Learning-Based Low-Rank Approximations

Piotr Indyk Ali Vakilian Yang Yuan
Learning-Based Low Rank Approx.

Low Rank Approx.
Find a rank-k A', s.t.
$$||A-A'||_F \leq (1+\epsilon) ||A-A_k||_F$$
More efficient than computing A_k
- Sarlos’06
- Clarkson-Woodruff’09,13

Refer to them as SCW algorithm

Main Approach: linear sketches
- Perform SVD on RA
- R can be dense or sparse
- R is usually a random matrix

Our Technique (Learned Sketch)
Sample matrices $A_1...A_N$
Find S that minimizes total loss, i.e.,
$$\sum_i ||A_i - SCW(S, A_i)||_F$$

Details:
- Use sparse matrices S
- Optimize using SGD in Pytorch
- Need to differentiate the above w.r.t. S
- Represent SVD as a sequence of power-method applications (each is differentiable)

Sketch Monotonicity: augmenting $R + learned sketch$ S cannot increase the total loss
Our algorithm with $(R + S)$ inherits worst-case guarantees from R
Sarlos-ClarksonWoodruff Framework

Streaming algorithm (two passes)
- Compute SA (first pass)
- Compute orthonormal V that spans rowspace of SA
- Compute AV^T (second pass)
- Return $SCW(S,A):= [AV^T]_k V$

Space Complexity
- Suppose that A is $n \times d$, S is $m \times n$
- Then SA is $m \times d$, AV^T is $n \times m$
- Space proportional to m
- Theory: $m = O(k/\varepsilon)$

Classic Approach:
- S: sparse random matrix
- Worst-case theoretical bounds

Our Learning-Based Approach
- S: *learned matrix* from training
- Better empirical performance
- No worst-case guarantee

- **Augmenting Learned + Random**
 ✓ Worst-case theoretical bounds
 ✓ Better empirical performance
Empirical Evaluation

Datasets:
1. Videos: MIT Logo, Friends, Eagle
2. Hyperspectral images (HS-SOD)
3. TechTC-300

- **Training phase**: 200/400 matrices.
- **Testing phase**: 100 matrices

- Compare empirical recovery error $\sum_i ||A_i - SCW(S, A_i)||_F - ||A_i - [A_i]_k||_F$ of our learned matrix S to random matrix R