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Abstract. An organizationally adept agent (OAA) adjusts its behavior when
given annotated organizational guidelines. More importantly, it can also deter-
mine when such guidelines become ineffective and proactively adapt its behavior
to better achieve organizational objectives. A central OAA tenet is a clear sep-
aration between operational decision making (the detailed moment-to-moment
behavior decisions made by an agent) and organizational control (longer-term
directives designed using estimates of environment and agent characteristics and
expressed to agents as annotated guidelines that bias and inform their operational
decision making). This separation enables the OAA to stop following guidelines
when the estimates used in their design were incorrect or when the environment
changes over time and to propose and negotiate agreements with other OAAs to
replace such guidelines.
We describe a fully operational OAA architecture that: 1) allows agents to operate
reasonably without organizational guidelines; 2) uses belief values in operational
decision making that are updated by experience and can be seeded by expecta-
tions conveyed in guideline annotations; 3) assesses the appropriateness of guide-
lines based on deviations from annotated estimates developed during their design;
and 4) can make agreements to replace inappropriate guidelines. We present de-
tails of this approach to agent organization and analyze its effectiveness using
call-center OAAs striving to extinguish fires in RoboCup Rescue scenarios.

1 Introduction

Coordinating many individual agents’ activities to achieve collective benefit in com-
plex, dynamic environments is hard. As the number of agents working together on tasks
increases (and the precedence relationships and potential interference among tasks and
resources grows), it becomes increasing difficult for an agent to decide what it should
be doing, when it should be doing it, and with what other agents it should coordinate
its actions). Designed agent organizations [3, 14, 6] provide agents with organizational
directives that, when followed, reduce the complexity and uncertainty of each agent’s
activity decisions, lower the cost of distributed resource allocation and agent coordina-
tion, help limit inappropriate agent behavior, and reduce unnecessary communication
and agent activities.

In order to participate in an agent organization, an agent must be able to adjust
its normal behavior when it is given organizational directives. These directives contain
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general, long-term guidelines, in the form of parametrized role assignments and prior-
ities (e.g., prefer extinguishing fires in region A over fires in Region B), that are sub-
ject to ongoing elaboration into precise, moment-to-moment activity decisions by the
agents [11, 4]. Following organizational directives is beneficial when agent directives
can be designed that perform well over a range of potential long-term environment and
agent characteristics. On the other hand, following directives when the estimates used
in their design are incorrect or have changed over time can be worse than not having
directives at all.

We have developed a novel paradigm for an organizationally adept agent (OAA) [2]
that can operate in an uncertain organizational setting. Creating an OAA involves a
number of essential features, the most important of which is providing each OAA
with information about the assumptions made by the organization designer (whether
designed by a human or by an automated designer process [14, 7]) and the range of
conditions the OAA should expect if the organization is operating as intended (e.g.,
the environment is not within the expected range of characteristics or that task per-
formance differs from expectations). This richer coupling of the designer’s intent with
the OAAs is accomplished by augmenting the organizational guidelines given to each
OAA with designer-expectation annotations. Annotations include the assumed range
of environmental characteristics (e.g., expected task-arrival rates) and performance es-
timates (e.g., task-completion time and agent-interaction amounts). These annotations
help an OAA determine when the expectations that were used when designing the sup-
plied guidelines do not hold and when the OAA should abandon following guidelines
in favor of proactively adapting its behavior. A central tenet in the OAA approach is a
clear separation between operational decision making, the detailed moment-to-moment
behavior decisions made by agents, and organizational control, expressed through an-
notated guidelines that bias and inform operational decision making. This separation
allows an agent to distinguish decisions influenced by the guidelines from choices that
would have been made without them.

The decentralized OAA approach to detecting and adapting inappropriate organiza-
tional directives is most closely related to early work by Horling [5]. More recent work
in the ALIVE system [15, 12] also deals with adapting organizational structures based
on failure events rather than on deviation from the designer’s expectations as conveyed
using guideline annotations. ALIVE also takes a centralized approach to the adaptation
process. Work on MOISE+ [8] includes a nice conceptualization of the need for orga-
nizational change but takes a top-down approach to reorganization. Our agent-centric
OAA approach monitors local deviations from design assumptions (conveyed in the an-
notations), decides when to abandon guidelines, and performs localized (not top-down)
organizational-behavior adaptation; perhaps in advance of a more informed redesign by
a human or automated designer.

We next describe the important characteristics of the OAA architecture and how it
can: 1) operate even without organizational guidelines; 2) adjust its operational deci-
sions to conform with organizational guidelines, if supplied; 3) assess the appropriate-
ness of the organizational guidelines based on deviation from annotations describing the
task and environmental assumptions used when the guidelines were designed; 4) stop
following guidelines deemed to be inappropriate; and 5) propose and negotiate agree-
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ments with other agents to use in place of inappropriate guidelines. As we will discuss,
organizational control requires deep ties into an agent’s operational and domain rea-
soning, and our generic OAA architecture makes this organizational-control connection
clear and manageable. We then present details of an instantiation of the OAA architec-
ture in a domain composed of call-center OAAs operating in RoboCup Rescue [10] and
analyze their performance and ability to perform these five OAA abilities in different
RoboCup Rescue scenarios.

2 OAA Architecture

The heart of the OAA architecture is an event-driven, BDI-like [13] operational
decision-making engine that adjusts its decisions when it is provided with parametrized
role priority assignments specified in organizational guidelines, and its decisions are
informed by the belief values contained in guideline annotations. The OAA receives
percepts both from the external environment (e.g., sensor reports or messages from
other agents) and from its internal decision-making process and task-execution perfor-
mance (e.g., plan failure or inability to achieve a goal). These percepts cause changes in
the OAA’s beliefs, and those changes can trigger the creation and modification of goals.
Goals that pertain to normal operational activity decisions (e.g., to extinguish a specific
fire), to operational adaptation (e.g., to borrow a fire-brigade resource), and to organi-
zation adaptation (e.g., to negotiate an agreement to replace inappropriate guidelines)
can be instantiated from external and internal percepts. Each created goal is instanti-
ated from a goal class that has a set of plan templates, each of which can potentially
achieve the goal when fully instantiated and executed. Each plan template consists of a
partial order of primitive actions and includes a specification of the number and types
of resources R the plan template requires. A plan p is instantiated by assigning (bind-
ing) specific resources Rp to a plan template (e.g., use specific fire brigades to fight a
specific fire).

The OAA operational decision-making engine determines the specific resource as-
signments that should be made to create {goal, plan} pairs for execution. It uses a
greedy, utility-based, non-preemptive scheduling process that maximizes the total es-
timated utility based on the current availability of resources. Before we detail how or-
ganizational guidelines and annotations bias {goal, plan} instantiation and scheduling,
we describe how unbiased utility-based OAA scheduling operates.

The estimated utility U(g, p) of an intention (goal g achieved by plan p with re-
sources Rp) is defined as:

DB(g, p) = B(g)× S(g, p)× P (g, p) (1a)
U(g, p) = DB(g, p)−O(Rp, D(g, p)) (1b)

DB(g, p) is the estimated discounted benefit of using plan p to achieve goal g and
is computed using: B(g), the benefit of fully achieving goal g; S(g, p), the estimated
degree of satisfaction of g by plan p (a value between 0 and 1); and P (g, p), the ex-
pected success probability of g using plan p (the probability that plan p will complete
and achieve any degree of satisfaction of g). The S(g, p), P (g, p), and D(g, p) compo-
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nents use the agent’s domain-specific knowledge. For example, the degree of satisfac-
tion estimate S(g, p) takes into account the effects that the performance of the resources
executing plan p have on its outcome, the timeliness of goal achievement (e.g., when
travel delays reduce the benefit or percentage of goal achievement), etc. We will discuss
specifics of these estimators for the RoboCup Rescue domain in Section 2.2.

A key feature of the OAA approach is including as beliefs, values that act as param-
eters in operational decision making. For example, such beliefs are used in computing
S(g, p), P (g, p), and D(g, p) values. These beliefs start out as initial value settings that
reflect the general (unsituated) expertise of competent agents, and they are repeatedly
updated by the OAA based on experience. The evolving values allow the OAA to make
reasonable decisions (that potentially improve with experience in the current environ-
ment) in the absence of organizational directives. The annotations to organizational
guidelines include designer-estimated values that are used to seed the OAA’s beliefs to
values that are close to what the designer assumes the agent should experience when
agents are following the parametrized role assignments and priorities contained in their
guidelines. Such seeded belief values are also updated by the OAA based on experience,
but at a slower rate than unsituated (unseeded) values.

Note that the belief values that are seeded using guideline annotations can be very
different from what each OAA would experience over time without the use of designed
guidelines, as the prioritized role assignments can bias agents to behave differently from
the behavior that would emerge from local OAA adaptations. On the other hand, sig-
nificant deviation of belief values from annotation-seeded settings can help an OAA
identify what aspects of designed guidelines are not working as planned and, based
on discussions with nearby OAAs, suggest potential local modifications (called agree-
ments) that can be negotiated to replace ineffective guidelines.

U(g, p) is simply the discounted benefit less the estimated opportunity cost O of
using resources Rp for D(g, p), the estimated duration of plan p. The estimated oppor-
tunity cost is defined as the sum of the estimated discounted benefit (DB(g′, p′)) values
of the best alternative intentions that cannot be chosen due to the use of Rp during the
non-preemptive execution of intention (g, p) if intention (g, p) is selected. Two factors
make estimating opportunity costs difficult for an OAA: 1) uncertainty of future inten-
tion choices that may arise during D(g, p) and 2) resource and goal exchanges (asking
for help) that requires an OAA to estimate the non-local effects of such possibilities.
Estimating opportunity cost reasonably when agents can exchange resources and goals
requires a potential-benefit model that includes, in addition to information about the
agent itself, information about the potential activities of other agents that could ex-
change resources or goals with the agent (and, transitively, the estimates of potential
activities of those agents must include further exchange possibilities, and so on). We
will discuss these issues shortly (in Section 2.2) and our approach to maintaining an
OAA’s potential-benefit model without significant communication.

Multiple intentions can be executed concurrently. An action fails when it cannot be
completed, such as through the loss of a resource, in which case the plan containing that
action is terminated. If sufficient utility can still be achieved, the plan template for the
goal with a terminated plan can be re-instantiated with different resource bindings or
an alternate plan template can be considered. A plan fails when, after it is finished, the
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goal is not achieved. Achievement of a goal fails when all reasonable plans to achieve
it have failed.

2.1 Using Guidelines to Bias Operational Decisions

When organizational guidelines G have been provided (an example RoboCup Rescue
guideline is shown in Figure 1), the OAA’s operational decision engine incorporates the
parametrized role priorities rp contained in the guidelines by using the following biased
utility BU(g, p) calculation in place of U(g, p) (Equation 1b). Formally, each guideline
e in G consists of the following:3

e = 〈PR∗,A∗〉 (2a)
PR = 〈r, rp, 〈pn, pv〉∗〉 (2b)
A = 〈a, 〈an, av〉∗〉 (2c)

Each PR is a parametrized role assignment, consisting of a role name r, the orga-
nizational priority rp (a positive or negative number) associated with performing the
parametrized role, and parameters pv that delimit the role. A is an annotation, consist-
ing of an expectation name a and attribute name an and value av pairs conveying the
expectation.

The biased utility of an intention BU(g, p) given guidelines G is then:

OB(g) =
∑

e∈AG(g)

rp(e) (3a)

where AG(g) ≡ {e ∈ G s.t. e |= g} ⊂ G and (i |= j) means that guideline i applies to goal g

BDB(g, p) = (1− w)×
(
DB(g, p)

)
+ (w ×

(
DB(g, p)×OB(g)

)
(3b)

BU(g, p) = BDB(g, p)−O(Rp, D(g, p)) (3c)

OB(g) (Equation 3a) is the total organizational bias for achieving goal g, computed by
summing the parametrized-role priorities, rp, from all guidelines that pertain to g. The
organizationally biased discounted-benefit value BDB(g, p) (Equation 3b) blends the
original discounted benefit value DB(g, p) (from Equation 1a) with an OB(g)-biased
value according to the organizational proclivity weight w (a value between 0 and 1) that
controls the influence that organizational guideline biases have over the OAA’s unbiased
(self) decisions. The biased utility value BU(g, p) (Equation 3c) is simply the biased
discounted-benefit value less the estimated opportunity cost O (the same value as was
used in Equation 1b).

In large organizations, a distribution of different degrees of organization acceptance
(w weights) may have advantages, as some agents will more aggressively explore activ-
ities deemed important from their own (skeptical) perspective than others [1]. Further-
more, adjusting the level of an agent’s organizational acceptance dynamically, based on

3 We use S∗ to denote a (possibly empty) set S∗ ≡ {s1, s2, . . .} of elements of type S. For
instance, N∗ is a set composed of zero or more natural numbers.
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its estimate of how well the organization is functioning, can also be beneficial. In our
original OAA paper [2], we showed experimental results of varying w. In the exper-
imental results shown in this paper, a constant w value of 0.8 (fairly strong organiza-
tional bias) was maintained in order to show the effects of appropriate and inappropriate
organizational guidelines.

2.2 Operational Decisions in RoboCup Rescue

We have evaluated our OAA architecture and approach using the fire-extinguishing
portion of RoboCup Rescue, a commonly used multi-agent environment for distributed
resource-allocation problems [10]. Our focus has been on call center agents that direct
the fire brigade resources under their control to extinguish as many fires to important
buildings as quickly as possible. The objective is to minimize the total importance-
weighted damage to buildings. In the evaluations discussed in this paper, four OAA
call centers fight fires in the city of Kobe using 24 fire brigades. A call center can use
its fire brigades to execute plans to achieve its own goals of extinguishing a building
fire, and it can request temporary use of fire brigades from other call centers to use
in its plans. Unless directed otherwise by its organizational guidelines, a call center
coordinates with other centers to avoid sending redundant fire brigades to a fire (by
recalling its brigades using a highest estimated utility protocol). A call center can agree
to loan fire brigades temporarily to another call center. Finally a call center can agree
to grant open-ended authority to direct some of its fire brigades to another call center.
This more permanent (open-ended) resource transfer remains in effect until revoked by
the granting call center.

Estimators Specific estimator functions, S(g, p), P (g, p), and D(g, p), for call center
intentions in the RoboCup Rescue domain had to be developed. We describe them here.

The plan duration estimator D(g, p) for an ExtinguishFire goal considers the cur-
rent state of the building fire associated with goal g and the specific fire brigades being
considered for plan p. This estimation uses experience-updated estimated Extinguish-
Fire plan duration belief values (Table 1) to estimate the time required to actually fight
the fire, plus travel-time estimates for getting the fire brigades to the building. If the
brigades are under the direct control of the call center, the current location of brigades
is used in estimating travel time. If the call center has to request fire brigades from a
nearby call center, the travel-time estimates are based on experience-updated averages
for brigades that have been borrowed from that call center in the past (since the current
location is unknown by the requesting center). As we have noted, experience-updated
belief values start out as initial values when guidelines have not been provided or are
seeded with annotated values when guidelines have been given.

The degree of satisfaction estimator S(g, p) for an ExtinguishFire goal must take
into account the current size of the fire, the rate at which the fire brigades allocated to p
can diminish the fire, the delay in getting the fire brigades to the fire’s location, and so
on. Similarly, the success probability estimator, P (g, p) for an an ExtinguishFire goal
must estimate the likelihood that the plan p, when fully executed, does not extinguish
the fire (e.g., some fires are particularly difficult to extinguish) or that one of the plan’s
actions fails (e.g., no water is available near the fire).
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estimated ExtinguishFire duration the number of time steps required to extinguish a fire of a
given size in a building of a given volume using n fire brigades (a table of values)

fire brigade quantity the minimum and maximum number of fire brigades that are effective in
fighting a fire of a given size in a building with a given volume (a table of values)

attainable benefit the attainable benefit per time step in the OAA’s neighborhood when n fire
brigades are used (a vector of values)

time window the length of time an OAA needs to look into the past in order to obtain good
statistics

attainable benefit initial-value weight controls how aggressively perceived data is combined
with initial values when the OAA does not have a full time window of historical data.

deviations confidence level the confidence level that the OAA should consider when perform-
ing the non-parametric hypothesis test (i.e., the confidence that the collected observations
allow the OAA to state that most likely the current dynamics of the environment are indeed
significantly different from expectations)

Table 1. Example belief values used as parameters in RoboCup Rescue operational decision-
making

Opportunity cost In order to estimate opportunity costs when resources and goals can
be exchanged among call centers, each OAA first needs to estimate, based on its ob-
servation history, the average discounted benefit per time step that can be obtained in
its neighborhood (i.e., call centers that are close enough to make a resource or goal
exchange useful) when using k fire brigades. Let ODBn(k) be such an estimate; specif-
ically, the expected discounted benefit that can be obtained by call center n when us-
ing k fire brigades. Such estimates are transmitted to nearby call centers (and updated
whenever they change significantly) along with the current number of uncommitted fire
brigades it controls. Using its own estimates of the achievable benefit per time step and
the estimates provided by nearby call centers, every call center n then computes the
maximum attainable benefit per time step, ODB∗(k), can that be obtained whenever k
fire brigades are used. For instance, let us suppose we are interested in optimally dis-
tributing k ∈ [1 . . . R fire brigades across N call centers, where the optimality criteria
is defined in terms of the maximum attainable expected benefit per time step. The naive
approach for computing such a quantity would require the evaluation of all combina-
tions of how to allocate r resources over N agents, for all values of r ∈ [1 . . . R]. This
would thus demand the evaluation of

∑
r=[1...R]

(
r

N

)
=

(
R+ 1

N + 1

)
possibilities, which is factorial in its complexity. In Algorithm 1 we present a dynamic
programming algorithm that computes such a quantity much more efficiently. Algo-
rithm 1 runs in Θ(NR2), where N is the number of known neighbors and R is the
maximum number of resources (i.e., fire brigades) being considered, and returns the
maximum attainable benefit per time step when using any given number of resources.

The opportunity cost of executing a plan that utilizes k resources for an estimated t
time steps is then t× (ODB∗(f̂)− ODB∗(f̂ − k)), where f̂ is the agent’s estimate of
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Algorithm 1 Maximum attainable benefit per time step when optimally allocating n
resources across agents in the organization.
Let A = [1 . . . N ] be the (arbitrarily ordered) list of N agents (e.g., call centers) in the system;
Let R be the total number of resources (e.g., fire brigades) in the system;
Let ODBn(k) be the expected benefit per time step of agent n ∈ A when using k resources;
Let ODB∗

n(k) be the maximum attainable benefit per time step when optimally allocating k
resources over agents [n . . .N ] ⊂ A;

Output: ODB∗(·), the maximum attainable benefit per time step when allocating any given num-
ber k ∈ [1 . . . R] of resources across agents A = [1 . . . N ].
for k = 0 to R do

ODB∗
N (k) = ODBN (k)

end for
for n = N − 1 downto 1 do

for k = 0 to R do
ODB∗

n(k) = maxr=0...R

(
ODBn(r) + ODB∗

n+1(k − r)

)
end for

end for
Return ODB∗(·) ≡ ODB∗

1(·)

the total number of unutilized resources available (within practical range) for its use.
This f̂ estimate can be computed by adding the OAA’s own amount of unutilized fire
brigades and the quantities provided by nearby call centers.

Annotated guidelines Call centers perform two roles. The first role is extinguishing
fires by directing fire brigades to fight them. The second role is granting control of their
fire brigades to other call centers, either temporarily or more permanently. We designed
organizational guidelines for the four call centers, where each call center is assigned
responsibility for a non-overlapping region of the city. These regional-responsibility
guidelines do not change the fire observability range of call centers.

An example of an annotated guideline given to a call center is shown in Figure 1.
The guideline specifies that the agent is responsible for extinguishing fires in the given
region with an organizational priority of 10. When the biased utility, BU(g, p), is cal-
culated for an ExtinguishFire goal g in this region, the priority 10 is included in the
organizational priority calculation, OB(g), for achieving goal g,

Two different organization designs were developed, each intended to operate over a
different range of environmental conditions. One of the hypotheses we wanted to eval-
uate was that call centers with annotated guidelines appropriate to their environment
can outperform call centers operating without guidelines in that same environment. An-
other hypothesis was that call centers with guidelines designed for a different range of
conditions could perform worse than call centers without guidelines, and also that OAA
mechanisms can recognize when that is the case and adapt away from the ineffective
guidelines.
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<guideline role="ExtinguishFires" description="region">
<region priority="10" shape="rectangle">
<start-point x="0.0" y="0.0" />
<end-point x="0.5" y="0.6" />

</region>
<annotation>
<task-expectations>
<mean max="3" />

</task-expectations>
<performance-expectations>
<success rate="0.8" />

</performance-expectations>
. . .

</annotation>
</guideline>

Fig. 1. An annotated guideline specifying a prioritized ExtinguishFires role responsibility

3 Detecting Expectation Deviations

In order to detect deviations from annotations, it is necessary for call centers to com-
pute statistics over observable data as they interact with the environment. Such statistics
are used to test whether the predictions made by the annotations are valid in the cur-
rent context, and thus whether the guidelines are still applicable. In the case of region
guidelines, task annotations describe the expected total number F of active fires within
the region at any given moment in time. Testing whether the actual average observed
number of active fires is generally coherent with this expectation is not easy, since the
random variable F depends on a series of factors: the arrival rate of fires; the way in
which fires spread to neighboring buildings [9]; and the rate at which fires are put out
by the fire brigades, which itself depends on their individual strategies and priorities.
Although some of these factors, like the arrival rate of fires, can reasonably be assumed
to be Poisson-distributed, the same cannot be said for F itself. Since we do not know
how F is distributed, most of the classic statistical hypothesis tests cannot be applied. In
order to allow for a general statistical test of relevance for guidelines, we have decided
to apply the Wilcoxon signed-rank non-parametric hypothesis test. This test requires
that region annotations specify only the expected (mean) number of active fires per
time step.4 We note that although it is trivial to obtain samples of this quantity, such
samples are not independent, since the number of fires at any given time step is directly
correlated with the number of fires in the previous time step. Therefore, this specific
assumption made by the hypothesis test is not strictly obeyed; nonetheless, we have
noticed that in practice the independence assumption can be reasonably made and does
not seem to alter the capability of the test to detect significant deviations from the an-
notations. Also, for a variety of possible generating distributions of F , the test seems to
perform well, even with as few as 20 samples. Finally, we note that because the actual

4 More complex expectation annotations, requiring a correspondingly complex detection model,
could be used (e.g., annotation values that specify the expected exponential growth of spread-
ing fires as the arrival rate varies).
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average number of active fires per time step might be non-stationary and vary due to a
variety of factors, we consider only a finite window of past samples when computing
the required statistics. Also, we note that although we currently execute the hypothesis
test under a 95% confidence level, this quantity can be made to depend on how rigorous
each agent decides to be when judging whether a guideline is still applicable.

4 Forming and Negotiating Agreements

Whenever a call center detects a deviation from the guideline annotations, a process is
invoked that considers forming long-term agreements between OAAs. In this paper, we
consider pair-wise agreements that increase the expected long-term social benefit by
having some call centers grant sole control of n fire brigades to another call center. By
eliminating repeated requests for assistance, a chronically busy call center can increase
goal satisfaction and success probability values by eliminating the delay and uncertainty
associated with asking for help.

When a call center detects that it is performing a higher than expected rate of assis-
tance requests, it generates goals for forming open-ended fire brigade control-transfer
agreements with nearby call centers. It asks a set of call centers {Ai|i = 1, ...m}, each
contributing ni fire brigades, such that

∑m
i=1 ni = n. Whenever a call center needs to

evaluate the utility of accepting or rejecting such a goal, it needs to take into account
the previously estimated long-term benefit of directly controlling n extra fire brigades
and the expected long-term loss incurred by the call centers providing the fire brigades.

The estimated long-term marginal utility increase of directly controlling n extra
fire brigades is obtained using the estimated weighted benefit increase of achieving
the same goals, but now using n additional, directly controlled fire brigades (using the
OAA’s observation history):

U+(n) =
∑

gwithpR

B(g) ∗ (S(g, pR+n) ∗ P (g, pR+n)− S(g, pR) ∗ P (g, pR)) (4)

B, S, and P were introduced earlier in Equation 1a. Plan pR+n, is a modified version
of pR with n additional directly-controlled fire brigades. If pR requests k fire brigades
from neighbors, then plan pR+n only requires max(k− n, 0) fire brigades from neigh-
bors. Directly controlling additional fire brigades tends to increase both the satisfaction
degree S and the success probability P , resulting in a marginal utility increase U+(n)
reflecting the benefit of an agreement of controlling n additional fire brigades. Since the
impact of each additional fire brigade may not be the same, we must calculate U+(n)
for all reasonable values, 1..nmax, where nmax is determined based on the deviation
from expectation annotations. The greater the deviation, the larger max should be. In a
similar way, each neighboring call center, upon receiving a request for donating ni fire
brigades, estimates the long-term marginal utility decrease caused by having ni fewer
directly controlled fire brigades U−(ni).

An optimal solution is a set of m agreements, each requesting ni fire brigades from
neighbor Ai,

∑m
i=1 ni = n, that maximizes the social welfare:

U+(n)−
m∑
i=1

U−(ni) (5)
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In general, finding the optimal solution is similar to the winner determination problem
in combinatorial auctions: the complexity is NP-hard. However, given the small number
of nearby call centers and nmax, finding a solution is computationally feasible. Once the
value of nmax is determined, the call center calculates U+(n) for n = 1..nmax. It also
sends out requests to nearby call centers requesting their marginal utility decrease for
providing 1..n fire brigades. Upon receiving this information, the requesting call center
conducts a search to find the value of n, a set of neighborsAi and ni,

∑m
i=1 ni = n that

maximizes the social welfare as described in Equation 5. When a solution is found, the
call center asks each call center Ai to accept the agreement providing ni fire brigades.
Call center Ai would accept this request if its fire brigade status has not changed in a
way that worsens the marginal utility decrease estimates U−(ni) it provided. Otherwise
Ai may reject this request and provide revised estimates to the proposing call center for
consideration.

5 Experimental Analysis

We evaluated the performance of our OAA call centers by assessing two hypotheses:
1) following guidelines whose annotations are coherent with the environment improves
performance and 2) following guidelines whose annotations are not coherent with the
environment decreases the performance to levels that can be even lower than when the
agent operates without guidelines. This latter hypothesis, if shown to be true, attests to
the importance of being able to detect deviations from the expectations contained in
guideline annotations and to stop following those inappropriate guidelines as soon as
possible. In order to demonstrate that a poor-performing design is not deficient in every
setting, it is very important to show that the appropriate design performs better in its
designed setting but worse in settings for which other organizations were designed.

To be fair, we developed highly competent call-center agents that make skillful op-
erational decisions to extinguish fires without organization. We wanted to ensure that
supplied guidelines only inform and limit an OAA’s operational decisions; they do not
extend the agent’s abilities or purpose. We believed that appropriately organized agents
would function better than unorganized agents, which must perform unguided consid-
eration of potential agent activities and explicitly coordinate them. From a research per-
spective, this high bar on operational competency highlights the effect of organization
(good or bad), without any hidden transfer of capabilities or expertise by organizational
directives.

In order to test the above-mentioned hypotheses we developed annotated guidelines
for two different organization designs, each intended to operate over a different range
of environmental conditions. We then evaluated the joint performance of the four OAA
call centers in two scenarios, A and B, each one corresponding to different patterns of
fire arrival. In Scenario A, fires arrive uniformly throughout the city, while in Scenario B
the same number of fires arrive, but they are more heavily concentrated in two relatively
small regions of the city. In the following experiments, performance is measured using
a score that represents the fire damage in the city; scores closer to 1 indicate that the
city is mostly intact and scores closer to 0 indicate that the city is almost completely
burned out.
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Fig. 2. RoboCup Rescue performance

Organization 1 contains guidelines that inform each call center of the region it
should preferentially cover, and does so in a way that the city is evenly divided into
four non-overlapping responsibility regions. A total of 24 fire brigades is evenly allo-
cated to the four call centers. Organization 2, on the other hand, contains guidelines
that assigns responsibility regions of different sizes so that number of fire brigades con-
trolled by each center corresponds to the non-uniform fire arrival rate of Scenario B.
Both of these organization designs bias agents so that they have a higher preference for
allocating fire brigades to fight fires in their own regions, although borrowing is also
allowed.

Our experiments show that if an appropriate organization design is used and the
guidelines bias agents to act preferentially in their own regions, avoiding fighting fires
in other regions, the performance of call centers is superior to what is attainable when
call centers act solely according to an unbiased operational strategy. This is true, for
instance, in the case when pattern of fire arrivals is uniform in space (Scenario A) and
Organization 1 is used, since the guidelines inhibit call centers from greedily moving
their fire brigades around the city and fighting large far-away fires without considering
the possibility that new fires might ignite in their own regions of responsibility. These
results are shown in Figure 2(a). Figure 2(a) also shows how call centers which use
inappropriate guidelines (in this case, from Organization 2) have lower performance
than centers that act based solely on their unbiased operational strategy.

Figure 2(b) presents the performance of centers again following guidelines from Or-
ganization 1 or 2, or acting without any guidelines, but this time under a non-uniform
fire arrival pattern (Scenario B). In this case, it can be observed that because Organi-
zation 1 was designed under the assumption of uniform spatial distribution, the perfor-
mance of call centers following its guidelines is even worse than if it was operating
without them. Organization 2, on the other hand, is coherent with the environmental
dynamics of Scenario B and thus successfully biases agents in a way that their fire
brigades can be efficiently allocated, and kept within, the regions of the city in which a
higher number of fires is occurring.

In the experiments discussed thus far, we disabled deviation detection so that the
call centers would continue following inappropriate guidelines. When we re-enabled
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Fig. 3. Effect of agreements on performance when guidelines are inappropriate

Table 2. Fire brigades transferred under the negotiated agreements

Transferred From To
Time fire brigade call center call center

83 FB-17 CC-SW CC-NE
83 FB-18 CC-SW CC-NW

deviation detection, call centers quickly recognized (in time step 20) when their anno-
tated guidelines were inappropriate and stopped following them. This performance is
also shown in the two figures.

5.1 Agreement Experiments

To analyze the benefit of agreement formation on performance when inappropriate
guidelines are abandoned, we used Organization 1 (appropriate for a uniform distribu-
tion of fires) with the non-uniform fire setting, Scenario B. When agreement formation
is enabled (shown in Figure 3), once a call center detects a deviation from guidelines,
it looks for nearby call centers with which to form beneficial long-term agreements.
Unless revoked, these negotiated open-ended agreements transfer fire brigades from
call centers that are experiencing fewer fires in their guideline regions to centers with
more fires. The negotiated agreements offset the effect of the inappropriate organiza-
tion guidelines and enable the call centers achieve a better overall performance score by
reducing the operational delay associated with repeated requests for help. The specific
agreements that were negotiated in our experiment is shown in Table 2.

To understand how the call centers would perform if they were using the negotiated
agreements from the outset, we ran the same scenario with those agreements in place
at the start, referred to as ”With Agreements Throughout.” The results show that using
the agreements from the beginning improves the performance significantly over the
experiments where the call-center agents are started with inappropriate organizational
guidelines, as shown in Figure 3. Forming agreements improves the performance over
proceeding without them, but the call centers can never recover from the fires that spread
before they recognize inappropriate guidelines and form agreements to replace them.
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(a) Moderate spreading fires (rate: 0.8)
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Fig. 4. Using agreements under different fire-spreading rates

The effect of agreement formation on the performance also depends on the system
load (the number of fires and how fast they spread). Figure 4 shows the results in the
same scenario as described above, but with more fires. As shown in Figure 4(b), when
fires are spreading very fast (at a rate of 1.0), agreements only improve the organization
performance slightly from time 150 to time 220. This is because fast-spreading fires
that arise due to following inappropriate guidelines cannot be controlled by the limited
number of fire-brigade resources no matter how carefully they are transferred and used.
In contrast, when the fire-spread is more moderate (at a rate of 0.8), forming agreements
enables the centers maintain a very good performance score, as shown in Figure 4(a).

6 Summary and Future Work

We presented a decision-making architecture for an organizationally adept agent (OAA)
and its instantiation and use in RoboCup Rescue scenarios. We showed how an OAA
can adjust its operational decisions to conform with organizational guidelines, if they
are made available. We also showed how an OAA uses expectations contained in guide-
line annotations to inform its operational decision making and to identify deviations
from the task and environmental assumptions that were used when the guidelines were
designed (and to stop following guidelines deemed to be inappropriate). Finally, we
showed how OAAs can form local agreements to use in place of inappropriate guide-
lines.

The RoboCup Rescue results indicate that the OAA call centers are fairly compe-
tent in their ability to operate without organizational directives, but that appropriate
organizational guidelines can improve performance further. We do not know of prior
work where two organizational designs developed for different environmental settings
have been analyzed comparatively, where the appropriate design performs better than
unorganized agents in its designed setting but worse in the setting for which the other
organization was designed (and vice versa). Yet, we have barely scratched the surface
of complex organizationally adept behavior. More complex, larger scale, heterogeneous
organizations are a next step, as is exploration of more complex operational tasks and
correspondingly more advanced organizational guidelines. Generating agreements from
scratch is another future-research direction. The OAA operational decision-making
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mechanisms and interaction protocols that we developed in order to have a highly com-
petent agent when operating without organizational directives are appropriate for agents
operating in uncertain environments—even if they must operate without organization.
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