies
Camp locations.We first evaluate the benefits of using our skewed
camp location mapping across different groups (Section 4.2). The
alternative identical mapping uses the same address bits to generate
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Figure 11: Remote access hop comparisonwhen using skewed
vs. identical camp location mappings.
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Figure 12: Impact of the camp location number 𝐶.

the camp location unit IDs in all groups. Figure 11 shows that the
skewed mapping saves 12% remote access hops on average, due to
both cache conflict reduction and smaller total distances to multiple
data blocks in each task.

Figure 12 shows the DRAM and interconnect energy changes
when using different camp location numbers 𝐶 . Recall that the
number of groups is 𝐶 + 1. The impact is minor. With more camp
locations, we can cache more data and reduce the interconnect en-
ergy. But also there are more DRAM cache insertions that increase
the DRAM energy. Overall, the combined effect results in small
differences among different 𝐶 values, and 𝐶 = 3 is a good choice.

Traveller Cache configurations. Traveller Cache is a DRAM
data cache while its cache tags are stored in SRAM (Section 4.3). We
justify this design by comparing our Traveller Cache with 1) a pure
on-chip SRAM data cache, and 2) a pure DRAM cache with tags
in DRAM [47, 48]. Figure 13 shows the performance and dynamic
energy results when using the three cache schemes, with the same
data capacity of 8MB as our default configuration. The SRAM cache
provides a 15% speedup and 23% energy saving than our Traveller
Cache on average. However, the 8MB SRAM requires an unrealistic
amount of 16.12mm2 logic die area per unit. On the other hand,
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Figure 13: Comparison between our Traveller Cache, a pure
SRAM data cache, and a DRAM data cache with in-DRAM
tags.
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Figure 14: Impact of the Traveller Cache capacity.
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Figure 15: Impact of the Traveller Cache associativity.
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Figure 16: Impact of the Traveller Cache bypass probability.

the tag access overhead of the pure DRAM cache causes a 21%
slowdown and 54% more energy on average. The Traveller Cache
design only requires 0.32mm2 in each NDP unit, and does not suffer
from any in-DRAM tag access overhead.

Following Section 4.4, Figure 14 shows the impact on remote
accesses when using different DRAM cache capacities, from 1/512
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Figure 17: Impact of the hybrid scheduling weight 𝐵 with
different coefficients from 0 to the topology diameter 𝑑 = 6.
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Figure 18: Impact of the workload exchanging interval. Num-
bers are shown in cycles.

to 1/16 of the local DRAM space. Larger cache sizes keep more data
and reduce more remote accesses, but also need more metadata tags.
Figure 15 sweeps the associativity, where a 4-way configuration is
sufficiently good. Finally, Figure 16 evaluates the bypass probability
when inserting into the cache. More bypasses reduce the DRAM
energy, but slightly increase the interconnect hops. Overall the
design is insensitive to this probability and 40% is a good balance.

Scheduling policy. The hybrid scheduling policy has a hyper-
parameter 𝐵 as the weight to combine the two factors. Figure 17
evaluates its impact by setting 𝐵 = 𝐷inter × 𝛼 , where by default
𝛼 = 1

2𝑑 = 3 is half of the topology diameter. We see that the
number of interconnect hops increases as 𝛼 gets larger, while the
performance saturates around 𝛼 = 3. Finally, Figure 18 shows that
the workload exchange interval can be made quite large without
affecting performance. Thus there is little extra cost.

8 RELATEDWORK
Near-Data Processing. There have been numerous prior studies in
the NDP paradigm, which can be categorized into domain-specific
accelerators and general-purpose systems. Many prior proposals
focused on specific data-intensive applications and designed NDP-
based accelerators [2, 17, 24, 35, 52, 54, 91, 96, 97]. Others tried to
retain generality and aimed to ease the adoption of NDP, including
programming models [3], system support [15, 16, 36], identifica-
tion of NDP-friendly targets [14, 20, 41, 90], and program compila-
tion [88]. We present our work as a general-purpose system, but it
also applies to specialized NDP accelerators.

DRAM caches. 3D-stacked memories can be used as an extra
cache level in front of DRAM or non-volatile memories [21, 39, 42,
47, 58, 61, 62, 66, 74, 83, 93]. Previous work mainly focused on using
a single 3D memory as the cache to hide memory access latencies
for a conventional processor. We instead use a part of each NDP
unit’s local DRAM as a cache space to reduce remote data accesses
in an NDP system.
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Data-aware scheduling policies. There have been efforts to
incorporate data location considerations into task scheduling deci-
sions. Some designs improved the scheduling schemes for NUMA
architectures [11, 19, 28, 29, 72, 81]. Although NUMA-aware sched-
uling methods also leveraged data locations when doing scheduling,
they often relied on the spatial locality in the applications, which
might be insufficient in NDP workloads. NDP systems are also
much larger and more distributed than traditional NUMA systems
with significantly more separate processing units. We must con-
sider data locations more accurately and compute data distances
accordingly. NUCA-aware scheduling focused on exploiting the
distributed cache bank space by keeping data in the best loca-
tions [8, 9, 40, 43, 70, 75]. We also aim at putting data closer to
computations. But since our data are cached in DRAM, we need
more careful designs to avoid excessive metadata cost.

9 CONCLUSIONS
In this paper, we propose ABNDP, which uses co-designed hardware
and software techniques to simultaneously optimize data access and
load balance problems in NDP systems. ABNDP adopts a hardware
DRAM cache design and a software hybrid scheduling policy. The
computation tasks can be flexibly scheduled to multiple data cache
locations with both balanced loads and small access distances. The
experimental results demonstrate that ABNDP successfully allevi-
ates the two conflicting issues, while previous techniques can only
improve one and sacrifice the other.
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