1

A Multi-Agent Learning Approach to Online Distributed Resource Allocation

Chongjie Zhang

Victor Lesser

Prashant Shenoy

Computer Science DepartmentComputer Science DepartmentComputer Science Department

University of Massachusetts
Ambherst, MA 01003 USA
chongjie@cs.umass.edu

Abstract

Resource allocation in computing clusters is tradi-
tionally centralized, which limits the cluster scale.
Effective resource allocation in a network of com-
puting clusters may enable building larger comput-
ing infrastructures. We consider this problem as a
novel application for multiagent learning (MAL).
We propose a MAL algorithm and apply it for op-
timizing online resource allocation in cluster net-
works. The learning is distributed to each clus-
ter, using local information only and without access
to the global system reward. Experimental results
are encouraging: our multiagent learning approach
performs reasonably well, compared to an optimal
solution, and better than a centralized myopic allo-
cation approach in some cases.

I ntroduction

University of Massachusetts
Ambherst, MA 01003 USA
lesser@cs.umass.edu

University of Massachusetts
Ambherst, MA 01003 USA
shenoy@cs.umass.edu

We describe this decision problem as a distributed se-
quential resource allocation problem (DSRAP). We consider
DSRAP as a novel and practical application for multiagent
learning. In DSRAP, each agent (referred to a cluster) has
only a partial view of the whole system and does not have ac-
cess to the system-level utility (because it is not directba-
surable in real-time). All agents make decisions conculyen
and autonomously. Each agent’s decision depends not only
on its local state but also on other agents’ states and pslici

This paper is intended to demonstrate applicability and ef-
fectiveness of multiagent learning for DSRAP or similardis
tributed problems. We propose a multi-agent learning algo-
rithm, called Fair Action Learning (FAL) which is a variant
of the Generalized Infinitesimal Gradient Ascent (GIGA) al-
gorithm[Zinkevich, 2003, for each agent to learn local deci-
sion policies. To simplify the learning, we decomposes each
agent’s decisions into two connected learning probldotsl
allocation problem(deciding what tasks to be allocated lo-
cally) andtask routing problenfdeciding where to forwarded

task). To avoid poor initial policies during learning, hisu

As “Software as a service” becomes a popular busines
model, it is becoming increasingly difficult to build large
computing infrastructures that can host effectively thdewi
spread use of such servic&hared clusterbuilt using com-
modity PCs or workstations offer a cost-effective solufion
constructing such infrastructures. Unlike a dedicated-clu
ter, where each computing node is dedicated to a single aﬂ?—

plication, a shared cluster can run the number of applica‘-’ve discuss our approach for this particular problem, itseal

tions significantly larger than the number of nodes, neeessf‘sefm in other online resource allocation problems, famex

Rle, when shared resources are storage devices in distiibut
agement approaches developed for shared clubAepsci- file systems, documents in peer-to-peer information nedtje
dusseau and Culler, 1997; Aren al., 2000; Urgaonkar and or_?rr:ergy [[n sfetﬂ_sor netwc_>rkst. wred as fol Section 2
Shenoy, 200Bare centralized, which limits the cluster scale. € rest o his paper IS structured as follows. section

To build larger shared computing infrastructures, one comdefines DSRAP. Section 3 introduces the Fair Action Learner

mon model is to organize a set of shared clusters into a neft90rithm. Section 4 presents decision-making procestes o
work and enable resource sharing across shared clustezs. .ach agent.and 'ea”?'”g mOd‘?'S for both decisions. _Sec-
resource allocation decision is now distributed to eachesha 10" ° describe experiment design andi analy;es experimen-
cluster. Each cluster still uses a cluster-wide technique f tal results. Related work is presented in Section 6. Finally

managing its local resources. However, as task (also esferr Section 7 concludes our work.

to applications services) allocation requests vary aarhss —

ters, a cluster may need to dynamically decide what taskg Problem Description

to allocated locally and where to forward unallocated tasksThe runtime model of DSRAP is described as follows. Each
to cooperatively optimize the global utility of the wholessy agent receives tasks from either the external environment o
tem. To achieve scalability, each cluster has limited numbea neighbor. At each time step, an agent makes decisions on
of neighboring clusters that it interacts with. what tasks are allocated locally and to which neighbors the

Ic strategies are developed to speed up the learning. The
learning approach is tested in a network of simulated clsste
and compared with a centralized greedy allocation approach
which is optimal in some cases. Experimental results show

tasks not allocated locally should be forwarded. Due to thé3 Fair Action Learning Algorithm

task transfer time cost, there is communication delay betwe |, e single-agent setting, reinforcement learning algo-
two agents. To reduce the communication overhead, the numzp s such as Q-learning, learn optimal value functiorg a
ber of tasks an agent can transfer at each time step is limite ptimal policies in MDP environments when lookup tables
To allocated a task, an agent should have available resourcge sed to represent the state-action value function. How-
to satisfy its resource requirements. When a task is abacat ger, in the multiagent setting, due to the non-stationary e
locally, the agent gains utility at each time step, whichpsS \ironment (all agents are simultaneously learning thein ow
ified by the task utility rate. If a task can not be allocatedgjicies), the usual conditions for single-agent RL algo-
within its maximum waiting time, it will be removed from i ms' convergence to an optimal policy do not necessarily
the system. If an allocated task completes, all resourcesit nq|q[Claus and Boutilier, 1998 As a result, the learning of
cupies will be freed and available for future tasks. The mainyyents may diverge due to lack of synchronization. Several
goal of DSRAP is to derive decision policies for each agentyiiagent reinforcement learning (MARL) algorithms have
that maximize the average utility rate (AUR) of the whole paap, developed to address this isZiakevich, 2003; Bowl-

system. . ing, 2003, with convergence guarantee in specific classes of
We denote a DSRAP with a tupl&’, A, 7, B, R), where games with two agents.
o ¢ ={C,...,Cp}isasetof shared clusters.

o A ={a;} € R™*™ is the adjacent matrix of clusters ~Ajgorithm 1: Fair Action Learning (FAL) Algorithm
and each element;; is the task transfer time between

begin
clusterC; and Cll.JSteCj : egT — the reward for actiom at states;
o 7 ={t1,...,t;} isasetof task types. update Q-value function witk s, a,r >;
e B = {D,;} is the task arrival pattern anB;; is the T« average rewarek), 7(s,a)Q(s,a);
arrival distribution of tasks of typg; at clusterC;. foreach actiona € A do
e R = {Ry,...,R,}is a set of resource types (e.g., CPU | 7(s,a) < w(s,a) + ((Q(s,a) —T);
and network) that each cluster provides. end o
Each clusterC; = {n,n,...,ny} contains a set of dw(s) limit(n(s));
computing nodes. Each computing nade has a set of re- en
sources, represented @&R1,vij1),- .., (Rq, Vijq) }» Where
Rp (h = 1,...q) is the resource type and;, € R is the To address DSRAP, we propose a multiagent reinforcement

capacity of resourc&, on noden;;. We assume there exist |earning algorithm, called Fair Action Learning (FAL). The
standards that quantify each type of resource. For examplgAL algorithm is a direct policy search technique and a vari-
we can quantify a fast CPU as0 and a slow one with a half ant of the GIGA algorithniZinkevich, 2003. For many prac-

speed as5. _ _ tical problems, the value function on policies is usually no
A task type characterizes a set of tasks. A task tyd® known, so the policy gradient for GIGA can not be directly

also denoted as atupﬁ@f,D;‘,D?,Dfl,...,Df">, where calculated. To deal with this issue, the FAL algorithm ap-
e D is the task service time distribution proximates the policy gradient of each state-action patn wi

, . o . I the difference of the expected Q-value on that state and its

* D? is the task utility rate (utility per time step) distribu- Q-value. Algorithm 1 degcribes %s policy update rule, veher
tlon_ o) . m(s,a) is the probability of taking action in states under

Dy isthe distribution of the task maximum waiting time policy , 7(s) is the distribution over all actions in statgand

before being allocated ¢ is the policy learning rate. THemit function from GIGA is
e D% is the demand distribution of resourgefatask. ~ @Pplied to normalizer(s) such thatitsumsto 1.
Atask is denoted as a tuple, u, w, di. ..., d,), where FAL learns st_ocha_st_|c policies. As argued 8inghet aI_.,_ _
. P Ty R 200d, stochastic policies can work better than deterministic
e tisthe task type. policies in partially observable environments (e.g., DERA
e u is the utility rate of the task. if both are limited to act based on the current percept. To im-

e w is the maximum waiting time before being allocated. Prove th_e expectgd value for ea}ch state, FAL will increase th
. , probability of actions that receive an expected reward abov
e d; is the demand of resour¢e=1,...,¢. the current average. Therefore FAL will converge to a policy
Based on the model of DSRAP developed above, the avefyhere, for each state, all actions receive the same expested
age utility rate of the whole system to be maximized can b&yard and are fairly treated. (It is possible that FAL conesrg

defined as following: to a deterministic policy when an action is always more favor
) > Z;.”:l ZmeTi(C‘) u(x) able than other actions). In a multiagent setting, this prgyp
AUR = lim — - (1) will help agents to converge to an equilibrium.

whereT;(C;) is the set of tasks that allocated to clustgr . I .
at timei andu(z) is the utility of taskz. Note that, due to 4 L €arning Distributed Resource Allocation

its partial view of the system, each individual cluster cah n Algorithm 2 shows the general decision-making process of
observe the system’s AUR. each agent, which repeats at each time step. This algorithm

Algorithm 2: General Decision-Making Algorithm Now we define the state space, the action space, and the
begin reward furzctlon>for Iearnlngfthls dfeC|S|on policy. A ddeom
TASKS — set of tasks received in current time cycle; SIAeS = (8t; 5c) CONSISIS of two feature vectoks ands,
ALLOCATED SolecAnaADGaiGASIKS), e e sk set o be allcated and svalablivety
TASKS — TASKS\ ALLOCATED ; . _FESPECVETy. yp
foreach taskt € TASKSdo approximately represents information about the task, e us
| chooseANeighborAndForwa(; task types to characterize the task set to be allocated. The
feature vectos; = (y1,¥2,-..,ym), Where each featurg
corresponds to task typeandm is the number of task types.
If the task set contains a task with typeheny, = 1. To rep-
resents., we first categorize availability of each resource into
) _ multiple levels and then use combinations of levels of diffe
uses two functionsselectAndAllocatandchooseANeighbo- ant resources as features. The value of a feature is the num-

rAndForward The first function selects and allocates a sub-er of computing nodes in the cluster that have correspgndin
set of received tasks to its local cluster to maximize it@loc ayaijlability level for each resource.

utility. As the global utility is the sum of all local utiliés, An action of this decision is to select a task to allocate. So
optimizing this function can potentially improve the syste g4ch task corresponds to an action. In a real environment,
performance. The second function chooses a neighbor angdlis not frequent to see two tasks that are exactly the same.
forwards an unallocated task to maximize the allocatiolpro 14 redquce the action space, the type of the task is used to
ability of the task. This function aims to route tasks to unsa approximately represent the task itself. Therefore, thieac
urated agents and balance the task load in the system. set is mapped to the set of task types. Then the binary feature
41 Local Allocation Decis vectors; of an abstract state determines available actions

' 0 ocation Decision for states. Itis possible that one task set to be allocated may
have several tasks with the same type. When such a task type

end
end

Algorithm 3: selectAndAllocal@ASKS) is selected, the task of this type with the greatest utikier
begin yviII sele_c_ted and aIIoc_ated. T_he reward for allocating task
ALLOCABLE « getAllocabl¢TASKS); is the utility rate a_ssomated with _
ALLOCATED 0} - ' An agent receives tasks from both the exter_ngl environ-
whiIeALLOCABLE¥ ¢ do ment and its nglghbors. Thus, other agents’ decision gaslici
ALLOCABLE « ALLOCABLE U {VOID} ; affect tas_k arr!vals at the agent. As_aII agents concuryent|
update current state learn their poI|C|e$, the learning environment of each &gen
t — task selected based on policy(s,); becom.es non-stationary. We use FAL aIgonthm to learn local
if £ — VOID then ’ allocation decision policies; (s, a). As (s, a) is stochas-
| ALLOCABLE « 0 tic, the following rule is used to update Q-value function:
else
. Q(Sna an) — (1 - G)Q(Sn, an) +
allocatg(t);
ALLOCATED « ALLOCATED U{t} ; alrn 920 m(sn+1,0)Qsn41,0)]
TASKS « TASKS \{t} ; This new update rule is just like that of Q-learning except th
ALLOCABLE <« getAllocabl¢TASKS); instead of the maximum over next state-action pair it uses th
dlearn(s, t); expected value under the current policy.
en
end Accelerating the L ear ning Process
return ALLOCATED:; Even when using the approximated state space and action
end space developed above, the state-action space of each agent

is still extremely large. Assume that a cluster hasom-
puting nodesyn types of resources, and receivesypes of
Algorithm 3 shows the local allocation decision-making tasks and availability of each resource is discretized ihto
process. This algorithm incrementally selects and alocatlevels, the size of the state-action spacgd$n?™. In addi-
tasks locally. It uses three functiongetAllocable, allocate tion, any pure knowledge-free reinforcement learning expl
andlearn. FunctiongetAllocablefilters tasksbased on cur- ration strategies could entail running arbitrarily pooitiat
rent local resource availability and returns allocablékdas policies, which should be avoided in the practical system. T
Functionallocateis responsible for allocating resources to address those issues, we proposed several heuristicset spe
the task and update local resource availability infornmatio up learning. Policies are initialized with a greedy allocat
Functionlearn updates its allocation decision policy for se- algorithm, which allocates all tasks in an decreasing ocodler
lecting a task. Here we usg to denote the local allocation their utilities if resources permit. The learning is onlizued
policy. VOID is a unique, fake task with no resource require-the e-greedy strategy is used to ensure that each action will
ments and zero utility rate. Selecting this task indicaltes t be explored with a minimum rate. To avoid unwanted system
the process of selecting a subset of tasks to be allocated Iperformance, we set a utilization threshold for each ctuttte
cally is finished. the utilization of every resource is below this threshatent

the manager stopsgreedy exploration and uses the greedy Greedy FDL SDL BDL
algorithm for exploration, which will not reject tasks if-re | Local | Bestfirst| Learning | Bestfirst | Learning
sources permit. In addition, rejecting too many tasks wil| Routing | Random| Random | Learning | Learning

degrade the system performance and thus we also limit the o _
exploration rate of selectingOID task. Table 1: Distributed resource allocation approaches

4.2 Task Routing Decision

Task routing addresses the question: to which neighbc
should an agent forward an unallocated task to getitto a ur
saturated cluster before it expires? As each agent interac
with a limited humber of neighbors, it may not know where
are unsaturated clusters that can be multiple hops away froi
it. An agent can learn to route tasks via interacting with its
neighbors. The learning objective for task routing is to max o, 56 88 o4 44 80 60 76
mize the probability of each task to be allocated in the sgyste
The states, is defined by the characteristics of the task
x that an agent is forwarding. More specifically, can be
represented by a feature vectey, w,), wheret,, is the type
of the taskz andw, is the remaining waiting time of the the updated Q-value far As a result, backward exploration
taskz. An action; corresponds to choosing neighbofor speeds up the learning.
forwarding a task. The value functidp; (s, 7) returns the
expected probability that the taskwill be allocated if an 5 Experiments
agent; forwards it to its neighbog.
Upon sending a task to agerit agenti immediately 5.1 Experiment Design

gets the reward signal(s., j) from agentj. The reward 14 evaluate the performance of learning models developed

<40, 4, 20, 8> <28, 4, 16, 4>

<28,24,8,6> <32,16,4, 8>

Figure 1: The network with 16 clusters and 1024 nodes

r({tz,wz), j) is the estimated probability that the taskvill 5h0ve, we compared five resource allocation approaches:
be allocated based on ageiit policies for both local alloca- greedy allocation first-decision (local allocation) learning
tion and task routing: (FDL), second-decision (task routing) learnig§DL), both-

A iy (s (o decision learning(BDL), and centralized allocation The
(e, d) = pa)Fops (@) >, mag (sl KeQs(55, k) first four approaches are distributed techniques. As shown
in Table 1, they use different algorithms for each decision-
making. Thebest-firstalgorithm, at each time step, first
sorts all received tasks in a descending order of utilitg rat
and then uses the best-fit algorithm in Shiwogaonkar and
Shenoy, 200Bto allocate tasks one by onéearning and

keneighbors of

wherep;(z) is the probability that agentwill allocate task
x locally, o is the task routing policy of agert ands’, is
the state where agejtmakes a decision for forwarding task
z. Ifthe states, = (t,, w,), thens), = (t;, w, —a;;), where

ai; IS the time fpr transferring a task betyveen ?‘9%‘“9'1- Learning, respectively refer to the learning algorithms we de-
The probabilityp; (x) depends on agerits policy m;: veloped for local allocation and task routing. Traedomal-
() = , gorithm for task routing picks a random neighbor to forward
p; (@) Z 4((5e: se)) (5c: 50), 1) an unallocated task. Theentralized allocatiorapproach has
only one manager that fully controls all computing nodes and
usesbest-firstalgorithm to directly allocate tasks to resources
without any routing.

We have tested approaches on several network topologies
with 2, 4, 8, and 16 clusters, all of which show similar result
Here we present detailed results for a network topology with
16 clusters and total 1024 nodes, as pictured in Figure 1h Eac
,)) cluster uses Sharc to manage its local resources. The number

Qi(sz,) = (1 —) x Qi(s4,7) + a*1(zs,) outside a circle represents the number of computing nodes of
wherex is a learning rate (0.5 in our experiments). With mod-that cluster. The CPU capacity and network capacity vary on
ified Q-value function, the FAL algorithm updates the taskdifferent computing nodes, whose range i$5@, 150].
routing policyms;. We use four task types:ordinary, compute-intensive,

To speed up the learning, we use an idea, cdlletkward |0-intensive and demanding Their feature vectors
exploration[Kumar and Miikkulainen, 1999 of using infor- are respectively20, 1,9, 8), (30, 5, 45, 8), (35, 6, 15, 48) and
mation about the traversed path for exploration in the mver (50,25, 47,43), each of which shows the mean of service
direction. When agenttransfer task: to its neighborj, the time, utility rate, CPU demand, and network demand. All
message that contains passan take along reward informa- tasks have waiting time = 10. The service time is under
tionr(s,, 1) of agent: for allocatingz. This reward informa- exponential distribution and the rest is under Poissomiblist
tion can be used by agentto update its own estimate per- tion. Note that the more demanding tasks usually have much
taining toi. Later when agent has to make a decision, it has higher utility rates.

St

wheret is the type of tasle, s, is the current feature vector of
resource availabilityy({s., s¢)|t) is the probability that agent

j is on state(s,, s¢) when it allocates tasks with type and
m1; is the local allocation policy of agerit The probability
q({(s¢, s¢)|t) can be directly estimated during the learning.

The simple version of Q-learning algorithm is used to up-

date agent's Q-value function:

27000 39000 o-o-6-o-0-6-c-o0-6-6-0-6-6606-—-6

o

26000 —A—4 FDL 37000

g -B8—8- Centralized 2-33000 B G anan S e S S S S
g 2000 S 000 4 7 7
2 22000 &
21000 29000 —0—0
27000 T T T T T T T T T T 1
20000 T T T T T T T T T T 1 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
0 5000 10000 15000 20000 ZSDlillimZODDO 35000 40000 45000 50000 55000 Time
Figure 2: Utility rate under light task load Figure 3: Utility rate under heavy task load
Approaches Utility CPU Network Hops
Only four clusters, shaded in Figure 1, receive tasks from—Sreedy | 21996 £ 173 | 0.66 £0.00 | 0.0420.00 | 1.7 =001
external environment. We tested two different task loads|—spr 25661 £ 171 | 0.80 £0.00 | 0.77 £0.00 | 1.66 £0.02
heavyandlight. The vector besides each shaded node shows, BDL 25415+ 139 | 0.74£0.00 | 0.714+0.00 | 5.87+0.04
under heavy Ioad, the average number of tasks of four WPE <Centralized | 26302 £ 216 | 0.84 £0.00 | 0.81 £0.00 | 0.00 & 0.00

arriving on that node. Under light task loads, these average
numbers are half of those of heavy task loads. Task arrivals
of each type on each cluster are under a Poisson distributio

Table 2: Performance with light load

K . . . " Approaches Utility CPU Network Hops
Cluster communication limit i800 tasks per time step. Greedy | 28656 £ 125 | 0.83 £0.00 | 0.81 £ 0.00 | 2.41 £ 0.03
In our experiments, availability of each resource is catet ggt 34Z34 i 107 | 0.77 i 0.00 | 0.74 i 0.00 | 5.07 i 0.02
: H 32785 £ 143 0.95 £ 0.00 0.92 £ 0.00 2.05+0.01
gorized into three levels. All perfprmance measures showph—gr 5000 =36 058 T 0.00 T oS T 0.00 T 59T 0.03
below are computed every 2000 time steps. Results are thértenralized | 35460 £ 171 | 0.97 £ 0.00 | 0.96 £ 0.00 | 0.00 £ 0.00

averaged over 10 simulation runs and the deviation is com-
puted across the runs. Table 3: Performance with heavy load

52 Resllts& Discussions loaded case also holds in the heavily loaded case. In this
Figure 2 shows utility rate trends of the whole cluster nelwo more complicated case, one significant observation is that
as it runs with different approaches in a lightly loaded envi BDL outperforms the centralized allocation approach. Un-
ronment. The curved lines of FDL, SDL, and BDL demon- der the heavy load, the overall demand for resources exceeds
strate that local allocation learning, task routing leagnand their supply by the whole cluster network. Without consid-
their combination gradually improve system performanceering future task arrivals, the best-first centralizedction
Under light load where the demand for resources is less thagpproach is not optimal in such a situation. On the other
the supply, the best solution is to allocate all receivelgas hand, the learning approach implicitly takes account afrieit
within the system. In such a setting, the centralized atlona tasks for making current decisions and can work better than
approach generates the optimal solution. For distributed a the best-first algorithm, which is verified by the performanc
cation approaches, how to route tasks and balance the load$ FDL and the greedy approach. Combined with effective
across clusters becomes very important. From Figure 2nit calearned routing policies, the advantage of learning lo¢al a
be seen that the performance of SDL and BDL is close to th@cation offsets disadvantages due to partial informagiod
optimal approach and much better than FDL and the greedylistributed resource control in distributed approachésciv
approach. So the learning for task routing policy workseffe allows BDL to performs better than the centralized allomati
tively. approach.

When task loads are well-balanced across clusters, re- Table 2 and 3 respectively summarize the performance
sources of each cluster usually can meet tasks’ demand amdeasures (including utility rates, CPU utilization, netiwo
the best-first algorithm is almost optimal for local alldoat utilization, and task routing hops) of different approacha-
decisions. In some sense, the similar performance betweeder light and heavy load during the last 2000 time period of
SDL and BDL verifies the effectiveness of learning local al- simulations. Under light load, although BDL performs very
location policies. However, when task loads are not well dis well in a distributed way, the difference between its utitéte
tributed across the clusters, some clusters received rmske t and the optimal one (generated by the centralized approach)
than their capacity. In such a situation, the best-firsti@gtlgm is still noticeable, which is aroungls. Several factors con-
will not be optimal, because it does not take into account futribute to this gap. First, due to partial observation ribisted
ture task arrival patterns in its current decisions. In castt learned routing policies can not be perfect. In additioe, th
the learning approach implicitly estimates future taskvalr communication of each agent is limited. As a result, some
patterns and give up some tasks with low utilities and resservtasks are not allocated before their deadline. Second-to re
resources for future tasks with high utilities. TherefdfBL duce the policy search space, both learning models use both
will outperforms the greedy algorithm. approximate state space and action space, which introduces

Figure 3 show utility rate trends of the cluster network further uncertainty that has the effect of decreased perfor
under the heavy load. Most analysis results for the lightlymance. We tested more accurate models, such as discretizing

availability of each resource into more levels and usinganor mization problems in distributed systems, such as largéesc
task features in addition to the type task to representr&tio grid computing, sensor networks, and peer-to-peer inferma
Although experiment results are slightly better, the leagn tion retrieval.
converges much slower and has poor policies for a long pe-
riod. Third, the learning never stops its exploration. References

Note that BDL has both lower CPU and network utilization .)
than SDL, although it performs better. This is because, aith [Aronetal, 20(|)d 'IVIOh't Aron, Pgter Druich(_el, a][\d Willy
learned local allocation policy, an agent is willing to give Zwaenepoel. Cluster reserves: a mechanism for resource

tasks with low utility and reserve resources for future high manageTenfijc(ljusIFer-b?sgd net\tNorg servers.M%ag
utility tasks, which causes resources to be idle for a higher il(J)rlengggoan odeling of Computer Systepages 90—
percentage of the time. This giving-up behavior causes more ' :
tasks to be routed, which explains that the greedy approad\rpaci-dusseau and Culler, 199Andrea C. Arpaci-
and SDL have less hops per task than both FDL and BDL. dusseau and David E. Culler. Extending proportional-
The hopsdescribes the average number times that a task has share scheduling to a network of workstations. In
been transfered before being allocated. Proceedings of Parallel and Distributed Processing
Parameters of our heuristics for speeding up learning are Techniques and Application$997.

set in the same way: utilization threshgid= 0.7 and min- [Bowling, 2009 Michael Bowling. Convergence and no-

imum random exploration rate = 0.005. We observe that ~ regret in multiagent learning. INIPS’05 pages 209-216,
when task arrival rate becomes higher, properly improying 2g0s.

dd i [th t f
and decreasingcan Improve the system periormance [Boyan and Littman, 1994Justin A. Boyan and Michael L.
Littman. Packet routing in dynamically changing net-
6 Related Work works: A reinforcement learning approach. MiPS’94
Several distributed scheduling algorithms based on hgsis volume 6, pages 671-678, 1994.
are developed for allocating tasks with deadlines and resou [Claus and Boutilier, 1998Caroline
requirements iiRamamrithanet al, 1989. Unlike our ap- Boutilier. The dynamics of reinforcement learning in

proach, both their basis algorithmfcused address algo- cooperative multiagent systems. IRAAI'98, pages
rithm andbidding algorithm assume each agent can interact 746-752. AAA| Press. 1998. '

with all other agents and request resource information fro -)])

them in a real-time manner. As a result, these algorithme hanKurr]ar and Miikkulainen, 1999 Shailesh Kumar and Risto

potential scalability issues. Miikkulainen. Confidence based dual reinforcement g-
A different resource allocation model is formulated routing: An adaptive online network routing algorithm. In

in [Schaerfet al, 1995, which assumes a strict separation JCAI'99, pages 758-763, 1999.

between agents and resources. Jobs arrive at agents who Ramamrithanet al, 1989 K. Ramamritham, J. A.

reinforcement learning to make decisions about where to ex- Stankovic, and W. Zhao. Distributed scheduling of tasks

ecute them and the resources are passive (i.e., do not makewith deadlines and resource requirementEEE Trans.

decisions) and dedicated. Therefore, there is no direet-int ~ Comput, 38(8):1110-1123, 1989.

action between agents. The work([ifesauro, 200bhas a _[Schaerkt al, 1999 Andrea Schaerf, Yoav Shoham, and

call decides resource allocation based on value funosens. MOShe Tennenhotz. Adapiive [oad balancing: A study
y in multi-agent learning.Journal of Artificial Intelligence

agents, which are Ieamed independently._ Research2:475-500, 1995,
Reinforcement learning has been applied to network rout- i) .

ing [Boyan and Littman, 1994; Kumar and Miikkulainen, [Singhetal, 2004 Satinder P. Singh, Tommi Jaakkola,

1999. In their problems, each package has a pre-specified Michael L. Littman, and Csaba Szepesvari. Convergence

destination, so the routing is targeted. In contrast, irppab- results for single-step on-policy reinforcement-leagaf

lem, agents do not know the destination for an task, which is gorithms.Machine Learning38(3):287-308, 2000.

supposed to be learned. In addition, our task routing learni [Tesauro, 2006 Gerald Tesauro. Online resource alloca-

Claus and Craig

is also affected by the local allocation learning. tion using decompositional reinforcement learning. In
) Manuela M. Veloso and Subbarao Kambhampati, editors,
7 Conclusion AAA|, pages 886—891. AAAI Press / The MIT Press, 2005.

The empirical results presented in this paper provide evifUrgaonkar and Shenoy, 2008huvan Urgaonkar — and
dence that multiagent learning is a promising and practical Prashant Shenoy. Sharc: Managing cpu and network
method for online resource allocation in real computing in- bandwidth in shared clusterEEE Trans. on Parallel and
frastructures with a network of shared clusters. Compared Distributed Systems (TPDS)4(11), 2003.

with a single global learning, multiagent learning scalpsau [Zinkevich, 2003 Martin Zinkevich. Online convex pro-

many applications by partitioning state and action spages 0~ gramming and generalized infinitesimal gradient ascent. In
agents and through concurrent learning over more computa- [cML03 pages 928-936, 2003.

tional hardware. This work also plausibly suggests that mul
tiagent learning may be an approach to address online opti-

