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ABSTRACT
Since the label collecting is prohibitive and time-consuming, un-

supervised methods are preferred in applications such as fraud

detection. Meanwhile, such applications usually require modeling

the intrinsic clusters in high-dimensional data, which usually dis-

plays heterogeneous statistical patterns as the patterns of different

clusters may appear in different dimensions. Existing methods pro-

pose to model the data clusters on selected dimensions, yet globally

omitting any dimension may damage the pattern of certain clus-

ters. To address the above issues, we propose a novel unsupervised

generative framework called FIRD, which utilizes adversarial distri-

butions to fit and disentangle the heterogeneous statistical patterns.

When applying to discrete spaces, FIRD effectively distinguishes

the synchronized fraudsters from normal users. Besides, FIRD also

provides superior performance on anomaly detection datasets com-

pared with SOTA anomaly detection methods (over 5% average

AUC improvement). The significant experiment results on various

datasets verify that the proposed method can better model the het-

erogeneous statistical patterns in high-dimensional data and benefit

downstream applications.

CCS CONCEPTS
• Mathematics of computing → Maximum likelihood esti-
mation; Probabilistic algorithms; Probability and statistics.
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1 INTRODUCTION
Human-annotated labels are widely adopted to supervise machine

learning. Yet, large-scale labeled datasets are usually prohibitive

and time-consuming to obtain [8, 20, 28, 34, 36], so the collected

labels may be obsolete for training. For example, online platforms

label users as fraudsters after detecting certain malicious behaviors.

However, once the fraudsters are exposed, they tend to change

their strategies of committing fraud so that the platforms cannot

utilize these labels to identify fraudsters in the future. As such,

unsupervised methods are usually preferred in such applications

to perform real-time pattern recognition.

Applications such as fraud detection usually require modeling

the intrinsic clusters in high-dimensional data. Such data usually

displays heterogeneous statistical patterns as the patterns of differ-
ent clusters may appear in different dimensions. As an example,

consider the registration log data in an online platform which con-

tains dozens of dimensions in 4 types: user information (name,

ID card number, gender, age, phone number), device information

(MAC address, OS type, manufacturer), network information (IP

address, channel, browser) and behavior information (timestamp,

time elapsed during registration). The fraudsters usually display

abnormal synchronized behaviors in specific dimensions due to sim-

ilar control scripts or resource sharing, while the normal users are

randomly distributed [24, 27]. For instance, one fraud group may

utilize the Android simulator to implement bulk registration, which

in turn leads to similar device and behavior information. Another

fraud group may hire people to register the accounts manually.

As they possess only a few available phone numbers and network

proxies, their network and user identity signatures will be similar.

The heterogeneous statistical patterns are challenging to iden-

tify, as such fraudsters will try their best to get disguised as normal

users. In practice the fraudsters are highly indistinguishable from

the normal users concerning all the dimensions due to two reasons:

1) many more dimensions are recorded in real-world scenarios (e.g.,

more detailed personal information and historical behaviors from

other platforms), and 2) normal users may occasionally share fea-

ture values. From a global perspective, traditional similarity-based

clustering methods may result in too many false positives as they

are easily affected by noisy normal users. Many previous works pro-

pose to omit uninformative features and cluster the dataset on the

remaining features [4, 13, 26]. As the local synchronization of dif-

ferent fraud groups is usually distinct (e.g., device/time information

and network/user information), it is often hard to tell which dimen-

sion to omit. In fact, the fraud patterns evolve as fraudsters learn

https://doi.org/10.1145/3366423.3380213
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which dimensions are ignored and thus find new ways to avoid

detection. Therefore, to effectively recognize the heterogeneous sta-

tistical patterns, methods should model both the global distribution

of all data clusters and the local patterns for each cluster.

Modeling such heterogeneous statistical patterns is challenging

for two reasons. First, globally modeling the data clusters requires

evaluating the joint distribution of all dimensions, which suffers

from the curse of dimensionality. For example, the number of possi-

ble combinations of (gender, age, phone number, . . . ) is the product

of each dimensions’ possible value counts. Therefore, the number

of parameters required to describe such joint distribution grows

exponentially fast with the dimensionality. Second, recognizing the

local cluster patterns requires modeling the mixture distribution

of the different fraud groups and random normal users, which is

usually distinct among the dimensions as the dimensions’ sample

spaces (i.e., the set of all possible values) are different. For example,

the gender and age of a user take values respectively from a binary-

value set {male, female} and a ten-value set {0~10, 10~20, . . . , 90~100},
so we need 1 and 9 parameters to describe the distributions on these

two dimensions correspondingly. As a result, conventional mixture

methods such as Gaussian mixture model (GMM) are inapplicable

to such data, since they assume that all dimensions of the data share

the same sample space, e.g., R for GMM.

To address the above issues, we propose a novel generative frame-

work called FIRD to model the heterogeneous statistical patterns

in unlabelled datasets. FIRD effectively models both the global

and local patterns based on the Feature Independence assumption

and the adveRsarial Distributions. FIRD assumes the features are

conditionally independent within the same group to model the

dimensions with different sample spaces and relieve the curse of

dimensionality. It then utilizes the adversarial distributions (a group
of distributions competing in generating observations) to fit and dis-

entangle the complex data distributions in each dimension, which

in turn brings the model stronger interpretability. Specifically, FIRD

identifies the synchronization of the fraud groups as well as the

randomly distributed normal users in discrete space by using a pair

of adversarial multinomial distributions in each dimension. It is

also worth emphasizing that FIRD is not limited to fraud detec-

tion tasks. We demonstrate in our experiments that modeling the

heterogeneous statistical patterns are also beneficial to anomaly

detection tasks (over 5% average AUC improvement over SOTA

methods). We expect FIRD to be effective in other applications that

model the patters other than the synchronization and randomness

by adopting appropriate adversarial distributions. The learned prob-

abilistic representations also support probabilistic reasoning based

on prior information. The major contributions of this paper are

distinguished as follows:

• Wepresent a novel generative framework FIRD,which adopts

adversarial distributions to capture heterogeneous statistical

patterns in unlabeled datasets.

• In discrete spaces, FIRD provides interpretable fraud detec-

tion and anomaly detection results on various datasets.

• The effectiveness of FIRD indicates modeling the heteroge-

neous statistical patterns benefits various downstream tasks.

The remaining of the paper is arranged as follows. We review the

related works in Section 2. We introduce the proposed framework

FIRD in Section 3. We demonstrate the experimental results in

Section 4. We conclude the paper in Section 5.

2 BACKGROUND
In this section, we review the approaches related to the method

and applications discussed in this paper. Then we demonstrate the

identifiability issue arisen in the existing generative models.

2.1 Related Approaches
Recognizing the heterogeneous statistical patterns in unlabeled

datasets requires modeling both the global distribution of the data

clusters and local patterns of each data cluster. When the local

patterns of all data clusters are distributed in the same subset of

the features, we may omit other non-informative features and per-

form clustering on the remaining features [4, 13, 26]. The feature

selection algorithms in clustering are basically divided into three

categories: the filter models, wrapper models, and hybrid models [4].

The filter models use certain criterion to evaluate the quality of the

features and then cluster the data w.r.t. high-quality features [39].

The wrapper models enumerate all feature combinations and utilize

a specific clustering method to evaluate each combination [16]. Un-

like the other two models, the hybrid models simultaneously select

useful features and cluster the data points. For example, feature

saliency models attempt to fit each feature with either a Gaussian

mixture model (GMM) or a global Gaussian [7, 18, 33, 35, 37]. In this

way, features fitted by the GMM are effective for clustering, while

other features fitted by the global Gaussian are discarded. However,

such methods are unable to model the heterogeneous statistical

patterns among the dimensions for three reasons. First, since the

local patterns of the clusters may involve different dimensions, no

dimension should be omitted globally. Second, distributions like

multivariate Gaussian assume the dimensions share the same sam-

ple space, such as R, which is usually not true in practice. Finally,

such model-based methods suffer from an identifiability problem

when applying to discrete spaces [33, 37], as they fail to disentangle

the clusters with a mixture of multinomials (Section 2.2).

The synchronized fraudsters described above can be seen as

dense blocks (i.e., groups of frequently shared feature values) in the

dataset. Related works then detect fraud groups by searching for

the dense blocks from the dataset filled with randomly distributed

normal users. [12] measures a block’s density by its likelihood

under a Poisson assumption and greedily searches for blocks to

optimize it. [30] proposes a greedy optimization framework to

optimize a given density measure. D-Cube [31], the successor to

[30], has accelerated computation and is thus applicable to much

larger datasets. However, these greedy search methods focus only

on the fraud patterns, so the changes in the patterns of the normal

users can easily affect these models. Specifically, the precision of

these methods declines significantly with the growing number of

normal users, as the randomly distributed normal users are noise

that can significantly interfere with the searching process (Section

4.1.2).

Modeling the heterogeneous statistical patterns can also benefit

anomaly detection methods. Anomaly detection methods assume

that themajority of a dataset is closely distributed on several specific

manifolds [2]. Data points distant from these manifolds are thus
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Symbol Meaning Symbol Meaning Symbol Meaning

n index of data N total number of data samples xn observed data

д index of clusters G total number of clusters dn hidden cluster indicator

m index of features M total number of features fnm adversarial distribution indicator

i index of feature values Dm m-th feature dimension Fm m-th dimension

p(·) generative model pk (·) k-th generative component q(·) variational distributions

πд mixture weight of д-th cluster µдm adversarial distribution weight αдm synchronized multinomial parameter

βдm random multinomial parameter ϕ̃nд responsibility of д-th cluster γ̃nдm responsibility ofm-th feature

γnдm auxiliary variable for E step γ̄nдm auxiliary variable for E step λ hyper parameter for prior regularization

Table 1: Symbols in this paper. The bold uppercase represents a matrix, the bold lowercase represents a vector and the regular
type represents a scaler. Parameters with hats (e.g., π̂д ) are the parameters in the last EM iteration.

identified as anomalies. With this manifold assumption, one can

spot the anomalies by linear methods [9, 32], proximity-based meth-

ods [10, 11], and outlier ensembles [19, 21, 40]. In high-dimensional

datasets, however, only when considering specific dimensions, the

anomalies are distant from the manifolds. To select informative

features in the outlier detection problem, many previous works

propose the ensembles of the base detectors [19, 21, 40]. The ba-

sic thinking is resampling the data points and the features so that

the model takes merit from different feature combinations and re-

duces the fraction of anomalies. However, such resampling searches

through all feature combinations, which is exponential to the num-

ber of dimensions. Besides, when the resampling fails to generate

the right feature combination, the detection performance declines

significantly.

2.2 Identifiability Problem in Existing
Generative Methods

Two model-based feature selection methods are proposed for clus-

tering discrete data [33, 37]. They extend the seminal works [18, 35]

from continuous to the discrete case by replacing Gaussian distri-

butions with multinomial distributions. Here we show the identifi-

ability issue of such models in discrete spaces.

To avoid confusion, we use the same denotation as the [33]. The

likelihood is

L(Θ; yi ) =
N∏
i=1

K∑
k=1

αk

L∏
l=1

[ρlp(yil |θlk ) + (1 − ρl )q(yil |θl )], (1)

where y is the observation. Parameters α and ρ are the mixture

weights and indicator parameters of feature selection, respectively.

They use θlk to represent the group-specific parameters and θl to
represent the global parameters. Here the distributions p and q are

both multinomials. We can rewrite the probability as

p(yil = Ylm ) =
K∑
k=1

αk [ρlθlkm + (1 − ρl )θlm ], (2)

where θlkm and θlm are the probability mass of Ylm . Then we can

write the likelihood in a different way as

L(Θ; yi ) =
N∏
i=1

L∏
l=1

Ml∏
m=1

{ K∑
k=1

αk [ρlθlkm + (1 − ρl )θlm ]

}1{yil =Ylm }
,

(3)

where the function 1{·} is the indicator function. If we have already
learned the optimal ρ⋆, and denoting

p̃lm =
K∑
k=1

αk [ρ
⋆
l θlkm + (1 − ρ

⋆
l )θlm ],

we see that optimizing such mixture of multinomials is equiv-

alent to optimizing a single multinomial with parameter p̃l =
[p̃l1 . . . p̃lm . . . p̃lM ] for each feature. If we introduce information

criteria to determine G automatically as they did in the original

method, G will always be 1. The existing methods introduce infor-

mative priors merely to the mixture weights and feature selection

indicator parameters, which does not solve the identifiability issue.

3 OUR METHOD
In this section, we first present a novel unsupervised generative

learning framework called FIRD and describe how it captures the

heterogeneous statistical patterns using the adversarial distribu-

tions. Then we apply the framework to discrete space to model

two specific patterns, namely synchronization, and randomness,

for applications such as fraud detection and anomaly detection. For

better readability, Table 1 summarize the meanings of the symbols

in this paper.

3.1 FIRD: A Novel Learning Framework
In this section, we present a novel unsupervised generative learning

framework called FIRD. We first introduce the adversarial distribu-

tions and discuss the identifiability issue caused by over-flexible

variational distributions. Then we propose to solve this identifiabil-

ity problem using prior knowledge and provide theoretical guaran-

tees.

For each observation inD = {xn }Nn=1
, we want to learn its asso-

ciated latent semantic variable dn . To characterize the different sam-

ple space and relieve the curse of dimensionality, we assume the data

features are independent givendn , i.e.p(xn |dn ) =
∏M

m=1
p(xnm |dn ).

We assume the observations display up to K distinct statistical pat-

terns in each dimension. To characterize and balance these patterns,

we introduce the adversarial distributions {pk (xnm |dn )}
K
k=1

, such

that givendn , the distribution of observation xnm is a mixture of the

adversarial distributions, i.e. p(xnm |dn ) =
∑K
k=1

µmkpk (xnm |dn ).
Here µmk determines the responsibility of each adversarial distri-

bution component pk (xnm |dn ) for generating xnm . As µm lies in a
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probability simplex, increasing the responsibility µmk ofpk (xnm |dn )
will reduce that of other adversarial distribution components. In

this way, the adversarial distributions compete in generating the

observations by fitting the intricate data patterns in each dimen-

sion. Under such assumption, the data generation process can be

described by the following two steps:

(1) Generate dn from the semantic distribution p(dn ).
(2) For each featurem, choose an adversarial component k w.r.t.

µkm , and generate xnm from pk (xnm |dn ).

Since p(dn ) and pk (xnm |dn ) are unknown, we cannot directly eval-

uate the likelihood of such generative models. We then turn to

optimizing the likelihood lower bound using variational methods.

Denoting the parameters of the learner as π and θ , we have the
evidence lower bound of the log-likelihood (ELBO):

logL(θ , d; x) =
N∑
n=1

log

∑
dn

p(dn |π )
M∏

m=1

K∑
k=1

µmkpk (xnm |dn ,θ )

≥

N∑
n=1

∑
dn

q(dn )

{
log

p(dn ,π )

q(dn )
+

M∑
m=1

K∑
k=1

µ̃nmk log

µmkpk (xnm |dn ,θ )

µ̃nmk

}
,

(4)

where we introduce variational distribution q(dn ) to approximate

the posterior p(dn |xn ) and apply Jensen’s inequality with auxiliary

variables µ̃nmk (

∑
k µ̃nmk = 1, µ̃nmk ≥ 0).

As the ELBO is concave, we can use the EM algorithm to itera-

tively approximate the latent semantic distribution p(xn |dn ) and es-
timate the parameters. However, if the adversarial distributions are

too flexible, wemay fail to disentangle the complex data distribution

as expected. An extreme case is that ifpk (xnm |dn ,θ ) is able to fit the
data patterns perfectly, i.e. infθ DKL

(
pk (xnm |dn ,θ )

p⋆(xnm |dn )) =
0, it can dominate the adversarial distributions with µmk = 1 and

µmj = 0 for all j , k , where we denote the ground truth dis-

tributions as p⋆(·). To address this problem, we introduce prior

information into these adversarial distributions such that each ad-

versarial component can fit one specific pattern much better than

other patterns. We have the following theorem to guarantee the

optimality and uniqueness of the variational approximation.

Theorem 1. Suppose that with proper priors, ∀k ∈ {1, . . . ,K}
there exists a unique and distinct index k ′ ∈ {1, . . . ,K} and some
constant C > 0 such that

inf

θ
DKL

(
p⋆k ′(xnm |dn )

pj (xnm |dn ,θ )) > C,

inf

θ
DKL

(
p⋆k ′(xnm |dn )

pk (xnm |dn ,θ )) = 0

for all j , k , where DKL(·∥·) is the KL divergence. Then we have the
unique optimal solution:

q(dn ) = p
⋆(xnm |dn ), pk (xnm |dn ,θ ) = p

⋆
k (xnm |dn )

µ̃nmk =
µmkp

⋆
k (xnm |dn )∑K

k=1
µmkp

⋆
k (xnm |dn )

for the ELBO in Eq. (4).

Proof. Please see Appendix A. □

To address the specific modeling problem in applications such

as fraud detection, we apply FIRD to the discrete spaces.

dn fnm

xnm

π µ

α

β

M

N

Figure 1: The plate representation of FIRD in discrete space.
The plates with subscriptM and N indicate respectively the
M independent features andN i.i.d. data points. The parame-
ter π is themixture weight. µ balances the adversarial distri-
bution pairs. The synchronization and randomness are cap-
tured by the adversarial distribution pairs, whose parame-
ters are α and β , respectively.

3.2 Discrete Space Application
In this section, we apply FIRD to discrete spaces for applications

such as fraud detection. We first illustrate the model and optimiza-

tion techniques. After that, we describe how FIRD reduces the noise

in the dataset by filtering outliers. Then we introduce how FIRD

makes inference based on the prior knowledge and the learned

probability representations. Finally, we discuss the complexity, ini-

tialization, and hyperparameters.

3.2.1 Model. The FIRD model in discrete space is a finite mixture

model with adversarial multinomial distribution pairs. To better

illustrate the generation process, we plot the plate representation

of the FIRD in discrete spaces in Figure 1.

In discrete spaces, the observationsD = {xn }Nn=1
areM-dimensional

vectors, where for each feature Fm , 1 ≤ m ≤ M , xnm takes its value

from the set {Xmi }
Dm
i=1

. The latent semantic variable dn takes dis-

crete values from {1, . . . ,G} governed by p(dn ) = Mult(π ), where
we useMult(·) for abbreviation of a multinomial distribution. We

assume that given dn , each feature Fm independently generates the

feature value from an adversarial multinomial distribution pair that

respectively captures synchronization and randomness. Suppose

the synchronization-aware components of the adversarial distribu-

tion pairs are multinomials controlled by α , and the randomness-

aware components are multinomials controlled by β . We then have

the following generation process for an observation xn :
(1) Choose the semantic variable dn ∼Mult(π ).
(2) For each feature Fm :

(a) Choose the indicator variable fnm ∼ Bernoulli(µdnm ).
(b) If fnm = 1, choose the observed valuexnm ∼Mult(αdnm );

(c) If fnm = 0, choose the observed value xnm ∼Mult(βdnm ).

As described in section 3.1, we need to introduce priors into the

adversarial distributions so that each component of the adversarial

distributions fits one specific pattern. In discrete spaces, to generate

synchronized observations, the probability mass of the distribution

Mult(α ) should distribute on a small subset of the feature values. In

other words, most entries inα should be zero so that sampling from
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Mult(α ) leads to several possible outputs. Similarly, to model the

randomness Mult(β) should approximate the uniform distribution,

so that sampling fromMult(β) produces a wide variety of values.

We can achieve such randomness- and synchronization-awareness

by introducing Dirichlet-like priors to promote sparse αdnm and

smooth βdnm . Moreover, according to the traditional information

criterions, we can promote sparse π to automatically choose a

proper G for the dimension of dn (see for example [5]).

logL(π , µ,α , β ;D,λ(1),λ(2))

=

N∑
n=1

log

{ ∑
dn,fn

p(xn |fn ,dn ,α , β)p(fn |dn , µ)p(dn |π )
}

−

G∑
д=1

λ
(1)
д logπд −

G∑
д=1

M∑
m=1

Dm∑
i=1

λ
(2)

дmi
(
logαдmi − log βдmi

)
.

(5)

We introduce the hyper parameter λ to control the regularization.

Note that the regularizers for π and α (last two terms in Eq. (5)) are

negative to promote sparsity, and that for β is positive to promote

randomness. We choose the same weight λ
(2)

дmi for each adversarial

distribution pair to ensure they are equally capable of modeling

the synchronization and randomness. We can determine whether

Mult(α ) orMult(β) prevails by introducing priors to parameter µ,
which makes FIRD fully Bayesian. However, in this paper, we just

adopt a fair competition between the adversarial distributions.

3.2.2 Optimization. We then apply the EM algorithm for optimiza-

tion. In the E-step, we calculate the posterior distribution of the

latent variables given the observations, i.e. p(dn , fn |xn , ˆθ ). To rep-

resent this posterior distribution we estimate

ϕ̃nд = p(dn = д |x) =
π̂д

∏M
m=1

{
γnдm + γ̄nдm

}∑G
д′=1

π̂д′
∏M

m=1

{
γnд′m + γ̄nд′m

} ,
γ̃nдm = p(fnm = 1|x,dn = д) =

γnдm

γnдm + γ̄nдm
,

(6)

where we denote the parameter estimations from the last iteration

with hats and define

γnдm = µ̂дm

Dm∏
i=1

α̂xnmi
дmi , γ̄nдm = (1 − µ̂дm )

Dm∏
i=1

ˆβxnmi
дmi .

In the M-step, we find parameters that optimize the expected

likelihood. Since the objective is concave w.r.t. µ and β , setting the

derivative to zero gives us

µдm =

∑N
n=1

γ̃nдm · ϕ̃nд∑N
n=1

ϕ̃nд
,

βдmi =
λ
(2)

дmi +
∑N
n=1

xnmi (1 − γ̃nдm )ϕ̃nд

Dmλ
(2)

дmi +
∑N
n=1
(1 − γ̃nдm )ϕ̃nд

.

(7)

The optimization of π and α does not have a closed-form solution,

as the objective is no longer concave due to the regularizers. How-

ever, by introducing some small noise to the Dirichlet-like priors,

we can calculate the maximum using a numerical method [17]. We

iteratively update π and α

πд =

∑N
n=1

ϕ̃nд + λ
(1)
д πд

N + λ
(1)
д /πд

,

αдmi =

∑N
n=1

xnmi · γ̃nдm · ϕ̃nд + λ
(2)

дmiαдmi∑N
n=1

γ̃nдm · ϕ̃nд + λ
(2)

дmi/αдmi
,

(8)

until convergence. We present the detailed derivation in the sup-

plementary material
1
, and we show the pseudo-code of FIRD in

Algorithm 1.

Algorithm 1 FIRD in Discrete Space

Input: Observations D = {xn }Nn=1
, semantic dimension G, regu-

larization weight λ, precision ϵ .

Output: Semantic representations ϕ̃ and γ̃ , semantic distirbution

π , balance parameters µ of the adversarial distributions, adver-

sarial distribution parameters α and β .
1: for д = 1 to G,m = 1 toM do ▷ Initialize parameters.

2: πд ← 1/G, µдm ← 0.5.

3: Randomly initialize and normalize αдm and βдm .

4: end for
5: L ← −∞ ▷ Initialize likelihood.

6: repeat
7: Evaluate Lnew according to Eq. (5).

8: Calculate ϕ̃, γ̃ according to Eq. (6). ▷ E-step.

9: Update µ and β according to Eq. (7). ▷ M-step.

10: Update π and α according to Eq. (8). ▷ M-step.

11: until Lnew − L < ϵ

3.2.3 Noise Reduction. Since the real-world datasets always con-

tain a considerable amount of noisy data points, here we describe

how FIRD deals with such noisy datasets by filtering the outliers.

Observations that do not belong to any possible values of the

latent semantic variable are recognized as outliers, which are noise

to be removed from the dataset. Specifically, the likelihood of the

observation given dn = д is

p(xn |dn = д) =
M∏

m=1

{
γnдm + γ̄nдm

}
.

Given dn = д, the information gain after observing xn is

I (xn |dn = д) = − logp(xn |dn = д).

We expect this information to be large for outliers, so we compute

a threshold on I . A natural choice is its expectation, i.e. the entropy

of the distribution p(xn |dn = д):

H [p(xn |dn = д)] =
M∑

m=1

H [p(xnm |dn = д)]

= −

M∑
m=1

Dm∑
i=1

h
(
µдmαдmi + (1 − µдm )βдmi

)
,

(9)

1
Supplementary material is available at https://github.com/fingertap/fird.cython/blob/

master/suppl_material.pdf.
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where we defined h(y) = y logy. Then we can filter out the out-

liers that satisfy I (xn |dn = д) > (1 + ϵ) · H [p(xn |dn = д)] for all
components, where ϵ is the tolerance.

3.2.4 Inference. We can incorporate our prior knowledge of d to

make inference based on the learned probabilistic representations.

Using classification as an example, we can infer the label of each

data point given the labels of d:

ℓn ≜ Edn [ℓ |xn ] =
G∑
д=1

p(ℓ |dn = д)p(dn = д |xn ), (10)

where ℓ is application-dependent target variable. Since G ≪ N ,

domain experts can efficiently analyze the learned latent represen-

tations d and design appropriate decision distributions p(ℓ |dn = д).
In fraud detection, we have the prior knowledge that fraudsters

usually synchronize with each other due to potential resource shar-

ing [24, 27]. This allows us to determine p(ℓ |dn = д) automatically

by calculating the “difficulty of generation” under a random model

M
random

. If the observations are too difficult to generate under the

random model, they are very likely to be fraudsters. Suppose the

values Xmi have probability
1

Dm
for each Fm in the random model

M
random

. Then the probability of generating д is

p(dn = д |Mrandom
) =

N∏
n=1

πд

M∏
m=1

Dm∏
i=1

(
Dm
Nдmi

)
D
−Nдmi
m ,

where we have defined

Nдmi =

N∑
n=1

1(xnm = Xmi ) · p(dn = д |xn ).

Note that

( Dm
Nдmi

)
can be calculated by the gamma function, and 1(·)

is the indicator function. Again, we can calculate the information

and use the entropy as a threshold for fraudsters:

H [dn = д |Mrandom
)] =

N∑
n=1

M∑
m=1

Dm∑
i=1

{
log

(
Dm
Nдmi

)
− Nдmi logDm

}
.

Any groupwith I (dn = д |Mrandom
) > (1+ϵ)·H [p(dn = д |Mrandom

)]

is recognized as fraud, where ϵ is the tolerance.

3.2.5 Discussion. We first discuss the complexity of FIRD. FIRD

runs in linear time w.r.t. the feature dimensionM and the number

of data points N . In the E-step, we need to calculate the information

of the latent variables, which is O(NGM) for time and space com-

plexity. In the M-step, the time complexity bottleneck is updating

α and β . A plain implementation of the update iterations for α and

β runs in O(NG
∑
m Dm ). However, suppose NM >

∑
m Dm , we

can trade space for time by maintaining an array for αдm and βдm .

With additional O(maxm Dm ) space, the time cost for updating α
and β can be reduced to O(NGM). Therefore, both the time and

the space complexities of FIRD are O(NGM). When the number of

samples is extremely large, a single pass of E step and M step is

time-consuming. We can further utilize stochastic EM algorithms

to accelerate convergence for large datasets [6, 23].

We also provide a parameter initialization strategy. FIRD adopts

pairs of adversarial distributions. If one distribution prevails due

to the random initialization (for example, µдm > 0.5 means the

sparse distribution prevails, and µдm = 1 is equivalent to removing

Multinomial(βдm )), this advantage may persist through the subse-

quent iterations. Therefore, a fair start is πд = 1/G and µдm = 0.5

for all possible д,m. The randomness of the model then comes from

the random initialization of α and β .
The hyperparameter λ is hard to determine without any upper

bound. Herewe discuss how to normalize its value to ease the choice

of hyperparameters. λ is the conjugate priors’ weight parameter,

which controls the sparsity in α and π as well as the randomness

in β . We expect such regularizers to be large enough to punish the

models that violate our assumptions but are not so large that they

overpower the likelihood. Since the priors have the same form as

the likelihood, the regularizers can be seen as the likelihood of fake

data points. With a given dataset, we then adjust λ so that the fake

data points have a comparable size, i.e.

λ
(1)
д = λ(1) ·

N

G
, λ
(2)

дmi = λ(2) ·
N

2GDm
. (11)

Thus, we just need to decide the normalized regularization weights

0 < λ(1), λ(2) ≤ 1.

4 EXPERIMENTS
In this section, we present detailed analysis and two applications

of FIRD. We first demonstrate the application of FIRD on fraud

detection. We compare FIRD to the state-of-the-art unsupervised

fraud detection methods on an E-commerce platform dataset and

visualize the detection results of FIRD as critical applications like

fraud detection require high interpretability. Then we report the

performance of FIRD on anomaly detection benchmark datasets

to show its effectiveness as a general anomaly detection method.

Finally, we analyze how the hyperparameters of FIRD affect the

performance and its running time cost on synthetic datasets.

We do not compare FIRD with supervised methods for fraud

detection as they offer little practical value. Three primary reasons

are: 1) the fraud labels are expensive to collect; 2) the fraud pat-

tern changes as the detection method evolves; and 3) theoretically,

the distributions of training data and test data may differ vastly

for the two reasons above, which violates the i.i.d. assumption of

supervised methods.

Since FIRD models both the synchronization and randomness

patterns, it displays superior performance on different tasks. As

such, in our experiments, we compare with the most promising

methods on each task. Specifically, for the fraud detection experi-

ment, we compare with the dense block detectionmethodsM-Zoom,

M-Biz, and D-Cube [30, 31], which heuristically search for high-

density data blocks (with specially designed density definitions).

For anomaly detection methods, we compare FIRD to the state-of-

the-art methods such as the histogram-based outlier score (HBOS)

[10], the isolation forests (IForest) [21], the one-class SVM (OCSVM)

[9] and the clustering-based local outlier factor (CBLOF) [11]. For

all these experiments, we adopt a Cython implementation of FIRD
2
.

4.1 Identify Fraudsters in E-commerce
Platform

In this experiment we first describe the experiment setups. Then we

present the comparison result of FIRD with state-of-the-art fraud

2
A Cython implementation is available at https://github.com/fingertap/fird.cython.



Modeling Heterogeneous Statistical Patterns In High-dimensional Data By Adversarial Distributions WWW ’20, April 20–24, 2020, Taipei, Taiwan

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

FIRD(AUC:0.82)

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

M-Zoom(AUC:0.64)

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

M-Biz(AUC:0.64)

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

D-Cube(AUC:0.64)
N:F=1:4
N:F=1:2
N:F=1:1
N:F=2:1
N:F=4:1
N:F=10:1
N:F=20:1

Figure 2: The precision-recall curves on the real-world E-commerce platform data. We present the comparison results with
different NFR and plot precision-recall curves. For each method, we evaluate the overall performance by AUC.

detection methods on an E-commerce platform dataset. Finally, we

visualize the probabilistic representations learned by FIRD since

models are expected to make interpretable decisions in critical

applications like fraud detection.

4.1.1 Experiment Setup. Every day, a massive number of new users

register for E-commerce platforms, a considerable number of which

are fraudsters.We obtained a dataset with over 20,000 fraudsters and

a sufficient number of normal user samples with 30 useful features

from an E-commerce platform. For some features, there are tens

of thousands of possible values. The platform labeled the records

according to the account behavior in the following few months.

As previously described, the fraudsters form different clusters by

sharing different sets of feature values. In contrast, normal users

seldom share feature values and are randomly distributed.

We randomly sample 7 sets of normal users with different sizes

and mix them with the fraudsters to synthesize seven datasets with

different normal-user-to-fraudster ratios (NFR, ranging from 1:4 to

20:1). These datasets have the same fraud patterns, and the main

difference lies in the noise levels. We apply FIRD on these datasets

and compare its performance to the existing dense block detec-

tion methods M-Zoom, M-Biz [30], and D-Cube [31]. We use these

methods to predict the identities of the data points and evaluate

the precision and recall. We decide p(ℓ |dn = д) for FIRD according

to the method described in section 3.2.4. For the dense block detec-

tion methods, we assign p(ℓ |dn = д) = 1 if the proportion of the

fraudsters in the detected block exceeds 50%, and assign the labels

of the detected blocks to their members. FIRD labels the outliers

filtered out according to Section 3.2.3 as normal.

4.1.2 Overall Comparison Results. We display the comparison re-

sults in Figure 2. Note that for the dense block methods, we report

the best result under four different density measures. We plot the

precision-recall curve and present the mean area under curve (mean

AUC) score for all four methods on these seven datasets. We observe

that, for dense block detection methods, there is a precision decline

as the NFR increases. The AUC score of these methods decreases

rapidly as the NFR increases (from 0.99 to 0.1). For comparison, we

observe that FIRD is relatively robust to the NFR (AUC ranges from

0.97 to 0.46, with an average of 0.82). These improvements can be

attributed to the refining process, which deletes most of the noisy

data points.

As critical applications like fraud detection expect the model to

provide interpretable results, we visualize FIRD’s detection results

with the following concrete example.

4.1.3 Interpretable Results. In fraud detection applications, the

model is expected to provide interpretable results. As such, we

visualize the probabilistic representations learned by FIRD to show

how it captures the fraud patterns. We first plot the distribution of

fraudsters and normal users after detection. Then we investigate

one specific case, i.e., dn = 1, to show FIRD captures the fraud

pattern. Finally, we demonstrate the IP address distribution given

dn = 1 to show that FIRD captures the synchronizations in both

fraudsters and some (potentially malicious) normal users.
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Figure 3: X-axis shows 20 bars and each bar is a specific value
of the semantic representation (i.e. dn = 1, . . . , 20). Y-axis in-
dicates user count and orange, blue and gray blocks respec-
tively illustrate normal users, fraudsters and outliers. Some
normal users are not filtered out as Figure 5 described.

Figure 3 displays the user distribution after detection. Every data

point is assigned according to maxд ϕ̃nд . Each bar represents a

possible value for dn , and its height indicates the user count. We

color the bars according to the ground truth of each data point,

and we discuss the bars from top to bottom. The top layer (orange

blocks) comprises normal users, and the third layer (blue blocks)

comprises fraudsters. We filter out the outliers according to Section

3.2.3 and group them into the second and fourth layers (gray blocks).
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Figure 4: Visualization of the representation dn = 1 from
Figure 3. We randomly sample 10 data points with dn = 1

and plot the feature importance (i.e. parameter µ, as it in-
dicates how synchronized the feature is). The dashed line
µ1, · = 0.5 indicates neither the sparsity and randomness pat-
terns overpower the other. We highlight the synchronized
behaviors of the fraudsters in these samples with different
background colors. Note that the three fraud groups (three
different background color) share the same synchronized
features, which are important features suggested by high µ
values (much greater than 0.5).

We can see that most of the normal users are filtered out of the

fraudulent groups (e.g., group 1, 2, and 5). However, there are still

many normal users in these bars. As such, for our next step, we

investigate one of these bars.

We randomly sample 10 data points from the first bar (i.e. setting

dn = 1), and plot the learned feature importance parameter (µ
1
) in

Figure 4. We can observe the overt synchronized behaviors of these

records, which are highlighted as colored blocks. The parameter

µ1, · for these features is relatively high (over 0.8), which indicates

that these features are highly synchronized. We can see that in

the channel and time features, the parameter is almost 1, as nearly

all of the records with dn = 1 have nearly the same value. The

µ1, I P value for feature IP is a little smaller than 1 because there are

several popular IP addresses. In features like device ID, phone and
phone city, the data points are less synchronized. As a result, the
parameter µ1, · for these features is closer to 0.5, which signifies

that the degrees of synchronization and randomness are similar.

We further investigate the IP feature with dn = 1 to see the

probability mass of those possible IP addresses (α1, I P, ·) as well as

the number of data points that use these IP addresses. The result

is plotted in Figure 5. The bars are again colored according to the

ground truth labels of the data points to demonstrate user identities.

We can see that the sampled IPs in Figure 4 have high probability

mass, which means the model correctly captures these clustering

patterns. Interestingly, we find some small groups of normal users

that share the same IP addresses. This explains why some normal

users remain in the bars in Figure 3. The largest group consists of 28
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Figure 5: Investigate Ip address distribution when setting
dn = 1. X-axis represents IP address and sorted w.r.t. the pa-
rameter α . Y-axis is the user count and we color bars accord-
ing to ground truth andmany IP addresses shared by groups
of normal users.

users that share the IP address 511.170.27.7. Such synchronization on
a single IP address is suspicious, and we should pay extra attention

to these groups in practice. Note that α 1, I P decreases faster than

the bars since the bars correspond to the likelihood in the objective

function, and the regularizers force α 1, I P to be sparser than the

likelihood. Together with the observations in Figure 4, we verify

that FIRD can assign different fraudulent groups the same latent

representation as long as the synchronized features of these groups

are identical.

In a nutshell, this experiment shows that FIRD can detect rea-

sonable fraud patterns and automatically infer the labels of each

data point based on our prior knowledge. In addition to significant

detection results, the probability representations learned by FIRD

can also assist us in analyzing the fraud patterns.

4.2 Results on Anomaly Detection Benchmarks
FIRD can also serve as a general anomaly detection method by

assigning p(ℓ |dn = д) = 1 for anomalies and p(ℓ |dn = д) = 0 for

nominal data points in Eq. (10). Here we demonstrate the detection

results of FIRD and comparison methods on benchmark anomaly

detection datasets. We first describe the setup and then provide

comparison results and analysis.

4.2.1 Experiment Setup. ODDS [29] organizes the benchmark datasets

used in related works. These datasets come from different domains

and are readily labeled by reorganizing some multi-class datasets,

where the smallest class is chosen to be the anomaly [1, 3, 15, 21, 40].

We use the ROC-AUC score to evaluate the performance of the

methods, and compares FIRD with the most promising methods
3
,

namely the histogram-based outlier score (HBOS) [10], the isolation

forests (IForest) [21], the one-class SVM (OCSVM) [9] and locally

selective combination in parallel outlier ensembles (LSCP) [38].

3
More comparison methods: https://pyod.readthedocs.io/en/latest/benchmark.html
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Dataset FIRD HBOS IForest OCSVM LSCP

cardio 0.949 0.843. 0.924 0.938 0.901

musk 1.000 1.000 0.999 1.000 0.998

optdigits 1.000 0.865 0.714 0.500 -

satimage-2 0.998 0.977 0.993 0.997 0.9935

shuttle 0.990 0.986 0.997 0.992 0.5514

satellite 0.900 0.754 0.701 0.660 0.6015

ionosphere 0.946 0.5569 0.8529 0.8597 -

pendigits 0.972 0.9247 0.9435 0.931 0.8744

wbc 0.944 0.954 0.9325 0.9376 0.945

Table 2: Results on anomaly detection benchmark datasets.
We evaluate the performance of identifying fraud users by
ROC-AUC scores. The datasets cardio,musk and optdigits come
from [3]. The datasets satellite and ionosphere come from [21].
The datasets wbc and pendigits come from [15]. The dataset
satimage-2 comes from [40], and shuttle comes from [1].

4.2.2 Comparison results. We demonstrate the comparison results

in Table 2. FIRD displays competitive performance in most of these

benchmarks, which implies that modeling both the synchroniza-

tion and randomness benefits the detection. The state-of-the-art

anomaly detection methods usually explore the heterogeneous sta-

tistical patterns of different features by resampling. They construct

a sequence of datasets by resampling the features as well as data

points and learn an independent outlier detector on each resampled

dataset [2]. They expect that among these samples, the learner may

luckily drop the non-informative features and suppress the frac-

tion of outliers so that the detection performance obtained from

the ensemble of these detectors is superior to that of learning one

detector on the entire dataset.

However, such a sampling strategy consumes more computa-

tional resources since it requires training many independent detec-

tors. The resampling cost to capture the correct feature subset also

proliferates with the number of dimensions due to the exponentially

many feature combinations. Besides, the sampling strategy restricts

the learner to model the local feature patterns explicitly. In some fea-

tures, only a small subset of the dataset display interesting patterns.

If the learner discards these features, we cannot recognize these

local patterns. These data points then become noise, which will

further reduce performance. In comparison, FIRD jointly models

the randomness and synchronization to provide better recognition

results with a less computational cost.

4.3 Model Analysis
In this section, we analyze the effectiveness of FIRD on synchro-

nized datasets, generated following the process in section 3.2. We

first analyze the dimension G of the semantic variable d. Then
we analyze the weights λ of the regularizers. We finally show the

running time of FIRD as the feature dimension M increases. For

parameter analysis, we set N = 20000,G = 20,M = 20, and

Dm = 200 for all features. For running time analysis, we use

N = 20000,G = 10,Dm = 30 andM ranging from 10 to 100.

Since the task is similar to clustering, we apply FIRD, KMeans,

and spectral clustering to the synchronized dataset to recover d. The
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Figure 6: Performance under different dimension capacity
ratio (DCR). DCR is calculated by G/Gtrue for FIRD and
K/Gtrue for other two methods, where Gtrue is the ground
truth latent dimension G used for data generation.

spectral clustering method [22] is a strong baseline for clustering

performance, and Kmeans [14] is a fast baseline for clustering speed.

We evaluate the clustering performance by three metrics:

• Homogeneity quantifies the pureness of the detected clusters.
A high homogeneity score indicates the members of the

cluster have almost the same dn .
• A high completeness score means almost all the data points

with dn = д are assigned to the same cluster.

• V-score is the harmonic mean between homogeneity and

completeness.

All of the three metrics range from 0 to 1, larger values being

desirable. A trivial strategy to achieve the best homogeneity score

is to assign each data point as a cluster, while the completeness

score will be 0. We can similarly achieve optimal completeness

by assigning all data points to a single cluster, at the cost of zero

homogeneity. Therefore, a good model is expected to optimize the

three metrics simultaneously.

4.3.1 Different Choice of G. We first study the different choices

of the dimension G of the latent discrete space. The parameter G
controls the dimension of latent discrete space of d, which is simi-

lar to the K of the KMeans and spectral clustering algorithm. For

normalization, we demonstrate the result with different dimension
capacity ratio (DCR) defined as the ratio of the dimension G to

the ground truth dimension Gtrue , so the results are independent

toGtrue . We synchronize the dataset according to the generation

process described in section 3.2 with Gtrue = 10. We then adopt

G = 5, 10, 20, . . . , 100 for FIRD, and the same for K in KMeans

and spectral clustering method to obtain DCR ranging from 0.5

to 10. Note that for KMeans and spectral clustering, we calculate

the distance in the discrete space by applying a one-hot encoding

preprocessing step to the vectors. The detection performance is

demonstrated in Figure 6. It indicates that when the patterns are

locally different for the clusters, conventional methods such as

KMeans and spectral clustering require a perfect guess of Gtrue ,

i.e., DCR = 1, to achieve relatively high performance. As DCR in-

creases, conventional methods tend to split the clusters into smaller

ones due to the random noise in non-informative dimensions. In
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Figure 8: Running time of FIRD and KMeans as the fea-
ture dimension M increases. We implement FIRD with
Cython and adopt KMeans implementation in the well-
known Python package scikit-learn [25].

contrast, FIRD achieves high scores under all three metrics as long

as the dimension capacity ratio is large enough, e.g., G/Gtrue > 2.

As described in Section 3.2, FIRD automatically determines an ap-

propriate G through the sparsity of π , so increasing the DCR does

not affect its effectiveness.

4.3.2 Different Choice of λ. We introduced the normalized regular-

ization weights λ(1) and λ(2) in section 3.2 and 3.2.5 to control the

degree of sparsity or randomness in the parameters. The sparsity in

π controlled by λ(1) enables the automatic determination of the ap-

propriateG , and λ(2) reflects the difference between the adversarial

distributions. We apply FIRD with different λs to the synchronized

dataset to study the effect, with results shown in Figure 7. We find

that FIRD is robust to the choice of both λ(1) and λ(2) except when
the weights are too small so that the learner no longer enjoys the

modeling ability of the adversarial distributions.

4.3.3 Running Time Analysis. FIRD has linear computational cost

w.r.t. the dataset scale, especially in high-dimensional spaces. We

demonstrate the running time comparison of FIRD and KMeans in

Figure 8. Here we adopt KMeans implementation in the well-known

Python package scikit-learn [25]. Since KMeans calculates the

distance between the one-hot encoded vectors, the computational

cost increases exponentially with the feature dimensionM . In con-

trast, FIRD decouples the features by the independence assumption,

so it enjoys a linear growth in running time asM increases.

5 CONCLUSION
In this paper, we propose a novel unsupervised generative learning

framework called FIRD to model heterogeneous statistical patterns

in unlabeled datasets. FIRD utilizes the adversarial distributions

with priors to capture such patterns. In discrete spaces, FIRD cap-

tures the synchronization and randomness patterns, which turns

out quite useful on both fraud detection and general anomaly detec-

tion applications. The significant results on various datasets verify

that modeling heterogeneous statistical patterns provides more

generalizable representations and benefits various downstream ap-

plications. As future work, we expect FIRD to be effective in other

applications that model the patters other than the synchronization

and randomness by adopting appropriate adversarial distributions.
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A PROOF OF THEOREM 1
As the ELBO is concave w.r.t. all variables, it can be easily shown

that the solution in Theorem 1 is optimal. To show the uniqueness,

we prove that each adversarial component pk (xnm |dn ,θ ) will fit
the corresponding pattern p⋆k ′(xnm |dn ). According to the definition

DKL

(
p⋆k ′(xnm |dn )

pk (xnm |dn ,θ )) = Ex∼p⋆k′ [logpk (xnm |dn ,θ )]+H ,

where H is the entropy of p⋆k ′(xnm |dn ), the KL divergence assump-

tion in Theorem 1 indicates for all possible dn and ∀j , k ,
Ex∼p⋆k′

[pk (xnm |dn ,θ )] > Ex∼p⋆k′
[pj (xnm |dn ,θ )]. (12)

Since µ̃nmk > 0, multiplying Eq. (12) withq(dn )µ̃nmk and summing

overm,k and dn gives

lim

N→∞

1

N
ELBO(pk → p⋆k ′)

= lim

N→∞

1

N

∑
n,dn,m,k

q(dn )µ̃nmk logpk (xnm |dn ,θ ) + const

≥ lim

N→∞

1

N

∑
n,dn,m,k

q(dn )µ̃nmk logpj (xnm |dn ,θ ) + const

= lim

N→∞

1

N
ELBO(pj → p⋆k ′)

which indicates that the optimal solution use pk (xnm |dn ,θ ) to ap-

proximate the corresponding pattern p⋆k ′(xnm |dn ). Using the EM

algorithm gives the estimation of other parameters in Theorem 1,

which completes the proof.
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