
Coordinating Multi-Agent Reinforcement Learning with
Limited Communication

Chongjie Zhang, and Victor Lesser
University of Massachusetts Amherst

Amherst, MA, US
{chongjie,lesser}@cs.umass.edu

ABSTRACT
Coordinated multi-agent reinforcement learning (MARL) provides
a promising approach to scaling learning in large cooperative multi-
agent systems. Distributed constraint optimization (DCOP) tech-
niques have been used to coordinate action selection among agents
during both the learning phase and the policy execution phase (if
learning is off-line) to ensure good overall system performance.
However, running DCOP algorithms for each action selection through
the whole system results in significant communication among agents,
which is not practical for most applications with limited communi-
cation bandwidth. In this paper, we develop a learning approach
that generalizes previous coordinated MARL approaches that use
DCOP algorithms and enables MARL to be conducted over a spec-
trum from independent learning (without communication) to fully
coordinated learning depending on agents’ communication band-
width. Our approach defines an interaction measure that allows
agents to dynamically identify their beneficial coordination set (i.e.,
whom to coordinate with) in different situations and to trade off its
performance and communication cost. By limiting their coordina-
tion set, agents dynamically decompose the coordination network
in a distributed way, resulting in dramatically reduced communi-
cation for DCOP algorithms without significantly affecting overall
learning performance. Essentially, our learning approach conducts
co-adaptation of agents’ policy learning and coordination set iden-
tification, which outperforms approaches that sequence them.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems, Coherence and coordination

General Terms
Performance, Design, Algorithms, Experimentation

Keywords
Multiagent learning, coordinated learning, distributed constraint op-
timization

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Cooperative multi-agent systems are finding applications in a

wide variety of practical domains, including robotics, sensor net-
works, distributed control, collaborative decision support systems,
supply chains, and data mining. A cooperative multi-agent system
(MAS) is composed of a set of autonomous agents that interact with
one another in a shared environment in order to reach a shared goal
or optimize a global performance measure. A central challenge in
cooperative MAS research is to design distributed decision policies
for agents to coordinate their actions. Multi-agent reinforcement
learning (MARL) provides an attractive approach for agents to de-
veloping effective coordination policies without explicitly building
a complete decision model. MARL allows agents to explore en-
vironment through trial and error, adapt their behaviors to the dy-
namics of the uncertain and evolving environment, and gradually
improve their performance through experiences.

One of key research challenges is to scale MARL to large co-
operative systems. One promising direction to address this chal-
lenge is to coordinate multi-agent learning that exploits both in-
teraction locality and non-local information. Agents learn their
policies based on their local observations and interactions, while
their learning processes are coordinated to ensure the overall sys-
tem performance. The Multi-Agent Supervisory Policy Adapta-
tion (MASPA) approach [14] uses an emergent supervisory orga-
nization with low overhead that exploits non-local information to
dynamically coordinate and shape the learning processes of in-
dividual agents while still leaving agents to react autonomously
to local feedbacks. The original MASPA paper used some do-
main knowledge to generate supervisory information to coordinate
MARL and did not provide solutions for automating supervision
without domain knowledge. Coordinated multi-agent learning ap-
proaches [6, 8, 16, 3] exploit distributed constraint optimization
(DCOP) techniques to coordinate action selection during the learn-
ing, which does not require domain knowledge. However, running
DCOP algorithms for each action selection through the whole sys-
tem results in intensive computation and significant communication
among agents, which is not practical for most applications with lim-
ited computational resources and communication bandwidth.

In this paper, we develop a learning approach that generalizes
previous coordinated MARL techniques [6, 8, 16] and enables MARL
to be conducted over a spectrum from independent learning (with-
out communication) to fully coordinated learning depending on
agents’ communication bandwidth. In many practical applications,
although agents may interact with many others over time, they usu-
ally only need to coordinate with very few (e.g., one or two) agents
that strongly affect their performance at most decision-making points.
To exploit this interaction property, we defines an interaction mea-
sure that allows agents to dynamically estimate the potential util-

ity loss for lack of coordination with any subgroup of agents. Us-
ing this estimation, agents can compute their beneficial coordina-
tion set (i.e., containing agents whom to coordinate with) in differ-
ent situations and make the best use of their limited communica-
tion bandwidth to coordinate their learning processes. By limiting
the maximum potential loss for lack of coordination, our approach
prompts agents to minimize their coordination set. This minimiza-
tion will dramatically reduce the number of links on the agent coor-
dination network and often decompose it into smaller disjointed sub
networks, which results in dramatically reducing communication
and computation of DCOP algorithms without significantly affect-
ing overall learning performance. Empirical results confirm that
our learning approach can effectively trade off the overall learn-
ing performance and communication cost for coordinating agents’
learning processes. Essentially, our learning approach co-adapts
two interacting activities, i.e., agents’ policy learning (or value func-
tion learning) and coordination set identification, that is, agents
concurrently learn their policies and their coordination sets for dif-
ferent situations. Experiments show that this co-adaptation outper-
forms approaches that sequence them.

Note that the self-organization approach for coordinating MARL
in [15] is also a co-adaptation approach, which allows agents to dy-
namically evolving supervisory organizations for MASPA [14] to
better coordinate their learning processes while they are concur-
rently learning their operational policies. This self-organization is
intended to form a nearly decomposable hierarchical organization
structure to improve the performance of coordinating agents’ learn-
ing processes, while, in contrast, our approach attempts to mini-
mize the communication cost for coordinating agents’ learning pro-
cesses using DCOP algorithms without significantly affecting the
overall learning performance. In addition, the work [15] defines
an interaction measure that captures how important interactions
among a group of agents are to the system performance, but this
measure may not help to decide whether to coordinate their learn-
ing processes. For example, if this group of agents have already
implicitly been optimally coordinated through their local learning,
then they do not need additional coordination. In contrast, the inter-
action measure defined in this paper quantifies the potential loss of
an agent lack of coordination with any subgroup of agents, which
allows agents to identify which subgroups of agents they should
coordinate with in order to improve their learning performance.

2. COOPERATIVE MULTI-AGENT
DECISION-MAKING MODEL

A cooperative multi agent sequential decision-making problems
with N agents can be modeled as a Dec-POMDP [2]. In this pa-
per, we consider Dec-POMDPs with factored states and factored
rewards, which is a general case over a number of variants of Dec-
POMDPs, including Transition-Independent Dec-MDPs [1], Network-
Distributed POMDPs (ND-POMDPs) [12], Transition-Decoupled
POMDPs [13], and collaborative multi-agent MDPs [7].

Suppose we have n agents, indexed by {1, . . . , n}. Each agent
i must choose an action ai from a finite set of actions denoted by
Ai. The joint state s ∈ S can be factored as s = 〈su, s1, . . . , sn〉,
where su refers to the state of the external environment and si is
the local state of agent i. The environment is modeled by stationary
state transition probabilities P (s′|s, a) with an initial state distribu-
tion P (s0), where a = 〈a1, . . . , an〉 is the joint action performed
in joint state s resulting in joint state s′. After joint action a are
executed in joint state s, each agent i receive observation ωi gov-
erned by observation probability model O(ω1, . . . , ωn|s, a). An
agent interacts with different subgroups of agents. The joint re-

Figure 1: A 4-chain sensor configuration

ward function, R(s, a) =
∑

i

∑
gi
Rgi(si, sgi , su, ai, agi), is de-

composable among agents referred by i. The reward of agent i is a
sum of rewards it receives from subgroups of agents whom it inter-
acts with, referred by gi. If k = |gi| agents i1, . . . , ik are involved
in a particular subgroup gi, then sgi denotes the state of group gi,
i.e., sgi = 〈si1, . . . , sik〉. Similarly, agi = 〈ai1, . . . , aik〉.

Based on the reward function, we can denote the set of subgroups
of agents that agent i interacts with by Gi = {gi ∈ I | gi forms the
reward component Rgi for agent i}. We denote the set of agents
that interact with agent i by Ii = ∪gi∈Gigi. Although we define
i through the reward structures, in this paper, we assume that Ii
specifies all agents interacting with agent i either through its reward
function, state transition function, or observation function.

The goal for agents is to compute joint policy π that maximizes
the total expected utility of all agents. Without communication,
agents can only act based on their local observations. In this case,
joint policy π is defined by 〈π1, . . . , πn〉, where πi refers to the
individual policy of agent i that maps its history of observations
to an action ai ∈ Ai. If communication is allowed, joint policy
π can also be defined by one policy, called the global policy, that
maps from a history of joint observations to an joint action a ∈ A.
This is because agents can exchange their observations and select
actions based on joint observations. Obviously, the optimal global
policy inherently performs better than the optimal set of individual
policies. In this paper, we assume agents can communicate (at least
with their neighbors) and their action selections can be coordinated
through communication during learning.

3. BASIC LEARNING APPROACHES
To learn the joint policy, we need to define a Q-function (or Q-

value function). Let Q-function Q(~h, a) represent the expected re-
ward of doing joint action a with history ~h of joint observations
and actions and behaving optimally from then on. The globally
joint policy π can be derived from Q(~h, a) by setting π(~h) =

argmaxa∈AQ(~h, a).
In principle, we can directly estimate Q(~h, a) by using standard

single-agent Q-learning:

Q(~ht, at) = (1− α)Q(~ht, at) + α[rt + γmax
a

Q(~ht+1, a)] (1)

where α ∈ (0, 1) is the learning rate, rt is the immediate reward
of doing at for observation history ~ht, γ ∈ [0, 1] is the discount
factor, which is usually set to 1 for a finite horizon. We call this
approach globally joint learning. Although this approach leads to
an optimal policy, it is practically intractable, because the policy
space is exponential in the number of agents and the agents might
not have access to the needed information (i.e., observations, ac-
tions, and rewards of all other agents) for learning and selecting
actions.

At the other extreme, we have the independent learning approach
[4] in which agents ignore the actions and rewards of the other
agents, and concurrently learn their own action-value functions solely
based on their local observations and rewards. To provide local
rewards in ND-POMDPs, we can split the reward component Rl

evenly among agents in group l. This approach is distributed, re-

sults in big storage and computational savings in the policy space,
and does not require communication during learning and execution.
However, this approach lacks coordination and might lead to oscil-
lations or converge to local optimal policies. For example, Figure 1
shows a specific target tracking problem consisting of four sensors.
Each sensor node can scan in one of four directions: North, South,
East or West. To track a target and obtain the associated reward,
two sensors with overlapping scanning areas must coordinate by
scanning the same area simultaneously. In Figure 1, if location1,
location2, and location3 always have targets with sensing reward
40, 60, and 40, respectively, then, by using the independent learn-
ing approach, sensor2 and sensor3 will potentially learn to sense
location2, which is locally optimal with average expected reward
60. However, the optimal policy is that sensor1 and sensor2 always
sense location1 and sensor3 and sensor4 always sense location3,
whose global expected reward is 100. Therefore, some form of
coordination is needed in order to learn the globally optimal policy.

4. COORDINATED LEARNING WITH
CONTROLLED COMMUNICATION

As discussed in the previous section, directly learning the glob-
ally joint policy in a centralized way is infeasible from a practical
perspective, while independent learning is a distributed, scalable
approach, but may yield poor global performance. In many prac-
tical applications, an agent has to coordinate its actions with a few
agents only, and acts independently with respect to the other agents.
As with previous techniques of coordinated multi-agent reinforce-
ment learning [6, 8, 16], our approach presented in this section will
take advantage of this structured interactions, which achieves scala-
bility by allowing agents to learn based on its local observations and
local reward signals and ensure the global learning performance
by using DCOP techniques to coordinate distributed learning pro-
cesses. Our approach generalizes techniques in [6, 8, 16] and al-
lows agents to learn to dynamically identify whom to coordinate
with to minimize its communication while concurrently learning
their operational policies.

In general, the global expected utility Q(~h, a) depends on de-
pends on joint observation histories and joint actions. However, in
many practical problems, it is possible to approximate the global
expected utility Q by the sum of local sub-utilities of agents. In
this paper, we use approximation to learn local utilities, such that
Q̂(~h, a) (defined as following) is a good approximation of the op-
timal total expected utility Q∗(~h, a).

Q̂(~h, a) =
∑
i∈I

Qi(~hi, ai, aIi), (2)

where Qi is the local utility of agent i, which is defined on its
local observation history, local action, and actions of agents Ii that
interact with agent i.

The complexity of learning local utilityQi of agent i is exponen-
tial with the number of agents Ii that interact with agent i, which
may still be relatively large in large-scale systems. In practical sys-
tems, not all agents in the Ii interact with each other. For example,
in the target tracking problem shown in Figure 1, both sensor1 and
sensor3 interact with sensor2, but sensor1 does not directly inter-
act with sensor3. As described in the model (presented in Sec-
tion 2), an agent may interact with a number of smaller subgroups
of agents. Using the reward decomposition structure, we further
assume that local utility Qi can be approximated by a sum of util-
ities over its interacting groups Gi. Now, we have the local utility
of agent i

Qi(~hi, ai, aIi) =
∑

gi∈Gi

Qgi(
~hi, ai, agi), (3)

where Qgi(
~hi, ai, agi) is the local utility of agent i on group gi,

which is defined on its local observation history, local action, and
actions of agents in group gi. Normally, the size of gi is much less
than that of Ii, which makes the learning more tractable.

The total expected utility now becomes

Q̂(~h, a) =
∑
i∈I

∑
gi∈Gi

Qgi(
~hi, ai, agi).

We will use Q-learning to learn Q̂(~h, a). The global Q-learning
update rule shown in equation (1) can be rewritten as

∑
i∈I

∑
gi∈Gi

Qgi(
~hi

t
, ati, a

t
gi) =

(1− α)
∑

i∈I
∑

gi∈Gi
Qgi(

~hi
t
, ati, a

t
gi)

+ α[
∑

i∈I
∑

gi∈Gi
rtgi + γmaxa Q̂(~ht+1, a)],

(4)

where rgi is the reward agent i receives when interacting with
agents in subgroup gi.

Note that the discounted future reward, maxa Q̂(~ht+1, a), can
not be directly written as the sum of local discounted future re-
wards, because it depends on the joint action that maximizes the
global value. Fortunately, we can accomplish this by defining the
joint action a∗ = argmaxaQ̂(~ht+1, a) and maxa Q̂(~ht+1, a) =

Q̂(~ht+1, a∗) =
∑

i∈I
∑

gi∈Gi
Qgi(

~ht+1
i , a∗i , a

∗
gi). We are now

able to decompose all terms in (4) and write the update rule for
each agent i interacting with agent group gi:

Qgi(
~hi

t
, ati, a

t
gi) = (1− α)Qgi(

~hi
t
, ati, a

t
gi)

+ α[rtgi + γQgi(
~hi

t+1
, a∗i , a

∗
gi)]

(5)

Similar to those in [8, 16], the update rule in (5) is now based
on local observations, local reward, and local Q-function, except
for a∗i and a∗gi . This update rule is quite different from coordinated
reinforcement learning approach in [6], where local Q-function up-
date depends on the global reward signal and the global Q-value,
which are not usually specifically tailored to local behaviors, thus
resulting in slower learning convergence. Note that the local con-
tribution Qgi(

~hi
t+1

, a∗i , a
∗
gi) of group gi to the global action value

might be lower than maxai,agi
Qgi(

~hi
t+1

, ai, agi), the maximiz-
ing value of its local Q-function, because it is unaware of the de-
pendencies among groups.

Computing the joint action a∗ that maximizes Q̂ =
∑

i

∑
gi
Qgi

seems intractable a prior, as it would require the enumeration of the
joint action space of all agents. Fortunately, by exploiting the in-
teraction locality shown in Qgi -functions, computing the optimal
action can be potentially efficient through message-passing DCOP
algorithms, as proposed in [6, 8, 16]. However, as we need to
compute the coordinated joint action at every Q-function update
during the learning and, if using offline learning, at every action
selection during the policy execution after learning, running DCOP
algorithms through the whole systems can be inefficient or even
infeasible when communication is very limited and real-time re-
sponse is critical. In practical applications, an agent can interact
with a lot of other agents over time, but it may only interact with
very few (e..g, one or two) agents at a particular situation and with
different agents at different situations. In the following sections, we
will present an approach that allows agents to learn to dynamically
identify who to coordinate at different situations and to trade off

between the quality of coordinated learning and communication.
We will first describe the coordinated learning process of agents,
then discuss how an agent identifies who to coordinate with given
a learning quality control parameter, and finally show how to com-
pute the coordinated action selection.

4.1 Learning Processes with Emergent Coor-
dination

Using update rule in (5), our approach distributes the learning of
the global function Q̂ among agents. Each agent i currently learns
and maintains local utility functions Qgi for all gi ∈ Gi. Algo-
rithm 1 shows the coordinated learning process of agent i. The loss
rate threshold ξ ∈ [0, 1] is used to compute the coordination set,
which contains agents who agent i will coordinate with for action
selection. It is the key parameter to minimize the communication
while ensuring the quality of coordinated action selection. Each
agent i need to incrementally estimate conditional probability dis-
tribution Pgi(agi |~hi, ai) for all gi ∈ Gi based on its execution
history and observation of other agents’ actions. We assume that
every agent i can observe actions executed by agents in ii (i.e.,
agents interacting with agent i). These conditional probability dis-
tributions will be used to fully or partially marginalize the expected
reward Qgi(

~hi, ai, agi) through actions of agents that agent i does
not coordinate with. For example, if agent i does not coordinate
with any other agents, that is, CS = ∅, it needs to compute its ex-
pected reward Qi(~hi, ai) defined its local observations and actions
as following:

Qi(~hi, ai) =
∑

gi∈Gi

Qgi(
~hi, ai, agi)P (agi |~hi, ai),

so that it can locally select action a∗i = argmaxai
Qi(~hi, ai) based

on the current observation ~hi. In summary, these estimated joint
probability distributions will be used in both computing the coordi-
nation set and selecting the coordinated action, which will be dis-
cussed in detail in the following sections.

Note that the coordination set may change during the process of
coordinating action selection. For example, the initial computed
coordination set of agent i does not contain agent j, but agent j’s
coordination set contains agent i. During the action selection pro-
cess by running a DCOP algorithm, agent i will add agent j to its
coordination set by receiving DCOP messages from agent j.

The coordinated learning process is essentially a co-evolution of
an agent’s policy (i.e., the expected utility function) and its coordi-
nation set at different situations. This is because the computation
of the coordination set of an agent relies on its local utility func-
tions Qgi∈Gi , while changing the coordination set will change the
agent’s learning environment, which will affect the learning of its
local utility functions. From the system-level view, our coordinated
multi-agent reinforcement learning co-adapts agents’ policies and
their coordination network.

After being learned, the global expected reward function Q̂ is
distributedly represented by local utility functions, Qgi . As a re-
sult, during the execution phase (if agents learn offline), agents’
action selections are computed online in a distributed manner by
a DCOP algorithm from local Q-functions, which is similar to the
process described in Algorithm1. Note that local Q-function Qgi

is defined on the observation history of agent i, which scales expo-
nentially with the horizon. To deal with a large or infinite horizon,
one approach is to use a fixed-size window of observations, as we
did in our experiments. Other more sophisticated approaches (i.e.,
utile suffix memory [10]) for dealing with partial observability can
also be used with our approach.

Algorithm 1: The coordinated learning process of agent i

1 Let α be the learning rates, γ be the discount factor, ξ be the
loss rate threshold;

2 ~hi ← ∅ ;
3 Initialize utility functions Qgi for all gi ∈ Gi ;
4 Initialize estimated conditional probability distribution
Pgi(agi |~hi, ai)for for all gi ∈ Gi ;

5 CS ← computeCoordinationSet(i, Qgi∈Gi , Pgi∈Gi ,
~hi, ξ) ;

6 a∗i ← select the coordinated action by running DCOP
algorithm through agents in CS ;

7 repeat
8 Execute a∗i or an action selected under suitable exploration

on observation history ~hi ;
9 Receive observation ωi and rewards {rgi |gi ∈ Gi} for its

interaction subgroups ;
10 Observe actions of other agents that interact with agent i ;
11 Update observation history ~hi with ωi ;
12 CS ←

computeCoordinationSet(i, Qgi∈Gi , Pgi∈Gi ,
~hi, ξ) ;

13 a∗i ← select the coordinated action by running DCOP
algorithm through agents in CS ;

14 foreach subgroup gi ∈ Gi do
15 Update Qgi using rule (5) ;
16 Update estimated conditional probability distribution

Pgi(agi |~hi, ai);
17 end
18 until the process is terminated;

4.2 Identifying Coordination Set
To identify the coordination set for each agent, we define an

agent interaction measure, called potential loss in lack of coordi-
nation, to quantity how much utility an agent will potentially lose
if it does not coordinate with a subgroup of agents. This inter-
action measure is built upon a measure, called potential expected
utility, which identifies the maximum expected utility of an agent
can potentially receive when it solely coordinates with a subgroup
of agents.

DEFINITION 1. The potential expected utility PVi(~hi, ai, C)
of agent i exclusively coordinating with a subgroup of agents C ⊆
Ii and selecting action ai on observation history ~h is defined as

PVi(~hi, ai, C) =
∑

gi∈Gi

max
aC

Qgi(
~hi, ai, aC), (6)

where

Qgi(
~hi, ai, aC) =

∑
agi\C

Qgi(
~hi, ai, agi)Pgi(agi\C |~hi, ai, agi∩C).

Here Ii is the set of all agents that interacts with agent i. Note
that Pgi(agi\C |~hi, ai, agi∩C) can be computed from our estimated
conditional probability distribution Pgi(agi |~hi, ai). According to
the definition, we can see that the potential expected utility PVi op-
timistically assume the behaviors of subgroup of agents C , which
unconditionally cooperate with agent i’s action ai. Therefore, in
general, this measure is an overestimate of the expected utility that
an agent can get if it coordinates with a subgroup of agents. The po-
tential expected utility measure has the following property, that is,
coordinating with additional agents will not decrease the potential
expected utility.

Algorithm 2: computeCoordinationSet(i, Qgi∈Gi , Pgi∈Gi ,
~hi, ξ)

1 maxLoss = ξ ∗max{|maxai PVi(~hi, ai, Ii)|,
|maxai PVi(~hi, ai, Ii)|, PLILOCi(~hi, ∅)} ;

2 Find NC ⊂ Ii, such that

1. PLILOCi(~hi, NC) ≤ maxLoss,

2. PLILOCi(~hi, NC) ≤ PLILOCi(~hi, D), for all D ⊂ Ii
and |D| = |NC| ;

3. PLILOCi(~hi, D) > maxLoss, for all D ⊂ Ii and
|D| > |NC| ;

Return Ii \NC ;

PROPOSITION 1. If D ⊆ C ⊆ Ii, then PVi(~hi, ai, D) ≤
PVi(~hi, ai, C) for all ~hi and ai.

PROOF.

PVi(~hi, ai, C) =
∑

gi∈Gi
maxaC Qgi(

~hi, ai, aC)

=
∑

gi∈Gi
maxaD [maxaC\D Qgi(

~hi, ai, aD, aC\D)]

≥
∑

gi∈Gi
maxaD [

∑
aC\D

Qgi(
~hi, ai, aD, aC\D)

Pgi(aC\D|~hi, ai, aD)]

=
∑

gi∈Gi
maxaD Qgi(

~hi, ai, aD)

= PVi(~hi, ai, D)

Based on the definition of the potential expected utility, we now
can define the potential utility loss if an agent does not coordinate
with some subgroup of agents when selecting its action.

DEFINITION 2. The potential loss in lack of coordination
PLILOCi(~hi, NC) of agent i is the difference of the potential
expected utility of agent i when it coordinates with all agents in
Ii from that of agent i when it only coordinates with agents in set
C = Ii \NC, that is,

PLILOCi(~hi, NC) = max
ai

PVi(~hi, ai, Ii)−max
ai

PVi(~hi, ai, C).

(7)

The potential loss PLILOC has following properties.

COROLLARY 1. IfND ⊆ NC ⊆ Ii, thenPLILOCi(~hi, ND) ≤
PLILOCi(~hi, NC) for all ~hi.

COROLLARY 2. For allNC ⊆ Ii, 0 ≤ PLILOCi(~hi, NC) ≤
PLILOCi(~hi, Ii) for all ~hi.

Borth Corollary 1 and 2 follow directly from Proposition 1. Corol-
lary 1 indicates that the potential loss PLILOCi(~hi, NC) mono-
tonically decreases when agent i coordinates with additional agents
in group NC at any observation history ~h. Corollary 2 shows that
PLILOC(~hi, NC) is always positive and bounded by the poten-
tial loss when agent i does not coordinate with any other agents.

Agents will use potential loss in lack of coordination PLILOC
to identify whom they should solely coordinate with in order to
minimize its communication for coordinating its action selection
with other agents without significantly affecting its learning perfor-
mance.

Algorithm 2 shows how an agent searches for the best coordi-
nation set to trade off the quality of coordination and communica-
tion. This algorithm first tries to find a subgroup of agents NC
with the maximum size such that the lack of coordination between
agent i and agentsNC will not cause a potential utility loss greater
than maxLoss and will result in the minimum loss among all sub-
groups with the same size. It then returns the difference of the set
of all agents interacting with agent i from NC. As a result, this
algorithm will return a coordination set that minimizes the commu-
nication while ensuring the quality of coordinated action selection.
Note that the algorithm always can find such subgroup NC be-
cause PLILOCi(~hi, ∅) == 0. Note that agents’ local utilities
Qgi can be negative, this is why that we use the formula shown
in Line 1 to compute the max loss threshold. By using this com-
puted maxLoss, we can ensure when ξ = 0, every agent i will
coordinate with all agents Ii, and when ξ = 1, every agent will
not coordinate with any other agents. As the measure of potential
expected value is usually overestimate of real expected value, the
maximum loss maxLoss that the agent calculates is also overes-
timated. As a result, the real rate of the utility loss using partial
coordination will usually greater than threshold ξ.

4.3 Coordinating Action Selection
Our learning approach requires computing the coordinated ac-

tion selection for updating local Q-functions or for acting during
execution. When communication permits and agents do not need
to trade off the learning quality and communication, our approach
will compute the joint action that maximizes the total utility Q̂ =∑

i∈I
∑

gi∈Gi
Qgi . However, as we discussed, in many practical

systems, communication is limited and computing the action selec-
tion needs to be relatively fast. In those cases, our approach al-
lows agents to find a minimum sub set of agents to coordinate their
action selection while ensuring their learning performance. Now
agents computing the joint action try to maximize the marginalized
total utility

f(~h, a1, ..., an) =
∑
i

∑
gi

Qgi(
~h, ai, agi∩Ci), (8)

where Qgi(
~hi, ai, aagi∩Ci

) =
∑

agi\Ci
Qgi(

~hi, ai, agi)

Pgi(agi\Ci
|~hi, ai, agi∩Ci) and Ci is the coordination set of agent

i on observation history ~h. When, for all agent i, Ci = Ii, then f
is exactly the same as the total utility Q̂.

We can formulate this joint action selection problem as a DCOP,
which is defined by a set of discrete variables a = {a1, . . . , an},
where ai ∈ Ai is controlled by agent i and represents its action
choice, and a set of functions Q =

⋃
i{Qgi |gi ∈ Gi}. Note that

history ~h is fixed for every computation, so we will ignore it in the
following discussion and denote Qgi(

~h, ai, agi) by Ql(ai, agi).
The goal is to find the coordinated joint action a∗, such that marginal-
ized total utility f function is maximized.

We can represent this DCOP as a factor graph by creating a node
for each variable and for each function and connecting a function
node to a variable node if the corresponding function is dependent
upon that variable. The resulting graph is bipartite. When agent
i has a coordination set Ci = ∅, the variable node i in the fac-
tor graph will solely connect to its local utility functions Qgi(ai),
which is also solely connect to the variable node i, which means
agent i and its local functions are separated from factors and vari-
ables. When coordination sets are relatively small for many agents,
it is highly likely that the original whole interaction network is de-
composed into a set of disjointed sub networks, which will dra-
matically (may even exponentially) reduce communication when

running DCOP algorithms.
A variable elimination algorithm [5] can be used to compute an

optimal solution for this DCOP, but it requires extensive commu-
nication and computation (scaling exponentially with the induced
width of the agent interaction graph). As with [16], in this paper,
we use the max-sum algorithm [11] for computing an approximate
solution, which requires much less communication and computa-
tion and can be readily implemented as an anytime algorithm to
trade off the quality and efficiency of computing joint actions.

The max-sum algorithm operates directly on the factor graph,
and does so by specifying the messages that should be passed from
variable to function nodes, and from function nodes to variable
nodes, which are defined as follows:

- Message from variable node i to function node g:

qi→g(ai) =
∑

h∈Fi\g

rh→i(ai) + cig

where Fi is a vector of function indexes, indicating which
function nodes are connected to variable node i, and cig is a
normalizing constant to prevent the messages from increas-
ing endlessly in cyclic graphs.

- Message from function node g to variable node i:

rg→i(ai) = max
ag\ai

[Ql(ag) +
∑

h∈Vg\i

qh→g(ah)]

where Vg is a vector of variable indexes, indicating which
variable nodes are connected to function node g and ag\ai =
{ah : h ∈ Vg\i}.

Here variable node i is agent i who needs to select its action and
function node g hosts the local Q-value function Qg . If the fac-
tor graph is cycle-free, the algorithm is guaranteed to converge to
the optimal global solution such that each agent i can find its opti-
mal action a∗i by locally calculating a∗i = argmaxai

zi(ai), where
zi(ai) =

∑
h∈Fi

rh→i(ai). Otherwise, there is no guarantee of
convergence. However, extensive empirical results show that, even
in this case, the algorithm frequently provides good solutions. Be-
fore convergence, the value zi(ai) of agent i calculated from in-
coming messages is actually an approximation of the exact value
of action ai given that other agents act optimally. The max-sum
algorithm is essentially distributed. Its messages are small (lin-
early scaling with the maximum number of actions of agents), the
number of messages typically varies linearly with the number of
agents and hyperlinks, and its computational complexity scales ex-
ponentially with the maximum size of hyperlinks (which typically
is much less than the total number of agents).

5. EXPERIMENTS
To evaluate our learning approach with emergent coordination,

we experimented on a target tracking application in sensor net-
works modeled as an ND-POMDP [12]. Figure 2 shows four sen-
sor topologies: 5P, 11H and 15-3D and 20D from [9]. Each node
in these graphs is a sensor agent and edges are locations where
targets can move. Tracking a target requires simultaneous scan of
the edge by two adjacent sensors, producing a joint reward (+80),
otherwise a penalty (-1) is given per scanning agent. The internal
state of a sensor indicates its battery level (4 possible states). Each
scan action depletes the battery and an empty battery renders the
sensor unusable. Sensors can conserve power with the off action
or recharge the battery at some cost (-1). Each sensor has three
observations: target present, target absent and idle. The first two

Figure 2: Sensor network configurations

0 2 4 6 8 10 12

x 10
4

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Iterations

S
o

lu
ti

o
n

 Q
u

a
li

ty

Loss Threshold = 0.0

Loss Threshold = 0.01

Loss Threshold = 0.05

Loss Threshold = 0.1

Loss Threshold = 1.0

Figure 3: The performance of learning policies during the
learning process in the 20D network

observations can be false positive/negative with accuracy=0.8. The
5P domain has 2 targets, 11H has 3 targets, 15-3D has 5 targets,
and 20D has 6 targets.

Since our coordinated learning approach is model-free, we de-
veloped a simulator for this target tracking application to learn and
evaluate policies. Our learning approach learned policies that map
fixed-windows of observations (with size ≤ 3) to an action even
for scenarios with horizon greater than 4. Agents learn policies by
repeatedly interacting with the simulator. To evaluate the learned
policies, we run policies in the simulator until horizon=200. The
solution quality of learned policies is computed by averaging over
10000 runs the total reward received from the simulator over hori-
zon=200. The learning rate α for each truncated observation his-
tory~h is set to min(0.001, visits(~h)), where visits(~h) is the num-
ber of visits on ~h and discount factor γ = 0.99. We used the max-
sum algorithm to compute coordinated actions and set the maxi-
mum round of message passing to the diameter of the connected
factored graph.

Figures 3 and 4 show the trend of rewards of tracking targets
and the number of messages used by the max-sum algorithm to
coordinate action selection, respectively, as agents learn with dif-
ferent loss thresholds for computing coordination sets in the 20D
sensor network. When the loss threshold = 0, agents’ learning
processes are fully coordinated, that is, they coordinate all other
agents that interact with them, and when the loss threshold = 1,
agents learn independently and have no coordination messages. As
seen from Figures 3 and 4, as expected, with a smaller loss thresh-
old, agents potentially coordinate with more other agents and learn

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Iterations

#
M

e
s

s
a

g
e

s

Loss Threshold = 0.0

Loss Threshold = 0.01

Loss Threshold = 0.05

Loss Threshold = 0.1

Loss Threshold = 1.0

Figure 4: Communication for coordinating learning during the
learning process in the 20D network

better policies, but they also requires more communication mes-
sages. As the learning goes on, the performance of learned poli-
cies generally gradually improves. However, it seems not to be the
case for threshold = 0.05 and 0.1, where the learning performance
curve goes down at some points. This is because of co-adaptation
of learning policies and dynamically computing coordination sets
for agents. When an agent’s coordination set changes, its learn-
ing environment can dramatically change, which causes the perfor-
mance of learned policies decreases. As the time goes, agents will
adapt their policies (i.e., utility functions) to this new environment
and their performance improves. This process may iterate multiple
times, as shown by the cases of threshold = 0.05 and 0.1 in Figure 3.

From Figure 4, we can also see that the number of messages for
coordinating learning processes decreases as agents learn, which
indicates agents are simultaneously learning better coordination sets
while learning their policies. In the case for threshold=0.01, the
communication increases at the early learning stage. Another inter-
esting observation is that there is a big gap (with more than one or-
der of magnitude difference at the late learning stage) in communi-
cation between cases of threshold=0.01 and threshold=0.05, while
their learning performance does not differ as much, around 5%.
We also observe this kind of phenomena in other network scenar-
ios. For applications with very limited communication bandwidth
or high communication cost, identifying such gaps may be crucial
to find the best trade-off of communication and performance.

In order to illustrate the benefit of our approach’s co-adaption of
learning policies and dynamically computing coordination sets, we
can compare it to another approach, called offline trade-off, where
agents first learns policies with full coordination (i.e., threshold =
0), and then stop learning and, when executing learned policies,
dynamically coordinate their action selection by computing coordi-
nate set using Algorithm 2. Both approaches use the same number
of learning cycles and then are evaluated by executing their learned
policies without further learning. Figures 5 and 6 show the evalua-
tion results of their performance and communication with different
loss thresholds in the 20D sensor network, respectively. It is clear
that, in all cases, our co-adaptation approach outperforms the of-
fline trade-off approach with more than 30% in term of solution
quality. It also uses significantly less communication for comput-
ing coordinated joint action when executing learned policies, espe-
cially, saving more than 80% in cases where loss threshold = 0.05

Threshold = 0.01 Threshold = 0.05 Threshold = 0.10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

S
o

lu
ti

o
n

 Q
u

a
li
ty

Offline Trade−off

Co−adaptation

Figure 5: The performance of learned policies in the 20D net-
work

Threshold = 0.01 Threshold = 0.05 Threshold = 0.10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

#
M

e
s
s
a
g

e
s

Offline Trade−off

Co−adaptation

Figure 6: Communication for coordinating joint action selec-
tion in the 20D network

and 0.1.
Figures 7 and 8 show the performance and communication cost

of executing policies learned by our co-adaptation approach using
different loss thresholds in different sensor networks. We can see
that, in all cases, the performance and communication generally in-
creases as the loss threshold decreases. In all three cases, as with
the 20D network configuration, it seems that setting the loss thresh-
old ξ between 0.01 and 0.05 will significantly save communication
(e.g., more than 80%) without degrading the performance much
(e.g., less than 20% or even 5% for some cases). Another thing
to note is that, as we discussed in Section 4.2, the loss threshold
ξ may not be a good indicator to predict the whole system per-
formance, because, when an agent computes the coordination set,
it overestimates the maximum loss it can tolerate (i.e., larger than
real expected utility discounted by ξ). As a result, we often ob-
serve that the actual system performance decreases more than ξ.
For example, in the 15-3D network case, when agents use thresh-
old ξ = 0.05, the actual performance decreases around 20%, 3
times larger than ξ. It is our future work to lower the estimate of
the maximum loss when computing coordination sets and make ξ
be a more predictable indicator for the system performance.

6. SUMMARY
We have introduced a coordinated multi-agent reinforcement learn-

ing (MARL) approach that generalizes previous approaches and

5P 11−Helix 15−3D
0

0.5

1

1.5

2

2.5
x 10

4

Network Configurations

S
o

lu
ti

o
n

 Q
u

a
li

ty

Loss Threshold = 0.0

Loss Threshold = 0.01

Loss Threshold = 0.05

Loss Threshold = 0.1

Loss Threshold = 1.0

Figure 7: The performance of learned policies in different net-
work configurations

5P 11−Helix 15−3D
0

2

4

6

8

10

12

14
x 10

4

Network Configurations

#
M

e
s
s
a
g

e
s

Loss Threshold = 0.0

Loss Threshold = 0.01

Loss Threshold = 0.05

Loss Threshold = 0.1

Loss Threshold = 1.0

Figure 8: Communication for coordinating joint action in dif-
ferent network configurations

allows agents to learn efficiently over a spectrum of applications
with different communication bandwidth. Our approach provides
an interaction measure that enables learning agents to dynamically
identify their coordination set in different situations to improve lo-
cal and overall learning performance. By limiting the utility loss for
lack of coordination, our approach minimizes agents’ coordination
sets while ensuring its learning performance. This minimization
on agents’ coordination sets will dramatically reduce links in the
agent coordination network and often decomposes it into smaller
connected sub networks, which allows DCOP algorithms to effi-
ciently compute joint action and coordinate agents’ learning pro-
cesses. Our approach can scale MARL to large cooperative systems
and improves its applicability over varied domains.

Two observations are worth noting. Proper co-adaptation of learn-
ing operational policies and identifying coordination set can im-
prove the overall performance and reduce the communication cost
for coordinating concurrent learning. Another observation is that
many practical systems may have a crucial point that offers the
best trade-off of performance and communication. Using the loss
threshold, our learning approach will be useful to find such points.

7. ACKNOWLEDGMENT

This work is supported partially by the National Science Founda-
tion (NSF) under Agreement IIS-1116078 . Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of the
National Science Foundation.

8. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Transition-Independent Decentralized Markov Decision
Processes. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi Agent Systems,
pages 41–48, Melbourne, Australia, 2003. ACM Press.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.
The complexity of decentralized control of markov decision
processes. Mathematics of Operations Research,
27(4):819–840, 2002.

[3] S. Cheng. Coordinating Decentralized Learning and Conflict
Resolution Across agent Boundaries. PhD thesis, University
of North Carolina at Charlotte, 2012.

[4] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In AAAI’98,
pages 746–752. AAAI Press, 1998.

[5] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with
factored mdps. In NIPS-14, pages 1523–1530, 2001.

[6] C. Guestrin, M. G. Lagoudakis, and R. Parr. Coordinated
reinforcement learning. In ICML ’02: Proceedings of the
Nineteenth International Conference on Machine Learning,
pages 227–234, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[7] C. E. Guestrin. Planning under uncertainty in complex
structured environments. PhD thesis, Stanford University,
Stanford, CA, USA, 2003.

[8] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. Journal of
Machine Learning Research, 7:1789–1828, 2006.

[9] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable
multiagent planning using probabilistic inference. In
T. Walsh, editor, IJCAI, pages 2140–2146. IJCAI/AAAI,
2011.

[10] R. A. Mccallum. Instance-based utile distinctions for
reinforcement learning with hidden state. In In Proceedings
of the Twelfth International Conference on Machine
Learning, pages 387–395. Morgan Kaufmann, 1995.

[11] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralised coordination of mobile sensors using the
max-sum algorithm. In IJCAI, pages 299–304, 2009.

[12] P. Varakantham, M. Tambe, and M. Yokoo. Networked
distributed pomdps: A synthesis of distributed constraint
optimization and pomdps. In AAAI, pages 133–139, 2005.

[13] S. J. Witwicki and E. H. Durfee. Influence-based policy
abstraction for weakly-coupled dec-pomdps. In R. I.
Brafman, H. Geffner, J. Hoffmann, and H. A. Kautz, editors,
ICAPS, pages 185–192. AAAI, 2010.

[14] C. Zhang, S. Abdallah, and V. Lesser. Integrating
organizational control into multi-agent learning. In
AAMAS’09, 2009.

[15] C. Zhang, V. Lesser, and S. Abdallah. Self-organization for
coordinating decentralized reinforcement learning. In
AAMAS’10, 2010.

[16] C. Zhang and V. R. Lesser. Coordinated multi-agent
reinforcement learning in networked distributed pomdps. In
W. Burgard and D. Roth, editors, AAAI. AAAI Press, 2011.

