
Co-optimizing Task and Motion Planning

Chongjie Zhang and Julie A. Shah

Abstract— Solutions to robotic manipulation problems can
be substantially improved through integrated task and motion
planning. Existing approaches typically focus on satisfaction,
finding a feasible solution, instead of optimization. We formu-
late large-scale robotic manipulation problems as multi-level
optimization, incorporating task, action, and motion planning.
We develop an integrated planning approach for solving this
optimization problem and generating a combined motion plan
for a robot to optimize a task-level objective. This approach
utilizes a combinatorial search algorithm for task planning and
incrementally exploits information from lower-level optimiza-
tion to improve the high-level task plan. Empirical results show
that this integrated approach not only significantly outperforms
a traditional top-down approach in solution quality, but also
avoids infeasible lower-level motion plans.

I. INTRODUCTION

In many practical applications, a robot needs to au-
tonomously move around and manipulate objects in the
environment. One such application is to deliver parts to a
set of target locations in a factory. In this paper, we are
particularly interested in the optimization problem, i.e., how
to achieve its goal at minimum cost (e.g., execution time).
In order to solve this optimization problem, the robot must
carry out high-level task planning in conjunction with low-
level motion planning. It is challenging because decisions at
the high level, such as the order of pick-and-place operations
for objects, depend on low-level considerations, such as the
existence or cost of feasible motions for particular tasks.

Traditionally, such problems have been attacked by a top-
down approach. This approach separates task planning from
motion planning by providing an estimated cost for each
task, and then solves the two components independently by
first finding a task-level plan and then solving the motion
planning problem for each task. While this approach is
usually tractable, it can lead to poor, or even infeasible
solutions. This is because the task planner has incomplete
knowledge of the cost and dynamics that will be utilized by
motion plans when achieving its tasks.

There recently have been very impressive advances on
combined task and motion planning (TAMP). For instance,
Srivastava et al. [1] have proposed a general approach
for interweaving existing symbolic planners (e.g., for tasks
describable in PDDL) with existing geometric planners (e.g.,
RRTs) to check the geometric feasibility of the actions pro-
posed by preliminary symbolic plans. Most existing TAMP
approaches focus on the satisfaction problem and backtrack
to task planning only when there is no feasible motion

Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA
02139 {chongjie, julie a shah}@csail.mit.edu

Fig. 1. An example scenario of the pick-and-place problem

plan. These approaches are not sufficient for solving our
optimization problems.

For example, in a pick-and-place problem illustrated by
Figure 1, a robot picks an object from the table and places it
into the container of the same color. The goal is to finish all
tasks as soon as possible. A task planner will not uncover
that the robot must maneuver to the other side of the table
to pick up object R1 until the motion planner is invoked.
The task planner is therefore likely to generate the solution
〈R2,R1,B2,B1〉, which is optimal assuming there is no obsta-
cle O2. Most existing TAMP approaches will not backtrack
and find a real optimal solution (e.g., 〈R2,B2,B1,R1〉), be-
cause the sub-optimal sequence 〈R1,R2,B1,B2〉 can refine to
a feasible motion plan.

To address this limitation, this paper presents a multi-
level optimization approach for integrated task and motion
planning. This approach formulates large-scale robotic ma-
nipulation problems as a three-level optimization problem.
At the top level is task planning, which aims to sequence
tasks (e.g., pick-and-place operations) in order to optimize a
performance metric, such as to minimize time to complete all
tasks. As different tasks often have different robot finishing
configurations, which affect the completion cost of the next
task, we model the task planning optimization problem as
a traveling salesman problem (TSP). This efficient represen-
tation allows us to utilize a combinatorial search algorithm
(e.g., a heuristic TSP solver) instead of generic task planners.
At the middle level is action planing, which aims to generate
a sequence of primitive actions for implementing a high-level
task. To structure and limit the search space, we encode
a high-level task as a hierarchical action network (HAN).
At the bottom level is motion planning, which produces a

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 4750

motion plan to achieve the primitive actions produced by
the action planning level. The optimization at the higher-
level depends on solutions of lower-level problems, which
are not trivial to compute. In addition, the problems at each
level pose computational challenges by themselves.

To exploit this efficient problem representation, we de-
velop an integrated approach for co-optimizing three-level
problems, which generates a combined motion plan to opti-
mize a task-level objective. This approach is composed of
three interacting planning algorithms, one for each level.
The top-level task planning algorithm first generates a task
plan without considering lower-level problems and sequen-
tially refines its tasks to executable motion plans by calling
the lower-level action planning algorithm. The key novelty
for this task planning algorithm is that it incorporates the
existence or cost of feasible motion plans returned from
lower-level planners and incrementally improves its task
plan during the refinement process. We design a recursive
method for finding action plans by searching through HANs.
Adapting the planner-independent interface for TAMP [1],
we develop an iterative, backtracking algorithm that allows
to use existing algorithms (e.g., RRT [2], RRT* [3], and
PRM [4]) to refine action plans to motion plans. We illus-
trated our approach in a pick-and-place domain. Empirical
results show that our integrated approach significantly out-
performs the traditional top-down approach and scales well
to large problems (i.e., with more than 50 tasks).

Our co-optimization approach explicitly models the robot
transition cost from one task to another. There may be
constraints between tasks related to objects. For example,
one object may block another object, where the transition
cost from the first object to the second one will be infinite.
Our backtracking search algorithm will find a feasible task
sequence to optimize its objective. In this paper, we assume
that the completion cost of a task only depends on its
previous task, but not the whole previous task sequence, and
also that a robot performs one task per time step.

II. RELATED WORK

There is a wealth of work in combining task and
motion planning (TAMP). This section will first review
satisfaction-based TAMP approaches and then discuss related
optimization-based approaches. Satisfaction-based TAMP
approaches are structured into three groups, whose task plan-
ning uses PDDL, hierarchical task networks, and constraint
satisfaction problems, respectively.

Dornhege et al. [5] describe how to combine low-level
motion planning with high-level task planning via seman-
tic attachment to a PDDL planner. In their approach, the
lower level planner is used to check action applicability
and compute effects whenever certain high level actions are
used. Garrett et al. [6] address the TAMP problem in a
way that uses symbols (e.g. “CanGrasp” and “Reachable”)
to represent geometric preconditions for actions also on
the symbolic level. These predicates depend on the actual
geometric configuration; their approach samples configura-
tions to discretize such continuous variables. Similar to this,

Srivastava et al. [1] devise a symbolic description that in-
cludes predicates to abstract geometric feasibility conditions
and represent action operator preconditions on the symbolic
level. For a given task plan, the predicates are evaluated
on demand, and an “Obstructs” predicate is added for the
situation where the planner does not find a path due to an
obstrucing object.

Hierarchical planning approaches have also been proposed
for TAMP. Wolfe et al. [7] represent robotic manipulation
problems as vertically integrated hierarchical task networks
(HTNs) and also develop the SANTH algorithm for finding
high-quality solutions. Although this algorithm uses infor-
mation about subtask-specific irrelevance to speed up the
search, it is based on exhaustive search and may not scale
to large problems. Kaelbling and Lozano-Pérez [8] present a
more flexible technique for combining both task and motion
planning called “hierarchical planning in the now.” The
technique generates a hierarchy dynamically. When refining
a transition at one level in the hierarchy, a planner is used
where the goal specification is given by the preconditions
of the destination node of the transition. Pandey et al. [9]
and de Silva et al. [10] also use HTNs and their system
can backtrack over choices made by the geometric module,
allowing more freedom to the geometric planning than in the
approach of Dornhege et al. [5].

Methods for constraint satisfaction problems (CSP) have
been employed for TAMP. Lozano-Pérez and Kaelbling [11]
reduce the TAMP problem to a constraint satisfaction prob-
lem. They introduce the notion of an action skeleton, which is
a sequence of symbolic actions leaving their specific geomet-
ric parameters unspecified. The decisions on the geometric
parameterization of actions are deferred to a stage where the
skeleton has been fixed. This approach relies on discretizing
the geometric parameters of a skeleton. Lagriffoul et al. [12],
[13] also employ CSP methods (constraint propagation) to
resolve geometric constraints.

In summary, these TAMP approaches to robot manipula-
tion assume a symbolic goal description in their demonstra-
tions and typically introduce predicates to represent geomet-
ric conditions or features (including the existence of feasible
paths). They focus on the feasibility of the task planning
solution instead of optimality.

Recently a few works have started addressing the TAMP
optimization problem. Toussaint [14] introduces a logic-
geometric programming approach to tackle optimization
problems directly on the geometric level, where the role
of logic is to control the constraints in the mathematical
program. This approach optimizes a final configuration that
is evaluated only by an objective function. In contrast,
our approach aims to optimize plans to reach this final
configuration. Another limitation of this approach is it is not
as efficient as other TAMP approaches and specifically does
not scale well with the number of tasks.

Kiesel et al. [15] formulates a multi-vehicle routing
problem as a multi-level optimization: task sequencing and
assignment (i.e., ordering waypoints and assigning them
to vehicles), task scheduling, and vehicle routing for each

4751

vehicle. They develop an integrated approach that uses Tabu
search for task sequencing and assignment, linear program-
ming for task scheduling, and A* search for routing. This
approach aims to optimize the overall system performance
and backtracks to the high-level problem when there is no
feasible solution at the lower level. However, unlike our
approach, it does not exploit the cost of motions computed
by the low-level planning.

III. PROBLEM FORMULATION

To illustrate our problem formulation and integrated op-
timization approach, we take the pick-and-place domain as
an example, where a robot with arm(s) and a mobile base
operates in an environment consisting of objects on various
surfaces. The robot’s objective is to move all objects to their
goal regions with minimum execution time. States for this
problem consist of a robot joint configuration, along with, for
each object, a description of its geometry, current position,
and goal position. We can find many applications for this
problem, such as tidying up a room by putting away objects
in a set of boxes and delivering parts in a factory.

To deal with the complexity of this pick-and-place prob-
lem, we formulate this problem as a multi-level optimization
problem. At the top level is task planning for sequencing
pick-and-place operations. At the middle is action planning,
which generates a sequence of actions to achieve a single
pick-and-place operation. The bottom level is motion plan-
ning, which generates a sequence of motions to accomplish
an action. The high-level optimization problem depends on
solutions of lower-level problems, providing the existence
or cost of feasible plans for particular higher-level tasks or
actions. The following subsections will discuss each planning
problem in greater detail and, in the next section, we will
present an integrated approach for solving this multi-level
problem.

A. Task Planning

Task planning determines the order of picking objects and
placing them to their target position. We assume that every
object needs one and only one pick-and-place operation and
that not all objects have the same target position (otherwise,
the problem becomes trivial). As the robot may end at
different locations for different tasks, the cost of a pick-and-
place task varies, depending on its previous task (if existing).
In this paper, we also assume that the cost of a task only
depends on its previous task. To model this dependency, we
formulate this task planning as a traveling salesman problem
(TSP).

TSP can be modeled as a weighted graph. Objects in our
problem are the graph’s vertices and there are two special
vertices: start and end. All vertices are connected, forming
a complete graph. The weight on an edge from a vertex v to
an object vertex o is the cost of the pick-and-place operation
for object o starting with the robot configuration ended up at
vertex v. The weight on all edges to the special end vertex is
zero. It is a minimization problem starting at the start vertex
and finishing at the end vertex after having visited each other

vertex exactly once. If no feasible pick-and-place operation
exists between two vertices, an arbitrarily large weight will
be added to their edge. Note that this TSP is asymmetric,
because the cost of picking and placing different objects
are often different. We employ the technique developed by
[16] turning an asymmetric TSP into a symmetric TSP by
duplicating vertices .

B. Action Planning

We represent pick-and-place operations for objects as
vertically integrated hierarchical action networks (HANs).
There are two types of actions in these HANs: primitive and
macro. In this paper, the primitive actions move a specific
part of the robot (base, arm, or gripper) from its current
joint configuration to a target one. Each primitive action has
a transition model that takes in a configuration and returns
the successor configuration and action cost (or failure). We
use a extreme large positive cost to represent the failure of an
action. For primitive actions of moving the base or arm(s),
their transition models are procedural, and call out to lower-
level motion planners. Action costs are set as the costs of
motion plans that implement them. A macro action contains
a sequence of sub-actions, each of which can be any type of
action. A feasible macro action means that all its sub-actions
are feasible.

For each pick-and-place operation of object o,
we use the following hierarchy. The top-level action
PickAndPlace(o) refines to macro action GoPick(o),
and GoPlace(o). Action GoPick(o) refines to primitive
action ArmTuck, action MoveBaseForPick(o,
bp f go), where bp f go is a symbolic reference to
possible base poses for grasping object o, and Pick(o).
Similarly, Action GoPlace(o) refines to primitive action
ArmTuck, macro action MoveBaseForPutDown(o,
bp f pdo), where bp f pdo is a symbolic reference to
possible base poses for putting down object o [17],
and Place(o). Macro action Pick(o) further
refines to primitive actions OpenGripper(o),
MoveManipulatorForPick(o, gp f go), where
gp f go is a symbolic reference to possible gripper poses
for grasping object o, and CloseGripper(o). Macro
action Place(o) further refines to primitive actions
MoveManipulatorForPutDown(o, gp f pdo), where
gp f pdo is a symbolic reference to possible gripper poses
for putting down object o, and OpenGripper(o).

Primitive actions in a HAN are templates, whose variables
will be instantiated during the planning process. As the
pose space for grasping or putting down an object are
continuous, geometric variables in actions for moving the
base or the manipulator(s) range over continuous values. Our
approach iteratively instantiates them through sampled values
and invokes the motion planner to find a feasible plan for
achieving an action. Possible poses sampled need to satisfy
the pre-conditions of the next action. For example, a robot
should move its base to a pose where it can pick up the target
object.

4752

C. Motion Planning

Each primitive action for moving the robot base or arm
is corresponding to a motion planning problem, the solution
of which implements the action. A motion planning problem
is a tuple 〈C, f , p0, pt〉, where C is the space of possible
configurations or poses of a robot, f is a Boolean function
that determines whether or not a pose is in collision and
p0, pt ∈C are the initial and final poses. A collision-free mo-
tion plan solving a motion planning problem is a trajectory
in C from p0 to pt such that f does not hold for any pose in
the trajectory. Motion planning algorithms use a variety of
approaches for representing C and f efficiently. The cost of
a motion plan is set based on the estimated time required,
e.g., the length of the returned trajectory multiplied by a
weighting constant.

IV. APPROACH

In this section, we will present an integrated approach for
solving the multi-level optimization problem, which contains
an algorithm for solving the planning problem at each level.
The high-level algorithm exploits solutions of lower-level
problems to improve its solution. In the following subsec-
tions, we will discuss these algorithms and their interactions.

A. Task Planning Algorithm

Our task planning algorithm takes the pick-and-place
problem and the robot’s initial configuration as input and
returns a combined motion plan to achieve its goal. The basic
idea is that this algorithm first builds a TSP for the pick-and-
place problem by estimating the cost of each edge without
invoking lower-level detailed planning, solves this TSP using
an existing method to obtain the sequence of pick-and-place
operations, and then iteratively refines each operation to
motion plans. This refinement requires invoking lower-level
planning, which returns a motion plan (if existing) and the
associated cost. If the current cost estimate is quite different
from the actual cost, a new solution for sequencing tasks
will be computed. Therefore, our task planning algorithm
not only takes into consideration the existence of a feasible
motion plan, but also its actual cost.

Algorithm 1 describes the task planning algorithm. As
will be discussed in the following motion planning section,
we use pose generators to sample poses and instantiate
the geometric parameters for primitive actions in order to
refine a task plan to a motion plan. The outer repeat loop
enables to try different random seeds for pose generators if
necessary. The variable p0 is used to keep the current robot
configuration and plan stores the computed motion plan
for achieving the pick-and-place objective. Line 4 builds an
initial TSP. Its edge cost weights can be initialized by some
heuristic. In our implementation, we estimate them by simply
using the navigation cost without considering obstacles plus
a fixed cost for arm manipulation. We use Lin–Kernighan 2-
opt heuristic [18] to solve our TSP problem. To speed up the
search, we start with an initial solution made by the nearest
neighbor algorithm that chooses the nearest unvisited city as

Algorithm 1 Task Planning Algorithm
Input: problem, initialPose, θ

1: repeat
2: p0← initialPose
3: plan← /0
4: T SP← build initial TSP for input problem
5: 〈o0,o1, . . . ,on〉 ← Solve(T SP)
6: done← True
7: repeat
8: c̄← average task cost of solution 〈o0,o1, . . . ,on〉
9: for i← 1,n do

10: if edge 〈oi−1,oi〉 has plan mpi then
11: plan← plan+mpi
12: p0← endingPoseO f (mpi)
13: continue
14: end if
15: ap← ActionPlanning(HAN(oi))
16: 〈ci,mpi, pi〉 ← Re f ineToMotionPlan(p0,ap)
17: plan← plan+mpi
18: p0← pi
19: e← |ci− cost(oi−1,oi)|/c̄
20: T SP← update the cost for edge 〈oi−1,oi〉 in T SP
21: Store motion plan mpi on edge 〈oi−1,oi〉 in T SP
22: if e > θ then
23: done← False
24: 〈o0, . . . ,on〉 ← ImproveSol(T SP,o0:n,〈oi−1,oi〉)
25: p0← initialPose
26: plan← /0
27: break
28: else
29: done← True
30: end if
31: end for
32: until done or c̄∗n > M
33: if done then return plan
34: else
35: Reset all PoseGenerators with new random seeds
36: end if
37: until MaxTrials reached

the next move. The solution always starts o0, which is the
special start vertex.

The inner repeat loop of Algorithm 1 will not terminate
until all tasks refine to motion plans or no task sequence is
found for such refinements. The average cost of edges in TSP
computed by Line 8 is used to evaluate how the estimated
cost deviates from the actual cost, which is done by Line
19. The for loop of Line 9–31 is to iteratively refine each
high-level task to a motion plan and then concatenate them
into a single motion plan. Line 15 invokes the lower-level
action planning algorithm and its returned action plan will be
refined by Line 16 to a motion plan mpi with its associated
cost ci and the finishing configuration pi for picking and
placing object oi. We can store computed results to the edge,
which can be used later (Line 10–14). Line 22 checks if the
estimated cost deviates greater than given threshold θ . If it
does, then a new solution is computed with the updated TSP
and the process of motion plan refinement is restarted.

Observe that the only difference between the updated TSP
and the old TSP is the weight of one edge. We hypothesize
that their solutions may not be very different. Therefore, it
may not be efficient to use Lin–Kernighan 2-opt algorithm

4753

Algorithm 2 Greedy 2-Opt Algorithm
1: procedure IMPROVESOL(T SP,existingSolution,〈oi−1,oi〉)
2: a f f ectedList←{oi}
3: repeat
4: minCost ← calculateTotalCost(existingSolution)
5: improved← False
6: for v ∈ affectedList do
7: i← existingSolution.indexOf(v)
8: for k← i+1, length(existingSolution) do
9: newSolution← pairSwap(existingSolution, i,k)

10: newCost← calculateTotalCost(newSolution)
11: if newCost < minCost then
12: a f f ectedList.add(existingSolution[i+1 : k])
13: existingSolution← newSolution
14: improved← True
15: end if
16: end for
17: if improved then
18: break
19: end if
20: end for
21: until no improvement is made
22: return existingSolution
23: end procedure
24: procedure PAIRSWAP(existingSolution, i,k)
25: n← length(existingSolution)
26: newSolution ← existingSolution[1 : i−1]
27: newSolution.append(reverse(existingSolution[i : k]))
28: newSolution.append(existingSolution[k+1 : n])
29: return newSolution
30: end procedure

to compute the new solution, which repeatedly searches
for one improvement from all pairwise swaps of vertices.
We develop a greedy 2-opt algorithm that keeps a list of
affected vertices. This list of vertices can be either directly or
indirectly (because of swapping operations) affected by the
new actual cost updated on the TSP. This greedy algorithm
only searches for an improvement by swapping a vertex from
this list to any vertex after it in the old task sequence solution.

Algorithm 2 shows in detail our greedy 2-opt algorithm.
The affected vertex list is started with the object, the pick-
and-place cost of which is just updated. The for loop of Line
6–20 searches for an solution improvement by swapping a
vertex pair, which goes through from a vertex in the affected
list to any vertex after it in the current solution. If such
an improvement is found, the current solution is updated,
and swapped vertices and all vertices between them are
added to the affected list (Line 12). For the Lin–Kernighan
2-opt algorithm, the loop at Line 6 will goes through all
vertices in the TSP, which can dramatically increase the
search iterations.

B. Action Planning Algorithm

The action planning algorithm is invoked by the higher-
level task planner to refine a pick-and-place operation. As
shown in Algorithm 3, it takes as input a HAN for picking
and placing an object as well as the robot initial configuration
and returns the action plan for implementing this high-level
operation.

Algorithm 3 Action Planning Algorithm
1: procedure ACTIONPLANNING(a)
2: if a is a macro action then
3: plan← /0
4: for a′ ∈ REFINEMENT(a) do
5: plan← plan+ ActionPlanning(a′)
6: end for
7: return plan
8: else
9: return a

10: end if
11: end procedure

Algorithm 4 RefineToMotionPlan Procedure
Input: initialPose, actionPlan

1: p1← initialPose
2: motionPlan← /0
3: c←M
4: i← 1
5: while 0≤ i < length(actionPlan)−1 do
6: action← actionPlan[i]
7: nextAction← actionPlan[i+1]
8: mpFailed← True
9: while PoseGenerator(nextAction).hasNext() and mpFailed

and p1 is well defined do
10: p2← PoseGenerator(nextAction).next()
11: mp← MotionPlanning(p1, p2)
12: if mp is valid then
13: motionPlan← motionPlan+mp
14: p1← p2
15: i← i+1
16: mpFailed← False
17: end if
18: end while
19: if mpFailed then
20: i← i−1
21: motionPlan.removeMPFor(action)
22: p1← PoseGenerator(action).next()
23: PoseGenerator(nextAction).reset()
24: end if
25: end while
26: if i≥ 0 then
27: c← cost(motionPlan)
28: end if
29: return 〈c,motionPlan, p1〉

The hierarchical representation of a pick-and-place op-
eration both structures and potentially restricts the space
of solutions. In particular, rather than searching directly
over primitive action sequences, an agent can begin with a
plan consisting of just PickAndPlace(o), and repeatedly
replace the first non-primitive action in this plan with an
immediate refinement until a primitive solution is found. We
assume WLOG that the hierarchy does not generate primitive
non-solutions.

C. Refining Action Plans into Motion Plans

We assume without loss of generality that all action plans
are zero-indexed lists ending with a dummy action whose
precondition is the final desired pose configuration. The
RefineToMotionPlan subroutine is invoked to refine a primi-
tive action plan to a motion plan. As shown in Algorithm 4, it

4754

takes as input the initial pose and an action plan, carries out
an interative, backtracking search for a feasible refinement,
and returns a collision-free motion plan, if found, associated
with its cost and the ending pose.

The RefineToMotionPlan subroutine iteratively refines ac-
tions to motion plans, starting with the input of the initial
pose. Similar to the work by Srivastava et al. [1], to refine an
primitive action with a geometric parameter, it will invoke
a pose generator to get a possible target pose. We define
the pose generator on the next action, because the target
pose of an action should satisfies the geometric precondition
of the next action. If the pose generator has a target pose
available, the algorithm will then invoke an existing motion
planning algorithm (e.g., RRT [2], RRT* [3], and PRM [4])
to compute a collision-free motion plan for achieving the
current action. For efficiency, the motion planner is invoked
for a possible target pose only if IK solutions exist. If the
pose generator of an action runs out of possible poses before
finding a feasible motion plan, the algorithm backtracks
(Line 20 – 23). If the algorithm fails to find a feasible
refinement, it will return an empty motion plan with an
extreme large cost M.

For our pick-and-place domain, we implemented
four pose generators for instantiating geometric
parameters of actions MoveBaseForPick(o,
bp f go), MoveBaseForPutDown(o, bp f pdo),
MoveManipulatorForPick(o, gp f go), and
MoveManipulatorForPutDown(o, gp f pdo). These
pose generators iterate over a finite set of randomly sampled
values that are likely to satisfy the preconditions of their
next actions. For the target pose bp f pdo of moving the
base to pick up object o, its pose generator samples base
poses oriented towards object o within the range where the
robot arm can reach the object. For the target pose gp f pdo
of moving the base to put down object 0, its pose generator
samples base poses oriented towards the target location of
object o within the range where the robot arm can reach
the target location. For optimization, these possible poses
for moving the base are ordered by the distance from the
starting pose. For the target pose gp f go of the gripper to
grasp object o, its pose generator samples poses at which
closing the gripper will result in a stable grasp of the object.
As computing effective grasping poses is an independent
problem [19], [20], in this paper, we assume such poses are
known for each object. For the target pose gp f pdo of the
gripper to put down object o, its pose generator samples
possible grasping poses as if the object is at its target
location.

V. RESULTS

We evaluate our integrated approach in the pick-and-place
domain, an example of which is shown in Figure 1. It
is assumed that the robot has a full observability of the
environment. We compare our approach with two other algo-
rithms. The top-down approach (TD) solves the task planning
problem without taking solutions of lower-problems into
consideration. Its task planning algorithm is like Algorithm 1

Fig. 2. Solution quality (average over 20 runs) for algorithms with one
obstacle on the table, as a function of the number of objects

Fig. 3. Solution quality (average over 20 runs) for algorithms with two
obstacles on the table, as a function of the number of objects

with Line 20–26 removed. The top-down approach with a
heuristic (TD-H) is like TD except that it tries to avoid
obstacles on the table and always prefers moving the robot
base to a closer point to a target object for picking. We set
parameter θ = 0.2 for task planning. In all experiments, the
numbers of red and blue cubes are equal.

Figure 2 and 3 shows solution quality of algorithms over
various objects in two scenarios. The first scenario has only
one obstacle block on the table, while the second one has
two obstacle blocks. In both cases, our integrated approach
significantly outperforms other two approaches. Comparing
to the top-down approach, our approach reduces the average
cost by 10.2% and 17.8% in the first and second scenarios,
respectively. The more the obstacles, the greater the reduction
in the solution cost. The reduction percentage varies a lot
from one problem instance to another, which can be more
than 40% when many cubes are blocked and can also be
0% when no cubes are blocks. We can also observe that TD
performs better than TD-H in the first scenario, but worse
in the second scenario. This is because, in the first scenario,
cubes are less likely to be blocked and can also be grasped

4755

Fig. 4. Ratio of average runtimes from the regular 2-opt algorithm to our
greedy 2-opt algorithm, as a function of the number of objects

from the alternate side of the table, while in the second
scenario, cubes are more likely to be blocked and must be
grasped from one side of the table.

In our experiments discussed above, we set a minimum
distance between cubes so that the robot always has a
feasible pose for grasping objects on the table. As a result,
the TD approach performs like satisfaction-based TAMP
approaches [11], [1], always generating feasible motion plans
in these experiments. If we do not set such a minimum
distance between objects and treat movable objects as ob-
stacles, then top-down approaches are not able to generate a
feasible task sequence for some problems (e.g., where a red
cube is surrounded by blue cubes closer to the red basket).
In contrast, our integrated approach finds an efficient task
sequence that refines to motion plan for achieving the goal
configuration.

In our experiments, we also evaluate the greedy 2-opt
algorithm against the Lin–Kernighan 2-opt algorithm. Our
integrated approach yields similar solution costs with both
algorithm. Figure 4 shows the average runtime ratio of Lin–
Kernighan 2-opt algorithm to our algorithm. The ratio is
greater than one, indicating our greedy is faster than the
regular 2-opt algorithm. As we can see from the Figure, our
algorithm significantly outperforms, more than three times
faster than the regular 2-opt algorithm in the case with 50
objects.

VI. CONCLUSIONS

In this paper, we formulate a multi-level optimization
problem that integrates task, action, and motion planning
and models their dependency. This multi-level formulation
structures and restricts the search for executable motion plans
in large robotic manipulation problems. We developed an
integrated planner for this multi-level optimization problem,
which takes into consideration interactions between problems
at different levels and exploits both the existence and cost
information about lower-level solutions to improve the high-
level plan. Empirical results verify the importance of such
consideration and exploitation.

REFERENCES

[1] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[2] S. M. LaValle, “Rapidly-exploring random trees a ew tool for path
planning,” Technical report, Department of Computer Science, Iowa
State University, 1998.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[4] V. Boor, M. H. Overmars, V. der Stappen, and A. Frank, “The gaussian
sampling strategy for probabilistic roadmap planners,” in Robotics and
automation, 1999. proceedings. 1999 ieee international conference on,
vol. 2. IEEE, 1999, pp. 1018–1023.

[5] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, “Integrating
symbolic and geometric planning for mobile manipulation,” in Safety,
Security & Rescue Robotics (SSRR), 2009 IEEE International Work-
shop on. IEEE, 2009, pp. 1–6.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 179–195.

[7] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation.” in ICAPS, 2010, pp. 254–258.

[8] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1470–1477.

[9] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards
planning human-robot interactive manipulation tasks: Task dependent
and human oriented autonomous selection of grasp and placement,” in
Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE
RAS & EMBS International Conference on. IEEE, 2012, pp. 1371–
1376.

[10] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards
combining htn planning and geometric task planning,” arXiv preprint
arXiv:1307.1482, 2013.

[11] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on. IEEE, 2014, pp. 3684–3691.

[12] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric back-
tracking,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 957–964.

[13] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” The International Journal of Robotics Research, p.
0278364914545811, 2014.

[14] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in IJCAI, 2015.

[15] S. Kiesel, E. Burns, C. M. Wilt, and W. Ruml, “Integrating vehicle
routing and motion planning.” in ICAPS. AAAI, 2012.

[16] R. Jonker and T. Volgenant, “Transforming asymmetric into symmetric
traveling salesman problems,” Operations Research Letters, vol. 2,
no. 4, pp. 161–163, 1983.

[17] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[18] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, no. 2, pp.
498–516, 1973.

[19] C. Goldfeder and P. K. Allen, “Data-driven grasping,” Autonomous
Robots, vol. 31, no. 1, pp. 1–20, 2011.

[20] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
Robotics: Science and systems VII, 2011.

4756

