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ABSTRACT
In this paper, we study a Principal-Agent problem in which a prin-

cipal incentivizes an agent by establishing a payment contract that

encourages the agent to exert costly effort in exploring the true

state of the environment, which is of interest to the principal, and

then report the findings. We consider two feedback setups: (1) the

true state is ultimately observable by the principal, and (2) only

some noisy feedback related to the true state is observable. In the

first setup, we demonstrate that the optimal contract is the one that

pays the agent only when the report matches the ground truth, and

we derive an efficient algorithm to compute this optimal contract.

In the second setup, we design a BDD contract and show its ap-

proximate optimality with respect to the optimal honest-reporting

incentivizing contract, both theoretically and empirically. Further-

more, we introduce a sufficient condition under which the optimal

contract encourages honest reporting.
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1 INTRODUCTION
In real life, delegating the task of truth investigation is common.

In business consulting, business owners may hire firms like McK-

insey or Boston Consulting Group to conduct market research

and develop strategic plans for them. In human resource manage-

ment, companies lacking expertise in recruitment or performance

evaluation may engage HR management firms to evaluate their

candidates and employees. These scenarios can be modeled as a

Principal-Agent interaction problem, where the principal values

certain information that she cannot access directly due to a lack of

expertise. She seeks assistance from an agent capable of uncovering

this information. The difficulty she faces when implementing this
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Figure 1: The Principal-Agent interaction process considered
in this paper.

delegation is that the information acquisition process typically re-

mains opaque to her, which may result in insufficient incentives for

the agent to conduct diligent research (known as the moral hazard
issue, [16]). Since the truth investigation can be quite costly for the

agent, such as requiring detailed industry surveys, he may choose

to reduce his level of effort and be strategic about what to report,

e.g., merely providing superficial, unsubstantiated guesses while

claiming they were obtained from thorough work.

In this paper, we investigate the problem of incentivizing the

agent to exert effort in the truth exploration process and to make a

valid report from the perspective of contract design, following a
recent trend of using contract theory to address various particular

Principal-Agent problems [1, 13, 23]. Specifically, we consider a

Stackelberg game [3] where the principal announces a policy of

payment to the agent in advance, which specifies the exact payment

she delivers to him given his actual report and some feedback that

is closely related to the ground truth. The agent then selects his

strategy of effort investment and reporting to maximize his net

utility.We summarize the complete interaction procedure as follows

(See Figure 1 for an illustration):

− Step I. The principal designs a contract and presents it to the
agent. The agent then chooses the level of effort and begins

exploring the truth.

− Step II. The agent observes information about the environ-

ment and then determines what to report to the principal.

− Step III. The principal receives feedback from the environ-

ment and then pays the agent according to the contract.
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We present a real-world scenario that our model can capture in

the following example.

Example 1 (DelegatedMarket Research). Financial markets change

rapidly, and only a few professionals can accurately access internal

market information, which is valuable for making trading deci-

sions. An investor (Principal) may hire a financial expert (Agent)

to investigate market dynamics. The expert conducts research and

subsequently reports the findings, which the investor can use as a

reference for investment decisions. The investment outcome can

be characterized by public information, such as stock prices (Feed-

back). The investor can utilize this public information, or even the

market state at the time of decision-making if available, to assess

the accuracy of the expert’s report and adjust payment accordingly.

In our model, the ground truth is represented by an environment

state 𝜃 ∈ Θ, where Θ is the set of all possible environment states.

We assume the agent’s exploration process may not always succeed.

If successful, the agent observes the correct 𝜃 ; if not, no information

is gained. Different levels of agent effort correlate with varying

success rates and costs, with the reasonable assumption that higher

success probabilities incur greater costs for the agent. Regardless

of whether the exploration is successful, the form of the agent’s

report is an element of Θ representing his belief about the truth.

In this paper, we analyze the problem from the principal’s per-

spective, assuming both players are utility maximizers. Our focus is

on designing an optimal contract to maximize the principal’s utility

while considering additional factors. For example, a desirable prop-

erty of a contract is that it incentivizes the agent to report findings

honestly. In our model, when exploration is successful, the strate-

gic agent is aware of the payment associated with each reporting

choice and may opt for the one that maximizes payment, regardless

of its truthfulness. Thus, when evaluating a specific contract, we

assess its ability to promote truth-telling, as accurate reporting is

typically most beneficial to the principal, while the mutual trust

built by honesty increases the likelihood of long-term cooperation

between the principal and agent. Consequently, the ideal contract is

not only a payment policy that optimizes the principal’s utility but

also serves as a mechanism that encourages the agent’s honesty.

1.1 Our Contributions
In this research, we explore two distinct models that differ primarily

in the type of feedback received from the environment. Accordingly,

our contributions are twofold:

• In the model where the true state of the environment is ulti-

mately usable by the principal to evaluate the agent’s report,

we prove that the optimal contract pays only when the re-

port matches the ground truth. Based on this, we present an

algorithm that efficiently computes the optimal contract by

solving a polynomial number of linear programs.

• In the model where the principal can only observe some

related feedback instead of the ground truth, we design a

BDD contract and prove its approximate optimality relative

to the ideal truth-telling incentivizing contract, both theoret-

ically and empirically. Furthermore, we prove that if a clear

distinction exists between the benefits to the principal from

truthful versus non-truthful reports, an optimal contract can

be constructed to encourage honest reporting.

2 RELATEDWORK
2.1 Contract Theory
Contract Theory is a traditional branch of economics, dating back

to at least 1979 [14, 19]. In recent years, a series of studies has

emerged that studies contracts through the lens of the theory of

computation, led by [10]. The authors of [10] raise concerns re-

garding the complexity and unintuitiveness of optimal contracts,

while exploring the approximation ratios of simpler contract forms,

such as linear contracts. A line of research [15–17] on the menu

of contracts is particularly relevant to our work, as the agent re-

porting process in our model is similar to the agent’s selection of

a contract from a proposed menu in their models. The difference,

for example, is that in these models, the agent knows his private

type in advance and does not need to exert effort to explore the

environmental information, and the menu is constructed to either

accommodate various types of agents for greater benefits [15, 16]

or to assist in learning the private information [17]. There are other

papers studying combinatorial contracts from a computational per-

spective [8, 9, 11, 12], but they are less related to our topic. Recently,

an increasing number of works have focused on extending contract

theory to other research areas. For instance, [13] studies the delega-

tion problem of sequential probing, while [1, 23] consider contracts

for machine learning tasks.

2.2 Proper Scoring Rules
Scoring rules are payment policies designed to incentivize risk-

neutral experts to provide their probability assessment for an un-

certain event [5]. A scoring rule is proper if the expert’s optimal

strategy, under any belief he might possess, is to report that belief

[21]. Some recent studies [6, 18, 20] examine how to incentivize

agents, using proper scoring rules, to access a costly signal that

refines their beliefs. The setups of these papers differ from ours,

for example, in the following aspects: (1) The form of the reports:

in our model, the agent submits only a prediction of the true state,

whereas scoring rules typically require a believed probability distri-

bution over all possibilities. (2) The optimization problems: in our

model, the objective is principal utility maximization, while these

papers have different goals. For instance, some aim to maximize the

agent’s additional benefit when accessing the signal, treating the

principal’s preferences as budget constraints [6, 20]. The authors

of [22] establish a connection between the menu of contracts and

proper scoring rules within a classic hidden-action principal-agent

model, featuring the novel aspect that the agent can choose to ob-

serve a costly signal correlated with the outcome. They investigate

the problem of incentivizing signal acquisition at minimal cost.

3 CONTRACTING ON TRUE ENVIRONMENT
STATES

3.1 The Model
We introduce the Principal-Agent model used in this section. In

this model, there is a variable 𝜃 ∈ Θ representing the true state

of the environment. We assume Θ, the set of all possible states, to
be discrete and let𝑚 = |Θ|, where | · | denotes the size of a finite
set. The state 𝜃 is randomly sampled by the Nature from a prior

distribution P𝜃 . We let 𝑃𝜃 be the probability that the true state is



realized to be 𝜃 and define 𝑃 = min𝜃 ∈Θ 𝑃𝜃 . Two players interact

in this environment: A principal (referred to as she/her) wants to

uncover the true state 𝜃 and seeks to delegate this exploration task

to an agent (referred to as he/him) with expertise. They both know

the prior distribution P𝜃 . The agent’s actions have two stages. In
the first stage, he chooses a proper level of his exploration effort.

Formally, say the agent has 𝑛 actions. Each action 𝑎 ∈ [𝑛] (through-
out this paper, we let [𝑁 ] be the set {1, 2, ..., 𝑁 } for any 𝑁 ∈ N+)
is associated with a cost 𝑐𝑎 ≥ 0 and a success rate 𝑞𝑎 ∈ [0, 1] such
that, with probability 𝑞𝑎 , he successfully identifies the true state 𝜃 ,

while with probability 1 − 𝑞𝑎 , he gains no additional information

about it. Without loss of generality, we assume that

(1) The more effort the agent puts in, the more likely the inves-

tigation is successful: 𝑐𝑎 < 𝑐𝑎′ ⇐⇒ 𝑞𝑎 < 𝑞𝑎′ ,∀𝑎, 𝑎′.
(2) The agent can invest no effort: 𝑐1 = 0 and 𝑞1 = 0.

In the second stage of the agent’s actions, he reports his result
ˆ𝜃 ,

representing his prediction of the true state, to the principal. Of

course, this report
ˆ𝜃 is not necessarily identical to the truth 𝜃 . As

in the classical contract theory literature [16], we assume that the

principal cannot observe the agent’s choice of action 𝑎 (i.e., the

hidden-action model).

To incentivize the agent to put in real effort in his exploration,

the principal designs a contract 𝑝 and offers it to the agent. We

assume that the principal is trustworthy and will always fulfill

the contract honestly. Both the principal and the agent are risk-

neutral utility maximizers. Now, we introduce the definition of their

utilities, which serve as the guidelines for contract design in this

model. Define the mapping 𝑣 : Θ ×Θ→ R+ such that 𝑣 ( ˆ𝜃, 𝜃 ) is the
benefit the principal gains from receiving the report

ˆ𝜃 when the

true state is 𝜃 . Note that 𝑣 can be seen as an𝑚 ×𝑚-dimensional

non-negative matrix, so we also refer to it as a value matrix. In this

section, we make the following assumption on the values of 𝑣 :

Assumption 1. The value matrix 𝑣 satisfies

𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃 ′, 𝜃 ) ≥ 0, ∀𝜃, 𝜃 ′ ∈ Θ.

Under Assumption 1, the truthful report is the most beneficial

to the principal among all possible reports. The principal attempts

to elicit an accurate report via a carefully designed contract 𝑝 . We

consider the contract 𝑝 to also be an𝑚 ×𝑚-dimensional matrix,

where 𝑝 ( ˆ𝜃, 𝜃 ) is the payment delivered to the agent for his report

ˆ𝜃 when the true state is 𝜃 . A payment mechanism contingent on

both the report
ˆ𝜃 and the truth 𝜃 is reasonable since in this section,

we consider a scenario where both players can observe the true

state 𝜃 after the agent submits his report
ˆ𝜃 . Following the literature

on contract design [10], we focus on non-negative contracts, i.e.,

𝑝 ( ˆ𝜃, 𝜃 ) ≥ 0,∀ ˆ𝜃, 𝜃 ∈ Θ (limited liability).

Given the offered contract 𝑝 , the agent chooses his action and

report to maximize his utility. The agent’s strategy involves an

effort investment strategy 𝑠 ∈ Δ[𝑛] (we define ΔΩ as the probability

simplex on a finite set Ω) and a reporting strategy 𝑟 ∈ R0, where

R0 is the set of all possible reporting strategies and will be defined

later. 𝑠𝑎 is the probability of choosing action 𝑎. Let suc ∈ {0, 1}
be an indicator variable of whether the exploration is successful.

suc = 1 if it is successful and suc = 0 if not. The strategy 𝑟 maps

from 𝑎, suc, and the true state 𝜃 to a distribution over all possible

reports. Noting that the report should be independent of 𝜃 when

the exploration fails, we define

R0 =

{
𝑟 : [𝑛] × {0, 1} × Θ→ ΔΘ

��� 𝑟 (𝑎, 0, 𝜃 ) = 𝑟 (𝑎, 0, 𝜃 ′),

∀𝑎 ∈ [𝑛], 𝜃, 𝜃 ′ ∈ Θ
}
.

Let Bin(𝑞) denote the Bernoulli distribution with mean 𝑞. The

agent’s expected utility 𝑢0𝐴 depending on his strategy (𝑠, 𝑟 ) can be

written as

𝑢0𝐴 (𝑠, 𝑟 ) = E
𝜃∼P𝜃 ,𝑎∼𝑠,suc∼Bin(𝑞𝑎 ), ˆ𝜃∼𝑟 (𝑎,suc,𝜃 )

[
𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎

]
.

Wewill show in Proposition 1 that the following pure strategy is the

agent’s optimal strategy given 𝑝 , breaking ties towards the benefit

of the principal:

𝑎 = arg max

𝑎′∈[𝑛]
− 𝑐𝑎′ + 𝑞𝑎′

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝
(
𝑟 (𝜃 ), 𝜃

)
+ (1 − 𝑞𝑎′ )

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 (𝑟, 𝜃 ), (1)

𝑟 (𝜃 ) = arg max

𝜃 ′∈Θ
𝑝 (𝜃 ′, 𝜃 ), ∀𝜃 ∈ Θ, (2)

𝑟 = arg max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 (𝜃 ′, 𝜃 ) . (3)

In this strategy, when the exploration is successful, he reports

𝑟 (𝜃 ) which maximizes the payment given the true state 𝜃 . When

the exploration fails, he reports 𝑟 which maximizes the expected

payment given the prior distribution of 𝜃 . The agent’s action 𝑎 is

the one that maximizes his expected utility.

Proposition 1. The pure strategy
(
𝑎, {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑟

)
defined in (1),

(2), and (3) achieves an expected agent utility ofmax(𝑠,𝑟 ) ∈Δ [𝑛]×R0
𝑢0𝐴

(𝑠, 𝑟 ), given any contract 𝑝 .

Now that the agent’s behavior is determined by the contract 𝑝 ,

we can write the principal’s expected utility as

𝑢0𝑃 (𝑝) = E𝜃∼P𝜃 ,suc∼Bin(𝑞𝑎 )
[
𝑣 ( ˆ𝜃, 𝜃 ) − 𝑝 ( ˆ𝜃, 𝜃 )

]
=∑︁

𝜃 ∈Θ
𝑃𝜃

[
𝑞𝑎

(
𝑣
(
𝑟 (𝜃 ), 𝜃

)
− 𝑝

(
𝑟 (𝜃 ), 𝜃

) )
+ (1 − 𝑞𝑎)

(
𝑣 (𝑟, 𝜃 ) − 𝑝 (𝑟, 𝜃 )

) ]
,

noting that the agent’s report
ˆ𝜃 = 𝑟 (𝜃 )I{suc = 1} + 𝑟 I{suc = 0}. In

summary, the contract design problem faced by the principal can

be formalized as a program:

(P1) max

𝑝
𝑢0𝑃 (𝑝)

𝑠 .𝑡 .
∑︁
𝜃 ∈Θ

𝑃𝜃
[
𝑝 (𝑟 (𝜃 ), 𝜃 ) − 𝑝 (𝑟, 𝜃 )

]
(𝑞𝑎 − 𝑞𝑎′ ) ≥ 𝑐𝑎 − 𝑐𝑎′ ,∀𝑎′ ∈ [𝑛]

(4)

𝑝 (𝑟 (𝜃 ), 𝜃 ) ≥ 𝑝 (𝜃 ′, 𝜃 ), ∀𝜃, 𝜃 ′ ∈ Θ, (5)∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 (𝑟, 𝜃 ) ≥
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 (𝜃 ′, 𝜃 ), ∀𝜃 ′ ∈ Θ, (6)

𝑝 (𝜃, 𝜃 ′) ≥ 0, ∀𝜃, 𝜃 ′ ∈ Θ,
𝑟 ∈ Θ, 𝑎 ∈ [𝑛], 𝑟 (𝜃 ) ∈ Θ, ∀𝜃 ∈ Θ.

Constraints (4), (5), and (6) correspond to the agent’s pure strategy

(1), (2), and (3), respectively. This program has𝑚 + 2 discrete vari-

ables, namely 𝑎, 𝑟, and {𝑟 (𝜃 )}𝜃 ∈Θ. Although P1 becomes a linear

program when a realization of these variables is fixed, there are



Algorithm 1: Computing An Optimal Solution to P1

1 Initialize 𝑝 to be an𝑚 ×𝑚-dimensional zero matrix

2 saved-z← NULL, saved-obj← −Inf
3 for 𝑎 ∈ [𝑛] and 𝑟 ∈ Θ do
4 Solve the following linear program: ®𝑧 ←

min

®ℎ
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃ℎ𝜃 + (1 − 𝑞𝑎)𝑃𝑟ℎ𝑟 ,

𝑠 .𝑡 . 𝑃𝑟ℎ𝑟 ≥ 𝑃𝜃ℎ𝜃 ,∀𝜃 ≠ 𝑟,

(𝑞𝑎 − 𝑞𝑎′ )
∑︁
𝜃 :𝜃≠𝑟

𝑃𝜃ℎ𝜃 ≥ 𝑐𝑎 − 𝑐𝑎′ ,∀𝑎′ ≠ 𝑎,

ℎ𝜃 ≥ 0,∀𝜃 ∈ Θ.

5 obj← 𝑞𝑎
∑
𝜃 ∈Θ 𝑃𝜃

(
𝑣 (𝜃, 𝜃 ) − 𝑧𝜃

)
+ (1 −

𝑞𝑎)
[ ∑

𝜃 ∈Θ 𝑃𝜃 𝑣 (𝑟, 𝜃 ) − 𝑃𝑟𝑧𝑟
]

6 if obj > saved-obj then
7 saved-obj, saved-z← obj, ®𝑧
8 end
9 end

10 ®𝑧 ← saved-z

11 for 𝜃 ∈ Θ do
12 𝑝 (𝜃, 𝜃 ) ← 𝑧𝜃

13 end
Output: 𝑝 the solution to P1

𝑛 ·𝑚𝑚+1
possible realizations. Thus, it is prohibitive to solve this

program by enumerating all realizations of the discrete variables.

3.2 Computing the Optimal Contract Efficiently
We introduce an efficient solution for P1 and present it in Algorithm

1. It solves 𝑛 ·𝑚 linear programs. Each program has𝑚 variables

and 2𝑚 + 𝑛 − 2 inequality constraints. We present the following

result justifying the correctness of our method.

Theorem 2. Algorithm 1 computes an optimal solution to P1.

The key ingredient of its proof is demonstrating that there exists

an optimal solution to P1 within a small but reasonable family of

non-negative𝑚 ×𝑚-dimensional matrices.

Definition 3 (Diagonal Contract). We say a contract 𝑝 is diagonal

if and only if it satisfies

𝑝 (𝜃 ′, 𝜃 ) = 0, ∀𝜃, 𝜃 ′ ∈ Θ 𝑠 .𝑡 . 𝜃 ′ ≠ 𝜃 .

For any diagonal contract, the entries are zero except for the

ones exactly on the diagonal, so the agent only gets paid when his

prediction is correct. In the following lemma, we show that to solve

the program P1, it suffices to consider only the diagonal contracts.

Lemma 1. Let 𝑝0 : Θ × Θ → R+ be any non-negative contract.
Then there exists a non-negative diagonal contract whose objective
value is no smaller than that of 𝑝0.

Proof Sketch of Lemma 1. We show a transformation from 𝑝0

into a non-negative diagonal contract 𝑝3 that yields non-decreasing

principal utility, involving three steps:

(i) 𝑝0 −→ 𝑝1. For any
ˆ𝜃, 𝜃 ∈ Θ, if ˆ𝜃 is neither 𝑟 nor 𝑟 (𝜃 ), we

set 𝑝1 ( ˆ𝜃, 𝜃 ) = 0. Otherwise, we set 𝑝1 ( ˆ𝜃, 𝜃 ) = 𝑝0 ( ˆ𝜃, 𝜃 ). This
modification does not change the agent’s choice of effort or

his reporting strategy. We can also show that the principal’s

utility remains unchanged.

(ii) 𝑝1 −→ 𝑝2. We shift the highest payment on each column

of 𝑝1 to its diagonal and reduce all of 𝑝1’s non-diagonal

elements in the row indexed by 𝑟 to 0. This gives a diago-

nal contract 𝑝2. Let 𝜃
∗ = arg max𝜃 ′∈Θ

∑
𝜃 ∈Θ 𝑃𝜃𝑝2 (𝜃 ′, 𝜃 ) =

arg max𝜃 ∈Θ 𝑃𝜃𝑝2

(
𝜃, 𝜃

)
denote agent’s actual report at explo-

ration failure in terms of 𝑝2. Then, let 𝜃0 ∈ arg max𝜃 ′∈Θ∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃 ′, 𝜃 ) denote the principal’s most desired report

when agent’s exploration fails.

(iii) 𝑝2 −→ 𝑝3. We need to adjust 𝑝2 to match 𝜃∗ with 𝜃0. We

’swap’ 𝑝2

(
𝜃∗, 𝜃∗

)
and 𝑝2

(
𝜃0, 𝜃0

)
to induce 𝑝3, such that

𝑝3 (𝜃0, 𝜃0) =
𝑃𝜃 ∗

𝑃𝜃0

𝑝2

(
𝜃∗, 𝜃∗

)
,

𝑝3 (𝜃∗, 𝜃∗) =
𝑃𝜃0

𝑃𝜃 ∗
𝑝2

(
𝜃0, 𝜃0

)
,

to incentivize the agent to report 𝜃0 when his exploration

fails. It can be shown that our modification will not reduce

the principal’s utility.

Figure 2 illustrates an example of this transformation process. □

The proof of Theorem 2 is straightforward with Lemma 1, thus

we defer it to the technical appendix. An important implication of

Lemma 1 is that, in the model where the true state is finally acces-

sible to the principal, the objectives of optimizing the principal’s

utility and encouraging the agent to tell the truth are fully com-

patible. When the principal can incentivize the agent to both work

hard and provide honest information, her utility will be maximized.

4 CONTRACTING ON NOISY FEEDBACK
In the previous section, we assumed that the principal can ultimately

observe the true state of the environment, 𝜃 , and make payments

to the agent accordingly. However, accessing this information is

often infeasible in practice. For instance, consider a client (the

Principal) seeking advice from an expert (the Agent) about the

financial market. While she can easily gather public data like stock

prices, it is impractical for her to immediately verify the expert’s

recommendations due to either her limited financial expertise or

the extensive time and effort required for validation. In this section,

we explore the possibility of incentivizing the agent to investigate

the true state and truthfully present his findings, even when the

agent’s report cannot be directly validated.

4.1 The Model
The Principal-Agent model used here is similar to that in the last

section. There are𝑚 possible environment states, i.e.,𝑚 = |Θ|. The
Nature samples 𝜃 from a prior distribution P𝜃 . A principal delegates

the truth exploration task to an agent. They both know the prior

distribution P𝜃 . The agent first chooses his level of effort and then

presents his report
ˆ𝜃 ∈ Θ to the principal.

Unlike our previous model, we consider a scenario where the

principal faces a noisy feedback𝑋 ∈ R that is jointly determined by



𝑝0 =

𝑟

𝜃0




𝑝1 =

𝑟

𝜃0

𝜃∗


𝑝2 =

𝜃0

𝜃∗




𝑝3 =




Figure 2: An example that demonstrates how to transform 𝑝0 into a diagonal contract 𝑝3 in the proof of Lemma 1. The elements
in 𝑝0 at positions (𝑟 (𝜃 ), 𝜃 ) for all 𝜃 ∈ Θ are shown as green nodes, while the others are shown as yellow nodes. The element
𝑝1

(
𝑟 (𝜃∗), 𝜃∗

)
is shown as a brown node. Each empty slot in the matrices indicates that the corresponding payment is 0.

the agent’s report
ˆ𝜃 and the true state 𝜃 , but can never directly ob-

serve 𝜃 . For example, 𝑋 could be the market value of the principal’s

portfolio (adjusted after considering the agent’s market research

report) on a particular trading day, while 𝜃 can be the true state

of the market. We assume that the random feedback admits an

expectation captured by the value matrix 𝑣 . Specifically,

𝑋 = 𝑣 ( ˆ𝜃, 𝜃 ) + 𝐸, 𝐸 ∼ 𝐹𝜂 ,

where 𝐸 is a zero-mean stochastic noise with a cumulative dis-

tribution function 𝐹𝜂 . Due to the presence of random noise, it is

difficult for the principal to infer the true underlying state solely

from observing 𝑋 . Here, we make a slightly stronger assumption

(Assumption 2) about the value matrix compared to Section 3. This

assumption implies that the principal’s profit from receiving truth-

ful reports is at least 𝛿 higher than that from receiving non-truthful

reports, where 𝛿 is a known constant.

Assumption 2. For a constant 𝛿 ≥ 0, the value matrix 𝑣 satisfies

𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃 ′, 𝜃 ) ≥ 𝛿, ∀𝜃, 𝜃 ′ ∈ Θ.

As in the previous model, the principal is interested in incen-

tivizing the agent to exert effort in his truth investigation via a

contract 𝑝 . Since the only information the principal has is the agent

report
ˆ𝜃 and the random feedback 𝑋 , it is reasonable to focus on

the set of contracts P := {𝑝 : Θ × R → R+}. In this section, we

consider a simpler setting where the agent has only two levels of

effort: 𝑐1 = 0, 𝑞1 = 0 and 𝑐2 = 𝑐, 𝑞2 = 1 for a constant 𝑐 > 0. That is,

the agent can either uncover the truth 𝜃 at a price 𝑐 or choose to

receive no information without any charge.

Given the offered contract 𝑝 , the agent chooses his action and

report to maximize his utility. 𝑠 ∈ Δ[2] and 𝑟 ∈ R are the agent’s

effort investment strategy for truth exploration and reporting strat-

egy, respectively. In this section, we define the set of all possible

agent reporting strategies

R =

{
𝑟 : [2] × Θ→ ΔΘ

��� 𝑟 (1, 𝜃 ) = 𝑟 (1, 𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ
}
.

The agent’s expected utility 𝑢𝐴 can be written as

𝑢𝐴 (𝑠, 𝑟 ) = E
𝜃∼P𝜃 ,𝑎∼𝑠, ˆ𝜃∼𝑟 (𝑎,𝜃 ),𝐸∼𝐹𝜂

[
𝑝 ( ˆ𝜃, 𝑋 ) − 𝑐𝑎

]
.

Let 𝐹
𝑋 | ˆ𝜃,𝜃 be the distribution function of 𝑋 when the report is

ˆ𝜃

and the truth is 𝜃 . It can be shown that the following pure strategy

is the agent’s optimal strategy given 𝑝 , breaking ties towards the

benefit of the principal:

𝑎 =


2, if

∑
𝜃 ∈Θ 𝑃𝜃

∫
R 𝑝

(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 − 𝑐 ≥∑

𝜃 ∈Θ 𝑃𝜃

∫
R 𝑝 (𝑟, 𝑥)𝑑𝐹𝑋 |𝑟,𝜃 ,

1, otherwise,

(7)

𝑟 (𝜃 ) = arg max

𝜃 ′∈Θ

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , ∀𝜃 ∈ Θ, (8)

𝑟 = arg max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , (9)

where the integrals are w.r.t. the variable 𝑥 . In this strategy, the

agent reports 𝑟 (𝜃 ) when he invests effort in exploration and reports

𝑟 when he does not exert any effort. The following result justifies

the optimality of this strategy.

Proposition 2. The pure strategy
(
𝑎, {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑟

)
defined in (7),

(8) and (9) achieves an expected agent utility ofmax(𝑠,𝑟 ) ∈Δ [2]×R 𝑢𝐴 (𝑠,
𝑟 ), given any contract 𝑝 ∈ P.

Now that the agent’s behavior is determined by the contract 𝑝 ,

we can write the principal’s expected utility as

𝑢𝑃 (𝑝) = E𝜃∼P𝜃 ,𝐸∼𝐹𝜂
[
𝑣 ( ˆ𝜃, 𝜃 ) − 𝑝 ( ˆ𝜃, 𝑋 )

]
=
∑︁
𝜃 ∈Θ

𝑃𝜃

[
𝑣 ( ˆ𝜃, 𝜃 ) −

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃

]
,

where the agent’s report is given by
ˆ𝜃 = 𝑟 (𝜃 )I{𝑎 = 2} + 𝑟 I{𝑎 = 1}.

In summary, the contract design problem faced by the principal can

be formalized as a program:

(P2) max

𝑝∈P
𝑢𝑃 (𝑝)

𝑠 .𝑡 .
∑︁
𝜃 ∈Θ

𝑃𝜃

[ ∫
R
𝑝
(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 −

∫
R
𝑝 (𝑟, 𝑥)𝑑𝐹𝑋 |𝑟,𝜃

]
× (𝑞𝑎 − 𝑞𝑎′ ) ≥ 𝑐𝑎 − 𝑐𝑎′ , ∀𝑎′ ∈ [2]∫

R
𝑝
(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 ≥

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , ∀𝜃, 𝜃 ′ ∈ Θ,∑︁

𝜃 ∈Θ
𝑃𝜃

[ ∫
R
𝑝 (𝑟, 𝑥)𝑑𝐹𝑋 |𝑟,𝜃 −

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃

]
≥ 0,∀𝜃 ′ ∈ Θ,

𝑟 ∈ Θ, 𝑎 ∈ [2], 𝑟 (𝜃 ) ∈ Θ, ∀𝜃 ∈ Θ.
To simplify this program, we make the following observation. For

any contract 𝑝 ∈ P, if it incentivizes zero agent effort, i.e., 𝑎 = 1,

the principal’s utility is at most

𝑢𝑃 (𝑝) ≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝑟, 𝜃 ) ≤ max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 ( ˆ𝜃, 𝜃 ) =: 𝑢𝑃 .



This utility upper bound can be achieved by a zero-payment con-

tract 𝑝 𝑠.𝑡 . 𝑝 ( ˆ𝜃, 𝑥) = 0,∀ ˆ𝜃 ∈ Θ, 𝑥 ∈ R. One interpretation of the

zero-payment contract is that when the utility derived from delegat-

ing the truth exploration task is insufficient, it is more advantageous

for the principal to make a prediction herself based on her prior

knowledge P𝜃 . This observation implies that solving P2 only re-

quires finding an optimal positive-effort-incentivizing contract and

comparing its utility against the baseline principal utility 𝑢𝑃 .

4.2 Our Contract Design
In this part, we propose a feasible solution to P2. We aim to de-

sign a contract that encourages the agent to truthfully report his

findings while maximizing the principal’s net utility. Before pre-

senting our design in detail, we first introduce a lower bound on the

expected payment, as it provides insight into our contract design.

This lower bound characterizes the maximum principal utility that

any contract can generate under the truthful reporting constraint.

Proposition 3. Suppose the noise distribution 𝐹𝜂 has a probability
density function 𝜙𝜂 . A lower bound for the payment that the principal
has to make to incentivize positive effort and truth-telling is given by
the following linear program

(L1) LB :=min

®𝑡

∑︁
𝜃 ∈Θ

𝑡𝜃

𝑠 .𝑡 .
∑︁
𝜃 ∈Θ

𝑡𝜃 − 𝑐 ≥
[

inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠)
]
𝑡𝜃 ′ , ∀𝜃 ′ ∈ Θ, (10)

𝑡𝜃 ≥
[

inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠)

]
𝑡𝜃 ′ , ∀𝜃, 𝜃 ′ ∈ Θ, (11)

𝑡𝜃 ≥ 0, ∀𝜃 ∈ Θ, (12)

where 𝛼𝜃,𝜃 ′ (𝑠) :=
[
𝑃𝜃𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 )

) ]
/
[
𝑃𝜃 ′𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 ′)

) ]
.

We explain this result. For any contract 𝑝 , define ®𝑦 𝑠.𝑡 . 𝑦𝜃 =

𝑃𝜃

∫
R 𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 ,∀𝜃 ∈ Θ. (10) and (11) can be shown to be

relaxed versions of the positive effort and truth-telling constraints,

respectively. Thus, if 𝑝 incentivizes positive effort and truth-telling,

®𝑦 must satisfy (10) and (11). This leads to

∑
𝜃 ∈Θ 𝑦𝜃 ≥ LB, as ®𝑦

is a feasible solution to this program. We complete the proof by

observing that

∑
𝜃 ∈Θ 𝑦𝜃 is precisely the expected payment of 𝑝 .

Intuitively, for 𝑝 to generate principal utility close to the optimum,

the original positive effort and truth-telling constraints it induces

should be close to the relaxed versions (10) and (11).

We propose contracts of the form:

𝑝 ( ˆ𝜃, 𝑥) =
{
𝐵

ˆ𝜃
, if |𝑥 − 𝑣 ( ˆ𝜃, ˆ𝜃 ) | ≤ 𝜌

ˆ𝜃
,

0, otherwise,
∀𝑥 ∈ R,∀ ˆ𝜃 ∈ Θ.

𝐵𝜃 , 𝜌𝜃 are non-negative parameters for any 𝜃 ∈ Θ. Since 𝑝 ( ˆ𝜃, ·)
approaches a Dirac pulse at 𝑥 = 𝑣 ( ˆ𝜃, ˆ𝜃 ) when 𝜌

ˆ𝜃
→ 0, we refer

to this type of contract as Bounded Dirac Delta (BDD) contracts.
The detailed computation process is given in Algorithm 2. This

algorithm first computes the weighted expected payment associ-

ated with each true state, represented as the vector ®𝑧. It then sets

the values of 𝐵𝜃 to align the expected payments of 𝑝 with ®𝑧. Our
proposed contract has three advantages:

(1) Ex-Post Boundedness. There exists an ex-post budget con-

straint 𝐵 such that 𝐵𝜃 ≤ 𝐵,∀𝜃 ∈ Θ, which is necessary for a

contract to be feasible in practice.

Algorithm 2: Bounded Dirac Delta (BDD) Contract

Input: {𝜌𝜃 }𝜃 ∈Θ payment radius

1 Initialize 𝑝 (𝜃, 𝑥) = 0,∀𝜃 ∈ Θ, 𝑥 ∈ R
2 Solve the following linear program: ®𝑧 ←

min

®𝑡

∑︁
𝜃 ∈Θ

𝑡𝜃

𝑠 .𝑡 .
∑︁
𝜃 ∈Θ

𝑡𝜃 − 𝑐 ≥
[ ∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

]
· 𝑡𝜃 ′ ,∀𝜃 ′ ∈ Θ,

𝑡𝜃 ≥
[
𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

]
𝑡𝜃 ′ ,∀𝜃, 𝜃 ′ ∈ Θ,

𝑡𝜃 ≥ 0,∀𝜃 ∈ Θ.

3 if
∑
𝜃 ∈Θ 𝑧𝜃 ≤

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑢𝑃 then

4 for 𝜃 ∈ Θ do
5 Compute 𝐵𝜃 ← 𝑧𝜃 /

[
𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

]
6 Update the contract

𝑝 (𝜃, 𝑥) ←
{
𝐵𝜃 , if |𝑥 − 𝑣 (𝜃, 𝜃 ) | ≤ 𝜌𝜃 ,

0, otherwise,
∀𝑥 ∈ R

7 end
8 end
Output: 𝑝 the contract

(2) Near Optimality. It can be shown that, under mild assump-

tions on 𝐹𝜂 and when 𝐵 is large, the positive effort and

truth-telling constraints approach (10) and (11).

(3) Computational Simplicity.We note that for BDD contracts,
the positive effort and truth-telling constraints are linear

constraints without relaxation. Thus, the optimal payment

can be efficiently computed by solving a linear program in

Algorithm 2, which is similar to L1 in Proposition 3.

Define
¯𝑙 = max𝜃,𝜃 ′∈Θ |𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃, 𝜃 ′) |, 𝑙 = min𝜃≠𝜃 ′ |𝑣 (𝜃, 𝜃 ) −

𝑣 (𝜃, 𝜃 ′) |. To facilitate our theoretical analysis of this method, we

make the following assumptions on the noise distribution 𝐹𝜂 .

Assumption 3. The noise distribution 𝐹𝜂 has a probability density
function 𝜙𝜂 satisfying:
• 𝜙𝜂 is symmetric: 𝜙𝜂 (𝑥) = 𝜙𝜂 (−𝑥), ∀𝑥 ∈ R,
• 𝜙𝜂 is monotonically non-increasing in R+: 𝜙𝜂 (𝑥1) ≥ 𝜙𝜂 (𝑥2),
∀0 ≤ 𝑥1 ≤ 𝑥2,
• 𝜙𝜂 is 𝐿-Lipschitz on [−¯𝑙, ¯𝑙],
• 𝜙𝜂 (𝑥 − 𝑑)/𝜙𝜂 (𝑥) ≥ 𝜙𝜂 (−𝑑)/𝜙𝜂 (0),∀𝑥 ≤ 0, 𝑑 ≥ 0.

It can be validated that the family of Laplace distributions satis-

fies this assumption.

Definition 4 (Laplace Distribution). For any constant 𝜆 > 0, a

random variable has a zero-mean Laplace distribution, denoted

Laplace(0, 1/𝜆), if its probability density function is

𝜙 (𝑥) = 𝜆

2

exp

(
− 𝜆 |𝑥 |

)
, ∀𝑥 ∈ R.

We formally present our theoretical result for the proposed con-

tract in Theorem 5. Say 𝑝 is a BDD contract computed by Algorithm



2, we show that the gap between the highest possible utility gener-

ated by a truth-telling incentivizing contract and the utility yielded

by 𝑝 converges to 0 at a speed of𝑂 (1/𝐵) when 𝐵 increases. That is,

our contract is a good approximation of the optimal truth-telling in-

centivizing contract. In the remainder of this subsection, we outline

the proof idea for this theorem.

Theorem 5. Let 𝑝 be a contract generated by Algorithm 2 with
inputs

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+
𝑐𝑃−1

𝜃
𝐵−1

1 −max𝜃 ′∈Θ
∑

˜𝜃 ∈Θ 𝑃
˜𝜃

𝜙𝜂 (𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′, ˜𝜃 ) )
𝜙𝜂 (0)

]
for any 𝜃 ∈ Θ, where 𝐹−1

𝜂 (𝑦) = min{𝑥 ∈ R | 𝐹𝜂 (𝑥) = 𝑦},∀𝑦 ∈ (0, 1).
Suppose Assumption 2, 3 hold. Then ∃𝐵0 ∈ R+, ∀𝐵 ≥ 𝐵0, contract 𝑝
has the following properties:

(1) The budget constraint is never violated: 𝐵𝜃 ≤ 𝐵,∀𝜃 ∈ Θ.
(2) The agent is incentivized to report the true state that he observes

after the exploration.
(3) The difference between the principal utility generated by any

truth-telling incentivizing contract 𝑝0 and the utility induced
by contract 𝑝 is upper bounded as

𝑢𝑃 (𝑝0) − 𝑢𝑃 (𝑝) ≤
12𝜙𝜂 (0)2𝐿𝑐2

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]4𝑃2𝐵
.

We introduce the proof idea of Theorem 5. The first two claims in

Theorem 5 can be easily validated. For the third one, we notice that

since both 𝑝0 and 𝑝 incentivize the agent to report honestly, they

generate the same expected profit

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) for the principal.

Thus, it suffices to consider the difference between their expected

payments. The key to upper-bounding this difference is as follows:

Since the payment of 𝑝 is defined by the optimal value of another

linear program (in Algorithm 2), which can be shown to be similar

to L1, we derive a sensitivity analysis result to demonstrate that

the optimal values of both programs are close to each other. This

completes the proof of Theorem 5.

Lemma 2. Consider the following two linear programs,

(O1) OPT :=min

®𝑡

∑︁
𝜃 ∈Θ

𝑡𝜃

𝑠 .𝑡 . 𝑏𝜃 ′𝑡𝜃 ′ −
∑︁
𝜃 ∈Θ

𝑡𝜃 + 𝑐 ≤ 0, ∀𝜃 ′ ∈ Θ,

𝑎𝜃,𝜃 ′𝑡𝜃 ′ − 𝑡𝜃 ≤ 0, ∀𝜃, 𝜃 ′ ∈ Θ, 𝜃 ≠ 𝜃 ′, (13)

− 𝑡𝜃 ≤ 0, ∀𝜃 ∈ Θ

and 𝑂2 (OPT′ is its optimal value). 𝑂2 has the same structure as
𝑂1, except that in 𝑂2, 𝑎′

𝜃,𝜃 ′
replaces 𝑎𝜃,𝜃 ′ and 𝑏′𝜃 ′ replaces 𝑏𝜃 ′ for

any 𝜃, 𝜃 ′ ∈ Θ. We require 0 ≤ 𝑎𝜃,𝜃 ′ ≤ 𝑎′
𝜃,𝜃 ′

< 𝑃𝜃 /𝑃𝜃 ′ ,∀𝜃, 𝜃 ′ ∈
Θ, 𝜃 ≠ 𝜃 ′ and 0 ≤ 𝑏𝜃 ≤ 𝑏′

𝜃
< 1/𝑃𝜃 ,∀𝜃 ∈ Θ. If there exist series

of small positive constants {𝜖𝜃,𝜃 ′ }𝜃,𝜃 ′∈Θ, {𝜅𝜃 }𝜃 ∈Θ such that 0 ≤
𝑎′
𝜃,𝜃 ′
−𝑎𝜃,𝜃 ′ ≤ 𝜖𝜃,𝜃 ′ ,∀𝜃, 𝜃 ′ ∈ Θ, 𝜃 ≠ 𝜃 ′ and 0 ≤ 𝑏′

𝜃
−𝑏𝜃 ≤ 𝜅𝜃 ,∀𝜃 ∈ Θ,

then we have that

OPT′

OPT
≤

[
1 − (1 − 𝜆) +max𝜃 ∈Θ 𝜅𝜃

1 −max𝜃 ∈Θ 𝑏𝜃𝑃𝜃

]−1

,

where 𝜆 ∈ (0, 1) is a constant such that

1 − 𝜆 ≤ max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

[𝑃𝜃 − 𝑎′𝜃,𝜃 ′𝑃𝜃 ′ ] + 𝜖𝜃,𝜃 ′
.

Proof Sketch of Lemma 2. Assume that ®𝑡∗ is an optimal solu-

tion to O1. Our goal is to construct a solution to O2 whose sum

is as close to

∑
𝜃 ∈Θ 𝑡∗

𝜃
as possible. The first step is to construct an

intermediate solution ®𝑦 from ®𝑡∗ such that ®𝑦 satisfies the correspond-

ing constraint of (13) in O2. We achieve this by finding a vector ®𝑡 ′
that satisfies this constraint and defining ®𝑦 = 𝜆®𝑡∗ + (1 − 𝜆)®𝑡 ′ for a
constant 𝜆 ∈ (0, 1). We show that a 𝜆 → 1 can guarantee a ®𝑦 we

want. The second step is to find a constant 𝜇 > 1 such that 𝜇®𝑦 is

a feasible solution to O2. We conclude this proof by showing that

there exists a 𝜇 → 1 which satisfies our requirement. □

Remark. One may notice that the above analysis does not apply

to the Gaussian distribution due to its violation of Assumption

3. In the appendix, we present an analysis for another family of

noise distributions, including Gaussian distributions. We prove an

upper bound for𝑢𝑃 (𝑝0) −𝑢𝑃 (𝑝) that converges to 0 as the Gaussian
variance 𝜎2

decreases, which is verified by our experiments.

4.3 Dropping the Honest Reporting Constraint
In Section 4.2, our proposed BDD contract was evaluated against

the best possible contract that must encourage the agent to report

honestly, rather than the optimal contract that purely maximizes

the principal’s net utility. In this context, one might naturally ask

the following question:

Does the optimal contract necessarily incentivize truth-telling, so
that the two benchmarks above are simply equivalent?

We demonstrate that the answer is negative by presenting the

following counterexample. The principal’s value matrix is set to be

𝑣 =


1 1 1 1

1 1 0 0

0 0 100 0

0 0 0 100


with the dimension𝑚 = 4. Let 𝜃𝑖 denote the true state correspond-

ing to the 𝑖-column of the value matrix. We set the prior distribution

𝑃𝜃 = 1

𝑚 ,∀𝜃 ∈ Θ. The agent’s cost of positive effort 𝑐 = 1. The noise

distribution 𝐹𝜂 is a Laplace distribution with a sufficiently large 𝜆.

The solution to the linear program L1 for this problem instance

is ®𝑦 =
[

1

6
, 1

6
, 2

3
, 2

3

]
, indicating that the expected payment must be

at least
5

3
to incentivize both positive effort and truth-telling. This

solution implies that the expected payment when the true state is

𝜃1 and the agent tells the truth is equal to that when the true state

is 𝜃2 and the agent tells the truth. Such equality is necessary for the

adopted contract to incentivize truth-telling, given the structure of

the value matrix 𝑣 . If the payment associated with 𝜃1 were lower

than that with 𝜃2, the agent would gain more by reporting
ˆ𝜃 =

𝜃2 when the true state is 𝜃1, thereby violating the truth-telling

constraint. However, we can construct a contract that breaks this

constraint while delivering less payment, thus showing that the

optimal contract does not incentivize truth-telling. The constructed

contract 𝑝 implements ®𝑦′ =
[

1

6
− 13

500
, 1

6
+ 3

50
, 2

3
− 1

10
, 2

3
− 1

10

]
, a

slightly perturbed version of ®𝑦. This contract does not incentivize



truth-telling (the agent reports
ˆ𝜃 = 𝜃2 when the true state is 𝜃1) but

reduces the expected payment to
5

3
− 2

25
< 5

3
.

Although the answer is negative in general, we do identify a

sufficient condition for the two benchmarks to be equivalent: As-

sumption 2 holds with a sufficiently large 𝛿 . Recall that given this

assumption, for any realized true state 𝜃 , the principal profit de-

creases by at least 𝛿 if the agent is incentivized to report any
ˆ𝜃 ≠ 𝜃 .

When the reduced cost can never offset the decreased profit, the

optimal contract must incentivize both positive effort and truth-

telling simultaneously. We formalize this intuition in Theorem 6

under the following assumption. Define 𝑣 = max𝜃 ∈Θ 𝑣 (𝜃, 𝜃 ) and
𝑣 = min𝜃 ∈Θ 𝑣 (𝜃, 𝜃 ).

Assumption 4. The noise distribution 𝐹𝜂 has a probability density
function 𝜙𝜂 satisfying:
• 𝜙𝜂 is symmetric: 𝜙𝜂 (𝑥) = 𝜙𝜂 (−𝑥), ∀𝑥 ∈ R,
• 𝜙𝜂 is monotonically non-increasing in R+: 𝜙𝜂 (𝑥1) ≥ 𝜙𝜂 (𝑥2),
∀0 ≤ 𝑥1 ≤ 𝑥2.

Theorem 6. For any constants 𝜆, 𝜈 ∈ (0, 1) 𝑠 .𝑡 . 𝜆 > 𝜈 , suppose
Assumption 2 with a sufficiently large 𝛿 such that the following con-
ditions holds: (a) 𝛿 ≥ 𝜆𝑣

∨
1

2𝑃

[
𝑐 +

√︁
𝑐2 + 16𝑐𝑣𝑃

]
, (b) 𝜙𝜂 (𝛿 − 𝜈𝑣) ≤

8

8+𝜆
𝑣

𝑣𝜙𝜂 (0), (c) 𝜙𝜂 (𝛿/2 − 𝜈𝑣) ≤
𝜆

8+𝜆𝑃𝜙𝜂 (0) and Assumption 4 hold.
Given any contract 𝑝0 such that ∃𝜃 ∈ Θ, 𝑟 (𝜃 ) ≠ 𝜃 , there exists a
contract 𝑝 satisfying that

(1) 𝑝 is ex-post upper bounded in its value,
(2) 𝑝 incentivizes honest reporting,
(3) 𝑢𝑃 (𝑝) ≥ 𝑢𝑃 (𝑝0).

5 EMPIRICAL RESULTS
In this section, we present our experiment results. Our machine is

a PC running Windows 11, equipped with an AMD Ryzen 9 5900X

12-Core Processor and an NVIDIA GeForce RTX 3060 GPU.

5.1 Evaluating the BDD Contract
In this experiment, we evaluate the principal utility generated by

the proposed BDD contract. We set𝑚 = 5, 𝑐 = 0.2 and randomly

generate a 5 × 5-dimensional value matrix 𝑣 . We set a uniform

prior distribution over Θ. We consider various settings of the noise

distribution 𝐹𝜂 :

– Laplace distribution with 𝜆 = 10, 20, 30.

– Gaussian distribution with 𝜎 = 0.04, 0.03, 0.02.

The results are shown in Figure 3. In each subfigure, the horizontal

axis is the budget constraint 𝐵. In addition to the utility generated

by the positive-effort incentivizing BDD contract, we also illustrate

the utility upper bound

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − LB and the zero-effort

utility 𝑢𝑃 for comparison. Note that although 𝑢𝑃 (𝑝) can be lower

than 𝑢𝑃 in subfigure (a), the utility generated by our Algorithm 2 is

always at least 𝑢𝑃 . Our experiment demonstrates that the proposed

BDD contract is a good approximation of the optimal truth-telling

incentivizing contract, especially when the budget constraint 𝐵 is

large.

6 CONCLUSION
In this paper, we propose a principal-agent problem in which a

principal incentivizes an agent to undertake a costly exploration

Figure 3: Expected principal utility generated by the proposed
BDD contract. We consider two families of noise distributions.
In (a)-(c) we set 𝐹𝜂 to be the Laplace distribution, while in
(d)-(f) we set it to be the Gaussian distribution. As the budget
constraint 𝐵 grows sufficiently large, the generated principal
utilities approach the upper bounds. This demonstrates the
near-optimality of our proposed contract.

of the truth and report the findings through a payment contract.

For different setups of feedback information that the principal can

use to assess the quality of the agent’s report, we demonstrate

the importance and efficiency of encouraging the agent to submit

honest reports and design our contract solutions accordingly. All

omitted proofs in this paper can be found in the technical appendix.

Future Work.We believe there is still much to explore within

the delegated truth exploration framework: (1) In this paper, we

assume a principal with extensive knowledge, such as the prior dis-

tribution of the environment state, the agent’s action set (including

success rates and costs), and so on. Inspired by a recent work [6] on

proper scoring rules, we find it interesting to extend our discussion

to a partial knowledge setting. Moreover, several recent works have

focused on the repeated principal-agent interaction setting, e.g.,

[2, 4, 7, 17]. It would also be valuable to extend our framework

to a multi-round variant where the game starts with unknown

parameters. (2) In this paper, we assume strict incentive compati-

bility, meaning the agent is always a utility maximizer. However,

the agent may also be willing to follow the principal’s suggestion,

provided the utility is sufficiently close to optimal. We term this the

approximate incentive compatibility assumption. Contract design

problems in this context remain unexplored.
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A MISSING PROOFS FOR SECTION 3
Proof of Proposition 1. For any (𝑠, 𝑟 ) ∈ Δ[𝑛] × R0, 𝑢0𝐴 (𝑠, 𝑟 ) can be expanded as

𝑢0𝐴 (𝑠, 𝑟 ) =
∑︁
𝜃 ∈Θ

𝑃𝜃

∑︁
𝑎∈[𝑛]

𝑠𝑎

[
𝑞𝑎

( ∑︁
ˆ𝜃 ∈Θ

𝑝 ( ˆ𝜃, 𝜃 )𝑟
ˆ𝜃
(𝑎, 1, 𝜃 ) − 𝑐𝑎

)
+ (1 − 𝑞𝑎)

( ∑︁
ˆ𝜃 ∈Θ

𝑝 ( ˆ𝜃, 𝜃 )𝑟
ˆ𝜃
(𝑎, 0, 𝜃 ) − 𝑐𝑎

)]
≤
∑︁
𝜃 ∈Θ

𝑃𝜃

∑︁
𝑎∈[𝑛]

𝑠𝑎

[
𝑞𝑎 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)

( ∑︁
ˆ𝜃 ∈Θ

𝑝 ( ˆ𝜃, 𝜃 )𝑟
ˆ𝜃
(𝑎, 0, 𝜃 )

)
− 𝑐𝑎

]
=

∑︁
𝑎∈[𝑛]

𝑠𝑎

[
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)

∑︁
ˆ𝜃 ∈Θ

𝑟
ˆ𝜃
(𝑎, 0)

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎
]

≤
∑︁

𝑎∈[𝑛]
𝑠𝑎

[
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎
]

≤ max

𝑎∈[𝑛]

[
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎
]
,

where we wrote 𝑟 (𝑎, 0) = 𝑟 (𝑎, 0, 𝜃 ),∀𝜃 ∈ Θ by the definition of R0. Let (𝑠0, 𝑟0) represent the agent strategy defined in (1), (2), and (3). It can

be validated that ∑︁
ˆ𝜃 ∈Θ

𝑝 ( ˆ𝜃, 𝜃 )𝑟0

ˆ𝜃
(𝑎, 1, 𝜃 ) = 𝑝

(
𝑟 (𝜃 ), 𝜃

)
= max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ),∀𝑎 ∈ [𝑛], 𝜃 ∈ Θ,

∑︁
𝜃 ∈Θ

𝑃𝜃

∑︁
ˆ𝜃 ∈Θ

𝑝 ( ˆ𝜃, 𝜃 )𝑟0

ˆ𝜃
(𝑎, 0, 𝜃 ) =

∑︁
ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 )𝑟0

ˆ𝜃
(𝑎, 0, 𝜃 )

=
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 (𝑟, 𝜃 ) = max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ),∀𝑎 ∈ [𝑛],

and furthermore,

𝑢0𝐴 (𝑠0, 𝑟0) =
∑︁

𝑎∈[𝑛]
𝑠0

𝑎

[
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎
]

= max

𝑎∈[𝑛]

[
𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ
𝑝 ( ˆ𝜃, 𝜃 ) + (1 − 𝑞𝑎)max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝 ( ˆ𝜃, 𝜃 ) − 𝑐𝑎
]

≥ max

(𝑠,𝑟 ) ∈Δ [𝑛]×R0

𝑢0𝐴 (𝑠, 𝑟 )

by our upper bound derived at the beginning of this proof. □

Proof of Lemma 1. Without loss of generality, we assume that 𝑐𝑎 < 𝑐𝑎′ for any 𝑎, 𝑎′ ∈ [𝑛] such that 𝑎 < 𝑎′. Consider an arbitrary

contract 𝑝0 such that 𝑝0 (𝜃 ′, 𝜃 ) ≥ 0 for any 𝜃 ′, 𝜃 ∈ Θ. We will show how to transform 𝑝0 into a diagonal contract without reducing the

principal’s expected net utility. Figure 2 in the main paper summarizes the transformation procedures used in this proof. Recall that given 𝑝0,

the agent reports 𝑟 (𝜃 ) ∈ arg max𝜃 ′∈Θ 𝑝0 (𝜃 ′, 𝜃 ) given the truth 𝜃 , the prior optimal report is denoted as 𝑟 ∈ arg max𝜃 ′∈Θ
∑

˜𝜃 ∈Θ 𝑃
˜𝜃
𝑝0 (𝜃 ′, ˜𝜃 ),

and the agent’s action 𝑎 maximizes his expected net utility

∑
𝜃 ∈Θ 𝑃𝜃

[
𝑞𝑎𝑝0 (𝑟 (𝜃 ), 𝜃 ) + (1 − 𝑞𝑎)𝑝0 (𝑟, 𝜃 )

]
− 𝑐𝑎 , assuming that ties are broken

towards the benefit of the principal. The tuple

(
𝑎, {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑟

)
summarizes the agent’s strategy under the contract 𝑝 .

The first modification on 𝑝0 is to set 𝑝0 (𝜃 ′, 𝜃 ) = 0 for any 𝜃, 𝜃 ′ ∈ Θ such that 𝜃 ′ ≠ 𝑟 and 𝜃 ′ ≠ 𝑟 (𝜃 ). Say this modification yields contract

𝑝1. Obviously, 𝑝1 (𝑟 (𝜃 ), 𝜃 ) is still the largest element in the column of 𝑝1 indexed by 𝜃 . Consider ∀𝜃 ′ ≠ 𝑟 , by our modification procedure, we

have that ∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝜃 ′, 𝜃 ) =
∑︁
𝜃 ∈Θ

𝑃𝜃 I{𝜃 ′ = 𝑟 (𝜃 )}𝑝0 (𝜃 ′, 𝜃 )

≤
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝0 (𝜃 ′, 𝜃 ) ≤
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝0 (𝑟, 𝜃 ) =
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝑟, 𝜃 ),



thus 𝑟 is still a prior optimal report under contract 𝑝1. Besides, the invariance of the values of 𝑟 , {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑝0 (𝑟 (𝜃 ), 𝜃 ), 𝑝0 (𝑟, 𝜃 ) for any
𝜃 ∈ Θ implies that the agent’s expected net utility under each action 𝑎′ is also invariant, i.e.,∑︁

𝜃 ∈Θ
𝑃𝜃

[
𝑞𝑎′𝑝0 (𝑟 (𝜃 ), 𝜃 ) + (1 − 𝑞𝑎′ )𝑝0 (𝑟, 𝜃 )

]
− 𝑐𝑎′

=
∑︁
𝜃 ∈Θ

𝑃𝜃

[
𝑞𝑎′𝑝1 (𝑟 (𝜃 ), 𝜃 ) + (1 − 𝑞𝑎′ )𝑝1 (𝑟, 𝜃 )

]
− 𝑐𝑎′ , ∀𝑎′ ∈ [𝑛] .

Consequently, action𝑎 still maximizes the agent’s expected net utility. Thus the contract 𝑝1 still implements the agent strategy

(
𝑎, {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑟

)
,

which yields the same principal utility as 𝑝0 does.

The second modification aims to transform 𝑝1 into a diagonal contract 𝑝3 (Here, we merge step (ii) and step (iii) described in the proof

sketch for the convenience of narration), defined by the following formulae:

𝑝3 (𝜃 ′, 𝜃 ) = 0, ∀𝜃, 𝜃 ′ ∈ Θ, 𝑠 .𝑡 . 𝜃 ≠ 𝜃 ′,

𝑝3 (𝜃, 𝜃 ) = 𝑝1

(
𝑟 (𝜃 ), 𝜃

)
, ∀𝜃 ∉ {𝜃0, 𝜃

∗},

𝑝3 (𝜃0, 𝜃0) =
𝑃𝜃 ∗

𝑃𝜃0

𝑝1

(
𝑟 (𝜃∗), 𝜃∗

)
,

𝑝3 (𝜃∗, 𝜃∗) =
𝑃𝜃0

𝑃𝜃 ∗
𝑝1

(
𝑟 (𝜃0), 𝜃0

)
,

where the principal value determines

𝜃0 ∈ arg max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃 ′, 𝜃 )

and 𝜃∗ is defined such that 𝜃∗ ∈ arg max𝜃 ∈Θ 𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
. Since 𝑝3 is a diagonal contract, the agent truthfully reports when he knows the

true state is 𝜃 . When the agent reports any 𝜃 ′ ≠ 𝜃0, the expected payment∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃 ′, 𝜃 ) = 𝑃𝜃 ′𝑝3 (𝜃 ′, 𝜃 ′)

≤𝑃𝜃 ∗𝑝1

(
𝑟 (𝜃∗), 𝜃∗

)
= 𝑃𝜃0

𝑝3 (𝜃0, 𝜃0) =
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃0, 𝜃 ),

which implies that 𝜃0 is an optimal report with respect to the prior distribution P𝜃 under the contract 𝑝3. We claim that there exists an

action 𝑎′ ≥ 𝑎 that is incentivized by the contract 𝑝3. Now, suppose this claim does not hold, then there exists 𝑎 < 𝑎 such that ∀𝑎′ ≥ 𝑎,

𝑞�̃�

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃, 𝜃 ) + (1 − 𝑞�̃�)
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃0, 𝜃 ) − 𝑐�̃�

>𝑞𝑎′
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃, 𝜃 ) + (1 − 𝑞𝑎′ )
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃0, 𝜃 ) − 𝑐𝑎′ .

Note that since the contract 𝑝1 incentivizes action 𝑎, we have

𝑞𝑎

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
+ (1 − 𝑞𝑎)

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝑟, 𝜃 ) − 𝑐𝑎

≥𝑞�̃�
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
+ (1 − 𝑞�̃�)

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝑟, 𝜃 ) − 𝑐�̃� .

Besides, we notice that

∑
𝜃 ∈Θ 𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
=
∑
𝜃 ∈Θ 𝑃𝜃𝑝3 (𝜃, 𝜃 ) by the construction of 𝑝3 and that∑︁

𝜃 ∈Θ
𝑃𝜃𝑝1 (𝑟, 𝜃 ) ≥

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1

(
𝑟 (𝜃∗), 𝜃

)
≥ 𝑃𝜃 ∗𝑝1

(
𝑟 (𝜃∗), 𝜃∗

)
=𝑃𝜃0

𝑝3 (𝜃0, 𝜃0) =
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃0, 𝜃 ).

These phenomena together imply that

(𝑞𝑎 − 𝑞�̃�)
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
+ (𝑞�̃� − 𝑞𝑎)

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝑟, 𝜃 ) + 𝑐�̃� − 𝑐𝑎 ≥ 0

> (𝑞𝑎 − 𝑞�̃�)
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃, 𝜃 ) + (𝑞�̃� − 𝑞𝑎)
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝3 (𝜃0, 𝜃 ) + 𝑐�̃� − 𝑐𝑎

≥ (𝑞𝑎 − 𝑞�̃�)
∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1

(
𝑟 (𝜃 ), 𝜃

)
+ (𝑞�̃� − 𝑞𝑎)

∑︁
𝜃 ∈Θ

𝑃𝜃𝑝1 (𝑟, 𝜃 ) + 𝑐�̃� − 𝑐𝑎,



which is a contradiction. Thus we have justified our previous claim. Now we consider the principal’s expected net utility under the contract

𝑝3 (the action 𝑎′ ≥ 𝑎 is incentivized by 𝑝3)∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎′
(
𝑣 (𝜃, 𝜃 ) − 𝑝3 (𝜃, 𝜃 )

)
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎′ )
(
𝑣 (𝜃0, 𝜃 ) − 𝑝3 (𝜃0, 𝜃 )

)
≥
∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎′
(
𝑣 (𝜃, 𝜃 ) − 𝑝1

(
𝑟 (𝜃 ), 𝜃

) )
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎′ )
(
𝑣 (𝜃0, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
≥
∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎′
(
𝑣 (𝜃, 𝜃 ) − 𝑝1

(
𝑟 (𝜃 ), 𝜃

) )
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎′ )
(
𝑣 (𝑟, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
.

Without loss of generality, we can assume that∑︁
𝜃 ∈Θ

𝑃𝜃
(
𝑣 (𝜃, 𝜃 ) − 𝑝1

(
𝑟 (𝜃 ), 𝜃

) )
>

∑︁
𝜃 ∈Θ

𝑃𝜃
(
𝑣 (𝑟, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
(14)

since otherwise the principal’s expected net utility under the contract 𝑝1 can be simply (weakly) improved by replacing 𝑝1 with the naive

zero-payment diagonal contract 𝑝′
1
= 0:∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎
(
𝑣 (𝜃, 𝜃 ) − 𝑝1

(
𝑟 (𝜃 ), 𝜃

) )
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎)
(
𝑣 (𝑟, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
≤
∑︁
𝜃 ∈Θ

𝑃𝜃
(
𝑣 (𝑟, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
≤

∑︁
𝜃 ∈Θ

𝑃𝜃
(
𝑣 (𝑟, 𝜃 ) − 𝑝′

1
(𝑟, 𝜃 )

)
=
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝑟, 𝜃 ) .

Given assumption (14), we have that∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎′
(
𝑣 (𝜃, 𝜃 ) − 𝑝3 (𝜃, 𝜃 )

)
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎′ )
(
𝑣 (𝜃0, 𝜃 ) − 𝑝3 (𝜃0, 𝜃 )

)
≥
∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎
(
𝑣 (𝜃, 𝜃 ) − 𝑝1

(
𝑟 (𝜃 ), 𝜃

) )
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎)
(
𝑣 (𝑟, 𝜃 ) − 𝑝1 (𝑟, 𝜃 )

)
.

As a result, 𝑝3 is a non-negative diagonal contract that yields (weakly) higher expected net utility for the principal than the original contract

𝑝0 does.

□

Proof of Theorem 2. By Lemma 1, solving the program P1 does not require enumerating all possible realizations of

(
𝑎, {𝑟 (𝜃 )}𝜃 ∈Θ, 𝑟

)
. It

is sufficient to consider all 𝑛 ·𝑚 combinations of (𝑎, 𝑟 ), while setting 𝑟 (𝜃 ) = 𝜃,∀𝜃 ∈ Θ and 𝑝 (𝜃 ′, 𝜃 ) = 0,∀𝜃 ′, 𝜃 ∈ Θ such that 𝜃 ′ ≠ 𝜃 . For each

realization of (𝑎, 𝑟 ), the program P1 becomes the following linear program

max

diag(𝑝 )

∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎
(
𝑣 (𝜃, 𝜃 ) − 𝑝 (𝜃, 𝜃 )

)
+
∑︁
𝜃 ∈Θ

𝑃𝜃 (1 − 𝑞𝑎)𝑣 (𝑟, 𝜃 ) − (1 − 𝑞𝑎)𝑃𝑟𝑝 (𝑟, 𝑟 )

𝑠 .𝑡 . 𝑃𝑟𝑝 (𝑟, 𝑟 ) ≥ 𝑃𝜃 ′𝑝 (𝜃 ′, 𝜃 ′), ∀𝜃 ′ ∈ Θ,∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎𝑝 (𝜃, 𝜃 ) + 𝑃𝑟 (1 − 𝑞𝑎)𝑝 (𝑟, 𝑟 ) − 𝑐𝑎 ≥∑︁
𝜃 ∈Θ

𝑃𝜃𝑞𝑎′𝑝 (𝜃, 𝜃 ) + 𝑃𝑟 (1 − 𝑞𝑎′ )𝑝 (𝑟, 𝑟 ) − 𝑐𝑎′ ,∀𝑎′ ∈ [𝑛]

𝑝 (𝜃, 𝜃 ) ≥ 0, ∀𝜃 ∈ Θ,

where diag(𝑝) is the vector of the diagonal elements of the matrix 𝑝 . Since the variables in this linear program are only {𝑝 (𝜃, 𝜃 )}𝜃 ∈Θ, the
objective function is equivalent to −∑𝜃 ∈Θ 𝑃𝜃𝑞𝑎𝑝 (𝜃, 𝜃 ) − (1 − 𝑞𝑎)𝑃𝑟𝑝 (𝑟, 𝑟 ) as the constant term in the objective function does not affect the

solution of a linear program. Thus, it can be checked that this linear program is equal to that in Algorithm 1. Algorithm 1 searches over all

possible pairs of (𝑎, 𝑟 ) and, for the pair that maximizes the objective function of P1, outputs the diagonal contract 𝑝 that implements this pair

and achieves the corresponding objective value, ensuring that 𝑝 is an optimal solution to P1. □



B MISSING PROOFS FOR SECTION 4.1 AND 4.2
Proof of Proposition 2. For any (𝑠, 𝑟 ) ∈ Δ[2] × R, 𝑢𝐴 (𝑠, 𝑟 ) can be expanded as

𝑢𝐴 (𝑠, 𝑟 ) =
∑︁
𝜃 ∈Θ

𝑃𝜃

[
𝑠1

∑︁
ˆ𝜃 ∈Θ

𝑟
ˆ𝜃
(1, 𝜃 )

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 + 𝑠2

( ∑︁
ˆ𝜃 ∈Θ

𝑟
ˆ𝜃
(2, 𝜃 )

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
)]

=𝑠1

∑︁
ˆ𝜃 ∈Θ

𝑟
ˆ𝜃
(1)

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 + 𝑠2

( ∑︁
𝜃 ∈Θ

𝑃𝜃

∑︁
ˆ𝜃 ∈Θ

𝑟
ˆ𝜃
(2, 𝜃 )

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
)

≤𝑠1 max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 + 𝑠2

( ∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
)

≤max

{
max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 ,
∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
}
,

where we wrote 𝑟 (1) = 𝑟 (1, 𝜃 ),∀𝜃 ∈ Θ by the definition of R. Let (𝑠1, 𝑟1) represent the agent strategy defined in (7), (8) and (9). It can be

validated that ∑︁
ˆ𝜃 ∈Θ

𝑟1

ˆ𝜃
(2, 𝜃 )

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 =

∫
R
𝑝
(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 = max

ˆ𝜃 ∈Θ

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 ,∀𝜃 ∈ Θ,

∑︁
𝜃 ∈Θ

𝑃𝜃

∑︁
ˆ𝜃 ∈Θ

𝑟1

ˆ𝜃
(1, 𝜃 )

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 =
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝑟, 𝑥)𝑑𝐹𝑋 |𝑟,𝜃 = max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 ,

and furthermore,

𝑢𝐴 (𝑠1, 𝑟1) =𝑠1

1
max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 + 𝑠
1

2

( ∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
)

=max

{
max

ˆ𝜃 ∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 ,
∑︁
𝜃 ∈Θ

𝑃𝜃 max

ˆ𝜃 ∈Θ

∫
R
𝑝 ( ˆ𝜃, 𝑥)𝑑𝐹

𝑋 | ˆ𝜃,𝜃 − 𝑐
}

≥ max

(𝑠,𝑟 ) ∈Δ [2]×R
𝑢𝐴 (𝑠, 𝑟 )

by our upper bound derived at the beginning of this proof. □

Proof of Proposition 3. Say the principal adopts a contract 𝑝 that incentivizes positive agent effort and truth-telling. Then, by the

definition of these constraints, 𝑝 satisfies∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 − 𝑐 ≥ max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , (15)

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 ≥

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , ∀𝜃, 𝜃 ′ ∈ Θ. (16)

The expected payment is given by

∑
𝜃 ∈Θ 𝑃𝜃

∫
R 𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 . We define a vector ®𝑦 (each element of which is indexed by a 𝜃 ∈ Θ) such that

𝑦𝜃 = 𝑃𝜃

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 , ∀𝜃 ∈ Θ.

Now, we show that ®𝑦 is a feasible solution to the linear program L1. First of all, we know ®𝑦 ≥ 0. Secondly, we have that for any 𝜃 ′ ∈ Θ,∑︁
𝜃 ∈Θ

𝑦𝜃 − 𝑐

≥
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 =

∫
R
𝑝 (𝜃 ′, 𝑥)

∑︁
𝜃 ∈Θ

𝑃𝜃𝜙𝜂
(
𝑥 − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥

≥
∫
R
𝑝 (𝜃 ′, 𝑥) inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠) · 𝑃𝜃 ′𝜙𝜂
(
𝑥 − 𝑣 (𝜃 ′, 𝜃 ′)

)
𝑑𝑥

= inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠) · 𝑃𝜃 ′
∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′ =

[
inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠)
]
𝑦𝜃 ′ ,



where the first inequality is by (15) and the second inequality is by the definition of 𝛼𝜃,𝜃 ′ (𝑠). Lastly, we have that for any 𝜃, 𝜃 ′ ∈ Θ,

𝑦𝜃 ≥𝑃𝜃
∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 = 𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝜙𝜂

(
𝑥 − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥

≥
∫
R
𝑝 (𝜃 ′, 𝑥) inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠) · 𝑃𝜃 ′𝜙𝜂

(
𝑥 − 𝑣 (𝜃 ′, 𝜃 ′)

)
𝑑𝑥

= inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠) · 𝑃𝜃 ′

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′ =

[
inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠)

]
𝑦𝜃 ′ ,

where the first inequality is by (16) and the second inequality is also by the definition of 𝛼𝜃,𝜃 ′ (𝑠). We have validated that ®𝑦 is a feasible

solution to L1 since all its constraints (10), (11) and (12) are satisfied by ®𝑦. Let ®𝑥∗ be an optimal solution to L1. We notice that the expected

payment of contract 𝑝 ∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 =

∑︁
𝜃 ∈Θ

𝑦𝜃 ≥
∑︁
𝜃 ∈Θ

𝑥∗
𝜃
,

since ®𝑥∗ optimizes the objective value of L1. Thus, we have shown that

∑
𝜃 ∈Θ 𝑥∗

𝜃
is a lower bound for the expected payment of any contract

that incentivizes positive agent effort and truth-telling. □

Proof of Lemma 2. Assume that ®𝑡∗ is an optimal solution to O1. Now, we are trying to construct a solution to O2 which is as close to ®𝑡∗
as possible. We know that 𝑎𝜃,𝜃 ′𝑡

∗
𝜃 ′
≤ 𝑡∗

𝜃
,∀𝜃 ≠ 𝜃 ′ but there can be 𝜃, 𝜃 ′ such that 𝑎′

𝜃,𝜃 ′
𝑡∗
𝜃 ′

> 𝑡∗
𝜃
. The first step of our proof is to reweight ®𝑡∗ and

construct an intermediate solution ®𝑦 such that the stronger constraints 𝑎′
𝜃,𝜃 ′

𝑦𝜃 ′ ≤ 𝑦𝜃 ,∀𝜃 ≠ 𝜃 ′ hold. By our assumption,

𝑎𝜃,𝜃 ′ ≤ 𝑎′
𝜃,𝜃 ′ ≤

𝑃𝜃

𝑃𝜃 ′
, ∀𝜃, 𝜃 ′ ∈ Θ, 𝜃 ≠ 𝜃 ′ .

This inspires us to define 𝑡 ′
𝜃
= 𝑃𝜃

∑
𝜃 ′∈Θ 𝑡∗

𝜃 ′
,∀𝜃 ∈ Θ. The definition of ®𝑡 ′ implies that

𝑎′
𝜃,𝜃 ′𝑡

′
𝜃 ′ = 𝑎′

𝜃,𝜃 ′𝑡
′
𝜃

𝑃𝜃 ′

𝑃𝜃
≤ 𝑡 ′

𝜃
, ∀𝜃, 𝜃 ′ ∈ Θ, 𝜃 ≠ 𝜃 ′,

and

∑
𝜃 ∈Θ 𝑡 ′

𝜃
=
∑
𝜃 ∈Θ 𝑡∗

𝜃
. Furthermore, for a constant 𝜆 ∈ (0, 1), we construct the intermediate solution ®𝑦 such that𝑦𝜃 = 𝜆𝑡∗

𝜃
+(1−𝜆)𝑡 ′

𝜃
,∀𝜃 ∈ Θ.

Specifically, we set

𝜆 = min

𝜃≠𝜃 ′ :𝑎′
𝜃,𝜃 ′ 𝑡

∗
𝜃 ′>𝑡

∗
𝜃

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′
+ 𝜖𝜃,𝜃 ′𝑡∗𝜃 ′

.

Fix any 𝜃 ≠ 𝜃 ′, we now attempt to show that ®𝑦 satisfies 𝑎′
𝜃,𝜃 ′

𝑦𝜃 ′ ≤ 𝑦𝜃 ,∀𝜃 ≠ 𝜃 ′. There are two possibilities:

(1) 𝑎′
𝜃,𝜃 ′

𝑡∗
𝜃 ′
≤ 𝑡∗

𝜃
. Then trivially,

𝑎′
𝜃,𝜃 ′𝑦𝜃 ′ = 𝑎′

𝜃,𝜃 ′
[
𝜆𝑡∗
𝜃 ′ + (1 − 𝜆)𝑡

′
𝜃 ′
]

= 𝜆𝑎′
𝜃,𝜃 ′𝑡

∗
𝜃 ′ + (1 − 𝜆)𝑎

′
𝜃,𝜃 ′𝑡

′
𝜃 ′

≤ 𝜆𝑡∗
𝜃
+ (1 − 𝜆)𝑡 ′

𝜃
= 𝑦𝜃

by the definition of ®𝑡∗, ®𝑡 ′.
(2) 𝑎′

𝜃,𝜃 ′
𝑡∗
𝜃 ′

> 𝑡∗
𝜃
. We have that

𝑎′
𝜃,𝜃 ′𝑦𝜃 ′ = 𝑎′

𝜃,𝜃 ′
[
𝜆𝑡∗
𝜃 ′ + (1 − 𝜆)𝑡

′
𝜃 ′
]

= 𝑎′
𝜃,𝜃 ′

[
𝜆𝑡∗
𝜃 ′ + (1 − 𝜆)𝑡

′
𝜃 ′
]

= 𝜆
[
𝑎′
𝜃,𝜃 ′𝑡

∗
𝜃 ′ − 𝑡

∗
𝜃

]
+ 𝜆𝑡∗

𝜃
+ (1 − 𝜆)𝑎′

𝜃,𝜃 ′𝑡
′
𝜃 ′ .

By the definition of 𝜆, we have that

𝜆 ≤
𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′
+ 𝜖𝜃,𝜃 ′𝑡∗𝜃 ′

≤
𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′
+ (𝑎′

𝜃,𝜃 ′
− 𝑎𝜃,𝜃 ′ )𝑡∗𝜃 ′

≤
𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′
+ 𝑎′

𝜃,𝜃 ′
𝑡∗
𝜃 ′
− 𝑡∗

𝜃

,



which directly implies

𝜆
[
𝑎′
𝜃,𝜃 ′𝑡

∗
𝜃 ′ − 𝑡

∗
𝜃

]
≤ (1 − 𝜆)

[
𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′𝑡
′
𝜃 ′
]
.

Returning to our derivation regarding 𝑎′
𝜃,𝜃 ′

𝑦𝜃 ′ , we have that

𝑎′
𝜃,𝜃 ′𝑦𝜃 ′ ≤ (1 − 𝜆)

[
𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′𝑡
′
𝜃 ′
]
+ 𝜆𝑡∗

𝜃
+ (1 − 𝜆)𝑎′

𝜃,𝜃 ′𝑡
′
𝜃 ′

= (1 − 𝜆)𝑡 ′
𝜃
+ 𝜆𝑡∗

𝜃
= 𝑦𝜃 .

As a result, we have shown that the intermediate solution ®𝑦 satisfies 𝑎′
𝜃,𝜃 ′

𝑦𝜃 ′ ≤ 𝑦𝜃 ,∀𝜃 ≠ 𝜃 ′. We also mention here that∑︁
𝜃 ∈Θ

𝑦𝜃 = 𝜆
∑︁
𝜃 ∈Θ

𝑡∗
𝜃
+ (1 − 𝜆)

∑︁
𝜃 ∈Θ

𝑡 ′
𝜃

= 𝜆
∑︁
𝜃 ∈Θ

𝑡∗
𝜃
+ (1 − 𝜆)

∑︁
𝜃 ∈Θ

𝑡∗
𝜃
=
∑︁
𝜃 ∈Θ

𝑡∗
𝜃
.

We now continue to the second step. We attempt to find a constant 𝜇 > 1, which is as close to 1 as possible, such that 𝜇®𝑦 is a feasible

solution to the second linear program O2. The most natural choice of 𝜇 is

𝜇 = max

𝜃 ′∈Θ
𝑐∑

𝜃 ∈Θ 𝑦𝜃 − 𝑏′𝜃 ′𝑦𝜃 ′
,

since it is the smallest 𝜇 such that all the positive agent effort incentive compatibility constraints are satisfied. To proceed, we make the

following claim:

max

𝜃 ′∈Θ
𝑏𝜃 ′𝑡

∗
𝜃 ′ + 𝑐 =

∑︁
𝜃 ∈Θ

𝑡∗
𝜃
.

Suppose this formula does not hold. Then we have that max𝜃 ′∈Θ 𝑏𝜃 ′𝑡
∗
𝜃 ′
+ 𝑐 <

∑
𝜃 ∈Θ 𝑡∗

𝜃
. It can be verified that the vector ®𝑡 defined such that

𝑡𝜃 = 𝑡∗
𝜃
· 𝑐∑

𝜃 ∈Θ 𝑡∗
𝜃
−max𝜃 ′∈Θ 𝑏𝜃 ′𝑡

∗
𝜃 ′

< 𝑡∗
𝜃
, ∀𝜃 ∈ Θ

is a feasible solution to the first linear program O1 with a strictly lower objective value, which is contradictory to the fact that ®𝑡∗ is the
optimal solution to O1.

We return to 𝜇 and notice that, by our discussion above, it can be rewritten as

𝜇 =
𝑐∑

𝜃 ∈Θ 𝑦𝜃 −max𝜃 ′∈Θ 𝑏′
𝜃 ′
𝑦𝜃 ′

=
𝑐∑

𝜃 ∈Θ 𝑡∗
𝜃
−max𝜃 ′∈Θ 𝑏′

𝜃 ′
𝑦𝜃 ′

=
1

1 −
[

max𝜃 ′∈Θ 𝑏′
𝜃 ′
𝑦𝜃 ′ −max𝜃 ′∈Θ 𝑏𝜃 ′𝑡

∗
𝜃 ′
]
/𝑐

≤ 1

1 −max𝜃 ′∈Θ
[
𝑏′
𝜃 ′
𝑦𝜃 ′ − 𝑏𝜃 ′𝑡∗𝜃 ′

]
/𝑐

.

Fix any 𝜃 ′ ∈ [𝑚], we focus on 𝑏′
𝜃 ′
𝑦𝜃 ′ − 𝑏𝜃 ′𝑡∗𝜃 ′ alone and show that

𝑏′
𝜃 ′𝑦𝜃 ′ − 𝑏𝜃 ′𝑡

∗
𝜃 ′

=𝑏′
𝜃 ′
[
𝜆𝑡∗
𝜃 ′ + (1 − 𝜆)𝑡

′
𝜃 ′
]
− 𝑏𝜃 ′𝑡∗𝜃 ′

=(𝑏′
𝜃 ′ − 𝑏𝜃 ′ )𝑡

∗
𝜃 ′ + (1 − 𝜆)𝑏

′
𝜃 ′ (𝑡
′
𝜃 ′ − 𝑡

∗
𝜃 ′ )

≤𝜅𝜃 ′𝑡∗𝜃 ′ + (1 − 𝜆)𝑏
′
𝜃 ′ (𝑃𝜃 ′

∑︁
𝜃 ∈Θ

𝑡∗
𝜃
− 𝑡∗

𝜃 ′ )

≤𝜅𝜃 ′𝑡∗𝜃 ′ + (1 − 𝜆)𝑏
′
𝜃 ′𝑃𝜃 ′

∑︁
𝜃 ∈Θ

𝑡∗
𝜃

≤𝜅𝜃 ′𝑡∗𝜃 ′ + (1 − 𝜆)
∑︁
𝜃 ∈Θ

𝑡∗
𝜃
.



To continue our derivation, we still need upper bounds for 1 − 𝜆 and OPT. Now, we turn to consider 1 − 𝜆:

1 − 𝜆 = max

𝜃≠𝜃 ′ :𝑎′
𝜃,𝜃 ′ 𝑡

∗
𝜃 ′>𝑡

∗
𝜃

𝜖𝜃,𝜃 ′𝑡
∗
𝜃 ′

𝑡 ′
𝜃
− 𝑎′

𝜃,𝜃 ′
𝑡 ′
𝜃 ′
+ 𝜖𝜃,𝜃 ′𝑡∗𝜃 ′

= max

𝜃≠𝜃 ′ :𝑎′
𝜃,𝜃 ′ 𝑡

∗
𝜃 ′>𝑡

∗
𝜃

𝜖𝜃,𝜃 ′𝑡
∗
𝜃 ′

[𝑃𝜃 − 𝑎′𝜃,𝜃 ′𝑃𝜃 ′ ]
∑

˜𝜃 ∈Θ 𝑡∗
˜𝜃
+ 𝜖𝜃,𝜃 ′𝑡∗𝜃 ′

≤ max

𝜃≠𝜃 ′ :𝑎′
𝜃,𝜃 ′ 𝑡

∗
𝜃 ′>𝑡

∗
𝜃

𝜖𝜃,𝜃 ′

[𝑃𝜃 − 𝑎′𝜃,𝜃 ′𝑃𝜃 ′ ] + 𝜖𝜃,𝜃 ′

≤ max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

[𝑃𝜃 − 𝑎′𝜃,𝜃 ′𝑃𝜃 ′ ] + 𝜖𝜃,𝜃 ′
.

To obtain a valid upper bound for the value of OPT, we notice that although ®𝑡 ′ may not be a feasible solution to O1, there must be a constant

scaling factor 𝑠 ≥ 1 such that 𝑠®𝑡 ′ becomes a feasible solution. The smallest possible 𝑠 is determined by the following equation,

max

𝜃 ′∈Θ
𝑏𝜃 ′𝑠𝑡

′
𝜃 ′ + 𝑐 =

∑︁
𝜃 ∈Θ

𝑠𝑡 ′
𝜃
,

which implies a valid upper bound for OPT:

OPT ≤
∑︁
𝜃 ∈Θ

𝑠𝑡 ′
𝜃

=
𝑐
∑
𝜃 ∈Θ 𝑡 ′

𝜃∑
𝜃 ∈Θ 𝑡 ′

𝜃
−max𝜃 ′∈Θ 𝑏𝜃 ′𝑡

′
𝜃 ′

=
𝑐

1 −max𝜃 ′∈Θ 𝑏𝜃 ′𝑃𝜃 ′
.

As a result, we have that

OPT
′ ≤

∑︁
𝜃 ∈Θ

𝜇𝑦𝜃

≤
∑
𝜃 ∈Θ 𝑡∗

𝜃

1 −max𝜃 ′∈Θ
[
𝑏′
𝜃 ′
𝑦𝜃 ′ − 𝑏𝜃 ′𝑡∗𝜃 ′

]
/𝑐

≤ OPT

1 − 1

𝑐 max𝜃 ∈Θ [𝜅𝜃 𝑡∗𝜃 + (1 − 𝜆)OPT]

≤ OPT

1 − 1

𝑐 max𝜃 ∈Θ [𝜅𝜃 + (1 − 𝜆)]OPT

≤ OPT

1 − max𝜃 ∈Θ [𝜅𝜃+(1−𝜆) ]
1−max𝜃 ∈Θ 𝑏𝜃𝑃𝜃

,

which completes the proof. □

Proof of Theorem 5. Note that in the contract framework defined in Algorithm 2 the payment radius 𝜌𝜃 ,∀𝜃 ∈ Θ are regarded as inputs.

Now we focus on a realization of these parameters and analyze the performance of this specific contract. We set

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+
𝑐𝑃−1

𝜃
𝐵−1

1 −max𝜃 ′∈Θ
∑

˜𝜃 ∈Θ 𝑃
˜𝜃

𝜙𝜂 (𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′, ˜𝜃 ) )
𝜙𝜂 (0)

]
, ∀𝜃 ∈ Θ.

To make this contract work, we need a sufficiently large budget constraint 𝐵. Specifically, these are our assumptions on 𝐵: ∀𝜃 ∈ Θ,

(1) 𝐵 ≥ 12𝜙𝜂 (0)𝐿𝑐
[𝜙𝜂 (0)−𝜙𝜂 (𝑙 ) ]3𝑃2

.

(2) 𝜌𝜃 ≤
𝜙𝜂 (0)

3𝐿

[
1 −∑𝜃 ′∈Θ 𝑃𝜃 ′

𝜙𝜂 (𝑣 (𝜃,𝜃 )−𝑣 (𝜃,𝜃 ′ ) )
𝜙𝜂 (0)

]
.

(3) 𝜌𝜃 ≤ 𝜙𝜂 (0)/𝐿.
(4) 𝜌𝜃 ≤ ¯𝑙 .



Throughout this proof, define 𝑏𝜃 =
∑
𝜃 ′∈Θ

𝑃𝜃 ′
𝑃𝜃

𝜙𝜂 (𝑣 (𝜃,𝜃 )−𝑣 (𝜃,𝜃 ′ ) )
𝜙𝜂 (0) . When these assumptions hold, we can derive an upper bound of 𝜌𝜃 w.r.t 𝐵.

By the definition of 𝜌𝜃 , we have that ∫ 𝜌𝜃

0

𝑑𝐹𝜂 =
𝑐

1 −max𝜃 ′∈Θ 𝑏𝜃 ′𝑃𝜃 ′

1

𝐵𝑃𝜃

=

∫
0

−𝜌𝜃
𝜙𝜂 (𝑥)𝑑𝑥 ≥

∫
0

−𝜌𝜃
[𝜙𝜂 (0) + 𝐿𝑥]𝑑𝑥

≥𝜌𝜃𝜙𝜂 (0) −
1

2

𝐿𝜌2

𝜃
≥ 1

2

𝜌𝜃𝜙𝜂 (0),

and furthermore

𝜌𝜃 ≤
2𝑐

1 −max𝜃 ′∈Θ 𝑏𝜃 ′𝑃𝜃 ′

1

𝐵𝑃𝜃𝜙𝜂 (0)
. (17)

In the below, we attempt to show that the contract 𝑝 computed by Algorithm 2 (if

∑
𝜃 ∈Θ 𝑧𝜃 ≤

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑢𝑃 ) has the following

properties:

(1) The budget constraint is never violated: 𝐵𝜃 ≤ 𝐵,∀𝜃 ∈ Θ.
(2) 𝑝 incentivizes positive agent effort and truth-telling simultaneously.

(3) The expected principal utility induced by 𝑝 is very close to the optimal utility any truth-telling incentivizing contract can achieve.

Now, we show the first property holds. For any 𝜃 ∈ Θ, by the definition of 𝐵𝜃 , we have that

𝐵𝜃 =
𝑧𝜃

𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

≤
∑
𝜃 ′∈Θ 𝑧𝜃 ′

𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

≤ 1

𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

𝑐

1 −max𝜃 ′∈Θ 𝑏′
𝜃 ′
𝑃𝜃 ′

≤ 1

𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

𝑐

1 −max𝜃 ′∈Θ
1

2
[𝑃−1

𝜃 ′
+ 𝑏𝜃 ′ ]𝑃𝜃 ′

=
1

𝑃𝜃

∫ 𝜌𝜃
−𝜌𝜃 𝑑𝐹𝜂

2𝑐

1 −max𝜃 ′∈Θ 𝑏𝜃 ′𝑃𝜃 ′
= 𝐵.

We elaborate more on this derivation. The first inequality is by 𝑧𝜃 ≥ 0,∀𝜃 ∈ Θ due to the last constraint of the linear program in Algorithm 2.

The second inequality is obtained similarly as we did in the proof of Lemma 2 to derive a simple upper bound for OPT. The third inequality

is from our assumption on 𝐵. The last equality is from the chosen definition of 𝜌𝜃 .

We turn to the second property. Firstly, we validate the truth-telling constraints. For any 𝜃, 𝜃 ′ ∈ Θ, by our construction of the contract 𝑝 ,∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃

=

∫ 𝑣 (𝜃,𝜃 )+𝜌𝜃

𝑣 (𝜃,𝜃 )−𝜌𝜃
𝐵𝜃𝜙𝜂

(
𝑥 − 𝑣 (𝜃, 𝜃 )

)
𝑑𝑥

=

∫ 𝜌𝜃

−𝜌𝜃
𝐵𝜃𝑑𝐹𝜂 =

𝑧𝜃

𝑃𝜃
,

while ∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 =

∫ 𝑣 (𝜃 ′,𝜃 ′ )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝜌𝜃 ′
𝐵𝜃 ′𝜙𝜂

(
𝑥 − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥

=

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝐵𝜃 ′𝑑𝐹𝜂∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝐵𝜃

′𝑑𝐹𝜂
·
∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝜃 ′𝑑𝐹𝜂

=

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

· 𝑧𝜃 ′
𝑃𝜃 ′

.

Thus we have ∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 ≥

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃



since ®𝑧 is a feasible solution to the program in Algorithm 2. Secondly, we validate the positive agent effort constraints. For any 𝜃 ′ ∈ Θ, by
our construction of the contract 𝑝 , similarly, ∑︁

𝜃 ∈Θ
𝑃𝜃

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 − 𝑐 =

∑︁
𝜃 ∈Θ

𝑧𝜃 − 𝑐

≥
[ ∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

]
𝑧𝜃 ′

=
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 .

Thirdly, we analyze the expected payment of the contract. Before that, we show that the constraints of the linear program in Algorithm 2

are (at least weakly) tighter than those of the linear program L1 in Proposition 3. For any 𝜃, 𝜃 ′ ∈ Θ and 𝑥 ∈ R, we notice that
𝜙𝜂

(
𝑥 + 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂 (𝑥)

≥ inf

𝑠∈R

𝜙𝜂
(
𝑠 − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 ′)

)
and ∑︁

𝜃 ∈Θ

𝑃𝜃

𝑃𝜃 ′

𝜙𝜂
(
𝑥 + 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂 (𝑥)

≥ inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝑃𝜃

𝑃𝜃 ′

𝜙𝜂
(
𝑠 − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 ′)

) .
These two inequalities directly imply that

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

=
𝑃𝜃

∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝜙𝜂

(
𝑥 + 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

≥ inf

𝑠∈R

𝜙𝜂
(
𝑠 − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 ′)

) · 𝑃𝜃 ∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝜙𝜂 (𝑥)𝑑𝑥

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

= inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠)

and ∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

=
∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝜙𝜂

(
𝑥 + 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

=

∫ 𝜌𝜃 ′
−𝜌𝜃 ′

∑
𝜃 ∈Θ

𝑃𝜃
𝑃𝜃 ′

𝜙𝜂
(
𝑥 + 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝑑𝑥∫ 𝜌𝜃 ′

−𝜌𝜃 ′ 𝑑𝐹𝜂

≥ inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝑃𝜃

𝑃𝜃 ′

𝜙𝜂
(
𝑠 − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂

(
𝑠 − 𝑣 (𝜃 ′, 𝜃 ′)

) = inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠).

Assumption 3 on the noise distribution implies that

inf

𝑠∈R
𝛼𝜃,𝜃 ′ (𝑠) =

𝑃𝜃

𝑃𝜃 ′

𝜙𝜂
(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂 (0)

,

inf

𝑠∈R

∑︁
𝜃 ∈Θ

𝛼𝜃,𝜃 ′ (𝑠) =
∑︁
𝜃 ∈Θ

𝑃𝜃

𝑃𝜃 ′

𝜙𝜂
(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

)
𝜙𝜂 (0)

.

To match the notation used in Lemma 2, for any 𝜃, 𝜃 ′ ∈ Θ we define





𝑎𝜃,𝜃 ′ =
𝑃𝜃
𝑃𝜃 ′

𝜙𝜂

(
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )

)
𝜙𝜂 (0) ,

𝑎′
𝜃,𝜃 ′

=
𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′

𝑑𝐹𝜂
,

𝑏𝜃 ′ =
∑
𝜃 ∈Θ

𝑃𝜃
𝑃𝜃 ′

𝜙𝜂

(
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )

)
𝜙𝜂 (0) ,

𝑏′
𝜃 ′

=
∑
𝜃 ∈Θ

𝑃𝜃
∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′

𝑑𝐹𝜂
.

Defining 𝑙𝜃,𝜃 ′ = 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ),∀𝜃, 𝜃 ′ ∈ Θ, we have that

𝑎′
𝜃,𝜃 ′ − 𝑎𝜃,𝜃 ′

=
𝑃𝜃

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

∫ 𝜌𝜃 ′

−𝜌𝜃 ′

[
𝜙𝜂 (𝑥 + 𝑙𝜃,𝜃 ′ ) −

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (0)

𝜙𝜂 (𝑥)
]
𝑑𝑥

=
𝑃𝜃

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

[ ∫
0

−𝜌𝜃 ′
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝜙𝜂 (𝑥 + |𝑙𝜃,𝜃 ′ |)
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝑑𝑥

+
∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑥 + |𝑙𝜃,𝜃 ′ |)

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝑑𝑥

− 2

∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑥)
𝜙𝜂 (0)

𝑑𝑥

]
.

The Lipschitz continuity of 𝜙𝜂 implies that ∫
0

−𝜌𝜃 ′
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝜙𝜂 (𝑥 + |𝑙𝜃,𝜃 ′ |)
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝑑𝑥

≤
∫

0

−𝜌𝜃 ′
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝜙𝜂 (𝑙𝜃,𝜃 ′ ) − 𝐿𝑥
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝑑𝑥

=𝜌𝜃 ′𝜙𝜂 (𝑙𝜃,𝜃 ′ ) +
𝐿

2

𝜌2

𝜃 ′ ,∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑥 + |𝑙𝜃,𝜃 ′ |)

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝑑𝑥

≤
∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑙𝜃,𝜃 ′ )

𝑑𝑥

=𝜌𝜃 ′𝜙𝜂 (𝑙𝜃,𝜃 ′ ),

and

2

∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (𝑥)
𝜙𝜂 (0)

𝑑𝑥

≥2

∫ 𝜌𝜃 ′

0

𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (0) − 𝐿𝑥

𝜙𝜂 (0)
𝑑𝑥

=2𝜌𝜃 ′𝜙𝜂 (𝑙𝜃,𝜃 ′ ) − 𝐿
𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (0)

𝜌2

𝜃 ′ .

As a consequence, we obtain that

𝑎′
𝜃,𝜃 ′ − 𝑎𝜃,𝜃 ′ ≤

𝑃𝜃

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

[𝐿
2

𝜌2

𝜃 ′ + 𝐿
𝜙𝜂 (𝑙𝜃,𝜃 ′ )
𝜙𝜂 (0)

𝜌2

𝜃 ′

]
≤ 𝑃𝜃

𝑃𝜃 ′
[
2𝜌𝜃 ′𝜙𝜂 (0) − 𝐿𝜌2

𝜃 ′
] 3𝐿

2

𝜌2

𝜃 ′

≤ 3𝐿𝑃𝜃 𝜌𝜃 ′

2𝑃𝜃 ′𝜙𝜂 (0)
=: 𝜖𝜃,𝜃 ′ ,



where the second inequality is also by the Lipschitz assumption and the last inequality is by our assumption on 𝐵. We observe that

𝑏′
𝜃 ′ − 𝑏𝜃 ′ =

∑︁
𝜃 ∈Θ

𝑎′
𝜃,𝜃 ′ − 𝑎𝜃,𝜃 ′ ≤

∑︁
𝜃 ∈Θ

𝜖𝜃,𝜃 ′ ,

so we define 𝜅𝜃 ′ =
∑
𝜃 ∈Θ 𝜖𝜃,𝜃 ′ .

Before deriving our final result, we still need to deal with the terms such as 1 − 𝜆, max𝜃 ∈Θ 𝜅𝜃 and 1 −max𝜃 ′∈Θ 𝑏𝜃 ′𝑃𝜃 ′ . By Lemma 2,

1 − 𝜆 ≤max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

[𝑃𝜃 − 𝑎′𝜃,𝜃 ′𝑃𝜃 ′ ] + 𝜖𝜃,𝜃 ′

≤max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

[𝑃𝜃 − (𝑎𝜃,𝜃 ′ + 𝜖𝜃,𝜃 ′ )𝑃𝜃 ′ ] + 𝜖𝜃,𝜃 ′

=max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

[𝑃𝜃 − 𝑎𝜃,𝜃 ′𝑃𝜃 ′ ] + (1 − 𝑃𝜃 ′ )𝜖𝜃,𝜃 ′

≤max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

𝑃𝜃 − 𝑎𝜃,𝜃 ′𝑃𝜃 ′
.

Note that by the definition of 𝑎𝜃,𝜃 ′ ,

𝑎𝜃,𝜃 ′ ≤
𝑃𝜃

𝑃𝜃 ′

𝜙𝜂 (𝑙𝜃 ′ )
𝜙𝜂 (0)

,

where we define 𝑙𝜃 = min
˜𝜃≠𝜃
|𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃, ˜𝜃 ) |,∀𝜃 ∈ Θ. Thus 1 − 𝜆 can be further bounded as

1 − 𝜆 ≤max

𝜃≠𝜃 ′

3𝐿𝑃𝜃 𝜌𝜃 ′

[𝑃𝜃 − 𝑎𝜃,𝜃 ′𝑃𝜃 ′ ]2𝑃𝜃 ′𝜙𝜂 (0)

≤max

𝜃 ∈Θ

3𝐿𝜌𝜃

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙𝜃 )]2𝑃𝜃

≤ 3𝐿

2[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]
max

𝜃 ∈Θ

𝜌𝜃

𝑃𝜃
,

where 𝑙 := min𝜃 ∈Θ 𝑙𝜃 . By its definition,

max

𝜃 ∈Θ
𝜅𝜃 =

3𝐿

2𝜙𝜂 (0)
max

𝜃 ∈Θ

𝜌𝜃

𝑃𝜃
.

Moreover,

1

1 −max𝜃 ∈Θ 𝑏𝜃𝑃𝜃
≤ 1

1 −max𝜃 ∈Θ
𝜙𝜂 (𝑙𝜃 )
𝜙𝜂 (0)

=
1

1 − 𝜙𝜂 (𝑙 )
𝜙𝜂 (0)

.

By using the upper bound (17) for 𝜌𝜃 , we obtain

1 − 𝜆 +max𝜃 ∈Θ 𝜅𝜃

1 −max𝜃 ∈Θ 𝑏𝜃𝑃𝜃

≤ 1

1 − 𝜙𝜂 (𝑙 )
𝜙𝜂 (0)

[
1

𝜙𝜂 (0) − 𝜙𝜂 (𝑙)
+ 1

𝜙𝜂 (0)

]
3𝐿

2

max

𝜃 ∈Θ

𝜌𝜃

𝑃𝜃

≤ 1

1 − 𝜙𝜂 (𝑙 )
𝜙𝜂 (0)

[
1

𝜙𝜂 (0) − 𝜙𝜂 (𝑙)
+ 1

𝜙𝜂 (0)

]
3𝐿

2

2𝑐

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]𝑃2𝐵

≤
6𝜙𝜂 (0)𝐿𝑐

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]3𝑃2𝐵
.

By adopting Lemma 2, we obtain that ∑︁
𝜃 ∈Θ

𝑧𝜃 − LB ≤
[
1 −

6𝜙𝜂 (0)𝐿𝑐
[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]3𝑃2𝐵

]−1

LB − LB

≤
12𝜙𝜂 (0)𝐿𝑐

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]3𝑃2𝐵
LB

≤
12𝜙𝜂 (0)2𝐿𝑐2

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]4𝑃2𝐵
.



As the last step of this proof, we derive the upper bound of 𝑢∗
𝑃
− 𝑢𝑃 (𝑝) taking the baseline utility 𝑢𝑃 into consideration, where 𝑢∗

𝑃
is

defined to be the optimal principal utility any truth-telling incentivizing contract may achieve.

(1)

∑
𝜃 ∈Θ 𝑧𝜃 ≤

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑢𝑃 . In this case, Algorithm 2 outputs the non-trivial contract discussed above. Since the contract

simultaneously incentivizes truth-telling and positive agent effort, we have that

𝑢∗𝑃 − 𝑢𝑃 (𝑝) ≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) − LB −
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) +
∑︁
𝜃 ∈Θ

𝑧𝜃

≤
12𝜙𝜂 (0)2𝐿𝑐2

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]4𝑃2𝐵
.

(2)

∑
𝜃 ∈Θ 𝑧𝜃 >

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑢𝑃 . In this case, Algorithm 2 outputs the zero-payment contract: 𝑝 ( ˆ𝜃, 𝑥) = 0,∀ ˆ𝜃 ∈ Θ, 𝑥 ∈ R. Similarly,

𝑢∗𝑃 − 𝑢𝑃 (𝑝) ≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) − LB − 𝑢𝑃

≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) − LB −
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) +
∑︁
𝜃 ∈Θ

𝑧𝜃

≤
12𝜙𝜂 (0)2𝐿𝑐2

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]4𝑃2𝐵
.

As a conclusion,

𝑢∗𝑃 − 𝑢𝑃 (𝑝) ≤
12𝜙𝜂 (0)2𝐿𝑐2

[𝜙𝜂 (0) − 𝜙𝜂 (𝑙)]4𝑃2𝐵
.

Thus, we finish the proof of Theorem 5. □

In the main text, our theoretical analysis for Algorithm 2 (Theorem 5) does not hold when the noise distribution 𝐹𝜂 is a zero-mean

Gaussian distribution since it violates Assumption 3. Here we redo the analysis for Algorithm 2 for another family of noise distributions,

containing Gaussian distributions.

Assumption 5. The noise distribution 𝐹𝜂 has a probability density function 𝜙𝜂 satisfying:

• 𝜙𝜂 is symmetric: 𝜙𝜂 (𝑥) = 𝜙𝜂 (−𝑥), ∀𝑥 ∈ R,
• 𝜙𝜂 is monotonically non-increasing in R+: 𝜙𝜂 (𝑥1) ≥ 𝜙𝜂 (𝑥2), ∀0 ≤ 𝑥1 ≤ 𝑥2,
• 𝜙𝜂 (𝑥 − 𝑑)/𝜙𝜂 (𝑥) ≤ 𝜙𝜂 (−𝑑)/𝜙𝜂 (0),∀𝑥 ≤ 0, 𝑑 ≥ 0.
• There exists a negative infinite sequence {𝑥𝑛}∞𝑛=1

such that lim𝑛→∞ 𝜙𝜂 (𝑥𝑛 − 𝑑)/𝜙𝜂 (𝑥𝑛) = 0 for any 𝑑 > 0.

Theorem 7. Define 𝑃 = max𝜃 ∈Θ 𝑃𝜃 . Let 𝑝 be a contract generated by Algorithm 2 with inputs

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+ 𝑐

(1 − 𝑃)𝐵𝑃𝜃

]
, ∀𝜃 ∈ Θ.

Suppose 𝜙𝜂 ( 1
3
𝑙) ≤ (1−𝑃 )𝑃

2(2−𝑃 ) 𝜙𝜂 (0), 𝑣 (𝜃, 𝜃 ) ≠ 𝑣 (𝜃, 𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ, and Assumption 2, 5 hold. Then ∃𝐵0 ∈ R+,∀𝐵 ≥ 𝐵0, contract 𝑝 has the following
properties:

(1) The budget constraint is never violated: 𝐵𝜃 ≤ 𝐵,∀𝜃 ∈ Θ.
(2) The agent is incentivized to report the true state that he observes after the exploration.
(3) The difference between the principal utility generated by any truth-telling incentivizing contract 𝑝0 and the utility induced by contract 𝑝 is

upper bounded as

𝑢𝑃 (𝑝0) − 𝑢𝑃 (𝑝) ≤
2(2 − 𝑃)
(1 − 𝑃)𝑃

𝑐𝑚

𝑚 − 1

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
.

Proof of Theorem 7. The selected payment radius for any 𝜃 ∈ Θ is given by

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+ 𝑐

(1 − 𝑃)𝐵𝑃𝜃

]
.

We note that 𝜌𝜃 → 0 as 𝐵 → +∞. Let 𝑝 denote the output of Algorithm 2. If 𝜙𝜂 ( 1
3
𝑙) ≤ (1−𝑃 )𝑃

2(2−𝑃 ) 𝜙𝜂 (0) ≤
1

2
𝜙𝜂 (0), the demonstration that when∑

𝜃 ∈Θ 𝑧𝜃 ≤
∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑢𝑃 , the contract 𝑝 is ex-post bounded by 𝐵, incentivizes both positive agent effort and honest reporting is

similar to that in the proof of Theorem 5. In this proof, we focus on demonstrating the efficiency of 𝑝 in generating the principal’s utility.



The key to our proof is to adopt Lemma 2, so we need to first compute the values of 𝑎𝜃,𝜃 ′ , 𝑏𝜃 ′ , 𝑎
′
𝜃,𝜃 ′

, 𝑏′
𝜃 ′

for any 𝜃, 𝜃 ′ ∈ Θ : 𝜃 ≠ 𝜃 ′. By

Assumption 5, there exists an infinite sequence {𝑠𝑛}∞𝑛=1
such that lim𝑛→∞

𝑃𝜃𝜙𝜂 (𝑠𝑛−𝑣 (𝜃 ′,𝜃 ) )
𝑃𝜃 ′𝜙𝜂 (𝑠𝑛−𝑣 (𝜃 ′,𝜃 ′ ) ) = 0 for any 𝜃, 𝜃 ′ ∈ Θ : 𝜃 ≠ 𝜃 ′. Thus, we have

that 𝑎𝜃,𝜃 ′ = 0 and 𝑏𝜃 ′ = 1 for any 𝜃, 𝜃 ′ ∈ Θ. In summary,

𝑎𝜃,𝜃 ′ = 0,

𝑎′
𝜃,𝜃 ′

=
𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′

𝑑𝐹𝜂
,

𝑏𝜃 ′ = 1,

𝑏′
𝜃 ′

=
∑
𝜃 ∈Θ

𝑃𝜃
∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′

𝑑𝐹𝜂
.

Now, we compute valid upper bounds 𝜖𝜃,𝜃 ′ , 𝜅𝜃 ′ for 𝑎
′
𝜃,𝜃 ′
− 𝑎𝜃,𝜃 ′ and 𝑏′

𝜃 ′
− 𝑏𝜃 ′ , respectively. With 𝑙𝜃,𝜃 ′ := 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) and 𝑙 :=

min𝜃≠𝜃 ′ |𝑙𝜃,𝜃 ′ |, 𝜖𝜃,𝜃 ′ is given by the following derivation

𝑎′
𝜃,𝜃 ′ − 𝑎𝜃,𝜃 ′ =

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

=
𝑃𝜃

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝜙𝜂 (𝑥 + 𝑙𝜃,𝜃 ′ )𝑑𝑥

=
𝑃𝜃

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝜙𝜂 (𝑥 − |𝑙𝜃,𝜃 ′ |)𝑑𝑥 ≤

𝑃𝜃

∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝜙𝜂 (𝑥)𝑑𝑥

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

𝜙𝜂 (𝜌𝜃 ′ − |𝑙𝜃,𝜃 ′ |)
𝜙𝜂 (𝜌𝜃 ′ )

≤
𝑃𝜃𝜙𝜂 ( 23 𝑙)
𝑃𝜃 ′𝜙𝜂 ( 13 𝑙)

≤
𝑃𝜃𝜙𝜂 ( 13 𝑙)
𝑃𝜃 ′𝜙𝜂 (0)

when 𝐵 is sufficiently large such that 𝜌𝜃 ′ ≤ 1

3
𝑙 . 𝜅𝜃 ′ is given by the following derivation

𝑏′
𝜃 ′ − 𝑏𝜃 ′ =

∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′
𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′

𝑑𝐹𝜂

𝑃𝜃 ′
∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

− 1

≤1 +
∑︁

𝜃 ∈Θ:𝜃≠𝜃 ′

𝑃𝜃𝜙𝜂 ( 13 𝑙)
𝑃𝜃 ′𝜙𝜂 (0)

− 1 =
1 − 𝑃𝜃 ′
𝑃𝜃 ′

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
.

In summary, we set

𝜖𝜃,𝜃 ′ =
𝑃𝜃𝜙𝜂 ( 13 𝑙)
𝑃𝜃 ′𝜙𝜂 (0)

, 𝜅𝜃 ′ =
1 − 𝑃𝜃 ′
𝑃𝜃 ′

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
, ∀𝜃, 𝜃 ′ ∈ Θ.

The last task before we adopt Lemma 2 is to derive an upper bound for 1 − 𝜆:

1 − 𝜆 ≤max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

𝑃𝜃 − 𝜖𝜃,𝜃 ′𝑃𝜃 ′ + 𝜖𝜃,𝜃 ′
= max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

𝑃𝜃 + (1 − 𝑃𝜃 ′ )𝜖𝜃,𝜃 ′

≤max

𝜃≠𝜃 ′

𝜖𝜃,𝜃 ′

𝑃𝜃
=

1

𝑃

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
.

Say ®𝑧 is the solution to the program in Algorithm 2. Then the expected payment of contract 𝑝 is

∑
𝜃 ∈Θ 𝑧𝜃 . By Lemma 2, we have that

∑︁
𝜃 ∈Θ

𝑧𝜃 − LB ≤
{[

1 −
1

𝑃

𝜙𝜂 ( 1

3
𝑙 )

𝜙𝜂 (0) +max𝜃 ∈Θ
1−𝑃𝜃
𝑃𝜃

𝜙𝜂 ( 1

3
𝑙 )

𝜙𝜂 (0)

1 − 𝑃

]−1

− 1

}
· LB

=

{[
1 −

2 − 𝑃
(1 − 𝑃)𝑃

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)

]−1

− 1

}
· LB

≤
2(2 − 𝑃)
(1 − 𝑃)𝑃

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
· LB

=
2(2 − 𝑃)
(1 − 𝑃)𝑃

𝜙𝜂 ( 1
3
𝑙)

𝜙𝜂 (0)
𝑐𝑚

𝑚 − 1

,

where the last equality is by Lemma 3 and the fact that 𝑎𝜃,𝜃 ′ = 0, 𝑏𝜃 ′ = 1 for any 𝜃, 𝜃 ′ ∈ Θ : 𝜃 ≠ 𝜃 ′. □



Corollary 1. Suppose 𝐹𝜂 = Gauss(0, 𝜎2) in Theorem 7. Then ∃𝐵0 ∈ R+,∀𝐵 ≥ 𝐵0, the difference between the principal utility generated by
any truth-telling incentivizing contract 𝑝0 and the utility induced by contract 𝑝 is upper bounded as

𝑢𝑃 (𝑝0) − 𝑢𝑃 (𝑝) ≤
2(2 − 𝑃)
(1 − 𝑃)𝑃

𝑐𝑚

𝑚 − 1

exp

(
−

𝑙2

18𝜎2

)
.

Here, we present Lemma 3, which was used in the proof of Theorem 7.

Lemma 3. {𝑤𝑖 }𝑚𝑖=1
is a sequence of real numbers. If we have that

∑𝑚
𝑖=1

𝑤𝑖 − 𝑢 ≥ max𝑖∈[𝑚] 𝜆𝑖𝑤𝑖 for constants 𝑢 and 𝜆𝑖 ≥ 1,∀𝑖 ∈ [𝑚] such
that

∑𝑚
𝑖=1

1

𝜆𝑖
> 1, then there exists a lower bound for

∑𝑚
𝑖=1

𝑤𝑖 :

𝑚∑︁
𝑖=1

𝑤𝑖 ≥ 𝑢 ·
∑𝑚
𝑖=1

1

𝜆𝑖∑𝑚
𝑖=1

1

𝜆𝑖
− 1

.

Moreover, this lower bound can be achieved if

𝑤𝑖 = 𝑢 ·
1

𝜆𝑖∑𝑚
𝑗=1

1

𝜆 𝑗
− 1

, ∀𝑖 ∈ [𝑚] . (18)

Proof of Lemma 3. Let 𝑘 denote the index such that 𝜆𝑘𝑤𝑘 = max𝑖∈[𝑚] 𝜆𝑖𝑤𝑖 . That is, 𝜆𝑘𝑤𝑘 ≥ 𝜆𝑖𝑤𝑖 ,∀𝑖 ∈ [𝑚]. On the one hand,

𝑚∑︁
𝑖=1

𝑤𝑖 =

𝑚∑︁
𝑖=1

𝜆𝑖𝑤𝑖

𝜆𝑖
≤

𝑚∑︁
𝑖=1

𝜆𝑘𝑤𝑘

𝜆𝑖
= 𝜆𝑘𝑤𝑘

𝑚∑︁
𝑖=1

1

𝜆𝑖
.

On the other hand, by our assumption

∑𝑚
𝑖=1

𝑤𝑖 − 𝑢 ≥ max𝑖∈[𝑚] 𝜆𝑖𝑤𝑖 ,

𝑚∑︁
𝑖=1

𝑤𝑖 ≥ 𝑢 + 𝜆𝑘𝑤𝑘 .

Merging the above two inequalities, we can derive a lower bound for 𝜆𝑘𝑤𝑘 ,

𝜆𝑘𝑤𝑘 ≥
𝑢∑𝑚

𝑖=1

1

𝜆𝑖
− 1

.

We use the assumption again to obtain

𝑚∑︁
𝑖=1

𝑤𝑖 ≥ 𝑢 + 𝜆𝑘𝑤𝑘 ≥ 𝑢 + 𝑢∑𝑚
𝑖=1

1

𝜆𝑖
− 1

= 𝑢 ·
∑𝑚
𝑖=1

1

𝜆𝑖∑𝑚
𝑖=1

1

𝜆𝑖
− 1

.

Finally, we notice that when

𝑤𝑖 = 𝑢 ·
1

𝜆𝑖∑𝑚
𝑗=1

1

𝜆 𝑗
− 1

, ∀𝑖 ∈ [𝑚],

we have 𝜆𝑖𝑤𝑖 = max𝑗∈[𝑚] 𝜆 𝑗𝑤 𝑗 = 𝑢 · 1∑𝑚
𝑗=1

1

𝜆𝑗
−1

,∀𝑖 ∈ [𝑚]. Furthermore,

𝑚∑︁
𝑖=1

𝑤𝑖 − 𝑢 =

𝑚∑︁
𝑖=1

𝑢 ·
1

𝜆𝑖∑𝑚
𝑗=1

1

𝜆 𝑗
− 1

− 𝑢

=𝑢 · 1∑𝑚
𝑗=1

1

𝜆 𝑗
− 1

= max

𝑗∈[𝑚]
𝜆 𝑗𝑤 𝑗 ,

thus the constraint is not violated. Besides, it is straightforward to verify that the lower bound of

∑𝑚
𝑖=1

𝑤𝑖 is achieved if {𝑤𝑖 }𝑚𝑖=1
is given by

(18). □

C MISSING PROOFS FOR SECTION 4.3
In Section 4.3, we introduced a counterexample showing that the optimal contract does not necessarily incentivize truth-telling. Here, we

formally present this result in Theorem 8.

Theorem 8 (Optimal Contract May Not Incentivize Truth-Telling). There exists a problem instance such that the optimal contract
does not incentivize truth-telling.



Proof of Theorem 8. Let𝑚 = 4, 𝑐 = 1, and 𝑃𝜃 = 1

𝑚 ,∀𝜃 ∈ Θ. We consider the following principal value matrix:

𝑣 =


1 1 1 1

1 1 0 0

0 0 100 0

0 0 0 100


The noise distribution 𝐹𝜂 is set to be a Laplace distribution with a sufficiently large 𝜆. Let 𝜃𝑖 denote the true state corresponding to the

𝑖-column of the value matrix. Let 𝑝∗ denote the optimal truth-telling-incentivizing contract. By adopting Proposition 3 in the main text, an

upper bound for the principal utility generated by 𝑝∗ can be computed:

𝑢𝑃 (𝑝∗) ≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) − LB =
1

4

× 202 − ( 1
6

+ 1

6

+ 2

3

+ 2

3

) = 48 + 5

6

.

Consider a contract 𝑝 satisfying the following requirements:∫
R
𝑝 (𝜃1, 𝑥)𝑑𝐹𝑋 |𝜃1,𝜃 =

(
1

6

− 13

500

)
·𝑚,∀𝜃 ∈ Θ,∫

R
𝑝 (𝜃2, 𝑥)𝑑𝐹𝑋 |𝜃2,𝜃 =

(
1

6

+ 3

50

)
·𝑚,∀𝜃 ∈ {𝜃1, 𝜃2},

∫
R
𝑝 (𝜃2, 𝑥)𝑑𝐹𝑋 |𝜃2,𝜃 = 0,∀𝜃 ∈ {𝜃3, 𝜃4},∫

R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 =

(
2

3

− 1

10

)
·𝑚,

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 ′ = 0,∀𝜃 ∈ {𝜃3, 𝜃4}, 𝜃 ′ ∈ Θ 𝑠 .𝑡 . 𝜃 ′ ≠ 𝜃 .

These requirements are reasonable since the construction of 𝑣 ensures that 𝐹𝑋 |𝜃1,𝜃 = 𝐹𝑋 |𝜃1,𝜃
′ ,∀𝜃, 𝜃 ′ ∈ Θ, and 𝐹𝑋 |𝜃2,𝜃1

= 𝐹𝑋 |𝜃2,𝜃2
. We observe

that contract 𝑝 does NOT incentivize truth-telling: when he explores and observes a true state 𝜃1,∫
R
𝑝 (𝜃2, 𝑥)𝑑𝐹𝑋 |𝜃2,𝜃1

=

(
1

6

+ 3

50

)
·𝑚 >

∫
R
𝑝 (𝜃1, 𝑥)𝑑𝐹𝑋 |𝜃1,𝜃1

=

(
1

6

− 13

500

)
·𝑚,

so he will choose to report 𝜃2 instead of the true state 𝜃1, i.e., 𝑟 (𝜃1) = 𝜃2. It can be verified that 𝑟 (𝜃 ) = 𝜃,∀𝜃 ≠ 𝜃1. The agent’s utility when he

chooses zero effort is

max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 =

2

3

− 1

10

.

The agent’s utility when he chooses positive effort is∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝
(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 − 𝑐

=2

(
1

6

+ 3

50

)
+ 2

(
2

3

− 1

10

)
− 1 =

2

3

− 2

25

>
2

3

− 1

10

= max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 .

Thus, contract 𝑝 incentivizes the agent to take positive effort. We can now compute the principal utilited generated by contract 𝑝:

𝑢𝑃 (𝑝) =
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣
(
𝑟 (𝜃 ), 𝜃

)
−
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝
(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃

=
1

4

× 202 −
[
2

(
1

6

+ 3

50

)
+ 2

(
2

3

− 1

10

)]
= 48 + 5

6

+ 2

25

> 48 + 5

6

≥ 𝑢𝑃 (𝑝∗).

As a summary, we have shown that the principal utility generated by the optimal truth-telling-incentivizing contract 𝑝∗ is dominated by that

of a contract 𝑝 that does not incentivize truth-telling. The proof is complete. □

We now introduce a special type of contract such that for each report 𝜃 , its payment is centered at around 𝑣 (𝜃, 𝜃 ) and the value of the

payment is proportional to the value of 𝑣 (𝜃, 𝜃 ). That is, ∃𝑘 > 0 such that∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 = 𝑘𝑣 (𝜃, 𝜃 ), ∀𝜃 ∈ Θ.

Definition 9 (Diagonal Proportional Bounded Dirac Delta Contract (Diag-BDD)). For any agent report
ˆ𝜃 ∈ Θ, the Diag-BDD(𝐵, 𝑘) contract is

given by

𝑝 ( ˆ𝜃, 𝑥) =
{
𝐵, if |𝑥 − 𝑣 ( ˆ𝜃, ˆ𝜃 ) | ≤ 𝜌

ˆ𝜃
,

0, otherwise,
(19)

where 𝜌
ˆ𝜃

:= 𝐹−1

𝜂

[
1

2
+ 𝑘𝑣 ( ˆ𝜃, ˆ𝜃 )

2𝐵

]
.



We show in the following lemma that when Assumption 2 holds with a sufficiently large 𝛿 , the Diag-BDD contract incentivizes truth-telling
under positive agent effort. 𝜙−1

𝜂 is the inverse function of 𝜙𝜂 . Lemma 4 will be used in the proof of Theorem 6.

Lemma 4. Consider a Diag-BDD contract 𝑝 . For any 𝜃 ∈ Θ, 𝜌𝜃 ≥ 0 is a known upper bound for 𝜌𝜃 . Suppose that Assumption 4 holds and at
least one of the following conditions holds:

(1) Assumption 2 holds with 𝛿 ≥

max

𝜃,𝜃 ′∈Θ
min

{
𝑦 ≥ 2𝜌𝜃 ′

���𝜙𝜂 (𝑥 + 𝑦 − 𝜌𝜃 ′ )
𝜙𝜂 (𝜌𝜃 ′ )

≤ 𝑣 (𝜃, 𝜃 )
𝑥 + 𝑣 (𝜃, 𝜃 ) ,∀𝑥 ≥ 0

}
.

(2) An upper bound 𝑣 is known for max𝜃,𝜃 ′∈Θ 𝑣 (𝜃, 𝜃 ′) and Assumption 2 holds with

𝛿 ≥ max

𝜃,𝜃 ′∈Θ
𝜌𝜃 ′ + 𝜙−1

𝜂

[ 𝑣 (𝜃, 𝜃 )
𝑣

𝜙𝜂 (𝜌𝜃 ′ )
]
.

Then contract 𝑝 incentivizes truth-telling under positive agent effort.

Proof of Lemma 4. Consider a Diag-BDD contract 𝑝 characterized by 𝐵, 𝑘 . We attempt to show, for any 𝜃, 𝜃 ′ ∈ Θ, the contract 𝑝 satisfies

that ∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 ≥

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 , (20)

which means that reporting a false value 𝜃 ′ never results in a higher expected payment than reporting the truth 𝜃 .

There are two possible cases:

(a) 𝑣 (𝜃, 𝜃 ) ≥ 𝑣 (𝜃 ′, 𝜃 ′). We first show that the following inequality holds:∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ≤

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′ . (21)

Define 𝑙 = 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ). We only consider the case where 𝑙 ≥ 0, as the proof is symmetric otherwise. By definition of the Diag-BDD
contract, we have ∫

R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′ =

∫ 𝑣 (𝜃 ′,𝜃 ′ )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝜌𝜃 ′
𝐵𝑑𝐹𝑋 |𝜃 ′,𝜃 ′ =

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

and ∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 =

∫ 𝑣 (𝜃 ′,𝜃 ′ )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝜌𝜃 ′
𝐵𝑑𝐹𝑋 |𝜃 ′,𝜃 =

∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 .

Due to the monotonicity and symmetry of 𝜙𝜂 (Assumption 4), when 𝑙 ≥ 2𝜌𝜃 ′ ,∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 −

∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

≥
∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝜙𝜂 (𝜌𝜃 ′ )𝑑𝑥 −

∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝜙𝜂 (𝑙 − 𝜌𝜃 ′ )𝑑𝑥

≥
∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝜙𝜂 (𝜌𝜃 ′ )𝑑𝑥 −

∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝜙𝜂 (𝜌𝜃 ′ )𝑑𝑥 = 0.

Otherwise, when 0 ≤ 𝑙 < 2𝜌𝜃 ′ , we similarly have ∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 −

∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

=

∫ 𝑙−𝜌𝜃 ′

−𝜌𝜃 ′
𝐵
[
𝜙𝜂 (𝑥) − 𝜙𝜂 (𝑥 + 2𝜌𝜃 ′ )

]
𝑑𝑥

≥
∫ 𝑙−𝜌𝜃 ′

−𝜌𝜃 ′
𝐵
[
𝜙𝜂 (−𝜌𝜃 ′ ) − 𝜙𝜂 (𝜌𝜃 ′ )

]
𝑑𝑥 = 0.

Thus, (21) is proved. Our claim (21) directly implies (20):∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 = 𝑘𝑣 (𝜃, 𝜃 ) ≥ 𝑘𝑣 (𝜃 ′, 𝜃 ′) =

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′

≥
∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 .



(b) 𝑣 (𝜃, 𝜃 ) < 𝑣 (𝜃 ′, 𝜃 ′). We first show that the following inequality holds under different assumptions:

𝜙𝜂
(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

𝑣 (𝜃 ′, 𝜃 ′) ≤ 𝑣 (𝜃, 𝜃 ) . (22)

If we have that 𝛿 is not smaller than

𝛿𝜃,𝜃 ′ := min

{
𝑦 ≥ 2𝜌𝜃 ′

���𝜙𝜂 (𝑥 + 𝑦 − 𝜌𝜃 ′ )
𝜙𝜂 (𝜌𝜃 ′ )

≤ 𝑣 (𝜃, 𝜃 )
𝑥 + 𝑣 (𝜃, 𝜃 ) ,∀𝑥 ≥ 0

}
,

then by the monotonicity of 𝜙𝜂 ,

𝜙𝜂
(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 − 𝜌𝜃 ′

)
≤𝜙𝜂

(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿𝜃,𝜃 ′ − 𝜌𝜃 ′

)
since 𝑣 (𝜃 ′, 𝜃 ′) > 𝑣 (𝜃, 𝜃 ) and 𝛿 ≥ 𝛿𝜃,𝜃 ′ ≥ 2𝜌𝜃 ′ . Then we observe that (22) holds by the definition of 𝛿𝜃,𝜃 ′ .

If we know 𝑣 = max𝜃,𝜃 ′∈Θ 𝑣 (𝜃, 𝜃 ′) and that

𝛿 ≥ 𝜌𝜃 ′ + 𝜙−1

𝜂

[ 𝑣 (𝜃, 𝜃 )
𝑣

𝜙𝜂 (𝜌𝜃 ′ )
]
,

also by the monotonicity of 𝜙𝜂 ,

𝜙𝜂
(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 − 𝜌𝜃 ′

)
≤𝜙𝜂

(
𝛿 − 𝜌𝜃 ′

)
≤ 𝑣 (𝜃, 𝜃 )

𝑣
𝜙𝜂 (𝜌𝜃 ′ ) ≤

𝑣 (𝜃, 𝜃 )
𝑣 (𝜃 ′, 𝜃 ′)𝜙𝜂 (𝜌𝜃 ′ ) .

Thus, we have proved the correctness of (22). Now,∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 = 𝑘𝑣 (𝜃, 𝜃 )

≥
𝜙𝜂

(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

𝑘𝑣 (𝜃 ′, 𝜃 ′)

≥
𝜙𝜂

(
𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

𝑘𝑣 (𝜃 ′, 𝜃 ′)

≥
𝜙𝜂

(
𝑙 − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ′

≥
∫ 𝑙+𝜌𝜃 ′

𝑙−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 =

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 .

In the above derivation, 𝑙 = 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ), the second inequality is by recalling that 𝜌𝜃 ′ ≤ 𝜌𝜃 ′ , while the final inequality is because the

monotonicity of 𝜙𝜂 implies ∫ 𝜌𝜃 ′
−𝜌𝜃 ′ 𝑑𝐹𝜂

2𝜌𝜃 ′𝜙𝜂 (𝜌𝜃 ′ )
≥ 1 ≥

∫ 𝑙+𝜌𝜃 ′
𝑙−𝜌𝜃 ′

𝑑𝐹𝜂

2𝜌𝜃 ′𝜙𝜂 (𝑙 − 𝜌𝜃 ′ )

when 𝑙 ≥ 𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃, 𝜃 ) + 𝛿 > 𝛿 ≥ 𝜌𝜃 ′ . □

Proof of Theorem 6. In this proof, for any contract 𝑝0 such that ∃𝜃 ∈ Θ, 𝑟 (𝜃 ) ≠ 𝜃 , we construct a Diag-BDD contract 𝑝 that satisfies all

three properties mentioned in Theorem 6.

First, we introduce some definitions and assumptions. For any fixed parameter 𝜆, 𝜈 ∈ (0, 1) such that 𝜆 > 𝜈 , we define

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+ 𝑣 (𝜃, 𝜃 )𝑐
𝐵
∑

˜𝜃 ∈Θ 𝑃
˜𝜃
𝑣 ( ˜𝜃, ˜𝜃 )

(
1 + 2

𝜆

)]
, ∀𝜃 ∈ Θ.

Note that 𝜌𝜃 → 0 as 𝐵 → +∞. We construct a Diag-BDD contract 𝑝 whose parameter 𝑘 is defined by the following equation,∑︁
𝜃 ∈Θ

𝑃𝜃𝑘𝑣 (𝜃, 𝜃 ) − 𝑐 = max

𝜃 ′∈Θ
𝑃𝜃 ′𝑘𝑣 (𝜃 ′, 𝜃 ′)

∑
𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝑃𝜃 ′𝜙𝜂 (𝜌𝜃 ′ )

.



Recall that 𝑣 = max𝜃 ∈Θ 𝑣 (𝜃, 𝜃 ) and 𝑣 = min𝜃 ∈Θ 𝑣 (𝜃, 𝜃 ). We assume 𝛿, 𝐵 to be sufficiently large. Specifically,

𝛿 ≥ 𝜆𝑣 ∨ 1

2𝑃

[
𝑐 +

√︃
𝑐2 + 16𝑐𝑣𝑃

]
, (23)

𝜌𝜃 ≤ 𝜈𝑣, ∀𝜃 ∈ Θ, (24)

𝜙𝜂 (𝜌𝜃 ) ≥
8

8 + 𝜆𝜙𝜂 (0), ∀𝜃 ∈ Θ, (25)

𝜙𝜂 (𝛿 − 𝜈𝑣) ≤
8

8 + 𝜆
𝑣

𝑣
𝜙𝜂 (0), (26)

𝜙𝜂 (𝛿/2 − 𝜈𝑣) ≤
𝜆

8 + 𝜆 𝑃𝜙𝜂 (0). (27)

Step 1. Truthfulness.
We show that contract 𝑝 incentivizes truth-telling. For any 𝜃, 𝜃 ′ ∈ Θ,

𝜙𝜂 (𝛿 − 𝜌𝜃 ′ ) ≤ 𝜙𝜂 (𝛿 − 𝜈𝑣) ≤
8

8 + 𝜆
𝑣

𝑣
𝜙𝜂 (0) ≤

𝑣

𝑣
𝜙𝜂 (𝜌𝜃 ′ ) ≤

𝑣 (𝜃, 𝜃 )
𝑣

𝜙𝜂 (𝜌𝜃 ′ )

by (24), (25), and (26). Thus, Lemma 4 implies that 𝑝 incentivizes truth-telling.

Step 2. Derive an upper bound for the value of 𝑘 and the expected payment of 𝑝 .

There are two cases:

(1)

∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 ≥ 𝑃 > 0. We first attempt to bound the following term with any 𝜃 ′ ∈ Θ,

𝑣 (𝜃 ′, 𝜃 ′)
∑
𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

=
𝑣 (𝜃 ′, 𝜃 ′)
𝜙𝜂 (𝜌𝜃 ′ )

[ ∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃𝜙𝜂
(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
+

∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )≤ 𝛿

2

𝑃𝜃𝜙𝜂
(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

) ]

≤ 𝑣 (𝜃
′, 𝜃 ′)

𝜙𝜂 (𝜌𝜃 ′ )

[
𝜙𝜂 (0)

∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃

+ 𝜙𝜂
(𝛿
2

− 𝜌𝜃 ′
) ∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )≤ 𝛿

2

𝑃𝜃

]
≤𝜖 + 𝑣 (𝜃 ′, 𝜃 ′)

𝜙𝜂 (𝜌𝜃 ′ )
𝜙𝜂 (0)

∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 .

In the first inequality of the derivation above, we used the fact that 𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃 ′, 𝜃 ′) ≤ 𝛿
2
implies

𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 )

≥𝑣 (𝜃, 𝜃 ) − 𝛿

2

− 𝑣 (𝜃 ′, 𝜃 )

≥𝛿 − 𝛿

2

=
𝛿

2

.

We claim that the following inequality holds by choosing 𝜖 = 𝛿
8

∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 :

𝛿 ≥ 2𝜌𝜃 ′ + 2𝜙−1

𝜂

[ 𝜖

𝑣 (𝜃 ′, 𝜃 ′)𝜙𝜂 (𝜌𝜃 ′ )
]
, ∀𝜃 ′ ∈ Θ, (28)



which explains the last inequality in the derivation above. Now, to prove this claim, we have

𝜙𝜂 (𝛿/2 − 𝜌𝜃 ′ )

≤𝜙𝜂 (𝛿/2 − 𝜈𝑣) ≤
𝜆

8 + 𝜆 𝑃𝜙𝜂 (0)

≤ 𝑣𝜆

𝑣 (𝜃 ′, 𝜃 ′) (8 + 𝜆) 𝑃𝜙𝜂 (0) ≤
𝛿

𝑣 (𝜃 ′, 𝜃 ′) (8 + 𝜆) 𝑃𝜙𝜂 (0)

≤ 𝛿

8𝑣 (𝜃 ′, 𝜃 ′) 𝑃𝜙𝜂 (𝜌𝜃 ′ ) ≤
𝜙𝜂 (𝜌𝜃 ′ )
𝑣 (𝜃 ′, 𝜃 ′) 𝜖

by (23), (24), (25), and (27), which proves inequality (28).

We further have that

𝑣 (𝜃 ′, 𝜃 ′)
∑
𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≤𝑣 (𝜃 ′, 𝜃 ′)
[ 𝛿

8𝑣 (𝜃 ′, 𝜃 ′) +
𝜙𝜂 (0)
𝜙𝜂 (𝜌𝜃 ′ )

] ∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 .

From the above upper bound, we have that for 𝜃 ′, ∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 )

𝑣 (𝜃 ′, 𝜃 ′)
∑

𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 ) |−𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≥

∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 𝑣 (𝜃, 𝜃 )

𝑣 (𝜃 ′, 𝜃 ′)
[

𝛿
8𝑣 (𝜃 ′,𝜃 ′ ) +

𝜙𝜂 (0)
𝜙𝜂 (𝜌𝜃 ′ )

] ∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃

≥

∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃
[
𝑣 (𝜃 ′, 𝜃 ′) + 𝛿

2

]
𝑣 (𝜃 ′, 𝜃 ′)

[
𝛿

8𝑣 (𝜃 ′,𝜃 ′ ) +
𝜙𝜂 (0)

𝜙𝜂 (𝜌𝜃 ′ )

] ∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃

=
1 + 𝛿

2𝑣 (𝜃 ′,𝜃 ′ )
𝛿

8𝑣 (𝜃 ′,𝜃 ′ ) +
𝜙𝜂 (0)

𝜙𝜂 (𝜌𝜃 ′ )

.

As a consequence, the expected payment of this contract 𝑝 is upper bounded as∑︁
𝜃 ∈Θ

𝑃𝜃𝑘𝑣 (𝜃, 𝜃 )

≤𝑐 max

𝜃 ′∈Θ

1 + 𝛿
2𝑣 (𝜃 ′,𝜃 ′ )

1 + 𝛿
2𝑣 (𝜃 ′,𝜃 ′ ) −

𝛿
8𝑣 (𝜃 ′,𝜃 ′ ) −

𝜙𝜂 (0)
𝜙𝜂 (𝜌𝜃 ′ )

≤𝑐 max

𝜃 ′∈Θ

1 + 𝛿
2𝑣 (𝜃 ′,𝜃 ′ )
𝛿

4𝑣 (𝜃 ′,𝜃 ′ )
= 2𝑐

(
1 + 2𝑣

𝛿

)
,

which used a fact that

𝜙𝜂 (0)
𝜙𝜂 (𝜌𝜃 ′ )

≤ 1 + 𝜆

8

≤ 1 + 𝛿

8𝑣
≤ 1 + 𝛿

8𝑣 (𝜃 ′, 𝜃 ′)

by (23) and (25).



(2)

∑
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )> 𝛿

2

𝑃𝜃 = 0. We again bound the following term with any 𝜃 ′ ∈ Θ,

𝑣 (𝜃 ′, 𝜃 ′)
∑
𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

=
𝑣 (𝜃 ′, 𝜃 ′)
𝜙𝜂 (𝜌𝜃 ′ )

[ ∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )≤ 𝛿

2

𝑃𝜃𝜙𝜂
(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

) ]

≤ 𝑣 (𝜃
′, 𝜃 ′)

𝜙𝜂 (𝜌𝜃 ′ )

[
𝜙𝜂

(𝛿
2

− 𝜌𝜃 ′
) ∑︁
𝜃 :𝑣 (𝜃,𝜃 )−𝑣 (𝜃 ′,𝜃 ′ )≤ 𝛿

2

𝑃𝜃

]
≤𝛿

8

𝑃 .

The last inequality holds since

𝜙𝜂 (𝛿/2 − 𝜌𝜃 ′ ) ≤ 𝜙𝜂 (𝛿/2 − 𝜈𝑣) ≤
𝜆

8 + 𝜆 𝑃𝜙𝜂 (0)

≤ 𝑣𝜆

𝑣 (𝜃 ′, 𝜃 ′) (8 + 𝜆) 𝑃𝜙𝜂 (0) ≤
𝛿

𝑣 (𝜃 ′, 𝜃 ′) (8 + 𝜆) 𝑃𝜙𝜂 (0)

≤ 𝛿

8𝑣 (𝜃 ′, 𝜃 ′) 𝑃𝜙𝜂 (𝜌𝜃 ′ )

by (23), (24), (25), and (27).

The expected payment of this contract 𝑝 is upper bounded as∑︁
𝜃 ∈Θ

𝑃𝜃𝑘𝑣 (𝜃, 𝜃 )

≤𝑐 max

𝜃 ′∈Θ

∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 )∑

𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃, 𝜃 ) − 𝑣 (𝜃 ′, 𝜃 ′)
∑

𝜃 ∈Θ 𝑃𝜃𝜙𝜂

(
|𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 ) |−𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≤𝑐 1

1 − 𝛿𝑃/8∑
𝜃 ∈Θ 𝑃𝜃 𝑣 (𝜃,𝜃 )

≤ 𝑐
1

1 − 𝛿𝑃/8
𝑚𝑃𝛿

< 2𝑐.

Merging our discussion of both cases, the expected payment’s upper bound is∑︁
𝜃 ∈Θ

𝑃𝜃𝑘𝑣 (𝜃, 𝜃 ) ≤ 2𝑐

(
1 + 2𝑣

𝛿

)
,

which also implies an upper bound for the value of 𝑘 . We observe that for any 𝜃 ∈ Θ, 𝜌𝜃 is a valid upper bound for 𝜌𝜃 :

𝜌𝜃 = 𝐹−1

𝜂

[
1

2

+ 𝑘𝑣 (𝜃, 𝜃 )
2𝐵

]
≤ 𝐹−1

𝜂

[
1

2

+ 𝑣 (𝜃, 𝜃 )𝑐
𝐵
∑
𝜃 ′∈Θ 𝑃𝜃 ′𝑣 (𝜃 ′, 𝜃 ′)

(
1 + 2𝑣

𝛿

)]
≤ 𝜌𝜃 .

Step 3. Incentivizes positive effort.
We verify that the Diag-BDD contract associated with this 𝑘 incentivizes positive agent effort: for any 𝜃 ′ ∈ Θ,∑︁

𝜃 ∈Θ
𝑃𝜃

∫
R
𝑝 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃

=
∑︁
𝜃 ∈Θ

𝑃𝜃

∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

≤
∑︁
𝜃 ∈Θ

𝑃𝜃
𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

=𝑘𝑣 (𝜃 ′, 𝜃 ′)
∑︁
𝜃 ∈Θ

𝑃𝜃
𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≤
∑︁
𝜃 ∈Θ

𝑃𝜃𝑘𝑣 (𝜃, 𝜃 ) − 𝑐 =
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝 (𝜃, 𝑥)𝑑𝐹𝑋 |𝜃,𝜃 − 𝑐.

We elaborate more on the first inequality in the above derivation. For any 𝜃 ∈ Θ, consider two possible cases:



(a) |𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | ≤ 2𝜌𝜃 ′ . Recalling the fact we have shown in the proof of Lemma 4 that∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 ≤

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

and noticing

𝜙𝜂
(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≥ 1,

we obtain ∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

≤
𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 .

(b) |𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | > 2𝜌𝜃 ′ . This implies |𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | > 2𝜌𝜃 ′ , under which by the monotonicity of 𝜙𝜂 we have∫ 𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )+𝜌𝜃 ′

𝑣 (𝜃 ′,𝜃 ′ )−𝑣 (𝜃 ′,𝜃 )−𝜌𝜃 ′
𝐵𝑑𝐹𝜂

≤
𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

∫ 𝜌𝜃 ′

−𝜌𝜃 ′
𝐵𝑑𝐹𝜂 .

The last inequality of case (a) is obtained from the fact that

𝜙𝜂
(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

≤
𝜙𝜂

(
|𝑣 (𝜃 ′, 𝜃 ′) − 𝑣 (𝜃 ′, 𝜃 ) | − 𝜌𝜃 ′

)
𝜙𝜂 (𝜌𝜃 ′ )

.

Thus, we have validated that given this choice of 𝑘 , the contract 𝑝 incentivizes positive agent effort.

Step 4. Comparing 𝑝 and 𝑝0.

We turn to consider contract 𝑝0. We will show that it does not yield a higher expected utility for the principal than 𝑝 does when 𝛿 is

sufficiently large. Let 𝑟 (𝜃 ) denote the report incentivized by 𝑝0 when the state is 𝜃 . The expected principal utility generated by 𝑝0 is

𝑢𝑃 (𝑝0) =
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣
(
𝑟 (𝜃 ), 𝜃

)
−
∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝0

(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 ,

subject to the positive agent effort incentive compatibility∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝0

(
𝑟 (𝜃 ), 𝑥

)
𝑑𝐹𝑋 |𝑟 (𝜃 ),𝜃 − 𝑐

≥ max

𝜃 ′∈Θ

∑︁
𝜃 ∈Θ

𝑃𝜃

∫
R
𝑝0 (𝜃 ′, 𝑥)𝑑𝐹𝑋 |𝜃 ′,𝜃 ≥ 0.

As a final step, we compare the expected principal utility generated by contract 𝑝0 and the Diag-BDD contract parameterized by 𝐵, 𝑘 :

𝑢𝑃 (𝑝0) − 𝑢𝑃 (𝑝)

≤
∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣
(
𝑟 (𝜃 ), 𝜃

)
− 𝑐 −

∑︁
𝜃 ∈Θ

𝑃𝜃 𝑣 (𝜃, 𝜃 ) + 2𝑐

(
1 + 2𝑣

𝛿

)
≤ −

∑︁
𝜃 ∈Θ

𝑃𝜃𝛿I{𝑟 (𝜃 ) ≠ 𝜃 } − 𝑐 + 2𝑐

(
1 + 2𝑣

𝛿

)
≤ − 𝑃𝛿 − 𝑐 + 2𝑐

(
1 + 2𝑣

𝛿

)
≤ 0

when

𝛿 ≥ 1

2𝑃

[
𝑐 +

√︃
𝑐2 + 16𝑐𝑣𝑃

]
holds due to (23). □
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