

No Place to Hide: Catching Fraudulent Entities in Tensors

Yikun Ban¹, Xin Liu², Yitao Duan³, Xue Liu⁴, Wei Xu² ¹Peking University ²Tsinghua University ³Fintech.ai ⁴McGill University.

Introduction

Detecting Synchronized Behavior. To maximize profits, fraudsters reuse different resources (e.g., fake accounts, IP addresses, and device IDs) over multiple

- The edge density is close to 1.0. For example, all fraud users review the same products, so they are all connected.
- Small edge weights between legitimate entities and fraud entities. For example, fraud users review different products from normal users.

Step2: D-Spot

Graph Paritition. Delete low-weight edges and partition the ISG into multiple connected components $\mathcal{G}_1, \mathcal{G}_2, \dots$ So the later computation could run in parallel. Finding One Dense Subgraph from One Graph Partition.

- Input: one graph paritition \mathcal{G} of ISG.
- Objective: finding a subgraph $\hat{\mathcal{G}} = (\hat{\mathcal{V}}, \hat{\mathcal{E}})$ on \mathcal{G} that maximizes the suspiciousness density

frauds.

Challenges.

- Search-based dense block detection methods are not resistant to noise.
- Tensor decomposition methods tend to miss small fraud groups.
- Semi-supervised fraud detection methods rely on labels difficult to obtain.

Methods

Figure 1: Workflow of ISG+D-Spot.

 $\mathcal{F}_{\widehat{\mathcal{G}}} = \frac{\sum_{(u_i, u_j) \in \widehat{\mathcal{E}}} S_{i, j} + \sum_{u_i \in \widehat{\mathcal{V}}} S_i}{|\widehat{\mathcal{V}}|}.$

• Algorithm: In each iteration, we delete a set of nodes that leads the density \mathcal{F} decreases least from the current node set. Finally, the algorithm returns the node set that maximizes \mathcal{F} .

Finding Multiple Dense Subgraphs in Parallel. In each graph partition $\mathcal{G}_1, \mathcal{G}_2, ...,$ find a single dense subgraph. Then we delete it and find the next dense subgraph.

Advantages

- Two-approximation guarantee of D-Spot.
- By removing a set of nodes at once, we reduce the number of iterations.
- Low computation complexity. $O(|\mathcal{V}|^2 + |\mathcal{E}|)$ for each graph partition.
- Robustness to noisy features.

Evaluation

Accurate Fraud User Detection. Three restaurant review datasets from Yelp.

Input Tensor – Relation R.

- Entries $\{t_0, \dots, t_{|X|}\}$. Each entry $t = (a_1, \dots, a_N, x)$ has N dimensional features and an identifier x. In Figure 1, the entry is (user, product, date, IP,...,x).
- Target dimension U. For example, we want to detect fraud users in Figure 1.

Step1: Building ISG

Information Sharing Graph (ISG).

- The probability an entry has \mathfrak{a} at dimension A_k : $\mathfrak{p}^k(\mathfrak{a}) = \Pr(\mathfrak{t}[A_k] = \mathfrak{a})$.
- The self information of the event that u_i and u_j share α at dimension A_k

$$I_{i,j}^k(\mathfrak{a}) = \log(\frac{1}{p^k(\mathfrak{a})})^2.$$

• Edge weight $S_{i,j}$: the suspicious level between entities' sharing. We use the pairwise value sharing between u_i and u_j across all dimensions

$$S_{i,j} = \sum_{k=1}^{K} \sum_{\alpha: \text{shared by } u_i, u_j} I_{i,j}^k(\alpha).$$

• The self information of the event that u_i uses a at dimension A_k for m times

$$I_i^k(\mathfrak{a}) = \log(\frac{1}{p^k(\mathfrak{a})})^m.$$

Node weight S_i : the suspicious level of the node. We use the self-value

AUC	YelpChi	YelpNYU	YelpZip	
	67K Entries	359K Entries	1.14M Entries	
M-Zoom[1]	0.9831	0.9451	0.9426	
M-Biz[1]	0.9831	0.9345	0.9403	
D-Cube[2]	0.9810	0.9223	0.9376	
ISG+D-Spot	0.9875	0.9546	0.9529	

Robustness to Noisy Features. Registration information of 16,154 normal users and 9,961 fraud users. C' = crucial feature and N' = noisy feature'.

AUC	1C	2C	2C+1N	2C+2N	2C+3N
M-Zoom[1]	0.7676	0.8880	0.8827	0.8744	0.8439
M-Biz[1]	0.7677	0.8842	0.8827	0.8744	0.8439
D-Cube[2]	0.7522	0.9201	0.8586	0.8312	0.7987
ISG+D-Spot	0.7699	0.9946	0.9935	0.9917	0.9859

High Scalability. Near-linear time with respect to the number of entries on three Amazon review datasets.

sharing for u_i across all dimensions

$$S_i = \sum_{k=1}^{K} \sum_{a: used by u_i} I_i^k(a).$$

Subgraph Formed by Fraud Groups on ISG.

- Large node weights. For example, a fraud user reusing the IPs to review fraud products has a large node weight.
- Large edge weights. For example, two fraud users share the same IP and review the same unpopular product on Amazon. Because this sharing event has a low probability and high information, the edge weight is large.
- Large group size. Many users in one fraud.

References

- [1] Kijung Shin, Bryan Hooi, and Christo Faloutsos. Fast, accurate, and flexible algorithms for dense subtensor mining. tkdd, 12(3), 2018.
- [2] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos.

D-cube: Dense-block detection in terabyte-scale tensors. wsdm, 2017.

The World Wide Web Conference, May 13-17, 2019, San Francisco, USA