
Organizationally Adept Agents

Daniel D. Corkill,1 Edmund H. Durfee,2 Victor R. Lesser,1 Huzaifa Zafar1, and
Chongjie Zhang1

1 University of Massachusetts Amherst, Amherst MA 01003, USA
2 University of Michigan, Ann Arbor MI 48109, USA

Abstract. An organizationally adept agent (OAA) is not only aware
that it is part of an agent organization and about its role(s) in that or-
ganization, but it can also assess how well it is fulfilling its organizational
responsibilities and can proactively adapt its behaviors to meet organi-
zational needs better. OAAs evaluate their behaviors based not only
on their (agent-centric) self-interests, but also on their (organization-
centric) responsibilities to each other and their (social-centric) willing-
ness to perform activities requested by other agents.

Agent organizations designed for less adept agents must specify de-
tailed guidelines that, when blindly followed, will influence individual
agents to work together in the expected environment. However, if the
environment deviates from expectations, such detailed organizational
guidelines can mislead agents into counterproductive or even catastrophic
behaviors. Organizations designed for OAAs, on the other hand, can as-
sume that agents will reason about organizational expectations, and will
adjust their behaviors when the nominal guidelines misalign with those
expectations.

We describe an extended BDI reasoning architecture for an OAA that
balances organizational, social, and agent-centric interests and can adjust
this balance when appropriate. Then we show how we used the reasoning
architecture with agents operating in RoboCup Rescue scenarios.

Keywords: organizationally situated agents; multi-agent organizations;
adaptive agent behavior; emergent agent organizations

1 Introduction: Organizational Structuring and Control

Despite creating highly capable software agents, widespread deployment of large
multi-agent applications has not occurred, in large part because coordinating
many individual agents’ activities to achieve collective benefit in open, dy-
namic environments is hard. Statistical approaches (like those inspired by insect
colonies) allow miscoordination so long as aggregate behavior of the population
is acceptable [2], but can waste valuable agent resources. More effective coordi-
nation can arise when each agent reasons about the past, present, and future
activities of all agents, given the evolving environment state, to make informed
decisions. This can work well for small teams and coalitions [17], but quickly



becomes intractable in larger agent populations. Avoiding intractability in large-
scale settings by pre-specifying what activities each agent should perform cannot
cope with an environment that changes unpredictably.

A variety of techniques for scalable coordination have been investigated. In
general, these try to reduce the awareness an agent needs of others. For exam-
ple, agents can exploit locality to only be aware of nearby agents, such as where
an agent responsible for piloting a robotic truck needs only model other nearby
vehicles. Or agents can utilize aggregation to model many other agents with a
small set of parameters, such as how a product’s price quote from an auction
can summarize the bidding behaviors of all the buyers and sellers. Underpinning
these and other scalable coordination techniques, however, are more stable struc-
turing decisions about permissible interactions (e.g., the “rules of the road”)
and communication patterns. These structuring decisions in turn can require
considerable designer effort and insight to ensure that operational coordination
mechanisms (e.g., negotiation protocols and auctions) can perform effectively
and tractably. Furthermore, the resulting structures cannot adapt themselves to
changing circumstances without human intervention, and might rely instead on
compensating (over)use of operational coordination techniques which will either
yield lower-quality coordination decisions, incur greater amounts of overhead, or
both.

These limitations can be confronted by treating organizational control organ-
ically within a multi-agent system rather than relying on an external (human) de-
signer. Organizational control is a multi-level approach to coordination in which
organizational goals are identified and used in determining agent roles and re-
sponsibilities [4]. These roles and responsibilities provide a context for making
detailed operational control decisions by the individual agents. Organizational
control is distinct from operational control in both time span and level of detail.
Organizational roles and responsibilities specify general, long-term guidelines
that are subject to ongoing elaboration and revision by the agents [6]. Opera-
tional control, on the other hand, involves specific short-term agreements among
agents to perform specific activities at specific times [12]. Organizational guide-
lines reduce the complexity of operational decision making, lower the cost of
distributed resource allocation and agent coordination, help limit inappropriate
agent behavior, and reduce unnecessary communication and agent activities.

Corkill and Lander [5] note that effective multi-agent organization becomes
increasingly important with: 1) increases in the number of agents and their
diversity; 2) increases in the duration of agent activities; 3) increases in the
repetitiveness of agent activities; 4) increases in resource sharing; 5) increases
in agent collaboration and the complexity of interactions; 6) increases in agent
specialization; 7) decreases in agent capability; and 8) decreases in resource slack
(or increases in performance requirements). As agent-based applications become
more widespread and complex, effective organizational coordination will become
an important aspect of system performance. We are just reaching the point of
creating multi-agent applications where organization makes a meaningful differ-
ence, and soon it will become the critical difference.



In the next section, we discuss organizationally adept agents in detail, focus-
ing on the reasoning activities that they must perform. In Section 3 we describe
a BDI-based architecture that we have developed to enable an agent to perform
organizationally adept reasoning. Then we show how we used the reasoning ar-
chitecture with agents operating in RoboCup Rescue [11] scenarios.

2 Organizationally Adept Agents

Central to effective organizational control is the creation of organizationally
adept agents (OAAs) that can reorient their local activities based on their in-
terpretation of the organizational intent, allowing emergent organizational be-
havior within designed organizations. Emergent behavior in multi-agent systems
has been the topic of considerable interest and research [3, 14, 1]. We are pri-
marily interested in emergent organizational behavior where individual agents
identify interaction and local control decisions that have been effective in the
past and give preference to similar decisions in the future. Gasser and Ishida
were among the first to consider emergent organizational behavior as a means of
organization self-design [7]. In their work, each agent used what it knew about
how the organization was performing in its local neighborhood to make uni-
lateral changes in its organizational behavior. Kamboj and Decker extended the
Gasser and Ishida work to more complex multi-agent environments [10]. We, and
other researchers, have used learning and diagnosis techniques to enable agents
to determine emergent behavior [16].

An OAA must be able to: a) adapt its behavior given explicit expectation-
annotated organizational directives, b) determine appropriate emergent organi-
zational behaviors on its own (perhaps within organizationally delimited bound-
aries) when organizational expectations are not met or when externally designed
directives are absent, and c) report deviations from organizational expectations
as well as new emergent organizational behaviors to other agents.

OAAs are especially beneficial in settings where either the system objectives
or the task-environment characteristics are not fully known. In addition, OAAs
provide mechanisms to adapt (both short and long-term) to changing environ-
mental conditions. However, the benefits provided by OAAs diminishes when
the objectives of the system are not identified at all, when an agent cannot
generate expectations of its own task performance or measure if it is achieving
those expectations, and when agents are unaware of their neighbors and expec-
tations of their performance. The importance of agent expectations (and the
OAA approach) does not depend on whether the agents are assembled by nego-
tiated agreements between self-interested agents or whether they are inherently
inclined to achieve common social objectives.

2.1 Functional OAA Architecture

Fig. 1 presents the basic functional architecture of an OAA. The agent’s or-
ganizational behavior derives from a combination of annotated organizational



Fig. 1. Organizationally Adept Agent

guidelines that are disambiguated and elaborated into specific actions by the
OAA and from actions identified from the agent’s local view of its opportunities
(which may not align with the organizational guidelines).

The activities shown in the boxes at the top of the figure are associated
with organizational control aspects of the OAA. An organization designer pro-
vides the OAA with organizational guidelines and performance expectations that
are elaborated into specific role-based (organization-centric) operational activ-
ity possibilities. Activities to be performed by an OAA can also be requested
by other agents, and these social-centric activity possibilities are shown at the
lower left side of the figure. On the lower right side are emergent (agent-centric)
opportunities stemming from the agent’s awareness of its environment, capabil-
ities, and status. Decisions about what organizational, social, and self-centric
possibilities should be performed by the agent (or should be requested to be
performed by other agents) are made by the ”Operational Decisions” function
at the bottom center of the figure. This reasoning activity is at the heart of the
OAA approach and, after presenting an example of the type of agent behavior
that we expect an OAA to perform, we describe a BDI-based implementation of
this core OAA functionality.

2.2 An Example of OAA Behavior

Consider an initial organization, shown in Fig. 2, for the RoboCup Rescue do-
main. As part of this organization, the city is divided into four regions. A center



is assigned the role of managing each region. The activities of a center include:
maintaining information about buildings in its region, collecting status reports
(such as location, water levels, etc.) from each fire-brigade agent within the re-
gion, determining the number of fire brigades that are needed to extinguish a
building on fire, determining which fire brigade agents to assign to which build-
ings, and requesting help from neighboring centers when required. Each center
is provided with organizational guidelines that include the fire-brigade agents
that the center manages3 and parameters for the center’s managerial role (for
example, the boundary of the region it manages). Additionally, the center’s orga-
nizational guidelines are annotated with task-environment expectations provided
by the organization designer.4 For example, annotations might specify that the
center should typically have to manage at any given time no more than: one
medium task (requiring two fire brigades to extinguish) and one small task (re-
quiring one fire brigade); three small tasks; or one large task (requiring 3 fire
brigades). Assuming that organization was designed for a city where fires are
evenly distributed across regions, an equal number of fire brigades have been
assigned to each region.

Fig. 2. An example RoboCup Res-
cue organization where the city is di-
vided into four regions, with a man-
ager (centers C1, C2, C3, and C4) re-
sponsible for each region. Agents as-
signed the role of extinguishing fires
(fire brigades F1 to F6) are also shown
for the C1 and C2 regions.

Now, consider center C1 operating in
the Fig. 2 structure. As new fires are dis-
covered, C1 begins allocating resources (as-
signing fire brigades the task of extinguish-
ing buildings on fire) to fires in its region
in accordance with the parametrized role
assigned to it—even though it could poten-
tially perform other activities (such as allo-
cating resources to fires outside its region).
Suppose C1 discovers new fires in its region
that require more resources than C1 has
available. What should C1 do as an OAA?
First of all, C1 needs to make operational
decisions about how it should address the
immediate problem. Should C1 allow new
fires to stack up until it can assign its fire-
brigade resources to them (hoping that the
arrival rate will drop back to manageable
levels quickly)? If C1 delays responding to
fires too long, buildings might burn down or, worse, the fires might spread to
neighboring buildings, compounding the problem. Given this, should C1 delay

3 Those fire-brigade agents also having been assigned the role of extinguishing fires as
directed by the center.

4 In this paper, we do not care if the agent organization is designed by a human or
by an automated (potentially distributed) designer process [15, 9]. In either case, we
assume that annotations sharing the designer’s expectations are provided along with
an agent’s organizational guidelines to help an OAA recognize when the assumptions
used by the designer become invalid.



(a) Transferring resources (b) Adjusting regions

(c) Sharing resources (d) Employing a higher-level management role

Fig. 3. Adjustments to the organization (from Fig. 2)

dealing with the newly discovered fires? Or, should C1 assign a smaller number
of resources to these fires with the goal of preventing them from spreading, rather
than extinguishing them? Should C1 ask a neighboring center for help, and if so,
which center? If C1 decides to seek help from a neighboring center, should it sim-
ply borrow additional resources (and incur an added span-of-control challenge
in managing the additional brigades) or should it transfer the responsibility of
handling the fire to the neighboring center?

Furthermore, from an organizational-control perspective, C1 needs to con-
sider whether the overload situation is: 1) a transient burst whose effects are
so brief that they lie within the environmental expectations that were assumed
when the organization was designed; 2) a longer duration event that is outside
the organizational expectations (but will return to normal eventually); or 3) a
change in the environmental situation from the original assumptions, and the
design is no longer appropriate.

In deciding what to do, C1 must generate candidate operational-action
choices and consider potential longer-term changes to its organizational behav-
ior. Consider how C1 might proceed under case 2, above, where the longer-term



volume of fires in its region exceeds both C1’s resource constraints and its orga-
nizational expectations. Assume that this situation has become recurring, and
that each time it has occurred C1 has addressed it operationally by borrowing
resources from a neighboring center. Most of the time, C1 has borrowed brigades
from C2, and C1 is now approaching C2 first in order to reduce the operational
cost of seeking resources from other centers. The next step in addressing this
recurring situation is to move from repeated operational “fixes” to a long-term
agreement between C1 and C2.

An OAA makes localized organizational-behavior modifications by obtaining
long-term agreements with other OAAs. In doing so, OAAs assess, implement,
and evaluate the effect of these behavior modifications locally, and then, if ap-
propriate, report them to the organization designer as information to be used
in modifying the overall organization design, if appropriate. As shown in Fig. 3,
C1 and C2 can form one of several local long-term agreements:

Transferring resources—If C2 perceives that it generally has a spare fire brigade
even when operating near the limit of the task-environment expectations asso-
ciated with its organizational guidelines, C1 and C2 can agree to permanently
transfer control of a fire brigade (e.g., F6) to C1. To accomplish this agreement,
C1, C2, and F6 need to form a long-term agreement among themselves and an-
notate it with the corresponding environment expectations.

Adjusting Regions—If C2 perceives that the long-term task volume is lower than
its local processing capability and organizational expectation but sometimes it
needs all three fire brigades, C1 and C2 can mutually decide to adjust the region
boundaries so that the expected task distribution between the two new regions
is in line with organizational expectations.

Sharing Regions—Regions can also be adjusted so that they overlap. Fires in
buildings in the overlap area can be handled by either center (providing increased
resource flexibility), but at the complexity of having the centers determine who
will handle each fire in the overlap area. For example, C1 and C2 could decide
to negotiate each time, or simply allow the center with more available resources
to take charge.

Sharing Resources—If C2 perceives that the long-term task volume is in line
with its local processing capability and organizational expectations and that C1
and C2 rarely require simultaneous use of three or more fire brigades, C1 and C2
can agree to share a fire brigade (e.g., F6). That is, both C1 and C2 can direct
F6 and F6 reports its status information to both centers. The agreement with
F6 needs to specify how it will deal with conflicts, such as if C1 and C2 request
it to fight different fires at the same time. For example, F6 could be directed to
always prefer requests from C2 over requests from C1, or to seek resolution of
the conflict from the centers, or F6 could be allowed to decide for itself which
fire to fight.

Employing a Higher-Level Management Role—If C2 perceives that the long-term
task volume is in line with or exceeds its local processing capability and orga-
nizational expectations (but rarely do C1 and C2 require three or more fire
brigades simultaneously), C1 and C2 can share their resources more efficiently



by agreeing to enable a new high-level super-manager role, Cm, to coordinate
decision making of C1 and C2. This new role can be performed by either C1 or
C2. Assume C1 undertakes this new role, C1m. When either C1s or C2s (the
original C1 and C2 roles are replaced with “subordinate” center roles that have
diminished responsibilities due to the enabling of the Cm role) is overloaded with
fires to extinguish, C1m requests (as part of its organizational responsibilities)
status information of C2s’s fire brigades, makes a more coordinated allocation
decision, and notifies C2s to execute the part of the decision that requires its
fire brigades.

3 An Extended BDI Architecture for an OAA

Our OAA architecture is built on a variant of the classic BDI model [13]. To per-
form the decision-making required by an OAA, we introduce organizational-level
reasoning that affects the normal operational-level reasoning by incorporating
organizational guidelines as beliefs and modifying the goal-evaluation mecha-
nism used for deciding which operational goals to pursue at any moment. In
addition to problem-domain beliefs, goals, and plans, we explicitly represent be-
liefs, goals, and plans that support organizational-level reasoning. Conventional
BDI agents make decisions based on their local interests. For an OAA, however,
organizational guidelines and requests from other agents also affect the agent’s
operational decisions. To enable the OAA to balance the potentially conflicting
interests of organization, others, and self, we structure the evaluation function of
operational goals to include three weighted components that explicitly represent
these three interests. We will discuss these extensions after we briefly describe
the basic BDI architecture.

A BDI agent has a belief set, a set of primitive actions, and a goal library. Its
belief set is composed of beliefs that represent the agent’s knowledge about the
world, including its local state, the surrounding environment, and in an OAA,
the organization, and the interests of other agents. A belief is defined by a set of
variables and associated values. Primitive actions are executable, which provide
the capabilities of the agent. The goal library contains a set of generic goals. A
generic goal can be instantiated when its precondition is satisfied. A generic goal
is specified by the following components:

Type—The label that indicates the type of the goal.

Precondition—A logical condition that must be true in order to instantiate the
goal. The condition is verified on the agent’s belief set. This condition does not
have to remain true during the execution of the goal’s plan.

Postcondition—A logical condition whose value becomes true once the goal is
achieved. This condition is also verified on the agent’s belief set.

Plan algorithm—The method that generates a plan to achieve the goal based on
the belief set.

Utility function—The function that computes the utility of the goal given the
belief set.



Algorithm 1: The BDI-Agent Reasoning Process

input: Goal library GL and initial belief set B0

B ← B0; /* B0 is the initial belief set*/1

cg ← nil; /* Initialize with no committed goal */2

repeat3

Get percept p;4

B ← updateBeliefSet(B, p);5

G← options(B,GL, cg); /* Instantiate top-level goals */6

cg ← filter(B,G, cg); /* Select and commit a goal from goal set G */7

π ← plan(B, cg);8

executeP lan(B,GL, cg, cg, π); /* recursively execute the plan */9

until the process is terminated10

Algorithm 1 shows the reasoning process of a BDI agent. When the agent
perceives the environment, receives messages from other agents, or notes a change
in the status of one of its ongoing actions, it updates its belief set. Based on the
updated belief set, the agent instantiates and evaluates goals (which are also
called desires). The agent then determines the goal(s) with the highest utility
and commits to achieving them. A committed goal is also called an intention.
Once committed to a goal, the agent will select and instantiate a plan from its
plan library (or generate a plan by using a predefined algorithm) in order to
achieve the goal. A plan for a goal consists of a sequence of primitive actions
or subgoals. Goals and plans form a hierarchy, called a goal-plan tree. Note that
committed goals only refer to top-level goals in the hierarchy.

Algorithm 2 illustrates how an agent executes a plan to achieve a top-level
committed goal. The execution of a plan is generally sequential. But if a plan
contains subgoals, it will be executed recursively. During plan execution, the
agent will constantly update its belief set based on its perceptions and potentially
instantiate new top-level goals. If a newly instantiated goal has a higher utility
than a currently committed goal (and the agent cannot execute plans for them
both), the method reconsider(B, cg,G) will return true and the execution of the
plan of that currently committed goal will then exit. Without considering the
uncertainty of the environment, the satisfaction of a top-level goal requires the
satisfaction of all subgoals. If the environment is uncertain or an agent has only
partial observability, it is possible that the goal is achieved without achieving
all subgoals of its plan or the goal is not achieved even when all subgoals of
its plan are achieved. Given uncertainty of the environment and of the effects
of the actions, the agent needs to check at every time step whether the goal is
achieved and, if not, that its plan remains sound. This verification can be done
by checking if the precondition of the first primitive action or subgoal of the plan
is satisfied. If it is not, the agent needs to create a new plan for the goal.

An OAA reasons at two different levels: organizational and operational. At
the organizational level, the agent reasons about whether current organizational
guidelines are effective and, if not, how it can improve them by either perform-
ing a local organization adaptation or requesting a non-local adaptation from
the organization designer. At the operational level, the agent decides which op-
erational goals to pursue and which plans to choose for achieving committed
goals. These two types of reasoning focus on goals at different temporal scales.



Algorithm 2: Function executeP lan(B,GL, cg, g, π)

input : Belief B, Goal library GL, committed goal cg, current goal g, plan πg
output: return false if committed goal cg needs to be reconsidered; otherwise,

return true
while not (empty(π) or succeeded(g,B) or impossible(g,B)) do1

α← first(π);2

π ← rest(π);3

if isPrimitiveAction(α) then4

do(α);5

else6

πα ← plan(B,α);7

if executePlan(B, GL, cg, α, πα) then8

return false; /* Committed goal cg needs to be reconsidered */9

end10

end11

Get percept p;12

B ← updateBeliefSet(B, p);13

G← options(B,GL, cg); /* Instantiate top-level goals */14

if reconsider(B, cg, G) then15

return false;16

end17

if not sound(π,B, g) then18

π ← replan(B, g);19

end20

end21

return true;22

Organizational-level reasoning is intended to achieve long-term organizational
goals (organizational objectives), while operational-level reasoning focuses on
immediate operational goals. However, these two reasoning levels interact. Or-
ganizational guidelines (reasoned about at the organizational level) provide pref-
erences or constraints for an OAA’s choice of operational goals and plans. These
guidelines specify what roles the agent should perform, priorities for these roles,
and how these roles are parametrized (e.g., under what conditions these roles
should be activated, who the agent should communicate with, etc.). In turn,
the effectiveness of organizational guidelines is reflected in how well operational
goals (weighted by their importance) are accomplished by the agent. Thus, OAA
reasoning needs to include beliefs about the status of operational goals.

The top-level goal of organizational-level reasoning is to assess and maintain
the effectiveness of an agent’s organizational guidelines. Each OAA has three
generic plans to achieve this goal that can be invoked in different situations: us-
ing existing organizational guidelines, performing localized organizational adap-
tation, and requesting non-local adaptation from the organizational designer.
For example, if current guidelines perform as expected, the agent needs to follow
them for making decisions at the operational level; otherwise, it needs to de-
cide whether to adapt locally or more globally. Its decision-making relies on its
knowledge about the current situation, i.e., its belief set. At the organizational
level, the agent perceives messages from the organizational designer or other
agents that perform organizational adaptation. Its belief set contains current



organizational guidelines, performance annotations, and environmental expec-
tations. To evaluate the effectiveness of the current organizational guidelines,
the OAA needs to monitor the results of its operational goals over time, updat-
ing beliefs about its own performance (e.g., the failure frequency of operational
goals). In addition, its belief set also needs to reflect environment changes to
determine whether the changes are within its expectations, a transient deviation
from its expectations, a frequent, long-duration deviation from its expectations,
or a permanent deviation from its expectations [8].

At the operational level, the agent’s perceptions, belief set, and goals are
usually domain-specific, which is similar to the implementation of conventional
BDI agent architectures. However, as agents interact and perform within an
organization, the decision-making of each OAA needs to balance the interests of
itself, the organization, and other agents. As we discussed above, in our OAA
architecture, the goal evaluation function largely determines the agent’s decision-
making process. Therefore, we structure the utility function of goals to reflect
explicit separation of organizational, social, and self-interests. In our current
OAA implementation, the utility function U(g,B) for operational goal g with
belief set B is defined as the following:

U(g,B) = v(g)(wsps(g,B) + wopo(g,B) + wrpr(g,B)),

where v(g) is the objective value of goal g, ps(g,B), po(g,B), and pr(g,B) are
the preferences for goal g of the agent itself, the organization, and other agents,
whose values are in the range [−1, 1], and ws, wo, and wr are weights, whose
values are in the range [0, 1] and are normalized to sum to 1. These weights are
also part of an agent’s beliefs. An agent can change these weights through up-
dating its belief set based on its assessment of the effectiveness of organizational
guidelines, its own experiences, and requests of other agents. The local preference
ps(g,B) reflects the agent’s local interest for this goal. The preference po(g,B)
is determined using organizational guidelines contained in the agent’s belief set
B. The value pr(g,B) summarizes the agent’s belief of the interest that other
agents have expressed (via sent requests) for goal g. Let pr1(g,B), . . . , prk(g,B)
be the interests of other agents for goal g. In our current implementation, the
preference pr(g,B) is defined as the following:

pr(g,B) =
2

1 + αe(−β
∑k

i=1 pri(g,B))
− 1,

where α > 0 and β > 0 are constants (i.e., α = 50 and β = 8). It is possible
that, for some goal, there are no organizational guidelines relevant to it or no
requests from other agents. If this happens, we set the corresponding weights to
zero and normalize the weights so that they sum to 1.

4 Evaluation

We are only beginning development of a complete OAA architecture that pro-
vides the complete adaptive capabilities described in Section 2. However, we
believe that the basic ability to incorporate and balance organizational, social,



Fig. 4. Center OAA architecture (with an example goal-plan tree). Shown are a gen-
eral Rescue Buildings (RB) goal and three goals specific to buildings on fire (B1, B2,
and B3). Three plans are shown: extinguish building using the center’s own resources,
request resources from neighboring centers, and transfer the extinguish task to neigh-
boring centers. Selected plans and goals are highlighted.

and self-interests in making operational decisions is a crucial requirement for
OAAs that can perform reasonably when there is uncertainty and inappropri-
ateness from the perspective of a single interest. Furthermore, the ability for
an OAA to adjust the influence it grants each of these perspectives over time
is important to agent and organizational robustness and effectiveness. For ex-
ample, an OAA must be able to function without organizational guidelines (by
increasing the weight of self and social influences) if no guidelines have been
supplied or if they become inappropriate. In the next section, we discuss how
we used the OAA reasoning architecture as the operational decision engine for
agents extinguishing fires in RoboCup Rescue.

4.1 Using the OAA Architecture in RoboCup Rescue

We implemented the OAA architecture for centers in RoboCup Rescue (Fig. 4)
Each agent receives percepts, from itself (characterizing the internal status of
the agent), from external factors in the environment (from the RoboCup Rescue
simulator), and from other agents. These percepts include organizational guide-
lines received from an automated designer5 (e.g. the geographic region the center
is managing), tasks (e.g. fires in the region, task-transfer requests), and resource
statuses (e.g. water levels of fire-brigades the center is controlling, resource-
transfer requests). Based on these percepts, each agent updates the following
types of beliefs:

5 Not discussed in this paper.



Organization Beliefs (OB)—represent the organizational guidelines given an
agent including the roles it is responsible for and specific parameters of those
roles. For example, a role that a center performs is task allocator. The guidelines
parametrize that role with the fire-brigade agents that the center has authority
over and the geographical region it is responsible for managing.

Building/Fire Beliefs (BB)—represent the various buildings in the environment,
whether they are on fire or not, the importance of the buildings, and the utility
received on extinguishing fires in those buildings.

Resource Beliefs (RB)—status information regarding fire-brigades agents di-
rected by the center, including their water level, health, and location.

Other Center Beliefs (CB)—assessment of the willingness of other centers to
help this center and of the likelihood of other centers to request help from this
center based on past experiences.

As beliefs are updated, each agent forms a local goal-plan tree, where each goal
and plan is evaluated based the agent’s beliefs. Each center starts with one in-
herent goal, to extinguish buildings that are on fire. As a new fire percept is
received, the agent instantiates a subgoal (B1 for example) for the particular
building. For each building on fire, the agent can execute one of three plans: 1)
it could try to extinguish the fire using only its own brigades (Self in Fig. 4),
2) it could augment its own resources by requesting brigades from neighboring
centers (Request Resources), or 3) it could transfer the task of extinguishing the
fire to a neighboring center (Transfer Task). The utility of a goal is calculated
using the following function:

U(goal, beliefset) = f(goal, BB)(wsfs(goal, RB)

+wofo(goal, OB) + wrfr(goal, CB))

Thus, if a center is highly inclined to follow its organizational guidelines, its
wo will be high (e.g., 0.8), while ws and wr will be low (e.g., 0.1 each).6 If
a center is strongly self-motivated, ws will be high. If a center greatly prefers
assisting other agents, wr will be high. These weights are normalized so that
ws + wo + wr = 1. Note that there are two things operating here. For each
goal, its objective utility (f(goal, BB)) is boosted by how much the goal agrees
with the center’s organizational guidelines (fO(goal, OB)), its beliefs about itself
(fS(goal, RB)), and its beliefs about its neighboring agents (fR(goal, CB)). On
the other hand, the weights influence the center’s inclination for goals that agree
with its organization-centric, social-centric, and self-motivated interests.

4.2 Demonstrations

We illustrate OAA behavior differences given different (fixed) weights for ws, wo,
and wr using RoboCup Rescue scenarios. Consider center C2 and two buildings
B1 and B2, both on fire (Fig. 5).

6 Although we wanted to show the different behavior of OAAs that were heavily
weighted toward one of the three interest perspectives, we did not want to eliminate
entirely the ability to choose activities stemming from the other two perspectives.



Fig. 5. Center C2 discov-
ers two buildings on fire,
B1 and B2 at an equal
distance, d, from the cen-
ter of the region. It has
enough resources to han-
dle only one of them. Cen-
ter C1 discovers fire B2
and sends a request to C2
for help extinguishing it

Initially, ws = wo = wr = 1
3 . When the fires are

discovered, C2 generates a goal to extinguish each fire
(goals B1 and B2). For goal B1, fS = 1

d , fO = 1 (since
building B1 is within the region of C2’s organizational
responsibility), and fR = 0 (since extinguishing build-
ing B1 has not been requested of C2 by another agent).
For goal B2, fS = 1

d , fO = 0 (since building B2
is outside the responsibility region that is specified
in C2’s organizational guidelines), and fR = 0. Be-
cause of the added organizational inclination, C2 will
prefer accomplishing goal B1 over B2, unless B2 is
a significantly more important building than B1 (i.e
fB1 << fB2). Once C2 assigns resources to accom-
plish goal B1, and if U(B2, B) is greater than a certain
threshold, C2 will generate plans for requesting help
from neighboring centers for accomplishing B2. Values
for fs, fo, fr will be calculated for the goals associated
with each of the plans, allowing for C2 to select one
of them.

Extending this scenario further, suppose C1 dis-
covers B2. It will generate a corresponding goal for it
and assign values fS = 1

d , fO = 1, and fR = 0. Assume
C1 does not have enough resources to fight fire B2,
and from its perspective U(B2, B) is greater than its
threshold. C1 will generate plans for requesting help
from neighboring agents (just as C2 did previously).
Suppose C1 makes a request of C2 to extinguish this
fire. This means C2 will increase its fR value for goal
B2 based on the local importance of handling requests from C1. Now, C2 must
make an operational decision between accomplishing goals B1 and B2. If rather
than the weights being 1

3 each, wr > wo, C2 will assign its resources towards
accomplishing goal B2. If wr < wo, C2 will assign its resources to B1. If both
C1 and C2 were to favor self-interests, they both might try to request resources
for B2 (because the organizational interest is not accounted for), incurring both
the operational cost of making those duplicate requests, as well as the potential
cost of over-assigning resources to B2.

These initial demonstrations show that our RoboCup Rescue OAAs not only
behave differently when strongly weighted toward different interests (organiza-
tion, social, self), but that they perform ineffectively when the interest they
are emphasizing does not fit their beliefs and environment. More importantly,
these demonstrations show the potential for OAAs that maintain a balance be-
tween these three important interests and adjust that balance when long-term
environmental conditions and agent behaviors warrant. Our OAAs can follow
organizational guidelines when they are available, yet operate in their absence
or ignore them if they are inappropriate.



Acknowledgement. This material is based in part upon work supported by
the National Science Foundation under Award No. IIS-0964590. Any opinions,
findings, conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. C. Bernon, V. Chevrier, V. Hilaire, and P. Marrow. Applications of self-organising
multi-agent systems: An initial framework for comparison. Informatica, 30:73–82,
2006.

2. E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm Intelligence: From natural to
artificial systems. Oxford University Press, 1999.

3. C. H. Brooks and E. H. Durfee. Congregation formation in multiagent systems.
Journal of Autonomous Agents and Multiagent Systems, 7:145–170, 2003.

4. D. D. Corkill. A Framework for Organizational Self-Design in Distributed Problem-
Solving Networks. PhD thesis, University of Massachusetts Amherst, Feb. 1983.

5. D. D. Corkill and S. E. Lander. Agent organizations. Object Magazine, 8(4):41–47,
Apr. 1998.

6. E. H. Durfee and Y. pa So. The effects of runtime coordination strategies within
static organizations. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 612–618, Nagoya, Japan, Aug. 1997.

7. L. Gasser and T. Ishida. A dynamic organizational architecture for adaptive prob-
lem solving. In Proceedings of the National Conference on Artificial Intelligence,
pages 185–190, Anaheim, California, July 1991.

8. B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational
structures. In Proceedings of the Fifth International Conference on Autonomous
Agents, pages 529–536, Montreal, Canada, June 2001.

9. B. Horling and V. Lesser. Using quantitative models to search for appropriate
organizational designs. Autonomous Agents and Multi-Agent Systems, 16(2):95–
149, 2008.

10. S. Kamboj and K. S. Decker. Organizational self-design in semi-dynamic environ-
ments. In Proceedings of the 2007 IJCAI workshop on Agent Organizations: Models
and Simulations (AOMS-07), pages 335–337, Jan. 2007.

11. H. Kitano and S. Tadokoro. RoboCup-Rescue: A grand challenge for multi-agent
and intelligent systems. AI Magazine, 22(1):39–52, 2001.

12. J. G. March and H. A. Simon. Organizations. John Wiley & Sons, 1958.
13. A. S. Rao and M. P. Georgeff. Bdi agents: From theory to practice. In Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS’95), pages
312–319, San Francisco, California, June 1995.

14. G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-organisation and
emergence in MAS: An overview. Informatica, 30:1–11, 2006.

15. M. Sims, D. Corkill, and V. Lesser. Automated organization design for multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 16(2):151–185, Apr. 2008.

16. T. Sugawara and V. Lesser. Learning to improve coordinated actions in cooperative
distributed problem-solving environments. Machine Learning, 33(2-3):129–153,
Nov. 1998.

17. M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka, S. Marsella, and
I. Muslea. Building agent teams using an explicit teamwork model and learning.
Artificial Intelligence, 110:215–240, 1999.


