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ABSTRACT
One of the key challenges for multi-agent learning is scalability.
In this paper, we introduce a technique for speeding up multi-
agent learning by exploiting concurrent and incremental experi-
ence sharing. This solution adaptively identifies opportunities to
transfer experiences between agents and allows for the rapid ac-
quisition of appropriate policies in large-scale, stochastic, homo-
geneous multi-agent systems. We introduce an online, distributed,
supervisor-directed transfer technique for constructing high-level
characterizations of an agent’s dynamic learning environment—
called contexts—which are used to identify groups of agents oper-
ating under approximately similar dynamics within a short tempo-
ral window. A set of supervisory agents computes contextual infor-
mation for groups of subordinate agents, thereby identifying candi-
dates for experience sharing. Our method uses a tiered architecture
to propagate, with low communication overhead, state, action, and
reward data amongst the members of each dynamically-identified
information-sharing group. We applied this method to a large-scale
distributed task allocation problem with hundreds of information-
sharing agents operating in an unknown, non-stationary environ-
ment. We demonstrate that our approach1 results in significant per-
formance gains, that it is robust to noise-corrupted or suboptimal
context features, and that communication costs scale linearly with
the supervisor-to-subordinate ratio.

1. INTRODUCTION
In large-scale multi-agent systems consisting of hundreds to

thousands of reinforcement-learning agents, convergence to a near-
optimal joint policy, when possible, may require a large number
of samples. These systems, however, may contain groups of agents
working on nearly identical local tasks or under approximately sim-
ilar environmental dynamics. Identifying such groups may prove
useful in cooperative domains, due to the opportunity of exploiting
shared information. Information sharing has been extensively stud-
ied in single-agent settings with the goal of transferring knowledge
from a source task to novel tasks [26, 12, 2]. Applying this idea
to the multi-agent setting (MAS), it is apparent that experiences
may be transferred not only across similar tasks, but also between
concurrently-learning agents in a shared environment. This paper
focuses on the problem of online transfer of experiences between

1A more complete presentation of our approach, as well as addi-
tional experiments, can be found in [5].

such agents—with an emphasis on the adaptive discovery of groups
of agents where experience sharing is possible and beneficial.

In multi-agent settings, agents need to interact and learn con-
currently. The environment, from each agent’s perspective, is
non-stationary due to the presence of other concurrently-adapting
agents. Since the observations made by one agent are conditioned
on the behaviors of its neighbors, it is not clear when they can be
usefully exchanged and reused by other agents—which may be op-
erating under different local environments and may be interacting
with different types of neighbors. Experience exchange is, there-
fore, not straightforward in non-stationary MAS. As an example,
consider the task allocation problem depicted in Figure 1. Agents
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Figure 1: Sample task allocation network.

are represented as nodes and may receive tasks from the environ-
ment or from other agents. Each agent can choose to fulfill a given
task or to forward it to a neighboring agent. Assume that agents
have partial knowledge of the system: they do not know the global
structure of the network nor have access to state or policy informa-
tion of other agents. This results in a non-stationary problem where
it may be inappropriate to transfer information between some pairs
of agents. Agent D, for instance, receives a large number of tasks
from the environment and may need to forward them to a neigh-
bor; agent C receives tasks from a neighbor and may need to direct
them away from its heavily-loaded neighbor. Agents A and B, on
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the other hand, undergo similar task-forwarding patterns with re-
spect to their neighbors. Experience transfer, then, may be appro-
priate between agents A and B (said to be contextually compatible
agents), but not between agents D and C.

To address the information-sharing problem in non-stationary
MAS we propose modeling contexts as inherently dynamic local
characterizations of the environment under which agents operate.
They are defined over short timescales during which policies and
models are approximately static. In Sections 5 and 6 we intro-
duce and motivate a context-similarity measure grounded in the
comparison of abstract representations of environment dynamics,
rather than policies or Q-values, and advocate the use of supervi-
sory agents (which periodically collect data from subordinates) as
a way of identifying contextually-compatible agent groups where
experiences may be shared. As will be further discussed in the
following sections, contextual modeling is made possible through
the commonly-studied property of interaction sparsity [29], or what
Simon [24] referred to as nearly-decomposable systems. This is ap-
parent in many domains, such as distributed task allocation, disaster
planning [9, 19] and sensing networks [31], in which agents inter-
act strongly with only a small group of closely-related partners.

Although other transfer mechanisms are possible, to our knowl-
edge no other methods exist that address the particular setting and
scale presented in this paper. We believe this is the first algorithm
that allows experience sharing in a concurrent and interacting MAS
with ∼1000 agents while undergoing low communication and com-
putational overhead. We evaluate our method on a large-scale dis-
tributed problem and demonstrate that context-based transfer yields
significant performance gains. We further show 1) that the time
complexity of our method scales with the number of agents within
each supervisory group, not with the total number of agents in the
network; 2) that our method is robust to noise-corrupted or sub-
optimal context features; 3) that communication costs scale lin-
early with the supervisor-to-subordinate ratio; and 4) that sparse
lossy compression schemes may be deployed and provide signifi-
cant improvements in communication costs, while inducing negli-
gible negative impact on system-wide performance.

2. RELATED WORK
In this section we discuss related work that also aims at expe-

rience sharing in MAS. Kretchmar et al. introduced a technique
for agents to periodically exchange Q-values to accelerate learning
[11]. They assumed, however, that agents operate on independent
copies of an environment and do not interact. Boutsioukis et al. re-
laxed this assumption via a method for using Q-values of a source
task to bias the initial policy of target tasks [1]. They assumed
that learning on the source task had to be completed before trans-
fer was made possible, and required the use of inter-task mappings.
We do not assume that such mappings are needed and instead in-
fer when observations may be transfered by identifying groups of
agents that operate under similar local contexts. Taylor et al. in-
troduced a transfer method that allowed for source and target tasks
to be learned in parallel [25]. It implicitly assumed that all agents
experienced tasks with similar state values—which may not be true
if they operate in contexts with different transition dynamics. More
recently, Mnih et al. introduced a technique for accelerating deep
learning algorithms via asynchronous sharing of policy gradients
[16]. This allowed for independent agents to cooperate in solving a
complex task, but required that agents did not interact while doing
so. In Section 5 we extend the discussion presented here and intro-
duce related techniques relevant to the problem of characterizing
local contexts in order to identify sharing opportunities.

3. SETTING
Multi-agent decision-making problems are often framed in the

context of Markov games [20]. Markov games model n agents
operating in an environment described by a joint state S. A state
transition function specifies the conditional probability of the en-
vironment transitioning to state S′, given that it was in S and
that agents executed a particular joint action (a1, . . . , an); i.e.,
P (S′|S, a1, . . . , an). In Markov games, each agent i holds a par-
ticular reward function Ri(ri|S, a1, . . . , an), which we consider
here to be a conditional distribution over rewards.

In cooperative environments, individual reward functions may
be identical—each agent’s individual performance perfectly aligns
with the system’s performance. In this paper we consider the more
general case of decomposable reward functions, which arise in
structured settings such as Network Distributed-Partially Observ-
able Markov decision processes [18] or factored multi-agent MDPs
[6]. We also assume that the global state S is decomposable into
(potentially overlapping) components si, each of which represents
the portions of the state that agent i can directly observe. This
arises in systems where it may be infeasible for agents to learn
over the full joint space or when network structure or communi-
cation bandwidth introduce limitations on state observability. In
general, the state observable by individual agents may be insuf-
ficient to faithfully reconstruct the overall state transition model,
Pi(s

′
i|S, a1, a2, . . . , an). Motivated by the idea of interaction spar-

sity [29], we address this difficulty by observing that sparsity in Pi

may allow observations collected from a small number of neigh-
boring agents to be used in order to reasonably estimate Pi.

4. OVERVIEW OF THE METHOD
Before introducing the technical details of the method we pro-

pose, we start by presenting a high-level summary of the steps
involved in determining sharing opportunities by grouping agents
based on their local learning environments (or contexts):

1. each agent collects observations from its local environment
in the form of state, action, reward, and next state tuples.
Every K time steps (the reporting interval), agents report
such observations to their corresponding supervisors;

2. supervisors use the received information and their local
knowledge about the interactions between subordinate agents
to compute context summary vectors, one per agent. These
vectors correspond to dynamic local characterizations of the
environment under which agents operate, and are used to
identify possible sharing experiences;

3. supervisors measure the similarity between the context sum-
mary of each subordinate agent with respect to a covariance-
appropriate and scale-independent metric; similar agents are
organized into sharing groups;

4. supervisors relay experiences (state, action, reward, next
state tuples) between all members of each sharing group;

5. return to step (1) and adaptively regroup agents according to
updated context information.

Intuitively, a supervisor periodically collects information from a
small number of subordinate agents in its supervisory group and
computes context features. These are embedded in a summary
space in which similarity stochastically determines sharing oppor-
tunities—not all agents within a same supervisory group need to
share experiences. Note that the method we propose here does not



aim at finding optimal subordinate-supervisor assignments, but on
efficiently identifying sharing opportunities within a given super-
visory structure. Sharing opportunities between agents are dynam-
ically re-evaluated by our method based on updated information
collected in a reporting interval. The overall context-creation and
data-transfer process is depicted in Figure 2.
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Figure 2: Overview of the context-based transfer process.

5. CONTEXT FEATURES AS STATE
ABSTRACTIONS

Context features are compact abstractions of the local learning
environment under which an agent operates. Carrol & Seppi [2]
discuss the difficulty of constructing such abstractions given the
difficulty of defining similarity metrics between learning environ-
ments. In the single-agent RL setting, many metrics are possible;
most compare local environments by comparing policies, Q-values,
or reward function differences [1, 7, 25]. In the multi-agent setting,
however, we wish to capture a measure of compatibility in the local
learning environment of agents.

Compatibility-based metrics are helpful to avoid issues arising
by using policy, Q-function or model similarity as proxies of en-
vironment similarity. Consider, for instance, the problem of expe-
rience imbalance: the policies or Q-values under comparison need
to be constructed with enough samples so that they are accurate
estimates of an optimal policy [22]. Metrics based on policy com-
parison are also difficult to define since optimal policies for Markov
games are not unique [14], thus making policy similarity a poor in-
dication of environment similarity. Metrics based on Q-function
comparison are also non-trivial to define since latent features often
cause agents to operate in different state spaces.

To avoid these problems, we propose reasoning over the under-
lying latent model of a stochastic game via contextual comparison.
In particular, if we can identify that agents are working under a
same local transition and reward model, we can infer (from the
homogeneity of the system) that they are facing the same learn-
ing problem. Experiences gathered by each compatible agent are
interchangeable and can be transferred. Since estimating system-
wide transition and reward models is impractical in large systems,
we rely on the use of context features to form broad-scope sum-
maries, or abstractions, of transition and reward models as experi-
enced by individual agents. Abstractions in RL have been stud-
ied extensively, and are not the focus of this paper; we simply
rely on any of the many existing methods (e.g. [4, 23, 15, 8, 13,
21, 10]) to construct features capable of abstracting the state of a
particular problem at hand. If prior domain knowledge is avail-
able, context features may also be manually specified to abstract an
agent’s state variables—and possibly those of its observable neigh-
bors. The way in which sufficient statistics and features for such
abstractions are defined and computed depends on the structure of
the MAS and needs to be defined in light of the characteristics of
the application at hand. In this paper we empirically show that
even simple (and possibly noise-corrupted) abstractions are often

sufficient to allow for experience sharing opportunities to be iden-
tified in large-scale non-stationary systems composed of hundreds
of concurrently-learning agents.

6. CONTEXT-BASED LEARNING
As mentioned above, context features are abstractions of the lo-

cal learning environment of an agent, and are constructed based
on data collected at a particular time t. In order to characterize
the broader context of an agent’s learning environment—for in-
stance, the medium-term effects of its interactions with neighbor-
ing agents—one needs to combine context observations across a
time window2. We refer to this aggregate context information as a
context summary vector. Context summaries are computed by hav-
ing neighborhoods of agents (called supervisory groups) send local
context information to their common supervisor. The supervisor
annotates these with information about the states and actions ex-
perienced by the agents it oversees. The contextual information re-
ceived by the supervisor is then used to compute a context summary
according to the method described in Section 6.2 and Algorithm 1.

When comparing context summaries to identify possible sharing
experiences, it is necessary to select an appropriate distance met-
ric in context space. This metric depends on the distribution from
which context features are drawn. Unless a designer has a priori in-
formation about this distribution, we assume that it can be approxi-
mated by a multivariate Gaussian. This is justified by two reasons:
1) by the central limit theorem (CLT), applied here in the limit of
K;3 and 2) because this is the distribution that imposes minimal
prior structural constraints (it is the maximum-entropy distribution
for these parameters) in the absence of prior knowledge. From this
assumption, it follows that context features can be summarized into
a context summary via a mean context vector and its covariance
matrix, and that a natural scale-invariant distance metric to com-
pare context summaries exists: the Mahalanobis distance [17].

Mahalanobis metrics generalize Euclidean distances in a way
that naturally takes correlations of the dataset (i.e., correlations be-
tween context features of different agents) into account. Further-
more, these distances are preserved under full-rank linear transfor-
mations of the space spanned by the data. This implies that con-
text distances are preserved even if the context features are further
abstracted or transformed under non-degenerate projections down
onto any other context space. Even though this metric is quite gen-
eral (it is naturally data-adaptive, scale-invariant, and preserved un-
der non-degenerate transformations) and imposes the least prior
structural constraints in the absence of expert knowledge, other
metrics may be used. In a designer chooses to do so, our method
changes trivially—the Gram matrix used to stochastically identify
sharing opportunities (see Algorithm 1) is in that case computed
according to the alternative selected metric.

6.1 Agent Organization
Agents are dynamically organized by our method in sharing

groups whenever they are close (in context space) to other agents
within a supervisory group. This organization process involves a
trade-off between how many supervisors exist in the system and
the number of agents within each sharing group. As the num-
ber of supervisors grows, the sharing assignment problem becomes
increasingly distributed, reducing the computational requirements
2As will be discussed later, selecting a time window has impli-
cations on runtime, communication overhead, and reliability. See
Section 7 for more details.
3A variant of the CLT for weakly dependent processes can also be
applied assuming that sufficiently separated agents have approxi-
mately independent experiences [3].



imposed on any individual supervisor. On the other hand, super-
visors overseeing larger groups of subordinates are capable of se-
lecting from a larger pool of experiences, increasing the likelihood
that similar agent groups can be identified. Each supervisor is gen-
erally responsible for a set of subordinates selected through self-
organization [32] or directly given the network structure. In this
work we do not focus on finding optimal subordinate-supervisor
assignments, but on efficiently identifying sharing opportunities
within a given supervisory structure. In the experiments presented
in Section 7 we evaluate our method in a network of hundreds
of agents cooperatively solving a large-scale distributed task allo-
cation problem; in this case, subordinate-supervisor assignments
are determined in a way that supervisors span physical regions of
the network consistent with agent interaction strength [32]. Such
an agent-organization criterion is justified in this task due to the
assumption of interaction sparsity [29], a general characterist of
nearly-decomposable systems. Many other real-world multi-agent
systems with similar local sparse network-like interactions exist
and could be organized similarly—ranging from disaster planning
systems [9, 19] to sensing networks [31].

6.2 Assessing Context Similarity
We now present a method for computing contextual similarity

between agents and forming sharing groups. Suppose that an agent
communicatesK observations to its supervisor everyK time units.
Our solution easily extends to cases where agents do not make one
observation per time step. Let Oi be a time-indexed experience
vector of agent i:

Oi = [(s, a, s′, r)t1 , (s, a, s
′, r)t2 , . . . , (s, a, s

′, r)tK ]>.

A supervisor overseeing n agents computes contextual informa-
tion by mapping Ω = {O1, . . . , On} into an n-tuple of con-
text summary vectors V = (V1, . . . Vn). Assume we are given
a function f for computing context features for agent i at time
t, given the history of observations Ωt = {Ot

1, . . . , O
t
n}, where

Ot
i = {(s, a, s′, r)h|h ≤ t}. That is, Ωt contains the observations

of all n agents in the neighborhood up to some time t. The con-
text features for agent i at some time t ∈ [t1, . . . , tK ] are given
by f(i,Ωt). Note that f may use information about neighboring
agents when constructing features that describe i’s local learning
environment. This yields a total of nK context features vectors per
supervisor. Each context feature vector is a sample drawn at a par-
ticular time from the (latent, unknown) underlying context distribu-
tion of an agent. These samples can be combined by the supervisor
to compute an unbiased estimate of the true mean of the underlying
context distribution. Unbiased estimates of the true mean vector
of the context distribution are called context summary vectors, and
are compact descriptions of the learning environment of each agent
within a supervisory group. The supervisor stores the context sum-
mary vectors of its n subordinates in a tuple V :

V =

(
1

K

tK∑
t=t1

f(1,Ωt), . . . ,
1

K

tK∑
t=t1

f(n,Ωt)

)
Note that each element of V , as computed above, is an unbi-

ased estimate of the true mean context vector under the distribution
assumptions made in Section 6. If a different distance metric is se-
lected by a domain expert, the elements of V need to be defined
so that they correspond to unbiased estimators of the mean of the
corresponding underlying distribution posited by the designer.

Our method for identifying sharing opportunities is based on a
stochastic sampling process that probabilistically partitions agents
into sharing groups, based on their contextual similarity. In partic-

ular, membership of an agent to a sharing group is stochastically
determined based on the similarity of that agent’s context sum-
mary and the context summaries of other agents in the same sharing
group. This stochastic process partitions subordinate agents within
a given supervisory group so that agents operating under similar
underlying local dynamics have a higher probability of undergoing
experience sharing.

The sampling process that we define consists in a two-stage se-
lection routine. First, agents are partitioned into potential sharing
groups C1, . . . , Ck, based on to their similarity. Here, similarity is
measured with respect to the selected context distance metric. Po-
tential sharing groups are sets of agents (within a same supervisory
group) that, given their contextual similarity, are deemed to be fea-
sible candidates to undergo experience sharing. Partitioning agents
into potential sharing groups is an unsupervised process that can
be implemented via any standard clustering algorithm. Its purpose
is to ensure that the computational costs of stochastically sampling
agents in order to construct sharing groups is approximately con-
stant, independently of the number of agents within a supervisory
group. In particular, it ensures that the Gram matrix used to define
the sampling distribution (see next paragraph and Algorithm 1) has
dimensions that scale linearly with k. We say that agentAi ∈ Cj if
that agent’s context summary Vi belongs to potential sharing group
Cj .

Next, the tuple V of context summaries collected by a supervisor
is used to define a probability distribution that stochastically deter-
mines whether particular pairs of subordinate agents should belong
to a same sharing group. First, pairwise distances are computed
over the context summaries of every pair of agents Ah and Aj in
a potential sharing group Ci. This distance is stored in the (h, j)-
th entry of a Gram matrix M . Each h-th row of M corresponds,
therefore, to distances in context space between an agentAh and all
other agents in a potential sharing group Ci. We use M to define
a sampling distribution Pi that stochastically determines whether
pairs of subordinate agents in Ci should belong to a same sharing
group, given their contextual similarities. In particular, Pi(h, j)
denotes the probability that any two agents h and j within Ci will
be assigned to a same sharing group, based on their distances in
context space. In this paper we define Pi as a Boltzmann distribu-
tion constructed based on the pairwise context summary distances
between agents in Ci:

Pi(h, j) ≡
exp

(
M i

h,j

)∑
a,b∈Ci

exp
(
M i

a,b

)
Boltzmann distributions are widely used in machine learning when
one needs to define probability distributions that depend on the rel-
ative difference between numerical quantities associated with each
element in a given population. Here, they depend on the distance
between context summaries of any given pair of agents in Ci. Note
that Pi, as defined above, assigns a probability to every pair of
agents in Ci and reflects how likely it is that those agents will be
selected for membership in a same sharing group. Agents are se-
lected for membership in a sharing group by sampling from Ci

without replacement; this ensures that agents will belong to at most
a single sharing group—see Algorithm 1 for details. This selection
process is repeated in order to construct a group-sharing function
Ψ, which maps agents to sharing groups. Once Ψ has been estab-
lished, supervisors relay all observations within the K-unit time
window from all agents in Ψ(i) to agent i. Agents incorporate
these experiences into their policies using any off-policy learning
algorithm. Note that an agent i within a potential sharing group
Ci is not necessarily associated to any sharing partners; if i is dis-



similar from all other (n − 1) subordinates, Ψ(i) = ∅ with high
probability.

Input: Set of agents A = {1, 2, . . . , n}
Input: Tuple V = (V1, . . . , Vn) of context summaries
Output: Mapping Ψ : A→ P(A) from agents to sharing

groups (P(·) denotes powerset)
LetM be a selected context distance metric.
Partition V into k potential sharing groups C1, . . . , Ck w.r.t.
M

for i← {1, 2, . . . , k} do
Mh,j ←M(Ah, Aj) (Gram matrix over Agents(Ci))

Pi(h, j)←
exp(Mi

h,j)∑
a,b∈Ci

exp
(
Mi

a,b

) (sampling distribution)

for each agent a ∈ Ci do
for each agent b ∈ Agents(Ci)− {a} do

With probability Pi(a, b)
Let Ψ(a)← Ψ(a) ∪ {b}
Let Agents(Ci)← Agents(Ci)− {b}

Algorithm 1: Selection of Sharing Partners

The process for selecting sharing partners, described in Algo-
rithm 1, is repeated (in parallel) by each supervisor once every K
steps. Let n be the number of agents in a supervisory group (which
can be defined to include only a small and bounded fraction of the
total number of agents in the system) and d be the dimensionality
of the context feature vector computed by f . Under mild assump-
tions4 it is possible to show that the complexity of Algorithm 1 is
O(dn3). In practical terms, the time-complexity is dominated by
the inversion of an (n×n) matrix, needed in order to compute dis-
tances according to the metric proposed in Section 6. If other dis-
tance metrics are used (e.g., Euclidean distances) the complexity of
the method becomes quadratic in n and linear in d. Importantly,
notice that because this process is executed separately and inde-
pendently by each supervisor, the overall complexity of the process
is independent of the number of supervisors in the system—it de-
pends crucially only on the number of agents being overseen by
each supervisor. The communication complexity of the method is
linear in the number k of potential sharing groups, linear in the
number of agents in each potential sharing group (i.e., at most n)
and linear in the reporting interval K: O(kKn). Empirically, the
communication costs of Algorithm 1 seem to scale linearly with the
supervisor-to-subordinate ratio (see Section 7.2 for more details).

7. EXPERIMENTS
We evaluate our algorithm on large network-distributed task al-

location problems (Figure 1). An agent maintains two queues of
tasks: a processing queue, with tasks that it has committed to work
on; and a routing queue, with tasks that are not actively being
worked on and that can be forwarded to a neighbor or processed lo-
cally. Each task has a duration s. The reward function is defined as
the reciprocal of the average service time over a time window; ser-
vice time is the time incurred from task creation to completion. In
all experiments, task duration is an exponentially-distributed ran-
dom variable with mean 10. Tasks are generated by the environ-
ment according to patterns that are unknown to the agents, which
(along with the fact that agents cannot observe their neighbors’
states and policies) makes the problem non-stationary. When a task
4e.g., that the number of iterations executed by the clustering al-
gorithm is proportional to n and that the complexity of computing
f is proportional to the number of observations used to construct
such features.

is created, it is associated with some agent v and placed in its rout-
ing queue. Upon executing an action (to either process or forward
a task) agents receive a reward of 1

d
, where d is the estimated ser-

vice time of the agent receiving the task. To estimate service time,
agents keep track of the time taken to complete past tasks. Agents
learn policies using an extension of Q-Learning to the multi-agent
case with stochastic policies, which is known to outperform related
methods in domains similar to ours [30].

In our experiments, context features for agent i are composed
of three quantities: i’s load relative to the mean load of its neigh-
bors, and the rate at which each of its neighbors receives tasks from
the environment and from other agents. Since agents with differ-
ent neighborhood sizes have different actions spaces, their obser-
vations have different dimensionality; we therefore restrict context
comparisons to agents with the same number of neighbors. Expe-
rience sharing between agents with different action spaces is be-
yond the scope of this paper and would require learning inter-task
mappings (e.g. see [27]). Supervisory groups in these experiments
were defined according to the criterion discussed in Section 7.1.
When applying Algorithm 1, we used the K-means algorithm with
Mahalanobis distance. We automatically set the number k of clus-
ters based on the gap statistic [28]. The task-allocation networks
used in our experiments are lattices of up to 729 agents, where
each agent directly interacts with 4 neighbors. Different network
instances were obtained by varying two parameters regulating the
type of task distribution to be tackled by the agents in the system:

• Task Concentration/Pattern: This parameter regulates
whether tasks originate at the outer edges of the network or at
central nodes. Each pattern requires a qualitatively different
system behavior. A policy for the border concentration re-
quires boundary agents to forward tasks inward, and central
agents to accept tasks; a policy for the center concentration
requires the opposite arrangement;

• Task Frequency: Tasks are generated with frequency gov-
erned by a Poisson distribution. For agents that do not re-
ceive tasks from the environment, λ = 0. For all others,
a fixed λ > 0 is used. We consider a set of 11 λ values
selected uniformly along the range [0.25, 0.35]. We do not
consider λ < 0.25 since even random policies perform well
in this case, nor λ > 0.35, since this leads to queues that
grow indefinitely even under optimal policies.

7.1 Performance under Experience Sharing
We first examine the impact of the number of supervisors on sys-

tem performance. On one hand, a single-supervisor configuration
results in a nearly centralized system which benefits significantly
from sharing opportunities. This corresponds to the case where all
agents are placed in a same potential sharing group and may un-
dergo experience sharing. Alternatively, no supervisors could ex-
ist, in which case the system corresponds to a conventional MAS
with no information sharing. Intermediate sharing configurations
are possible, with different numbers of supervisors and correspond-
ing subordinate agents. Note that the single-supervisor configu-
ration is often infeasible in real environments, as it is burdened
with high communication costs (see Section 7.2). Four alternative
supervisory structures were considered in our experiments. First,
we evaluated two baseline configurations: one with no supervision,
corresponding to a conventional MAS with no information sharing;
and one with a single supervisor, corresponding to a system where
all agents may share information. Intermediate sharing configura-
tions, with 4 and 9 supervisors, were also investigated. The single-
supervisor configuration has a supervisor-subordinate ratio of 1:99,



the 4-supervisor configuration 1:24, and the 9-supervisor configu-
ration roughly 1:10. Subordinate agents were assigned to supervi-
sors in a way that minimizes the network distance between pairs of
subordinates. Results discussed in this section correspond to 440
runs of our algorithm; in particular, we executed five trials of each
combination of task concentration pattern, value of λ, and supervi-
sory structure were performed, for a total of 2× 11× 4× 5 = 440
runs.

To appreciate the difference between the least challenging task
allocation setting (λ = 0.25) and the most challenging one (λ =
0.35), we analyze the average system-wide service time obtained
by the single-supervisor configuration throughout 10,000 steps,
with tasks concentrated on the border of a 100-agent lattice. Fig-
ure 3 shows the evolution of service time as time progresses. At
first, poor policies lead to a heavily saturated system, which de-
grades service times, with a peak of approximately 100 steps per
task occurring about 25% of the way into the simulation. As agents
learn appropriate policies, they more rapidly complete tasks, ulti-
mately converging to a service time of about 25 steps per task. This
level of performance is reached regardless of λ, though the amount
of time taken to reach it, and the performance of the system during
learning, are both of central importance.

Figure 3: Performance under different difficulty settings λ.

In all experiments that follow we define performance as the area
under the curve of service time as a function of time. When the
system converges quickly, this area is small. We treat the mini-
mum service time ever attained by any configuration as zero, so
that running the system at the optimal performance does not accu-
mulate area; i.e., performance of an optimally-performing system
is invariant with respect to simulation duration (see Figure 4 for
an example). Figure 5 shows that the single-supervisor configura-

Figure 4: Performance of the single-supervisor configuration
vs. no-sharing. Smaller areas under the curve indicate faster
convergence.

tion far outperforms the baseline approach with no transfer, with

information-sharing agents accumulating nearly half the area un-
der the curve compared to agents that do not share experiences. As
additional supervisors are introduced, this benefit diminishes, since
there are fewer experience sharing opportunities within each su-
pervisory group. Note, however, that even with a high supervisor-
subordinate ratio of 1:10 (which corresponds, in this experiment,
to having approximately as many supervisors as agents in each su-
pervisory group), experience sharing still allows us to reduce the
learning curve area by more than 25%.

Figure 5: Performance of different supervisory configurations
in a 100-agent network; smaller values correspond to faster
learning.

7.2 Scalability and Communication Over-
head

We intuitively expect that information sharing becomes more
beneficial as the size of the system grows: larger systems typically
have a more diverse pools of agents which may benefit from shar-
ing. To test this hypothesis, we constructed simulations sweeping
across a large number of settings for task concentration and fre-
quency, and varied the number of agents through {100, 324, 729}
(i.e., lattices of dimension 10, 18, and 27). Two supervisory config-
urations were considered: a 9-supervisor configuration and a base-
line (or no-sharing) arrangement. Our goal is to characterize how
a 9-supervisor setting fares compared to the baseline as the num-
ber of subordinates per supervisor increases. This was achieved by
varying the network size (see Figure 6). Performance in the 100-
agent network was roughly 30% higher than the baseline. As net-
work size increased to 729 agents, performance median improved
by 40% compare to the baseline.

Figure 6: Performance of the 9-supervisor configuration as a
function of network size.

These gains come at the cost of increased communication. Note,
however, that the communication overhead of Algorithm 1 scales



with the supervisor-to-subordinate ratio, not with the total num-
ber of agents (see Section 6.2 for a formal complexity analysis);
e.g., the 9-supervisor configuration undergoes 9 times less com-
munication than the single-supervisor configuration. In our experi-
ments we further observed that communication volume was invari-
ant with respect toK: on average 43 bytes per step per subordinate
using a loss-less compression scheme. This suggests 1) that com-
munication costs (i.e., the total amount of bytes exchanged between
agents sharing experiences) scales linearly with the supervisor-to-
subordinate ratio; and 2) that even when accounting for communi-
cation costs, more distributed configurations tend to perform better.
In fact, all evaluated information-sharing configurations surpassed
the baselines while incurring very low communication overhead—
as previously mentioned, on average 43 bytes per step per subor-
dinate using a loss-less compression scheme in a 100-agent net-
work. The fact that communication volume was empirically ob-
served to be invariant with respect to K is not a trivial statement—
in the worst case, communication volume could still increase lin-
early with the number of potential sharing groups within a supervi-
sory group, k, and linearly with the reporting window, K. The fact
that it does not suggests that Algorithm 1 is capable of effectively
identifying and exploiting useful sharing opportunities, instead of
always relaying all K observations to all n agents within a super-
visory group.

We also explored the use of lossy experience compression
schemes, which significantly reduced communication costs and
incurred negligible performance penalties. One lossy compres-
sion technique that we evaluated is a sparse polynomial spline
interpolator—a method that approximately represents a set of ex-
periences with as few coefficients as possible. Supervisors may
use such a sparse interpolator in order to model how the observed
data (i.e., sequences of states, actions, and rewards within a report-
ing window) vary with time. Because states and rewards usually
change smoothly, the number of coefficients needed to represent the
corresponding set of observationsOi is typically much smaller than
the number of observations (K). Note that actions within the set of
observationsOi of an agent i are categorical features, and therefore
are not compressed. We constructed each compressed model of Oi

according to different compression degrees. Compression degree
refers to the frequency with which we subsample elements of Oi

in order to construct the training set for the interpolator. A com-
pression degree of R typically results in models requiring O(K

R
)

coefficients in order to approximate a set of K observations. When
employing a lossy experience compression scheme such as this, su-
pervisors relay not complete sets of experiences to all agents within
a sharing group, but only the coefficients of the corresponding lossy
model. Figure 7 depicts how the use of a compression scheme im-
pacts the communication framework by which subordinate and su-
pervisor agents in a network share experiences.

Supervisor

Subordinate A

Subordinate B

Compressed 
Experiences

Compressed 
Experiences

Decompress
Construct 
Context 
Features

Assess
Similarity Compress

Subordinate C

Compressed 
Experiences

Figure 7: Relaying compressed experiences through a supervi-
sor.

Figure 8 shows the system-wide communication volume (in
bytes) resulting from the use of different compression degrees. In
particular, this graph presents the average system-wide communi-
cation volume when evaluated over all supervisory structures dis-
cussed in Section 7.1 and tested in a network with 100 agents. The
reporting interval in this experiment was K = 100. When per-
forming these experiments observed an interesting trend: the use
of lossy models with compression degree up to 15 had negligi-
ble effect on the performance of the method (smaller than error
bars in Figure 5). This occurs because the set of observations of
an agent (states and rewards) is highly temporally correlated, and
can, therefore, be efficiently compressed via a sparse model and re-
constructed with very little information loss. Compression degrees
higher than 15, on the other hand, resulted in negligible positive
impact on the overall system-wide communication volume, since
the size of the (uncompressed) action time series begins to domi-
nate. These observations suggest that in systems where states and
rewards vary smoothly over time, it is possible to deploy effective
compression schemes for lowering the overall communication costs
of the method—in this application, resulting in a 5-fold decrease
when compared to an architecture that uses loss-less compression.

Figure 8: System-wide communication volume resulting from
the use of different lossy compression degrees.

7.3 Robustness
In the previous experiments, unless noted otherwise, we used a

reporting interval of K = 115 steps, selected by cross-validation
to minimize a balance between performance and communication
overhead. Smaller values of K lead to more frequent communi-
cation, whereas larger values of K decrease the likelihood that an
agent’s transition and reward models will remain static across the
K-timestep interval. The latter case results in reports containing
mixed observations arising from multiple underlying local learn-
ing contexts, which makes sharing less effective. We evaluate the
robustness of our algorithm by studying the effect of using subopti-
mal reporting intervalsK. We ran 10 trials of the single-supervisor
and baseline configurations for each of eight reporting intervals,
using λ = 0.3 in a 100-agent network with boundary-based task
distribution (Figure 9). As larger reporting intervals are used, per-
formance degrades, as heterogeneity is induced in transition and
reward samples and the agent learns a policy that averages obser-
vations from different local learning contexts.

We also analyzed our method’s robustness by studying the im-
pact of using corrupted or suboptimal context features. Context



Figure 9: Effect of varying reporting intervals K on system
performance.

features that do not properly abstract the underlying local learning
environment make it difficult to identify appropriate sharing oppor-
tunities. To evaluate the sensitivity of our algorithm to this issue
we added different levels of normally-distributed noise to context
features. Noise degrades the quality of the signal encoded in the
features, up to a point where they are entirely uncorrelated with
the underlying system dynamics. The magnitude of the noise was
varied relative to the standard deviation of context features; when
noise level is 1, the standard deviation of the normally-distributed
noise term is greater than (or equal) to the standard deviation of
any context feature, effectively eliminating any signal that they en-
coded. Figure 10 shows that when noise dominates (approaches 1),
performance becomes increasingly volatile. The performance dis-
tribution, with mean approximately 1, suggests that as context fea-
tures become less meaningful, the sharing mechanism is equally
likely to achieve a 50% reduction in the area under the learning
curve as it is to increase this area by 100%. In other words, as the
information-sharing process tends to be guided by biased or incor-
rect features, there is no consistent positive or negative impact on
performance; the most prominent impact is on performance vari-
ability.

Figure 10: Robustness of experience sharing to the use of sub-
optimal/corrupted context features.

8. DISCUSSION
We have presented a solution for experience transfer among

RL agents in large multi-agent systems. Our method adaptively
identifies opportunities to transfer experiences between context-
compatible agents, where contexts provide abstract characteriza-
tions of local learning environments. By explicitly identifying
context-compatible groups, we avoid issues arising from the use of

policy, Q-function or model similarity as proxies of environment
similarity. Although other transfer mechanisms are possible, to our
knowledge no other methods exist that address our particular set-
ting and scale. We believe this is the first algorithm that allows ex-
perience sharing in a concurrent and interacting MAS with ∼1000
agents while undergoing low communication and computational
overhead. Importantly, the time complexity of our method scales
with the number of agents within each local supervisory group, not
with the total number of agents in the network. Experiments further
suggest that the method provides significant improvements over
baseline settings with no experience sharing, and quantitative anal-
yses demonstrate that sharing becomes increasingly advantageous
as the system size grows. Finally, we have shown that our method is
robust to noise-corrupted or suboptimal context features, that com-
munication costs scale linearly with the supervisor-to-subordinate
ratio, and that sparse lossy compression schemes may be deployed
and provide a 5-fold improvement in communication costs while
inducing negligible negative impact on system-wide performance.
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