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ABSTRACT
In many multi-agent applications such as distributed
sensor nets, a network of agents act collaboratively un-
der uncertainty and local interactions. Networked Dis-
tributed POMDP (ND-POMDP) provides a framework
to model such cooperative multi-agent decision mak-
ing. Existing work on ND-POMDPs has focused on
offline techniques that require accurate models, which
are usually costly to obtain in practice. This paper presents
a model-free, scalable learning approach that synthe-
sizes multi-agent reinforcement learning (MARL) and
distributed constraint optimization (DCOP). By exploit-
ing structured interaction in ND-POMDPs, our approach
distributes the learning of the joint policy and employs
DCOP techniques to coordinate distributed learning to
ensure the global learning performance. Our approach
can learn a globally optimal policy for ND-POMDPs
with a property called groupwise observability. Exper-
imental results show that, with communication during
learning and execution, our approach significantly out-
performs the nearly-optimal non-communication poli-
cies computed offline.

INTRODUCTION
Decentralized partially observable MDP (DEC-POMDP) provides

a powerful framework for modeling cooperative multi-agent deci-
sion making problems under uncertainty. Due to the intractability
of optimally solving general DEC-POMDPs, research has focused
on restricted versions of DEC-POMDP that are easier to solve yet
rich enough to represent many practical applications. Networked
Distributed POMDP (ND-POMDP) [1] is one such model that is
inspired by a real-world sensor network coordination problem [2].
ND-POMDP assumes transition and observation independence and
locality of interaction.

A rich portfolio of algorithms have been developed for solv-
ing ND-POMDPs [1, 3, 4]. One good feature of these techniques
is that, although computing policies is centralized or requires ex-
tensive communication, executing computed policies does not re-
quire explicit communication. However, this feature may prevent
agents from better coordination during execution when communi-
cation is allowed. In fact, in many practical applications, commu-
nications (at least between neighboring agents) are necessary for
agents to perform tasks. For example, for target tracking in sen-
sor networks, agents need to fuse their observations and actions to
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determine sensing results. The work [5] introduced communication
in ND-POMDPs to periodically synchronize the belief state and ex-
tended existing algorithms to obtain policies with longer horizons.
However, extensive communication is required for global synchro-
nization, which is not scalable. In addition, all these algorithms for
ND-POMDPs are offline techniques and require accurate models
of the environment, which are usually costly to obtain in practice.

In this paper, we present a model-free, scalable learning approach
to developing policies for ND-POMDPs. Our approach synthesizes
multi-agent reinforcement learning (MARL) and distributed con-
straint optimization (DCOP). By exploiting locality of interactions
in ND-POMDPs, our approach factors a global joint action-value
function and distributes the learning of the joint policy, which po-
tentially scales up the learning to large-scale ND-POMDPs. Us-
ing communication between neighboring agents, our approach em-
ploys DCOP techniques to coordinate distributed learning to ensure
the global performance. Coordinated reinforcement learning based
on coordination graphs [6] has been explored in [7, 8] for factored
MDPs. In contrast to these previous work, in this paper, we explore
coordinated multi-agent reinforcement learning in a principled way
in ND-POMDPs and prove that our coordinated learning approach
can learn the globally optimal policy for ND-POMDPs with a prop-
erty, called groupwise observability. In addition, we also demon-
strate that a max-sum algorithm [9] can be used for an approxi-
mate solution to our distributed coordination problem in learning,
which requires limited communication overhead (typically scaling
linearly with the number of agents) and computation. This DCOP
algorithm can be readily implemented as an anytime algorithm to
trade off solution quality and cost of computation and communi-
cation. Unlike the message-passing algorithm in [8], this algorithm
can be directly used for coordinating interactions involving more
than two agents. Our previous work [10, 11] presented a general
supervisory framework for coordinating MARL, but did not pro-
vide a general coordination algorithm. In this paper, we demon-
strate that DCOP algorithms can be used as general techniques for
coordinating MARL in ND-POMDPs. Experimental results show
that, even in ND-POMDPs without groupwise observability, our
approach scales to larger domains and performs significantly bet-
ter and with orders of magnitude time savings (in the offline mode)
over the previous best offline algorithm. Note that, as our approach
needs communication during execution, a direct comparison among
approaches is not appropriate. However, the offline results do pro-
vide a way to evaluate our approach by providing a baseline (i.e.,
nearly-optimal performance without communication).

BACKGROUND
This section briefly introduces an illustrative problem in the sen-

sor network domain, the ND-POMDP model, and basic learning



Figure 1: A 4-chain sensor configuration

approaches.

Illustrative Domain
This illustrative problem is motivated by a real-world challenge,

where a network of agents (sensors) are used to track targets. Fig-
ure 1 shows a specific problem instance consisting of four sensors.
Here, each sensor node can scan in one of four directions: North,
South, East or West. To track a target and obtain the associated re-
ward, two sensors with overlapping scanning areas must coordinate
by scanning the same area simultaneously. For example, sensor1
needs to scan East and sensor2 needs to scan West simultaneously
to track a target in location1. Thus, sensors have to act in a coor-
dinated fashion. The movement of targets is unaffected by sensor
agents. Sensors have imperfect observability of the target, so there
can be false positive and negative observations. Sensors receive a
reward on successfully tracking a target, and they incur a cost, when
they either scan an area in an uncoordinated fashion or when the
target is absent.

Networked Distributed POMDPs
Observe that sensors in this domain are mostly independent. Their

state transitions, given the target location and the observations, are
independent of the actions of the other agents. The only dependence
arises from the fact that two agents must coordinate by scanning the
same region to track a target. This dependence can be translated
into a joint reward function. Such dependence is usually localized
among a few agents (only two agents in this sensor network prob-
lem). The ND-POMDP model [1] was introduced to express such
a type of interactions.

DEFINITION 1. An ND-POMDP is defined by the tuple
⟨I, S,A,Ω, P,O,R, b⟩, where

I = {1, . . . , n} is a set of agent indices.

S = ×i∈ISi × Su. Si refers to the local state of agent i. Su

refers to a set of uncontrollable states that are independent of
the actions of the agents. In the sensor network example, Si

is empty, while Su corresponds to the set of locations where
targets can be present.

A = ×i∈IAi, where Ai is the set of actions for agent i. For the
sensor network example, A1 = {N,W,E, S,Off}.

Ω = ×i∈IΩi is the joint observation set.

P P (s′|s, a) = Pu(s
′
u|su) ·

∏
i∈I Pi(s

′
i|si, su, ai), where a =

⟨a1, . . . , an⟩ is the joint action performed in joint state s =
⟨su, s1, . . . , sn⟩ resulting in joint state s′ = ⟨s′u, s′1, . . . , s′n⟩.
(This models the transition independence.)

O O(ω|s, a) =
∏

i∈I Oi(ωi|si, su, ai), where s is the joint
state resulting after taking joint action a and receiving joint
observation ω. (This models the observation independence.)

R R(s, a) =
∑

l Rl(sl, su, al). The reward function is decom-
posable among sub groups of agents referred by l. If k = |l|
agents i1, . . . , ik are involved in a particular sub group l,

then sl denotes the state of group l, i.e., ⟨sl1, . . . , slk⟩. Simi-
larly, al = ⟨al1, . . . , alk⟩. In the sensor domain, the reward
function is expressed as the sum of rewards between sensor
agents that have overlapping areas (k = 2) and the re-
ward functions for an individual agent’s cost for sensing(k =
1). Based on the reward function, an interaction hypergraph
G = (I, E) can be constructed, where I is a vertex (i.e.,
agent) set and E is a set of hyperlinks. A hyperlink l ∈ E
connects the subset of agents which form the reward compo-
nent Rl. Note that this interaction hypergraph will be used
to develop our learning approach in later sections.

b b = (bu, b1, . . . , bn) is the initial belief (or distribution) for
joint state s = ⟨su, s1, . . . , sn⟩ ∈ S and b(s) = b(su) ·∏

i∈I bi(si), where bu and bi are the initial distribution over
Su and Si.

The goal for ND-POMDPs is to compute a joint policy π that
maximizes the total expected reward of all agents over a finite hori-
zon T starting from b. Without communication, agents can only act
based on its local observations. In this case, a joint policy π is de-
fined by ⟨π1, . . . , πn⟩, where πi refers to the individual policy of
agent i that maps its history of observations to an action ai ∈ Ai. If
communication is allowed, a joint policy π can also be defined by
one policy, called global policy, that maps from a history of joint
observations to a joint action a ∈ A. This is because agents can ex-
change their observations and select actions based on joint obser-
vations. Obviously, the optimal global policy inherently performs
better than the optimal set of individual policies. In this paper, we
assume agents can communicate (at least with their neighbors) dur-
ing the execution time and focus on representing and learning the
optimal global policy in a scalable way.

Basic Learning Approaches
To learn the joint policy, we need to define Q-function (or Q-

value function). Let Q-function Q(⃗h, a) represent the expected re-
ward of doing joint action a with history h⃗ of joint observations
and actions and behaving optimally from then on. The globally
joint policy π can be derived from Q(⃗h, a) by setting π(⃗h) =

argmaxa∈AQ(⃗h, a).
In principle, we can directly estimate Q(⃗h, a) by using standard

single-agent Q-learning:

Q(⃗ht, at) = (1− α)Q(⃗ht, at) + α[rt + γmax
a

Q(⃗ht+1, a)] (1)

where α ∈ (0, 1) is the learning rate, rt is the immediate reward
of doing at for observation history h⃗t, γ ∈ [0, 1] is the discount
factor, which is usually set to 1 for a finite horizon. We call this
approach globally joint learning. Although this approach leads to
an optimal policy, it is practically intractable, because the policy
space is exponential in the number of agents and the agents might
not have access to the needed information (i.e., observations, ac-
tions, and rewards of all other agents) for learning and selecting
actions.

At the other extreme, we can have the independent learning ap-
proach [12] in which agents ignore the actions and rewards of the
other agents, and concurrently learn their own action-value func-
tions solely based on their local observations and rewards. To pro-
vide local rewards in ND-POMDPs, we can split the reward com-
ponent Rl evenly among agents in group l. This approach is dis-
tributed, results in big storage and computational savings in the
policy space, and does not require communication during learn-
ing and execution. However, this approach lacks coordination and



might lead to oscillations or converge to local optimal policies. For
example, in Figure 1, if location1, location2, and location3 always
have targets with sensing reward 50, 60, and 50, respectively, then,
by using independent learning approach, sensor2 and sensor3 will
learn to always sense location2, which is locally optimal with aver-
age expected reward 60. However, the optimal policy is that sensor1
and sensor2 always sense location1 and sensor3 and sensor4 always
sense location3, whose global expected reward is 100. Therefore,
some form of coordination is needed in order to learn the globally
optimal policy.

COORDINATED MULTI-AGENT REINFORCE-
MENT LEARNING

As discussed in the previous section, directly learning the glob-
ally joint policy in a centralized way is infeasible from a practical
perspective, while independent learning is a distributed, scalable
approach, but may yield poor global performance. In this section,
we present a coordinated multi-agent learning approach for ND-
POMDPs that attempts to achieve both scalability and optimality
(or near-optimality). This approach distributes the learning by ex-
ploiting structured interactions in ND-POMDPs and coordinates
distributed learning to ensure the global performance.

Our approach optimizes a decomposable Q-function Q̂(⃗h, a) that
is used to approximate the global Q-function Q(⃗h, a). This Q-function
Q̂(⃗h, a) is defined as a sum of smaller local Q-functions based on
hyperlinks in the interaction hypergraph of ND-POMDPs, that is,

Q̂(⃗h, a) =
∑
l∈E

Ql(⃗hl, al), (2)

where Ql(⃗hl, al) is the expected reward for agents on hyperlink
l by doing joint action at

l at joint history h⃗t
l and behaving glob-

ally optimally from then on in respect to maximizing Q̂(⃗h, a). We
will show in the next subsection that this approximation becomes
exact for ND-POMDPs with a property called groupwise observ-
ability, which will lead to the theoretical result of optimality for
our approach. In fact, this approximation is reasonable for general
ND-POMDPs. This is because the global reward in ND-POMDPs
is the sum of local rewards of groups defined on hyperlinks in the
interaction hypergraph, and, as a result, Q(⃗h, a) and Q̂(⃗h, a) are
strongly positively correlated. Therefore, maximizing Q̂(⃗h, a) can
potentially optimize Q(⃗h, a). Our experimental results will verify
this hypothesis on ND-POMDPs without the groupwise observabil-
ity property.

Q-learning is used to learn the optimal Q̂(⃗h, a). With the de-
composition in (2), the global Q-learning update rule in (1) can be
rewritten as

∑
l∈E Ql(⃗h

t
l , a

t
l) = (1− α)

∑
l∈E Ql(⃗h

t
l , a

t
l)

+ α[
∑

l∈E rtl + γmaxa Q̂(⃗ht+1, a)]
(3)

Note that the discounted future reward, maxa Q̂(⃗ht+1, a), can
not be directly written as the sum of local discounted future re-
wards, because it depends on the joint action that maximizes the
global value. Fortunately, we can accomplish this by defining the
joint action a∗ = argmaxaQ̂(⃗ht+1, a) and maxa Q̂(⃗ht+1, a) =

Q̂(⃗ht+1, a∗) =
∑

l∈E Ql(⃗h
t+1
l , a∗

l ). We are now able to decom-
pose all terms in (3) and write the update rule for each group l:

Ql(⃗h
t
l , a

t
l) = (1− α)Ql(⃗h

t
l , a

t
l) + α[rtl + γQl(⃗h

t+1
l , a∗

l )] (4)

Similar to Sparse Cooperative Q-Learning [8], update rule in

(4) is based on local reward and Q-function, except for a∗
l . Note

that the local contribution Ql(⃗h
t+1
l , a∗

l ) of group l to the global
action value might be lower than maxal Ql(⃗h

t+1
l , al), the maxi-

mizing value of its local Q-function, because it is unaware of the
dependencies among groups. We will use distributed constraint op-
timization (DCOP) techniques to compute a∗

l , which will be dis-
cussed later. Update rule in (4) is different from coordinated rein-
forcement learning approach in [7], where local Q-function update
depends on the global reward signal and the global Q-value, which
are not usually specifically tailored to local behaviors, thus result-
ing in slower learning convergence.

Using update rule in (4), our approach distributes the learning of
the global function Q̂ among groups. Our approach assumes that
each group has a delegate agent (which can be chosen arbitrarily
from a group) that learns Ql on behalf of the group. The basic
learning process is as follows. During each learning cycle t, after
executing actions at

l , agents in group l receive and transmit their
observations to the delegate agent of their group and the delegate
agent receives its group reward signal rtl . Using its updated obser-
vation history h⃗t+1

l , the delegate agent then computes the next best
action al∗ for h⃗t+1

l by using a DCOP technique and updates its Q-
function Ql using rule (4). Finally, it distributes the next actions to
its group members, which will be al∗ or some exploration actions.

The learned global Q-function is distributedly represented by lo-
cal Q-functions of delegate agents. As a result, during execution,
agents’ action selections are computed online in a distributed man-
ner by a DCOP algorithm from local Q-fuctions. Note that local Q-
function Ql(⃗h

t
l , a

t
l) is defined on the observation history of group

l, which scales exponentially with the horizon. To deal with a large
horizon, one approach is to use a fixed-size window of observa-
tions, as we did in our experiments. Other more sophisticated ap-
proaches (i.e., utile suffix memory [13]) for dealing with partial
observability can also be used with our approach.

In next two subsections, we will formally analyze the optimality
of our approach and discuss how to compute joint action selections
for learning or execution.

Optimality Analysis
In this section, we first define a property for ND-POMDPs, called

groupwise observability, and then prove that our approach can learn
an optimal policy for ND-POMDPs with this property.

DEFINITION 2. An ND-POMDP is said to have groupwise ob-
servability if, for all l ∈ E, the set of observations ωl = ⟨ωl1, . . . , ωlk⟩
made by agents on hyperlink l together fully determine the current
uncontrolled state, that is, if ∀l∀ωl∃su : Pr(su|ωl) = 1.

Note that this property does not imply that agents can observe their
local states or states of other agents. It does imply that, for each
agent i ∈ l, Pi(s

′
i|si, su, ai, ωl) = Pi(s

′
i|si, ai, ωl) and Oi(ωi|si,

su, ai, ωl) = Oi(ωi|si, ai, ωl), which means, given joint observa-
tion ωl, observation and transition of agent i on l are completely
independent of observations and actions of other agents, and, as a
result, its local belief update only depends on its local action and
observation. This further implies that, in ND-POMDPs with group-
wise observability, the local belief of agent i ∈ l can be fully deter-
mined by its initial local state and the history of joint observations
and actions of agents on l.

The theoretical result of optimality of our approach is as follows.

THEOREM 1. For ND-POMDPs with groupwise observability,
under basic assumption of Q-learning and by using update rule (4),
Ql(⃗hl, al) will converge to the optimal Q∗

l (⃗hl, al), for all l ∈ E,



and the policy π∗(⃗h) = argmaxa

∑
l∈E Q∗

l (⃗hl, al) is globally
optimal.

The proof for this theorem can be conducted by showing that
Q-function Q̂ defined in Equation (2) is exactly the same as the ob-
jective function Q of ND-POMDPs. This is because, if the approx-
imation of Q̂ is exact, then our coordinated learning approach de-
scribed above is essentially a distributed version of update rule (1)
that uses Q-learning, which leads to the global optimal Q∗(⃗h, a).
The exactness of this approximation for ND-POMDPs with group-
wise observability will be shown by Proposition 2.

Our proof first defines a Q-function with state variables, then
shows it is decomposable, and finally uses this result to prove the
approximation of Q̂ to Q is exact for ND-POMDPs with group-
wise observability. To simplify the equations, we introduce some
abbreviations:

pti ≡ Pi(s
t+1
i |sti, stu, at

i) ·Oi(ω
t+1
i |st+1

i , st+1
u , at

i)

ptu ≡ Pu(s
t+1
u |stu)

rtl ≡ Rl(sl, su, al)

Qt ≡ Qt(st, h⃗t, at)

Qt∗ ≡ max
a

Qt(st, h⃗t, a)

Qt
l ≡ Qt

l(s
t
l , s

t
u, h⃗l

t
, at

l)

The global Q-function Q(st, h⃗t, at) with state will satisfy the
Bellman equation:

Q(st, h⃗t, at) = R(st, at) + γ
∑

st+1,wt+1

ptup
t
1 . . . p

t
nQ

(t+1)∗,

where h⃗t+1 is h⃗t appended by ⟨at, ωt+1⟩.
Let bt be the belief state at time t. As bt is fully determined by

the initial belief b and history h⃗t of joint observations and actions,
we have

Q(⃗ht, at) =
∑
s∈S

bt(s)Q(st, h⃗t, at). (5)

Similarly, we define a Q-function for each hyperlink l:

Ql(s
t
l , s

t
u, h⃗l

t
, at) = rtl + γ

∑
st+1
l

,ωt+1
l

ptup
t
l1 . . . p

t
lkQ

t+1∗
l ,

where h⃗l
t+1

is h⃗l
t

appended by ⟨at
l , ω

t+1
l ⟩ and Qt+1∗

l denotes

Ql(s
t+1
l , h⃗l

t+1
, a∗

l ), where a∗
l is the globally optimal joint action

taken by agents on l in the next global state and history of joint
observations and actions of all agents.

For ND-POMDPs with groupwise observability, as btu(su) is
fully determined by history h⃗l

t
of joint observations and actions,

and, for i ∈ l, bti(si) is fully determined by the initial belief bi(si)
and history h⃗l

t
, we then have

Q(h⃗l
t
, at

l) =
∑
sl,su

btl(su, sl)Ql(sl, su, h⃗l
t
, at

l). (6)

PROPOSITION 1. In ND-POMDPs, the global function Qt(st, h⃗t, at)
for any finite horizon T is decomposable, that is,

Qt(st, h⃗t, at) =
∑
l∈E

Qt
l(s

t
l , s

t
u, h⃗l

t
, at

l). (7)

PROOF. Proof is by mathematical induction. Proposition holds
for t = T − 1 because rt =

∑
l∈E rtl and there is no future

reward. Assume it holds for t where 1 ≤ t ≤ T − 1, that is,
Qt =

∑
l∈E Qt

l .
Now let us show that proposition holds for t− 1.

Qt−1 = R(st−1, at−1) + γ
∑
st,wt

pt−1
u pt−1

1 . . . pt−1
n Qt∗

=
∑
l∈E

rt−1
l + γ

∑
st,wt

pt−1
u pt−1

1 . . . pt−1
n

∑
l∈E

Qt∗
l

=
∑
l∈E

[rt−1
l + γ

∑
st
l
,stu,wt

l

pt−1
u pt−1

11 . . . pt−1
lk Qt∗

l ]

=
∑
l∈E

Qt−1
l

Based on Proposition 1, Equation 5 and 6, we can show an exact
decomposition of the Q-function without state.

PROPOSITION 2. In ND-POMDPs with groupwise obserbabil-
ity, the global Q-value function Qt(⃗ht, at) for any finite horizon T
is decomposable, that is,

Qt(⃗ht, at) =
∑
l∈E

Qt
l(h⃗l

t
, at

l). (8)

PROOF.

Q(⃗ht, at) =
∑

su,s1,...,sn

btu(su)b
t
1(s1) . . . b

t
n(sn)·∑

l∈E

Qt
l(sl, su, h⃗l

t
, at

l)

=
∑
l∈E

∑
sl,su

btl(su, sl)Q
t
l(sl, su, h⃗l

t
, at

l)

=
∑
l∈E

Qt
l(h⃗l

t
, at

l).

This proposition completes the proof of Theorem 1. Note that
the work [1] also showed that the value function of a given joint
policy can be decomposed and the work [14] generalized its result
to factored Dec-POMDPs. However, unlike our Q-value function
decomposition, decomposition components of their value function
are defined on a joint policy, so their results are not directly appli-
cable to the proof of Theorem 1.

Optimal Joint Action Selection
Our learning approach requires computing the joint action that

maximizes the global Q-value function for updating local Q-functions
or for acting during execution. We can formulate this problem as a
DCOP, which is defined by a set of discrete variables a = {a1, . . . , an},
where ai ∈ Ai is controlled by agent i and represents its action
choice, and a set of functions Q = {Ql|l ∈ E}, where Ql is the Q-
value function for hyperlink l. Note that history h⃗ is fixed for every
computation, so we will ignore it in the following discussion and
denote Ql(⃗h, al) by Ql(al). The goal is to find the joint action a∗,
such that the global Q-value function, the sum of all Q-functions, is
maximized, that is, a∗ = argmaxa

∑
l∈E Ql(al). We can represent

this DCOP as a factor graph by creating a node for each variable
and for each function and connecting a function node to a variable
node if the corresponding function is dependent upon that variable.
The resulting graph is bipartite.



A variable elimination algorithm [6] can be used to compute an
optimal solution for this DCOP, but it requires extensive commu-
nication and computation (scaling exponentially with the induced
width of the agent interaction graph). In this paper, we investigate
the max-sum algorithm [9] for an approximate solution, which re-
quires much less communication and computation and can be read-
ily implemented as an anytime algorithm to trade off the quality
and efficiency of computing joint actions. Unlike the max-plus al-
gorithm in [8], this algorithm can be directly used for coordinating
interactions involving more than two agents.

The max-sum algorithm operates directly on the factor graph,
and does so by specifying the messages that should be passed from
variable to function nodes, and from function nodes to variable
nodes, which are defined as follows:

- Message from variable node i to function node l:

qi→l(ai) =
∑

g∈Fi\l

rg→i(ai) + cil

where Fi is a vector of function indexes, indicating which
function nodes are connected to variable node i, and cil is a
normalizing constant to prevent the messages from increas-
ing endlessly in cyclic graphs.

- Message from function node l to variable node i:

rl→i(ai) = max
al\ai

[Ql(al) +
∑

g∈Vl\i

qg→l(ag)]

where Vl is a vector of variable indexes, indicating which
variable nodes are connected to function node l and al\ai =
{ag : g ∈ Vl\i}.

Here variable node i is agent i who needs to select its action
and function node l is the delegate agent of hyperlink l that hosts
the Q-value function Ql. If the factor graph is cycle-free, the algo-
rithm is guaranteed to converge to the optimal global solution such
that each agent i can find its optimal action a∗

i by locally calcu-
lating a∗

i = argmaxai
zi(ai), where zi(ai) =

∑
g∈Fi

rg→i(ai).
Otherwise, there is no guarantee of convergence. However, exten-
sive empirical results show that, even in this case, the algorithm
frequently provides good solutions. Before convergence, the value
zi(ai) of agent i calculated from incoming messages is actually an
approximation of the exact value of action ai given other agents act
optimally. Therefore, the max-sum algorithm can be implemented
as an anytime algorithm by controlling the number of rounds of
passing messages, which will trade off the quality and efficiency (or
communication cost) of the action selection. In addition, the max-
sum algorithm is essentially distributed. Its messages are small (lin-
early scaling with the maximum number of actions of agents), the
number of messages typically varies linearly with the number of
agents and hyperlinks, and its computational complexity scales ex-
ponentially with the maximum size of hyperlinks (which typically
is much less than the total number of agents).

EXPERIMENTS
To evaluate our coordinated learning (CL) approach in general

ND-POMDPs, we experimented it in the illustrative sensor network
domain, which does not have the groupwise observability property.
We compared CL with the independent learning (IL) approach (de-
scribed in the Background Section) and CBDP [4], one of the most
efficient algorithms for ND-POMDPs. We conducted experiments
with configurations shown in Figure 2. The first three configura-
tions are introduced in [3], but we changed their initial beliefs to an

15-3D

7-H
11-Helix

25-Grid

Figure 2: Sensor network configurations

uniform distribution over ten states to increase problem difficulty.
The 25-grid sensor network has two targets with the same sensing
rewards as 15-3D, but has a larger state space and longer target
paths.

Since both CL and IL are model-free, we develop a simulator for
ND-POMDPs to learn and evaluate policies. The evaluation pro-
cess is as follows: for each ND-POMDP, we use CBDP to solve it
and get its joint policy, then run both learning approaches in a simu-
lator for that ND-POMDP, whose learning time is set to some ratio
of CBDP’s computation time, and, finally evaluate learned policies
and CBDP’s policy in the simulator. The solution quality for each
horizon is indicated by the expected global reward for that horizon.
Solution quality is computed over 10000 simulation runs. Results
are then averaged over 10 experiments and the deviation is com-
puted, which is very small (under 5) and not shown properly in the
following figures. The learning rate α is set to 0.001 and discount
factor γ = 1. Both learning approaches learned policies that map
fixed-windows of observations (with size ≤ 4) to an action even for
scanarios with horizon greater than 5. To trade off the speed and
solution quality, we restricted the max-sum algorithm passing mes-
sages at most 4 rounds for each joint action computation (except
for experiments of controlling communication).

Figure 3 (a) shows the solution quality of CL and IL with differ-
ent learning time on the configuration 15-3D with horizon T = 10.
The configuration 15-3D is the most complex problem instance for
CBDP. The x axis represents the ratio of learning time to CBDP’s
computation time, which is plotted with a logarithmic scale. The
performance of both CL and IL generally increases with more train-
ing time. We observe that CL can learn policies, whose perfor-
mance surpasses that of CBDP’s policy, with learning time two or-
ders of magnitude less than CBDP’s computation time. However,
IL performs much worse than CL and CBDP. One reason is that,
as we have discussed, IL can only converge to local optima, which
is far away from the global optimal solution on the configuration
15-3D. This result actually illustrates the importance of the coor-
dination during learning and execution. Another reason is that IL
(and CL) uses fixed-window policy that maps up to 4 observations
to an action, while CBDP’s policies with horizon T = 10 maps up
to 9 observations to an action. We did observe that IL could per-
form comparably or better than CBDP on smaller problems with
small horizon (e.g., one the domain 11-Helix with 5 horizon).

Figure 3 (b) shows the solution quality over a range of horizons
on the configuration 15-3D. We can see that the solution quality of
CL linearly increases with the horizon size, whose increase rate is
greater than CBDP. This indicates that CL can potentially scale bet-
ter than CBDP with the horizon size. Figure 3 (c) shows the solu-
tion quality on other configurations, where 15-Mod is the modified
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Figure 3: Solution quality over (a) different ratios of learning time of IL and CL to CBDP’s policy computation time on 15-3D with
horizon T = 10, (b) over different horizons on 15-3D, and (c) different network configurations with T = 10. Note that IL and CL in
(b) and (c) use the same learning time as CBDP’s policy computation time.
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Figure 4: Trade-off of solution quality and communication
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Figure 5: Solution quality for a range of horizons on 25-grid

version of 15-3D with different target paths. Consistent with results
on 15-3D, CL performs best, then CBDP, and finally IL.

By controlling the maximum round of message passing between
agents and their group delegates for computing joint actions, we
can trade off solution quality and cost of communication and com-
putation. Figure 4 show the solution quality of CL over different
maximum rounds of message passing on the domain 15-3D with
horizon 10 and the same learning time as CBDP’s computation
time. We can observe that CL still performs significantly better than
CBDP, even when using only one-round message passing. Note that
when using fixed learning time, more rounds of message passing do
not necessarily yield better learning performance. This is because,
although using more rounds of message passing computes better
joint actions, it results in more communication and computation at
each learning cycle and learning with less total cycles.

We also evaluated CL and IL on the 25-grid problem, where
CBDP could not scale even to horizon 2. The learning time is set to
200 seconds for horizon 5 and linearly increases with the horizon.
Figure 5 shows solution quality over horizons up to 100. The solu-
tion quality of CL almost doubled that of IL and increases linearly
with the horizon.

SUMMARY
We have introduced a model-free, multi-agent learning approach

for ND-POMDPs. This approach decomposes and distributes the
learning of the optimal global joint policy by exploiting its struc-
tured interactions through a decomposable reward function and in-
dependence among agents. Distributed learning is coordinated through
joint action selection computed by distributed constraint optimiza-
tion (DCOP) techniques, which ensure the optimality of the learn-
ing for ND-POMDPs with groupwise observability. By exploit-
ing the property of locality of interactions in ND-POMDPs, the
learning complexity potentially scales linearly with the number of
agents. To trade off solution quality and communication and com-
putation efficiency, a max-sum algorithm is used to compute an
approximate solution for our DCOP. Experimental results show
that, by exploiting extra communication during learning and execu-
tion, this approach significantly outperforms off-line construction
of nearly-optimal no-communication policies.
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