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Introduction

Detecting Synchronized Behavior. To maximize profits, fraudsters reuse dif-
ferent resources (e.g., fake accounts, IP addresses, and device IDs) over multiple
frauds.

Challenges.
• Search-based dense block detection methods are not resistant to noise.
• Tensor decomposition methods tend to miss small fraud groups.
• Semi-supervised fraud detection methods rely on labels difficult to obtain.
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Figure 1: Workflow of ISG+D-Spot.

Input Tensor – Relation R.
• Entries {t0, · · · , t|X|}. Each entry t = (a1, · · · , aN, x) has N dimensional

features and an identifier x. In Figure 1, the entry is (user, product, date,
IP,...,x).

• Target dimension U. For example, we want to detect fraud users in Figure 1.

Step1: Building ISG
Information Sharing Graph (ISG).

• The probability an entry has a at dimension Ak: pk(a) = Pr(t[Ak] = a).
• The self information of the event that ui and uj share a at dimension Ak

Iki,j(a) = log( 1

pk(a)
)2.

• Edge weight Si,j: the suspicious level between entities’ sharing. We use the
pairwise value sharing between ui and uj across all dimensions

Si,j =
K∑

k=1

∑
a:shared by ui,uj

Iki,j(a).

• The self informaion of the event that ui uses a at dimension Ak for m times

Iki (a) = log( 1

pk(a)
)m.

• Node weight Si: the suspicious level of the node. We use the self-value
sharing for ui across all dimensions

Si =
K∑

k=1

∑
a:used by ui

Iki (a).

Subgraph Formed by Fraud Groups on ISG.
• Large node weights. For example, a fraud user reusing the IPs to review fraud

products has a large node weight.
• Large edge weights. For example, two fraud users share the same IP and

review the same unpopular product on Amazon. Because this sharing event
has a low probability and high information, the edge weight is large.

• Large group size. Many users in one fraud.

• The edge density is close to 1.0. For example, all fraud users review the same
products, so they are all connected.

• Small edge weights between legitimate entities and fraud entities. For
example, fraud users review different products from normal users.

Step2: D-Spot
Graph Paritition. Delete low-weight edges and partition the ISG into multiple

connected components G1,G2, .... So the later computation could run in parallel.
Finding One Dense Subgraph from One Graph Partition.

• Input: one graph paritition G of ISG.
• Objective: finding a subgraph Ĝ = (V̂, Ê) on G that maximizes the

suspiciousness density

FĜ =
∑

(ui,uj)∈Ê Si,j +
∑

ui∈V̂ Si

|V̂ |
.

• Algorithm: In each iteration, we delete a set of nodes that leads the density
F decreases least from the current node set. Finally, the algorithm returns
the node set that maximizes F .

Finding Multiple Dense Subgraphs in Parallel. In each graph partition G1,G2, ...,
find a single dense subgraph. Then we delete it and find the next dense subgraph.

Advantages
• Two-approximation guarantee of D-Spot.
• By removing a set of nodes at once, we reduce the number of iterations.
• Low computation complexity. O(|V |2 + |E |) for each graph partition.
• Robustness to noisy features.

Evaluation

Accurate Fraud User Detection. Three restaurant review datasets from Yelp.

AUC YelpChi YelpNYU YelpZip
67K Entries 359K Entries 1.14M Entries

M-Zoom[1] 0.9831 0.9451 0.9426
M-Biz[1] 0.9831 0.9345 0.9403

D-Cube[2] 0.9810 0.9223 0.9376
ISG+D-Spot 0.9875 0.9546 0.9529

Robustness to Noisy Features. Registration information of 16,154 normal users and
9,961 fraud users. ‘C’ = ‘crucial feature’ and ‘N’ = ‘noisy feature’.

AUC 1C 2C 2C+1N 2C+2N 2C+3N
M-Zoom[1] 0.7676 0.8880 0.8827 0.8744 0.8439
M-Biz[1] 0.7677 0.8842 0.8827 0.8744 0.8439

D-Cube[2] 0.7522 0.9201 0.8586 0.8312 0.7987
ISG+D-Spot 0.7699 0.9946 0.9935 0.9917 0.9859

High Scalability. Near-linear time with respect to the number of entries on three
Amazon review datasets.
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