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ABSTRACT
Multi-agent multi-armed bandit (MAMAB) is a classic collabora-

tive learning model and has gained much attention in recent years.

However, existing studies do not consider the case where an agent

may refuse to share all her information with others, e.g., when

some of the data contains personal privacy. In this paper, we pro-

pose a novel limited shared information multi-agent multi-armed

bandit (LSI-MAMAB) model in which each agent only shares the

information that she is willing to share, and propose the Balanced-

ETC algorithm to help multiple agents collaborate efficiently with

limited shared information. Our analysis shows that Balanced-ETC

is asymptotically optimal and its average regret (on each agent)

approaches a constant when there are sufficient agents involved.

Moreover, to encourage agents to participate in this collaborative

learning, an incentive mechanism is proposed to make sure each

agent can benefit from the collaboration system. Finally, we present

experimental results to validate our theoretical results.
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1 INTRODUCTION
Multi-armed bandit (MAB) problem is a fundamental theoretical

model and has been studied for decades. There are many practical

applications of multi-armed bandit algorithms in industry, espe-

cially in on-line platforms [20]. In a standard MAB game with 𝑁

arms and time horizon𝑇 , a single player needs to choose one arm to

pull in each time slot, and pulling different arms results in different

expected rewards. Numerous algorithms have been proposed to

solve bandit problems, e.g., UCB [2, 9], which is a classic algorithm
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that guarantees𝑂 (𝑁 log𝑇 ) regret upper bound (which matches the

Ω(𝑁 log𝑇 ) regret lower bound).
However, the standard MAB setting only focuses on the game

with a single agent, while many real-world applications face the

challenge of multiple agents making decisions. As a concrete ex-

ample, on an online shopping platform, when a buyer chooses to

purchase a certain product, she will receive a corresponding reward.

Hence, the buyer can be regarded as an agent and the product can

be regarded as an arm. Different from the standard MAB setting

with a single player, there are always a large number of buyers

choosing products to purchase on the online shopping platform,

and collaboration between them could help them learn much faster.

Therefore, in this paper, we consider the multi-agent multi-armed

bandit (MAMAB) model (also called multi-player multi-armed ban-

dit in some literature), which features multiple players playing (and

collaborating in) the same instance of an MAB problem together.

Following previous literature, we focus on the common objective

of maximizing the total reward of all agents, i.e., social welfare

maximization. This is equivalent to minimizing the total regret of

agents in the language of bandit problems.

Several variants of the MAMAB model have been studied in the

existing literature, e.g., letting the agents collaborate to speed up the

learning procedure with limited communication (e.g., [1, 30, 33]),

considering decentralized matching market with multi-armed ban-

dit (e.g., [17, 21, 43]). However, these studies do not consider the

case where an agent may refuse to share her private information

with others, and may even decide to withdraw from learning if she

is forced to share some data that she is not willing to share. For

example, on an online shopping platform, the shared information

would be the users’ comments about the products, which may help

other users make their decisions. However, a user may not comment

on every product she purchases in reality, and she can be reluc-

tant to make comments for many reasons, e.g., because the user

regards the comments as her privacy, or because commenting on

these products does not directly improve her experiences. A survey

presented in [37] indicates that customers are likely to refrain from

purchasing certain types of items on online shopping platforms

due to privacy concerns. This survey reveals that different items

often elicit varying levels of sensitivity among users, indicating

that there are certain products that are widely accepted for online

purchases by the majority of individuals, while there are other

products that only a small fraction of people are willing to purchase

online. For example, the study shows that for common products

such as office supplies, there is little hesitation about buying them

online. However, as the items became more personal or related to
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sensitive topics such as sex, depression, or adult diapers, hesitation

increased. When the items were indicative of behavior that could

be associated with criminals or terrorists, such as a book on making

bombs and bullets, there was significant reservations and reluc-

tance to purchase online. Furthermore, some studies [5, 37] also

find that individuals may have varying privacy considerations for

the same product. Certain products are more likely to raise privacy

concerns among individuals, but the specific privacy concerns of

each person are contingent upon factors such as their values, cul-

tural background, personal experiences, and other related factors.

These objective survey findings have motivated us to consider a

framework in which users selectively share only a portion of the in-

formation they are willing to disclose, while choosing to withhold

information they perceive as private. Another example is feder-
ated learning. In a federated learning framework, it is obligatory

to preserve data privacy, and a massive amount of data cannot be

shared because of the legal concern. For instance, the EU adopted

the General Data Protection Regulation (GDPR) [27], which states

that any institutions or organizations do not have the authority to

share users’ data unless they have the permission. To the best of

our knowledge, we are the first to consider this particular structural

reality. Under our model, agents are more willing to participate

since he can hold his sensitive information private.

Given the structure of limited information sharing, the first chal-

lenge arises as the shared data may be imbalanced, causing serious

bias in data [26]. For example, there could be a lot of observed

rewards on arm 𝑖 , while only limited observed rewards on arm 𝑗 ,

since many users are willing to share the information of arm 𝑖 , but

only few of them are willing to share the information of arm 𝑗

(image the case where the data related to arm 𝑗 is more sensitive).

This may result in a serious over-exploration in bandit problems,

leading to an inefficient learning.

The second challenge for multi-agent collaboration is how to

guarantee individual rationality (IR), i,e, agents can always get non-

negative utility from the mechanism [36]. For example, consider

the extreme case that one agent is willing to share all her infor-

mation, while all the other agents do not share anything. In this

case, the agent that shares information helps the others, but cannot

directly benefit from sharing. In this case, she may refuse to join

the collaboration, leading to a failure of cooperation. Thus, it is also

important to design mechanisms to ensure that all agents who join

this collaboration system can benefit (i.e., earn more reward than

learning alone).

In this paper, we introduce a novel multi-agent multi-armed

bandit model named limited shared information multi-agent multi-

armed bandit (LSI-MAMAB) to characterize the structure of col-

laborative learning in reality, in which each agent only shares the

information that she is willing to share (e.g., only her received re-

wards on some arms) with the other agents, and only decides to

participate in this collaboration when she can benefit from it. We

solve the above two challenges, and design an algorithm Balanced-
ETC for the case that each agent only shares the information of

some specific arms with the other agents. On the one hand, the total

regret of Balanced-ETC is upper bounded by 𝑂 (𝑁 log𝑇 ), which is

asymptotically the same as the best possible regret that one can do

in the trivial case where all the information is shared. This reflects

the asymptotic optimality of our algorithm. On the other hand, with

the additional incentive design, Balanced-ETC makes sure that the

individual regret of each agent is upper bounded by the regret of

running a UCB algorithm in the single-agent setting. This means

that our algorithm satisfies individual rationality (IR), i.e., all agents

have the motivation to join this collaboration system.

We summarize the main contributions of this paper below:

• We propose LSI-MAMAB, a novel multi-agent multi-armed

bandit model, in which each agent takes part in the collab-

oration system by only sharing the information that she is

willing to share. This lowers the barrier for agents to enter

collaborative learning in practices.

• We design the Balanced-ETC algorithm to help multiple

agents collaborate efficiently under the constraint that they

only share partial information, and prove that its overall

regret is 𝑂 (𝑁 log𝑇 +𝑀𝑁 2) (𝑀 is the number of agents, 𝑁

is the number of arms and 𝑇 is time horizon). This means

that the average regret (on each agent) almost approaches a

constant when there are sufficiently many agents.

• We also design an incentive mechanism in the Balanced-ETC

algorithm to encourage agents to participate in collabora-

tion. Analysis shows that the incentive mechanism satisfies

IR, i.e., for any agent, her individual regret of joining this

collaboration system is better than learning as a single agent.

2 RELATEDWORKS
Multi-agent multi-armed bandit. Numerous frameworks and

algorithms have been proposed to solve various multi-agent multi-

armed bandit problems. There are many prior works on different

multi-agent multi-armed variants. For example, [38] considers the

setting of including honest and malicious agents who recommend

best-arm estimates and arbitrary arms, respectively. [17, 21, 43]

add the feature that the agents may have collisions with each other

when they are pulling the same arm in each time step. [4, 41]

consider the user or group’s set of available arms as a subset of the

complete arm set, and the regret for each user or group is based

on the choices made within their own arm set. Compared with

our model, these existing works do not consider the case where an

agent may refuse to share all her information with others, and even

decide to withdraw if she is forced to share some data that she is

not willing to share.

Another strand of literature studies multi-agent multi-armed

bandit problems with limited communication. For example, [1]

considers a multi-agent multi-armed bandit framework with lim-

ited communication rounds and limits bits in each communication

rounds; [22] proposes ComEx, a novel and cost-effective communi-

cation protocol for cooperative bandits; in the work of [33], players

can only exchange information locally to estimate the global re-

ward confined to a network structure; and [30] proposes a pairwise

asynchronous gossip-based protocol that only needs to exchange a

limited number of bits to finish communication. Compared with

these models, we are more interested in which data users are willing

to share, rather than the form in which the data is shared. Therefore,

we did not consider the adoption of more efficient sharing methods

by users, and regard the communication costs as zero.



Federated Learning. Federated learning (FL), a decentralized

machine learning approach, has gained significant attention in re-

cent years. This emerging paradigm enables training of machine

learning models on distributed data sources while preserving data

privacy. Several related works have explored the foundations of fed-

erated learning. [25] introduced the concept of federated learning

and proposed a practical framework for training models on decen-

tralized data, which enables collaborative model training across

multiple devices. There are numerous foundational works dedi-

cated to addressing the various challenges of federated learning

and designing federated learning algorithms from multiple aspects,

such as privacy preservation, robustness, efficiency, security, scala-

bility, and performance [14, 16, 25, 28, 32]. Federated learning also

expands to encompass a broad range of applications in healthcare

[15], manufacturing [29], agriculture [6], energy [31], and other

fields.

There are also some prior works on applying FL in bandit prob-

lems. For example, in [34, 35], an MAB framework of multiple

heterogeneous agents and a global principal is proposed. In this

framework, agents’ local bandit models are not the same (i.e., dif-

ferent agents may have different expected rewards on the same

arm) and the goal of the principal is to find the arm with the largest

global mean. [44] proposes a framework where agents can only

communicate their local data with neighbors in a connected graph.

They propose the FedUCB policy, in which the agents preserve

differential privacy of their local data. Compared with our model,

[34, 35] require that all agents must follow the global instructions

unconditionally and send all their information to the principal. [44]

do not consider the case where agents could refuse to share their

private information even with differential privacy. In our model,

each agent can limit her shared information as her wish.

Incentivized Learning. Since its proposal by [8, 18], significant
progress has been made in the field of incentivized learning in

multi-armed bandit (MAB) problems. Specifically, there are two

distinct lines of research in this area.

The first line of research [13, 18, 23, 24] assumes that the principal

has access to the complete history of actions and rewards, while

the agents do not. In this setting, the principal can incentivize them

to learn by leveraging proper information to them.

The second line of research considers a publicly available his-

tory of actions and rewards, and the incentives are implemented

through compensations. This concept was initially introduced by

[8] and further generalized by [11] in Bayesian settings. In the

non-Bayesian case, [40] first studied this approach, and it has been

recently extended by [39].

All the aforementioned works assume that every agent is my-

opic (i.e., they only do exploitation to maximize their short-term

rewards), while we assume that every agent is considering her long-

term rewards. Hence, the incentive mechanism in this paper can

be very different from theirs.

3 PROBLEM FORMULATION
In the the limited shared information multi-agent multi-armed

bandit (LSI-MAMAB) model, there exist 𝑀 independent agents

{1, 2, · · · , 𝑀} and each agent interacts with the same set of arms

𝐴 = {1, 2, · · · , 𝑁 } for 𝑇 time steps. These arms are homogeneous

for different agents, i.e., for any agent𝑚, the random reward𝑋𝑖,𝑚 (𝑡)
of pulling arm 𝑖 ∈ [𝑁 ] is sampled independently from a fixed (but

unknown) distribution𝐷𝑖 , which is a bounded distribution on [0, 1].
We denote 𝜇𝑖 as the mean of 𝐷𝑖 , and assume that 1 ≥ 𝜇1 > 𝜇2 ≥
· · · ≥ 𝜇𝑁 ≥ 0. We also let Δ𝑖 := 𝜇1 − 𝜇𝑖 be the expected reward

gap between arm 𝑖 and the optimal arm and denote Δmin
:= Δ2.

Although we assume that there only exists one optimal arm in

the model, it is not a necessary condition for obtaining theoretical

results in this paper. In fact, all the analysis works in the case that

there are multiple optimal arms. Moreover, to simplify the analysis

of cooperation, we assume that the agents always choose to share

truthful information.

To model our assumption that each agent may only share partial

information with the others, for any agent𝑚, we denote 𝐴𝑚 ⊆ 𝐴
as the set of arms that agent𝑚 is willing to share information. We

call 𝐴𝑚 the non-sensitive arm set and refer to the remaining arm

set 𝐴 \ 𝐴𝑚 as the sensitive arm set. Note that we allow 𝐴𝑚 to be

an empty set, i.e., some agents may share nothing with others. We

also let 𝑆𝑖 = {𝑚 : 𝑖 ∈ 𝐴𝑚} be the set of agents who are willing to

share the information of arm 𝑖 , and we assume that for any arm

𝑖 , |𝑆𝑖 | ≥ 1, i.e., there is at least one agent who is willing to share

her history information on arm 𝑖 with others. This assumption is

to ensure feasible collaboration, because if the information of some

arms is not shared by any agents, no collaboration mechanism can

work to reduce the times of exploring these arms.

We illustrate how the LSI-MAMAB model works in Figure 1.

In each time step 𝑡 , the agents choose arms sequentially, i.e., af-

ter agent 1 pulls an arm (and broadcasts the arm-reward pair if

she wants to), agent 2 then chooses an arm to pull. Note that the

order of pulling arms in each time step does not influence any the-

oretical results in this paper, the assumption that the order being

1, 2, · · · , 𝑀 is only for simplicity. After agent𝑚 pulls an arm 𝜋𝑚 (𝑡),
she then gets a random reward 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡) ∼ 𝐷𝜋𝑚 (𝑡 ) from the

arm 𝜋𝑚 (𝑡). If arm 𝜋𝑚 (𝑡) ∈ 𝐴𝑚 (i.e., results from which agent𝑚

feels as non-sensitive information), then she could broadcast the

arm-reward pair (𝜋𝑚 (𝑡), 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡)), so that other agents can use

this information. Otherwise, agent𝑚 keeps this arm-reward pair

information private to herself. Our goal is to design a collaboration

protocol from the perspective of the central controller. On the one

hand, we want an algorithm to minimize the overall regret when all

the agents follow this protocol (i.e., each agent pulls arms according

to the protocol, and share the information as long as the pulled arm

is in her non-sensitive arm set), leading to an efficient collaboration.

On the other hand, we expect the protocol guarantee a basic incen-

tive of individual rationality, i.e., every agent can benefit from the

collaboration compared to individual learning. To achieve this goal,

once an agent pulls an arm and share the arm-reward information,

we provide some compensation to her, and charge other agents for

the shared information.

3.1 The Overall Regret
First, for agent𝑚, we define her individual regret 𝑅𝑚 (𝑇 ) of a policy
as the expected gap between her total reward using the policy and

the total reward by pulling the optimal arm for 𝑇 times, i.e.,

𝑅𝑚 (𝑇 ) ≜ E

[
𝑇∑︁
𝑡=1

𝜇1 −
𝑇∑︁
𝑡=1

𝜇𝜋𝑚 (𝑡 )

]
.



Figure 1: Illustration of the LSI-MAMAB model. In each time step 𝑡 , the agents choose arms sequentially. After agent𝑚 pulls an
arm 𝜋𝑚 (𝑡), she then gets a random reward 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡) ∼ 𝐷𝜋2 (𝑡 ) from the arm 𝜋𝑚 (𝑡). If 𝜋𝑚 (𝑡) ∈ 𝐴2, then she could broadcast the
reward, so that other agents can use this information. Otherwise, agent𝑚 keeps this reward information to herself. The central
controller wants to design an algorithm to minimize the overall regret. Besides, he also uses an incentive mechanism to achieve
IR: after an agent pulls an arm, he provides some compensation to her, and charges other agents for the shared information (if
the arm-reward pair is shared).

For different agents, their individual regrets can also be different.

Next, we define the overall regret as the sum of all agents’ indi-

vidual regrets, i.e.,

𝑅(𝑇 ) ≜
𝑀∑︁

𝑚=1

𝑅𝑚 (𝑇 ) .

Aswe can see,𝑅(𝑇 ) is the overall loss of pulling sub-optimal arms

by any agents, which reflects the efficiency of the collaboration.

Our goal is to minimize the overall regret 𝑅(𝑇 ). On the one hand, if

everyone shares all her information with others, then it is easy to

design algorithms with 𝑅(𝑇 ) = 𝑂 (∑𝑖
log𝑇

Δ𝑖
). On the other hand, if

no one shares her information with others, then the overall regret is

at least Ω(𝑀 ∑
𝑖
log𝑇

Δ𝑖
). Hence, in our setting in which agents only

share partial information with others, the overall regret should

be in between this two bounds, and we want it to be as close to

𝑂 (∑𝑖
log𝑇

Δ𝑖
) as possible.

3.2 The Individual Rationality
From the description above, every agent𝑚 will receive some com-

pensation Com𝑚 at the end of the game because of the information

she shares with others, and she also needs to pay some cost Cost𝑚

because of the information others share with her. Therefore, the

individual regret with incentive mechanism of each agent𝑚 con-

sists of three parts: the regret comes from pulling sub-optimal arms

(𝑅𝑚 (𝑇 )); the (minus) compensation she receives (−Com𝑚); and the

cost she needs to pay (Cost𝑚).

In this paper, we assume that each agent applies the 2-UCB

(“2” represents the factor in confidence radius) policy as her single-

player policy, which is one of the most commonly studied asymptot-

ically optimal algorithms. Specifically, in the 2-UCB policy, agents

are assumed to pull the arm 𝜋 (𝑡) = argmax𝑖∈[𝑁 ] {𝜇𝑖 (𝑡) +
√︃

2 log𝑇

𝑁𝑖 (𝑡 ) }

at time step 𝑡 , where 𝜇𝑖 (𝑡) is the empirical mean of arm 𝑖 and

𝑁𝑖 (𝑡) is the number of times that arm 𝑖 has been pulled. We denote

𝑅𝑈𝐶𝐵 (𝑇 ) the expected regret of this 2-UCB policy.

To ensure each agent can benefit from collaboration, we call an

incentive mechanism satisfies individual rationality (IR), if for each

agent𝑚, the following inequality holds:

𝑅𝑚 (𝑇 ) − Com𝑚 + Cost𝑚 − 𝑅𝑈𝐶𝐵 (𝑇 ) ≤ 0.

As we can see, 𝑅𝑚 (𝑇 ) − Com𝑚 + Cost𝑚 − 𝑅𝑈𝐶𝐵 (𝑇 ) is the relative
regret of joining the collaboration system, and we could say that all

agents are willing to participate in the collaboration if the incentive

mechanism achieves IR.

The choice of incorporating the 2-UCB algorithm as the baseline

algorithm in our definition of IR is motivated by the fact that the

UCB algorithm is one of the most classic and well-known bandit

algorithms in academic research. The algorithm is theoretically

proven to be asymptotically optimal and is often considered as a

benchmark algorithm in single-agent scenarios. Hence, we believe

that using the UCB algorithm as baseline is highly appropriate.

4 MINIMIZING OVERALL REGRET
4.1 Balanced-ETC Algorithm

In this section, we propose our Balanced-ETC algorithm, which

achieves an overall regret upper bound of𝑂 (∑𝑖
log𝑇

Δ𝑖
) and is asymp-

totically optimal.

Our Balanced-ETC algorithm follows the elimination framework,

i.e., it maintains an active arm set 𝐴(𝑡) ⊆ 𝐴, and eliminates arms

from this set if they are sub-optimal with high probability. To guar-

antee the synchronicity among different agents, the elimination



Algorithm 1 Balanced-ETC (for agent𝑚)

1: Input: the set of arms 𝐴𝑚 that agent𝑚 is willing to share, the

balance level threshold 𝐵.

2: Init: 𝐴(𝑡) = 𝐴
3: for 𝑡 = 1, . . . ,𝑇 do
4: ∀𝑖 ∈ 𝐴(𝑡), updating their 𝑁𝑖 (𝑡) and 𝜇𝑖 (𝑡).
5: Eliminate arms from 𝐴(𝑡) based on Eq. (1).

6: if |𝐴(𝑡) | > 1 and |𝐴(𝑡) ∩𝐴𝑚 | > 0 and 𝐵𝑚 (𝑡) ≤ 𝐵 then
7: //Explore step

8: Pull arm 𝜋𝑚 (𝑡) = argmin𝑖∈𝐴(𝑡 )∩𝐴𝑚
𝑁𝑖 (𝑡) and receive ran-

dom reward 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡).
9: Broadcast arm-reward pair (𝜋𝑚 (𝑡), 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡)).
10: else
11: //Commit step

12: 𝜋𝑚 (𝑡) = argmax𝑖∈𝐴(𝑡 ) 𝜇𝑖 (𝑡)
13: end if
14: end for

only depends on the publicly shared information, i.e., the arm-

reward pairs (𝜋𝑚 (𝑡), 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡)) that have been broadcast. Specif-
ically, let 𝑁𝑖 (𝑡) be the number of times that arm 𝑖 has been broad-

cast, and 𝜇𝑖 (𝑡) be the empirical mean of the expected reward (in the

broadcast information). Then by concentration analysis, one can see

that with high probability, |𝜇𝑖 − 𝜇𝑖 (𝑡) | ≤ rad𝑖 (𝑡) ≜
√︁
2 log𝑇 /𝑁𝑖 (𝑡).

Therefore, after receiving new information (𝜋𝑚 (𝑡), 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡)),
every agent can update 𝑁𝑖 (𝑡)’s and 𝜇𝑖 (𝑡)’s for all the arms, and

eliminate arm 𝑖 from the active arm set 𝐴(𝑡) if

𝜇𝑖 (𝑡) + rad𝑖 (𝑡) ≤ max

𝑗∈𝐴
𝜇 𝑗 (𝑡) − rad𝑗 (𝑡) . (1)

As mentioned in the introduction, the main challenge here is that

the imbalanced distribution of the shared data can result in severe

over-exploration. For example, if all the agents are willing to share

the information of arm 𝑖 , but only one agent is willing to share

the information of the optimal arm, the number of broadcast arm-

reward pair of sub-optimal arm 𝑖 will be 𝑀 times larger than the

number of broadcast arm-reward pairs of the optimal arm. In this

case, we need Ω(𝑀 log𝑇

Δ2

𝑖

) explorations to eliminate arm 𝑖 from the

active arm set, which leads to a regret of Ω(𝑀 log𝑇

Δ𝑖
) and is far from

optimal. To tackle this problem, the Balanced-ETC algorithm sets a

threshold to restrain over-exploration, i.e., we let the ratio between

the maximum 𝑁𝑖 (𝑡) and the minimum 𝑁𝑖 (𝑡) in the active arm set

to be less than the threshold. Specifically, when there are still some

active arms that agent𝑚 is willing to share (i.e.,𝐴(𝑡) ∩𝐴𝑚 ≠ ∅), we
use 𝐵𝑚 (𝑡) ≜ min𝑖∈𝐴(𝑡 )∩𝐴𝑚 𝑁𝑖 (𝑡 )

min𝑗 ∈𝐴(𝑡 ) 𝑁 𝑗 (𝑡 ) to denote the balance level. As we

can see, the explorations are more imbalanced when 𝐵𝑚 (𝑡) is larger.
Hence, only if the balance level 𝐵𝑚 (𝑡) is smaller than some fixed

constant 𝐵 ≥ 1 (which is given as an input of our algorithm), we let

agent𝑚 to pull the arm argmin𝑗∈𝐴(𝑡 )∩𝐴𝑚
𝑁 𝑗 (𝑡) and then broadcast

the information. Otherwise, we do not let agent𝑚 to explore in

this time step, since this can result in severe over-exploration.

The pseudo code of Balanced-ETC is shown in Algorithm 1. At

the beginning of time step 𝑡 , each agent collects the information

shared by other agents and updates 𝑁𝑖 (𝑡)’s and 𝜇𝑖 (𝑡)’s for all the

arms. Then they use Eq. (1) to update the active arm set 𝐴(𝑡). Only
if i) |𝐴(𝑡) | > 2 (there still require explorations); ii) |𝐴(𝑡) ∩𝐴𝑚 | >
0 (there are still arms that agent 𝑚 is willing to share and that

need explorations); and iii) 𝐵𝑚 (𝑡) ≤ 𝐵 (exploring this arm will not

result in severe over-exploration), agent𝑚 will do one explore step,

i.e., she chooses to pull arm 𝜋𝑚 (𝑡) = argmin𝑖∈𝐴(𝑡 )∩𝐴𝑚
𝑁𝑖 (𝑡) and

broadcast arm-reward pair (𝜋𝑚 (𝑡), 𝑋𝜋𝑚 (𝑡 ),𝑚 (𝑡)). Otherwise, she
will do one commit step, i.e., she chooses to pull the best active arm

argmax𝑖∈𝐴(𝑡 ) 𝜇𝑖 (𝑡) and do not share anything with others.

4.2 Regret Analysis
In this section, we provide the overall regret upper bound of our

Balanced-ETC algorithm, as well as its proof sketch. Due to space

limit, detailed proofs are deferred to the supplementary material.

Theorem 4.1. The overall regret of Balanced-ETC can be upper
bounded by:

𝑅(𝑇 ) <
𝑁∑︁
𝑖=2

8(1 +
√
𝐵)2 log𝑇
Δ𝑖

+ 4𝑒𝑀𝑁 2

Δmin

+ 2𝑀𝑁 .

Note that 𝐵 is a constant that does not depend on 𝑁,𝑀 (one

can simply choose 𝐵 = 1 in practice). Hence, Theorem 4.1 states

that when 𝑇 is large enough, the overall regret of our algorithm is

𝑂 (∑𝑁
𝑖=2

log𝑇

Δ𝑖
). This is indeed the best one can do, since the over-

all regret lower bound is Ω(∑𝑁
𝑖=2

log𝑇

Δ𝑖
) even if everyone shares

all her information with each other [19]. On the other hand, the

average regret of each agent is 𝑂 (∑𝑁
𝑖=2

log𝑇

𝑀Δ𝑖
+ 4𝑒𝑁 2

Δmin

), which is 𝑀

times smaller than the regret of the single-agent case, and almost

becomes a constant when there are sufficiently many agents in the

collaboration. Hence, our collaboration system is efficient in terms

of the scale of players.

Proof Sketch of Theorem 4.1. We first define a good event

E =

{
∀𝑡 ≤ 𝑇,∀𝑖 ∈ 𝐴, |𝜇𝑖 (𝑡) − 𝜇𝑖 | ≤

√︄
3 log𝑇

2𝑁𝑖 (𝑡)

}
,

i.e., for any time step 𝑡 and any arm 𝑖 , the gap between the empirical

mean and the real mean is less than

√︃
3 log𝑇

2𝑁𝑖 (𝑡 ) .

Remark 4.2. Note that here the confidence radius in event E is not

the same as that we used in Balanced-ETC (rad𝑖 (𝑡) =
√︃

2 log𝑇

𝑁𝑖 (𝑡 ) ). The

reason that we choose rad𝑖 (𝑡) to be larger than
√︃

3 log𝑇

2𝑁𝑖 (𝑡 ) is we want
to use 𝑁𝑖 (𝑡) to obtain both an upper bound and a lower bound for

Δ𝑖 . This is crucial for our incentive mechanism (please see details

in Section 5).

After applying some concentration inequalities, we have:

Lemma 4.3. The probability of E happens satisfies Pr(E) ≥ 1− 2𝑁
𝑇

.

Based on Lemma 4.3, we can bound the regret when E does not

happen as

E[𝑅(𝑇 )I[¬E]] ≤ 𝑀𝑇 · Pr(¬E) ≤ 2𝑀𝑁 .

Thenwe come to bound the regret when E happens. Conditioned on

event E, for any sub-optimal arm 𝑖 ∈ [2, 𝑁 ], the number of explore

steps pulling arm 𝑖 could be upper bounded by the following lemma.



Lemma 4.4. When event E happens, the optimal arm 1 will never be
eliminated. Moreover, ∀𝑖 ∈ [2, 𝑁 ], the number of explore steps pulling
arm 𝑖 could be bounded by:

𝑁𝑖 (𝑇 ) ≤ ⌈8 log𝑇 (1 +
√
𝐵)2

Δ2

𝑖

⌉ .

The (1 +
√
𝐵)2 factor in Lemma 4.4 is because that under our

Balanced-ETC algorithm, the number of explorations on one active

arm can be at most 𝐵 times larger than the number of explorations

on another active arm. Therefore, if there are Θ

(
log𝑇

Δ2

𝑖

)
number

of explorations on arm 𝑖 , the sum of two confidence radius (sub-

optimal arm 𝑖 and optimal arm 1) isΘ(Δ𝑖 +
√
𝐵Δ𝑖 ) = Θ((1+

√
𝐵)Δ𝑖 ),

and is larger thanΘ(Δ𝑖 ). Only if there areΘ
(
(1+

√
𝐵)2 log𝑇
Δ2

𝑖

)
number

of explorations, one could prove that the sum of two confidence

radius is Θ
(

Δ𝑖

1+
√
𝐵
+

√
𝐵Δ𝑖

1+
√
𝐵

)
= Θ(Δ𝑖 ).

Based on Lemma 4.4, one can easily prove that under event E,
the expected regret in the explore steps can be upper bounded by∑𝑁
𝑖=2

8(1+
√
𝐵)2 log𝑇
Δ𝑖

.

Finally, we consider the expected regret of commit steps under

event E. In a commit step, the agent pulls the active arm with the

highest empirical mean, i.e., argmax𝑖∈𝐴(𝑡 ) 𝜇𝑖 (𝑡). To guarantee the

accuracy of empirical means 𝜇𝑖 (𝑡)’s, we want to first prove that

each active arm 𝑖 is pulled (and shared) for a sufficient number of

times. This is stated in the following lemma.

Lemma 4.5. For ∀𝑡 ∈ [𝑇 ] and ∀𝑖 ∈ 𝐴(𝑡), we have 𝑁𝑖 (𝑡) ≥ 𝑡
𝑁

− 1.

Roughly speaking, since there is at least one agent that is willing

to share the information of arm 𝑖 for each arm 𝑖 , in each time step,

the active arm 𝑖 with the least number of 𝑁𝑖 (𝑡) must be shared

once. Hence, after 𝑡 time steps, each active arm must be shared for

at least
𝑡
𝑁

times.

Based on Lemma 4.5, we know that for any active arm 𝑖 , 𝑁𝑖 (𝑡) =
Θ(𝑡/𝑁 ). Along with the fact that the optimal arm is never elimi-

nated, for any sub-optimal arm 𝑖 , concentration inequalities tell us

that its empirical mean 𝜇𝑖 (𝑡) is higher than the empirical mean of

the optimal arm 𝜇1 (𝑡) with probability at most𝑂 (exp(−𝑐Δ2

𝑖
𝑡/𝑁 2)).

Because of this, we have the following lemma.

Lemma 4.6. When event E happens, the expected regret in commit
steps can be bounded by 4𝑒𝑀𝑁 2

Δmin

.

Summing over the expected regret in the explore steps and in

commit steps when event E happens, as long as the expected regret

when when event E does not happen, we finally get the regret

upper bound in Theorem 4.1. □

Although we assume that for any arm 𝑖 , there is at least one

agent who is willing to share her history information on arm 𝑖

with others, our algorithm can still function properly even if there

are arms that have not been shared by any user. In this case, each

agent would need to independently explore these arms, and the

cooperation among users would not accelerate the exploration of

these arms.

4.3 How Much Shared Information Do We
Need?

In this section, we discuss how much shared information (i.e., the

number of shared arm-reward pairs) is needed to ensure that the

overall regret is close to𝑂 (∑𝑖
log𝑇

Δ𝑖
). In the context of limited infor-

mation sharing, our primary concern lies in the amount of data that

users specifically share. We are more interested in which data users

are willing to share, rather than the format in which the shared

data is presented. Therefore, we have not taken into consideration

the adoption of more efficient sharing methods by users or the

compression of data to reduce communication costs.

Theorem 4.7. For any algorithm in the LSI-MAMAB model, if the
number of shared arm-reward pairs is 𝑜 (log𝑇 ), then the overall regret
is lower bounded by Ω(𝑀𝑁 log𝑇 ).

The key idea of the proof is that with only 𝑜 (log𝑇 ) shared arm-

reward pairs, no one can make sure that which arm is the optimal

one, and has to pull all the arms for Ω(log𝑇 ) times by themselves.

The detailed proof is deferred to Appendix F.

Theorem 4.7 tells us that if we want the overall regret to be

𝑂 (∑𝑖
log𝑇

Δ𝑖
), there must be at least Ω(log𝑇 ) number of shared arm-

reward pairs. On the other hand, based on Lemma 4.4, we know

that with high probability, the number of shared arm-reward pairs

in Balanced-ETC is upper bounded by 𝑂 (∑𝑖
log𝑇

Δ2

𝑖

). Hence there
do not exist algorithms that achieve a similar overall regret upper

bound as Balanced-ETC but with a much smaller number of shared

arm-reward pairs. This means that our Balanced-ETC algorithm is

very cost-effective.

5 INCENTIVE MECHANISM IN
BALANCED-ETC

Although the overall regret of Balanced-ETC is asymptotically op-

timal, the algorithm itself cannot ensure everyone benefits, i.e. ,

some agents may suffer from a higher individual regret (compared

with not attending the collaboration system and running a 2-UCB

policy herself). For example, if only one agent is willing to share the

information of arm 2, then in our LSI-MAMAB model, she needs

to pull (and share) arm 2 for more times than running the 2-UCB

algorithm alone, since the number of pulls on sub-optimal arms in

elimination-based algorithms is always larger than in UCB-based al-

gorithms (see a detailed example in Section 6). Hence, it is necessary

to apply some incentive mechanisms to achieve IR.

In our incentive mechanism, the center controller is responsible

for compensating the agents for sharing their data, and collect-

ing the costs from them for reading the shared data from other

agents. The specific amount of cost and compensation are given in

Section 5.1. The proposed incentive mechanisms in this paper is

objectively present in the real world. For example, in the current

existing federal framework, it is common practice for the federated

learning platform to provide compensation to the data providers

and charge fees to the data users [42]. In our discussion, each agent

can simultaneously act as both a data provider and a data user,

receiving compensation and incurring charges from the platform.

Our algorithms and experiments demonstrate that both agents

and the platform can benefit from collaboration, indicating that



the platform is viable and agents are willing to participate in the

cooperation.

5.1 Incentive Mechanism
In our incentivemechanism, at the end of the game, agent𝑚 receives

Com𝑚 to compensate her individual regret, where

Com𝑚 =
∑︁

𝑖∈𝐴\𝐴(𝑇 )
(𝑁 𝑒

𝑖,𝑚 (𝑇 ) + 𝑁𝑐
𝑖,𝑚 (𝑇 ))

√︄
8(1 +

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 )
. (2)

Here𝐴(𝑇 ) is the active arm set at time step𝑇 ,𝑁 𝑒
𝑖,𝑚

(𝑇 ) is the number

of times that agent 𝑚 shares the information of arm 𝑖 (i.e., the

number of times agent𝑚 pulls arm 𝑖 in an explore step), and𝑁𝑐
𝑖,𝑚

(𝑇 )
is the number of times agent𝑚 pulls arm 𝑖 in a commit step, and

𝑁𝑖 (𝑇 ) is the number of times that arm 𝑖 has been shared (by all

the agents). That is, for each time agent𝑚 pulls a sub-optimal arm

𝑖 ∈ 𝐴 \𝐴(𝑇 ), she receives
√︂

8(1+
√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 ) for compensation.

However, this compensation is much higher than necessary. In

fact, with high probability, this compensation Com𝑚 is higher than

the individual regret 𝑅𝑚 (𝑇 ) of agent𝑚. To make ends meet, we

also let all the agents to pay some cost for receiving the shared

information, since this information does help them learn and avoid

some potential regret. Specifically, at the end of the game, agent𝑚

also needs to pay Cost𝑚 for the shared information, where

Cost𝑚 =
∑︁

𝑖∈𝐴\𝐴(𝑇 )
𝑁𝑖 (𝑇 )

√√
(
√
2 −

√︁
3/2)4 log𝑇

128(1 +
√
𝐵)2𝑁𝑖 (𝑇 )

. (3)

That is, for each time agent𝑚 receives a shared arm-reward pair

from sub-optimal arm 𝑖 ∈ 𝐴\𝐴(𝑇 ), she needs to pay
√︂

(
√
2−
√
3/2)4 log𝑇

128(1+
√
𝐵)2𝑁𝑖 (𝑇 )

for this information.

5.2 Theoretical Analysis
To understand the meaning of our incentive mechanism, we first

introduce the following lemma (detailed proof of which is deferred

to supplementary material).

Lemma 5.1. When event E happens and time horizon 𝑇 is large

enough such that 𝑇−2𝑁
log𝑇

>
8(1+

√
𝐵)2𝑁

Δ2

min

(which means that all the

sub-optimal arms must be eliminated), for all sub-optimal arms 𝑖 ∈
[2, 𝑁 ],Δ𝑖 can be bounded by:√︄

(
√
2 −

√︁
3/2)2 log𝑇

𝑁𝑖 (𝑇 )
≤ Δ𝑖 ≤

√︄
8(1 +

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 )
.

The proof of Lemma 5.1 is quite straightforward: the second

inequality could be obtained by Lemma 4.4 directly. As for the first

inequality, note that under event E,
max

𝑗∈𝐴(𝑡 )
𝜇 𝑗 (𝑡) − rad𝑗 (𝑡) ≤ max

𝑗∈𝐴(𝑡 )
𝜇 𝑗 ≤ 𝜇1 .

Hence, we cannot eliminate arm 𝑖 from the active arm set if 𝜇𝑖 (𝑡) +

rad𝑖 (𝑡) > 𝜇1. When

√︂
(
√
2−
√
3/2)2 log𝑇

𝑁𝑖 (𝑡 ) > Δ𝑖 , we know that

𝜇𝑖 (𝑡) + rad𝑖 (𝑡) ≥ 𝜇𝑖 + (
√
2 −

√︁
3/2)

√︄
log𝑇

𝑁𝑖 (𝑡)
≥ 𝜇𝑖 + Δ𝑖 = 𝜇1,

which means that arm 𝑖 cannot be eliminated. Therefore, since we

eliminate arm 𝑖 from the active arm set at the end of the game, we

must have that

√︂
(
√
2−
√
3/2)2 log𝑇

𝑁𝑖 (𝑇 ) ≤ Δ𝑖 .

Lemma 5.1 tells us a range for the values of Δ𝑖 ’s. Hence our

incentive mechanism is to let agent𝑚 receive compensation as if Δ𝑖
equals the upper bound (every time she pulls arm 𝑖) and pay cost as

if Δ𝑖 equals the lower bound (every time an arm-reward pair of arm

𝑖 is shared to her). This makes sense since if we want all the agents

to benefit from this collaboration, we must compensate them by

the upper bound of their loss, and charge them by the lower bound

of their loss. Besides, when calculating the value of Cost𝑚 , we must

consider the ratio between the number of explorations of Balanced-

ETC and 2-UCB (in single-agent system). Since there could be more

explorations in Balanced-ETC, the unit cost (of receiving one arm-

reward pair of arm 𝑖) should also be smaller than the lower bound

of Δ𝑖 (as we set in Eq. (3)).

Theorem 5.2. When event E happens and time horizon 𝑇 is large
enough such that 𝑇

log
2𝑇

> 𝑁

4Δ4

min

, applying Eq. (2) and Eq. (3) as the

incentive mechanism in our Balanced-ETC algorithm achieves IR, i.e.,
for any agent𝑚,

𝑅𝑚 (𝑇 ) − Com𝑚 + Cost𝑚 − 𝑅𝑈𝐶𝐵 (𝑇 ) ≤ 0.

The proof of Theorem 5.2 is deferred to Appendix G. This result

indicates that that every rational agent will join the collaborative

learning.

Under this incentive mechanism, the compensation that the

central controller needs to pay is∑︁
𝑚

Com𝑚 =
∑︁
𝑚

∑︁
𝑖∈𝐴\𝐴(𝑇 )

(𝑁 𝑒
𝑖,𝑚 (𝑇 ) + 𝑁𝑐

𝑖,𝑚 (𝑇 ))

√︄
8(1 +

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 )

=

𝑁∑︁
𝑖=2

√︄
8(1 +

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 )

(
𝑁𝑖 (𝑇 ) +

∑︁
𝑚

𝑁𝑐
𝑖,𝑚 (𝑇 )

)
=𝑂

(
𝑁∑︁
𝑖=2

√︁
log𝑇𝑁𝑖 (𝑇 ) +𝑀𝑁 2

√︄
max𝑖≥2 𝑁𝑖 (𝑇 )

log𝑇

)
,

The last equation holds because Lemma 5.1 tells us Δ𝑖 is asymp-

totic to

√︃
log𝑇

𝑁𝑖 (𝑇 ) , which means that the compensation caused by

commit steps has the same order as the regret caused by commit

steps (Lemma 4.6).

On the other hand, the total cost received by the central controller

is ∑︁
𝑚

Cost𝑚 =
∑︁
𝑚

∑︁
𝑖∈𝐴\𝐴(𝑇 )

𝑁𝑖 (𝑇 )

√√
(
√
2 −

√︁
3/2)4 log𝑇

128(1 +
√
𝐵)2𝑁𝑖 (𝑇 )

=

𝑁∑︁
𝑖=2

𝑀𝑁𝑖 (𝑇 )

√√
(
√
2 −

√︁
3/2)4 log𝑇

128(1 +
√
𝐵)2𝑁𝑖 (𝑇 )

=Ω

(
𝑀

𝑁∑︁
𝑖=2

√︁
log𝑇𝑁𝑖 (𝑇 )

)
.

Although with fewer agents, as seen in Figure 2(c), the central

controller might struggle to profit, potentially limiting our mech-

anism’s practicality. However, the overall compensation will be
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Figure 2: Experimental results of Balanced-ETC

smaller than the overall cost when there are a sufficient number

of agents and 𝑇 is large enough. In this case, the central controller

can also benefit from making the platform practical in reality.

Note that the conclusion that our incentive mechanism achieves

IR is an ex-ante expectation, which is reasonable in the field of

algorithm design [3, 7, 10].

Specifically, it is an anticipation of the outcomes or results based

on available information and analysis prior to the actual occurrence.

We focus on this ex-ante expectation since rational agents only

participate in cooperation when they anticipate benefiting from it.

6 EXPERIMENTS
In this section, we present experimental results for our Balanced-

ETC algorithm and incentive mechanism. Specifically, in our ex-

periments in main text, there are 10 arms with an expected reward

vector 𝜇 = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0]. As for the infor-
mation sharing structure, we assume that every agent is onlywilling

to share the information of one arm, and consider two settings: the

balanced setting and the imbalanced setting. In the balanced setting

(Figure 2(a) and 2(c)), |𝑆𝑖 | is the same for all arm 𝑖 , i.e., the number

of agents who are willing to share the information of any arm is the

same. In the imbalanced setting (Figure 2(b)), |𝑆1 | = |𝑆2 | = 1, while

the other arms’ |𝑆𝑖 | is the same, i.e., only few agents are willing

to share the good arms. All these results take an average over 100

independent runs.

In Figure 2(a) and Figure 2(b), we set𝑇 = 10
6
, 𝐵 = 1, and compare

the performance of Balanced-ETC under different number of agents.

We can observe that in both the balanced and imbalanced settings,

the overall regret (green line) doesn’t increase significantly as the

number of agents grows. Hence, the average individual regret (blue
line) keeps decreasing and tends to be zero when there are more

agents involved. This accords with our analysis, and demonstrates

the effectiveness of our collaboration system. However, as we can

see, if we do not apply any incentive mechanism, then the max

original individual regret (red line) can be larger than the regret of

running the 2-UCB policy alone (black line), especially when there

are few agents involved or when the sharing structure is imbalanced.

After adding our incentive mechanism (with compensation Com𝑚

and cost Cost𝑚), the maximum incentive individual regret (red

imaginary line) is always lower than the regret of running the

2-UCB policy alone (black line), and becomes almost 0. This also

accords with our analysis, and demonstrates that our incentive

mechanism can achieve IR, i.e., it makes sure that every agent who

joins this collaboration system can benefit. In Figure 2(c), we set

𝑇 = 10
6
, 𝐵 = 1, and compare the profits of the central controller

(i.e.,

∑
𝑚 Cost𝑚 −∑

𝑚 Com𝑚) under different number of agents. We

can see that the profit increases linearly in the number of agents,

and surpasses 0 at around 4k agents. This also accords with our

analysis, and empirically shows that the central controller can also

benefit from making the platform practical in reality, as long as

there are sufficient agents participating.

In addition to the balanced and imbalanced settings, we also

designed experiments under a random setting, with randomized

reward distributions and information-sharing structures, to test

the robustness of our algorithm. The results demonstrate that our

algorithm continues to perform effectively in random setting. Due

to space limitations, these experiments are detailed in Appendix J.

7 CONCLUSION
In this paper, we propose the LSI-MAMAB model, and design the

Balanced-ETC algorithm and a corresponding incentive mechanism.

This is the first work on MAMAB problem with limited information

sharing, which sheds light on many collaborative learning scenarios

with data sharing constraints. We show that our algorithm’s over-

all regret is asymptotically optimal and our incentive mechanism

achieves individual rationality both theoretically and empirically.

We believe that further research can build on the current work

to inspire deeper exploration of limited shared information struc-

tures. For example, considering the trade-offs between the costs

of information exchange and the effectiveness of cooperation, or

modeling heterogeneous user preferences. There remain significant

challenges in developing learning frameworks that provide users

with greater autonomy and better privacy protection.
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Appendices

A PROOF OF LEMMA 4.3
We first define the good event as

E =

{
∀𝑡 ≤ 𝑇,∀𝑖 ∈ 𝐴, |𝜇𝑖 (𝑡) − 𝜇𝑖 | ≤

√︄
3 log𝑇

2𝑁𝑖 (𝑡)

}
,

i.e., for any time step 𝑡 and any arm 𝑖 , the gap between its empirical mean and its real mean is less than

√︃
3 log𝑇

2𝑁𝑖 (𝑡 ) .
Lemma 4.3. The probability of E happens satisfies

Pr(E) ≥ 1 − 2𝑁

𝑇
.

Proof. Using the Hoeffding inequality [12], we obtain

Pr(¬E) = Pr

[
∃𝑡 ≤ 𝑇, ∃𝑖 ∈ 𝐴, |𝜇𝑖 (𝑡) − 𝜇𝑖 | >

√︄
3 log𝑇

2𝑁𝑖 (𝑡)

]
≤

∑︁
𝑖∈𝐴

𝑇∑︁
𝑡=1

Pr

[
|𝜇𝑖 (𝑡) − 𝜇𝑖 | >

√︄
3 log𝑇

2𝑁𝑖 (𝑡)

]
≤

∑︁
𝑖∈𝐴

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝜏=1

Pr

[
|𝜇𝑖 (𝑡) − 𝜇𝑖 | >

√︂
3 log𝑇

2𝜏
, 𝑁𝑖 (𝑡) = 𝜏

]
≤

∑︁
𝑖∈𝐴

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝜏=1

2

𝑇 3

≤ 2𝑁

𝑇
.

□

B PROOF OF LEMMA 4.4
Lemma 4.4. When event E happens, the optimal arm 1 will never be eliminated. Moreover, ∀𝑖 ∈ [2, 𝑁 ], the number of explore steps pulling

arm 𝑖 could be bounded by:

𝑁𝑖 (𝑇 ) ≤ ⌈8 log𝑇 (1 +
√
𝐵)2

Δ2

𝑖

⌉ .

Proof. When event E happens, for any sub-optimal arm 𝑖 , it holds that

𝜇1 (𝑡) + rad1 (𝑡) ≥ 𝜇1 (𝑡) +

√︄
3 log𝑇

2𝑁𝑖 (𝑡)
≥ 𝜇1

≥ 𝜇𝑖

≥ 𝜇𝑖 (𝑡) −

√︄
3 log𝑇

2𝑁𝑖 (𝑡)
≥ 𝜇𝑖 (𝑡) − rad𝑖 (𝑡).

Thus, the optimal arm 1 will never be eliminated.

Then for sub-optimal arm 𝑖 , we prove the upper bound of 𝑁𝑖 (𝑇 ) by contradiction. Further, when

𝑁𝑖 (𝑇 ) > ⌈8 log𝑇 (1 +
√
𝐵)2

Δ2

𝑖

⌉,



it means ∃𝑡 ∈ [𝑇 ], ∃𝑚 ∈ [𝑀], 𝑁𝑖 (𝑡) = ⌈ 8 log𝑇 (1+
√
𝐵)2

Δ2

𝑖

⌉, 𝜋𝑚 (𝑡) = 𝑖 . According to our algorithm, we have 𝑁𝑖 (𝑡)/𝑁1 (𝑡) ≤ 𝐵𝑚 (𝑡) ≤ 𝐵. Hence,

under event E, it holds that
𝜇𝑖 (𝑡) + rad𝑖 (𝑡) ≤ 𝜇𝑖 + 2rad𝑖 (𝑡)

≤ 𝜇1 − Δ𝑖 + 2rad𝑖 (𝑡)
≤ 𝜇1 (𝑡) + rad1 (𝑡) + 2rad𝑖 (𝑡) − Δ𝑖

≤ 𝜇1 − rad1 (𝑡) + 2rad1 (𝑡) + 2rad𝑖 (𝑡) − Δ𝑖 .

However, when 𝑁𝑖 (𝑡) ≥ ⌈ 8 log𝑇 (1+
√
𝐵)2

Δ2

𝑖

⌉, we know that 𝑁1 (𝑡) ≥ 𝑁𝑖 (𝑡)/𝐵, which implies 2rad1 (𝑡) + 2rad𝑖 (𝑡) −Δ𝑖 ≤ 0. Therefore, it holds that

𝜇𝑖 (𝑡) + rad𝑖 (𝑡) ≤ 𝜇1 (𝑡) − rad1 (𝑡),
which means arm 𝑖 is eliminated by Eq. (1). This leads to a contradiction and thus proves the lemma. □

C PROOF OF LEMMA 4.5
Lemma 4.5. For ∀𝑡 ∈ [𝑇 ] and ∀𝑖 ∈ 𝐴(𝑡), we have

𝑁𝑖 (𝑡) ≥
𝑡

𝑁
− 1.

Proof. We use induction to prove this lemma.

Base case: For 𝑡 = 1, ..., 𝑁 , the statement holds.

Induction step: Assume the statement holds for ∀𝑡 < 𝑡 ′. It means min𝑗∈[𝑁 ] 𝑁 𝑗 (𝑡) ≥ 𝑡
𝑁

− 1.

In our algorithm, at least one active arm with the smallest number 𝑁 𝑗 (𝑡) will be pulled in each time step. It means that for ∀𝑡 ∈ [𝑡 ′, 𝑡 ′ +𝑁 ],
we have

min

𝑗∈[𝑁 ]
𝑁 𝑗 (𝑡) ≥ min

𝑗∈[𝑁 ]
𝑁 𝑗 (𝑡 − 𝑁 ) + 1

≥ 𝑡 − 𝑁
𝑁

− 1 + 1 ≥ 𝑡

𝑁
− 1

That is, the statement also holds for ∀𝑡 ∈ [𝑡 ′, 𝑡 ′ + 𝑁 ], establishing the induction step. □

D PROOF OF LEMMA 4.6
Lemma 4.6. When event E happens, the expected regret in commit steps can be bounded by

4𝑒𝑀𝑁 2

Δmin

.

Proof. Let 𝑅𝑐 (𝑇 ) be the expected regret in commit steps, we have

E[𝑅𝑐 (𝑇 )] ≤ E

[
𝑀∑︁

𝑚=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=2

Δ𝑖 I{𝜋𝑚 (𝑡) = 𝑖}
]

≤ E

[
𝑀∑︁

𝑚=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=2

Δ𝑖 I{𝜇𝑖 (𝑡) > 𝜇1 (𝑡)}
]

≤ E

[
𝑀∑︁
𝑖=𝑚

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=2

Δ𝑖 (I{𝜇1 (𝑡) − 𝜇1 ≤ −Δ𝑖/2} + I{𝜇𝑖 (𝑡) − 𝜇𝑖 > Δ𝑖/2})
]
.

Using the Hoeffding inequality [12], we have

Pr(𝜇1 (𝑡) − 𝜇1 ≤ −Δ𝑖/2) ≤ 𝑒−𝑁𝑖 (𝑡 )Δ2

𝑖 /2 ≤ 𝑒−( 𝑡
𝑁
−1)Δ2

𝑖 /2;

Pr(𝜇𝑖 (𝑡) − 𝜇𝑖 > −Δ𝑖/2) ≤ 𝑒−𝑁𝑖 (𝑡 )Δ2

𝑖 /2 ≤ 𝑒−( 𝑡
𝑁
−1)Δ2

𝑖 /2 .

The we can obtain that

E[𝑅𝑐 (𝑇 )] ≤ E

[
𝑀∑︁

𝑚=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=2

Δ𝑖 (I{𝜇1 (𝑡) − 𝜇1 ≤ −Δ𝑖/2} + I{𝜇𝑖 (𝑡) − 𝜇𝑖 > Δ𝑖/2})
]

≤ E

[
𝑀∑︁

𝑚=1

𝑁∑︁
𝑖=2

𝑇∑︁
𝑡=1

Δ𝑖2𝑒
−( 𝑡

𝑁
−1)Δ2

𝑖 /2
]

≤ E

[
𝑀∑︁

𝑚=1

𝑁∑︁
𝑖=2

Δ𝑖
4𝑒𝑁

Δ2

𝑖

]
≤ 4𝑒𝑀𝑁 2

Δmin

.

□



E PROOF OF THEOREM 4.1
Theorem 4.1. The overall regret of Balanced-ETC can be upper bounded by:

𝑅(𝑇 ) <
𝑁∑︁
𝑖=2

8(1 +
√
𝐵)2 log𝑇
Δ𝑖

+ 4𝑒𝑀𝑁 2

Δmin

+ 2𝑀𝑁 .

Proof. We first define a good event

E =

{
∀𝑡 ≤ 𝑇,∀𝑖 ∈ 𝐴, |𝜇𝑖 (𝑡) − 𝜇𝑖 | ≤

√︄
3 log𝑇

2𝑁𝑖 (𝑡)

}
,

i.e., for any time step 𝑡 and any arm 𝑖 , the gap between the empirical mean and the real mean is less than

√︃
3 log𝑇

2𝑁𝑖 (𝑡 ) .
Based on Lemma 4.3, we can bound the regret when E does not happen as

E[𝑅(𝑇 )I[¬E]] ≤ 𝑀𝑇 · Pr(¬E) ≤ 2𝑀𝑁 .

Then we come to bound the regret when E happens.

Based on Lemma 4.4, we prove that under event E, the expected regret in the explore steps can be upper bounded by

∑𝑁
𝑖=2

8(1+
√
𝐵)2 log𝑇
Δ𝑖

.

Based on Lemma 4.6, we can upper bound the expected regret of commit steps under event E by
4𝑒𝑀𝑁 2

Δmin

.

Summing over the expected regret in the explore steps and in commit steps when event E happens, as long as the expected regret when

when event E does not happen, we finally get the regret upper bound in Theorem 4.1. □

F PROOF OF THEOREM 4.7
Theorem 4.7. For any algorithm in the LSI-MAMAB model, if the number of shared arm-reward pairs is 𝑜 (log𝑇 ), then the overall regret is

lower bounded by Ω(𝑀𝑁 log𝑇 ).

Proof. Existing analysis [19] proves the following asymptotic lower bound in classic bandit case:

lim

𝑇→∞
inf

E[𝑁𝑖 (𝑇 )]
log(𝑇 ) ≥ 1

𝐾𝐿(𝐷𝑖 , 𝐷1)
, (4)

where 𝑁𝑖 (𝑇 ) is the number of times that we pull arm 𝑖 until time step 𝑇 , and 𝐾𝐿(𝐷𝑖 , 𝐷1) is the KL-divergence between two reward

distributions.

Thus, in our LSI-MAMAB model, each agent must observe (either by pulling the arm herself or by receiving the shared information from

the others) the information of each arm for at least Ω(log𝑇 ) times. If the number of shared arm-reward pairs is 𝑜 (log𝑇 ), then each agent𝑚

needs to pull every sub-optimal arm 𝑖 for at least Ω(log𝑇 ) times. Hence her individual regret is at least Ω(𝑁 log𝑇 ), and the overall regret is

at least Ω(𝑀𝑁 log𝑇 ).
□

G PROOF OF LEMMA 5.1
Lemma 5.1.When event E happens and time horizon𝑇 is large enough such that

𝑇−2𝑁
log𝑇

>
8(1+

√
𝐵)2𝑁

Δ2

min

(which means that all the sub-optimal

arms must be eliminated), for all sub-optimal arms 𝑖 ∈ [2, 𝑁 ],Δ𝑖 can be bounded by:√︄
(
√
2 −

√︁
3/2)2 log𝑇

𝑁𝑖 (𝑇 )
≤ Δ𝑖 ≤

√︄
8(1 +

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 )
.

Proof. The proof of Lemma 5.1 is quite straightforward: the second inequality could be obtained by Lemma 4.4 directly. As for the first

inequality, note that under event E,
max

𝑗∈𝐴(𝑡 )
𝜇 𝑗 (𝑡) − rad𝑗 (𝑡) ≤ max

𝑗∈𝐴(𝑡 )
𝜇 𝑗 ≤ 𝜇1 .

Hence, we cannot eliminate arm 𝑖 from the active arm set if 𝜇𝑖 (𝑡) + rad𝑖 (𝑡) > 𝜇1. When

√︂
(
√
2−
√
3/2)2 log𝑇

𝑁𝑖 (𝑡 ) > Δ𝑖 , we know that

𝜇𝑖 (𝑡) + rad𝑖 (𝑡) ≥ 𝜇𝑖 + (
√
2 −

√︁
3/2)

√︄
log𝑇

𝑁𝑖 (𝑡)
≥ 𝜇𝑖 + Δ𝑖 = 𝜇1,

which means that arm 𝑖 cannot be eliminated. Therefore, since we eliminate arm 𝑖 from the active arm set at the end of the game, we must

have that

√︂
(
√
2−
√
3/2)2 log𝑇

𝑁𝑖 (𝑇 ) ≤ Δ𝑖 . □



H PROOF OF LEMMA H.1
Lemma H.1. Consider we are running the 2-UCB policy in a single-agent system. Let 𝑁 ′

𝑖
(𝑡) be the number of pulls on arm 𝑖 until time step 𝑡 ,

𝜇′
𝑖
(𝑡) be the empirical mean and E′ be the event that

E′ =

{
∀𝑡 ≤ 𝑇,∀𝑖 ∈ 𝐴, |𝜇′𝑖 (𝑡) − 𝜇𝑖 | ≤

√︄
3 log𝑇

2𝑁 ′
𝑖
(𝑡)

}
.

Then if event E′ happens and time horizon 𝑇 is large enough such that 𝑇

log
2𝑇

> 𝑁

4Δ4

min

, for all sub-optimal arms 𝑖 ∈ [2, 𝑁 ], we have that

Δ𝑖 ≥

√√
(
√
2 −

√︁
3/2)2 log𝑇

4𝑁 ′
𝑖
(𝑇 ) .

Proof. We prove the lemma by contradiction. For any arm 𝑖 , denote 𝐿𝑖 =
(
√
2−
√
3/2)2 log𝑇
4Δ2

𝑖

.

If event E′
happens, but ∃𝑘 ∈ [𝑁 ], 𝑁 ′

𝑘
(𝑇 ) < 𝐿𝑘 . Then, we divide [0,𝑇 ] into 𝐿𝑘 blocks with length

𝑇
𝐿𝑘

. By the pigeonhole principle, there

must exist one block [𝑡1, 𝑡2], in which arm 𝑘 is not pulled, i.e. , 𝑁 ′
𝑘
(𝑡1) = 𝑁 ′

𝑘
(𝑡2) < 𝐿𝑘 .

When event E′
happens, we have ∀𝑡 ∈ [𝑡1, 𝑡2]

𝜇𝑘 (𝑡) + rad𝑘 (𝑡) = 𝜇𝑘 (𝑡) +
√︄

3 log𝑇

2𝑁 ′
𝑘
(𝑡) + (

√
2 −

√︁
3/2)

√︄
log𝑇

𝑁 ′
𝑘
(𝑡)

≥ 𝜇𝑘 + (
√
2 −

√︁
3/2)

√︄
log𝑇

𝑁 ′
𝑘
(𝑡)

≥ 𝜇𝑘 + (
√
2 −

√︁
3/2)

√︄
log𝑇

𝐿𝑘

≥ 𝜇𝑘 + 2Δ𝑘

≥ 𝜇1 + Δ𝑘 .

When
𝑇

log
2𝑇

> 𝑁

4Δ4

min

, it holds that

∃𝑖 ∈ [𝑁 ], 𝑁 ′
𝑖 (𝑡2) − 𝑁

′
𝑖 (𝑡1) >

4(
√︁
3/2 +

√
2)2 log𝑇

Δ2

𝑘

.

Otherwise, we have

𝑡2 − 𝑡1 =
𝑁∑︁
𝑗=1

𝑁 ′
𝑗 (𝑡2) − 𝑁

′
𝑗 (𝑡1)

≤
𝑁∑︁
𝑗=1

4(
√︁
3/2 +

√
2)2 log𝑇

Δ2

𝑘

≤
4𝑁 (

√︁
3/2 +

√
2)2 log𝑇

Δ2

min

<
4𝑇Δ2

min

(
√
2 −

√︁
3/2)2 log𝑇

<
4𝑇Δ2

𝑘

(
√
2 −

√︁
3/2)2 log𝑇

<
𝑇

𝐿𝑘
,

which contradicts with 𝑡2 − 𝑡1 = 𝑇
𝐿𝑘

.



Then for this arm 𝑖 , it holds that ∃𝑡3 ∈ [𝑡1, 𝑡2], 𝑁 ′
𝑖
(𝑡3) − 𝑁 ′

𝑖
(𝑡1) =

4(
√
3/2+

√
2)2 log𝑇

Δ2

𝑘

and arm 𝑖 is pulled at time 𝑡3. For arm 𝑖 and time 𝑡3, we

have

𝜇𝑖 (𝑡3) + rad𝑖 (𝑡3) ≤ 𝜇𝑖 (𝑡3) +
√︄

3 log𝑇

2𝑁 ′
𝑖
(𝑡3)

+
√︄

2 log𝑇

𝑁 ′
𝑖
(𝑡3)

≤ 𝜇1 + (
√
2 +

√︁
3/2)

√︄
log𝑇

𝑁 ′
𝑖
(𝑡3)

≤ 𝜇1 + (
√
2 +

√︁
3/2)

√︄
log𝑇

𝑁 ′
𝑖
(𝑡3) − 𝑁 ′

𝑖
(𝑡1)

≤ 𝜇1 +
Δ𝑘
2

.

However, this makes a contradiction with 𝜇𝑘 (𝑡) + rad𝑘 (𝑡) ≥ 𝜇1 + Δ𝑘 , since the 2-UCB algorithm always chooses the arm with the largest

UCB to pull. □

I PROOF OF THEOREM 5.2
Theorem 5.2. When event E happens and time horizon 𝑇 is large enough such that

𝑇

log
2𝑇

> 𝑁

4Δ4

min

, applying Eq. (2) and Eq. (3) as the

incentive mechanism in our Balanced-ETC algorithm achieves IR, i.e., for any agent𝑚,

𝑅𝑚 (𝑇 ) − Com𝑚 + Cost𝑚 − 𝑅𝑈𝐶𝐵 (𝑇 ) ≤ 0.

Proof. Firstly, for any agent𝑚, once she pulls a sub-optimal arm 𝑖 (no matter in an explore step or in a commit step), she will suffer from

a regret of Δ𝑖 , and receive a compensation of

√︂
8(1+

√
𝐵)2 log𝑇

𝑁𝑖 (𝑇 ) . Hence, by Lemma 5.1, under event E, we could obtain that

𝑅𝑚 (𝑇 ) ≤ Com𝑚 . (5)

Secondly, by Lemma H.1, we know that with high probability, 𝑁 ′
𝑖
(𝑇 ) ≥ (

√
2−
√
3/2)2 log𝑇
4Δ2

𝑖

. Hence

𝑅𝑈𝐶𝐵 (𝑇 ) =
𝑁∑︁
𝑖=2

𝑁 ′
𝑖 (𝑇 )Δ𝑖 ≥

𝑁∑︁
𝑖=2

(
√
2 −

√︁
3/2)2 log𝑇
4Δ𝑖

.

On the other hand,

Cost𝑚 =

𝑁∑︁
𝑖=2

𝑁𝑖 (𝑇 )

√√
(
√
2 −

√︁
3/2)4 log𝑇

128(1 +
√
𝐵)2𝑁𝑖 (𝑇 )

≤
𝑁∑︁
𝑖=2

(
√
2 −

√︁
3/2)2 log𝑇
4Δ𝑖

,

where the last inequality holds because of Lemma 5.1. This means that

Cost𝑚 ≤ 𝑅𝑈𝐶𝐵 (𝑇 ). (6)

Along with Eq. (5), we finish the proof of Theorem 5.2. □

J EXPERIMENTAL DETAILS.
The type of compute worker used in our experiment is CPU. Our experimental environment is a machine with 96 Intel(R) Xeon(R) Gold

5220R CPUs @ 2.20GHz, with an x86_64 architecture.

J.1 Regret/Time experiments
To demonstrate that our algorithm can still function properly when one person shares multiple arms and to show the relationship between

regret and T, we conduct the following Regret/Time experiments. In this experiments, there are 20 agents and 10 arms with an expected

reward vector 𝜇 = [0.95, 0.85, 0.75, 0.65, 0.55, 0.45, 0.35, 0.25, 0.15, 0.05]. we set 𝑇 = 10
5
, 𝐵 = 1 and each agent shares multiple arms (more

than one arm). Specifically, For agent m, her non-sensitive arm set is {𝑚 mod 10, (𝑚 + 1) mod 10}. All these results take an average over

100 independent runs. We can see that the average regret of Balanced-ETC is significantly less than the regret of 2-UCB, which means our

algorithm can effectively reduce the overall regret.
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Figure 3: regret with T

J.2 Experimental results of random setting
To enhance the experimental section, we design experiments involving randomized reward distributions and randomized information-sharing

structures. These experiments are more practical in nature and aim to validate our theoretical findings. In the setting we considered, the

expected reward for each arm is a random value within the interval [0, 1], and the arm that each agent is willing to share is randomly
selected. Under the condition that each arm has at least one agent willing to share, we conducted 100 experiments and averaged the results.
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Figure 4: experimental results of random setting

Our experiments confirm our previous findings, showing that the average individual regret (blue line) keeps decreasing and tends to be zero

when there are more agents involved. This indicates that our algorithm continues to perform effectively in a more practical environment.


	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	3.1 The Overall Regret
	3.2 The Individual Rationality

	4 Minimizing Overall Regret
	4.1 Balanced-ETC Algorithm
	4.2 Regret Analysis
	4.3 How Much Shared Information Do We Need?

	5 Incentive Mechanism in Balanced-ETC
	5.1 Incentive Mechanism
	5.2 Theoretical Analysis

	6 Experiments
	7 Conclusion
	Acknowledgments
	References
	Appendices
	A Proof of Lemma 4.3
	B Proof of Lemma 4.4
	C Proof of Lemma 4.5
	D Proof of Lemma 4.6
	E Proof of Theorem 4.1
	F Proof of Theorem 4.7
	G Proof of Lemma 5.1
	H Proof of Lemma H.1
	I Proof of Theorem 5.2
	J Experimental details.
	J.1 Regret/Time experiments
	J.2 Experimental results of random setting


