
A Flexible Architecture for Statistical Learning and Data Mining
from System Log Streams

Wei Xu Peter Bod́ık David Patterson
EECS Department, UC Berkeley
{xuw, bodikp, patterson}@cs.berkeley.edu

Abstract

Modern computer systems are instrumented to generate
huge amounts of system log data. This data contains valu-
able information for managing the system, localizing fail-
ures, and recovery. However, the complexity of these sys-
tems greatly surpasses what can be understood by human
operators and thus automated analysis systems are begin-
ning to be used. Due to preprocessing required by the statis-
tical algorithms, the extremely high volume of data cannot
be processed using ad-hoc scripts. We present a flexible,
modular and scalable architecture for statistical learning
from large data streams that can easily process lots of data.
We built a prototype that is evaluated using system log data
from a commercial on-line service. Moreover, the results
of the analysis were genuinely useful for the on-line service
operators.

1. Introduction

Data analysis and collection in general
Most on-line services such as Amazon or eBay suffer from
various user-visible failures. As reported by various authors
(such as [14]), the most common causes of failure in com-
puter systems aresoftware bugs, human operator errorsand
hardware failures. These failures cause system downtime
which is very expensive; for example, [15] estimates that 1
hour of downtime of a large on-line service can cost up to
$1 million. Predicting, detecting or localizing these failures
is a very difficult task – some systems consist of hundreds of
software components running on up to 50,000 servers [13].

A standard approach of most companies is to instrument
the system so that it reports various statistics such as perfor-
mance of each machine, execution details for each request,
or network statistics. Human operators monitoring the sys-
tem use the log data and their experience to detect failures
and identify possible root causes.

This approach has several limitations: computer systems
are too complex and their behavior cannot be easily under-

stood by humans. The systems today generate as much as
1 TB of log data every day [4]. Using more fine-grained in-
strumentation they could generate 100x more log data, but
it is impossible to manually process such large data sets.

Motivation
The recorded data contains more useful information than
the operators can discern. The data might be used to predict
that a particular machine is likely to crash in a few minutes
or that a certain software component has a bug. This extra
information can expedite detection and localization of fail-
ures. A fully automated analysis would be cheaper, more
reliable and could potentially understand more complex be-
haviors. However, most of the companies today use very
limited automated analysis of the log data they collect.

One of the reasons why it is difficult to build an auto-
mated analysis system is that it is hard to manage so much
data in real time. A lot of preprocessing (such as sam-
pling, adding/removing attributes, merging data from dif-
ferent sources, and so on) is required before the data reach
the algorithms. Our experience shows that systems based on
Python scripts are not flexible enough to analyze the scale of
log data produced in on-line services. Using ad-hoc scripts
for parallel preprocessing of data is tedious and does not
allow easy modification of data streams and algorithms.

Instead, we need a better data model for the system log,
and a scalable, modular architecture that can be distributed
over a cluster of machines to process the data quickly. We
need to be able to easily add new data streams of different
types and data rates, create new features/attributes on-line,
and try different types of algorithms. Since we need to test
the system in production environments, it needs to be easily
deployable for testing.

Contribution
In this paper we propose the use of stream-based processing
and present a prototype of a system that allows us to prepro-
cess data for any off-line or on-line statistical learning algo-
rithm against massive quantities of system logs. The sys-
tem can be easily distributed over a cluster of machines and
new data streams and algorithms can be added on-the-fly.

Although our architecture is designed for analyzing system
log data, it can be used in other situations where data min-
ing and statistical learning theory (SLT) algorithms need to
be applied to huge amounts of data. To demonstrate its ben-
efits, we implemented a decision tree algorithm for generat-
ing interesting rules from the log data. The algorithms and
the architecture are evaluated on a data set from an on-line
service with data rate of about 150GB per day.

The structure of the paper is as follows: in Section 2 we
present a set of decision-tree-based algorithms for off-line
detection of interesting rules/behavior in a typical computer
system; Section 3 highlights practical problems we ran into
when trying to implement them. Sections 4 and 5 describe
the new system and our experience with it. The results of
the algorithms in Section 6 are followed by the details of
the design and implementation of the system in Section 7.

2. System log data analysis

In this section we describe a typical data set obtained
from an on-line service that we use in our experiments. We
also describe a few types of algorithms that would be useful
for system operators and present some specific examples.
These algorithms and problems with their implementation
serve as motivation for our stream-based system.

2.1. Data set X

Our data set comes from a commercial on-line service
(similar to AOL) running on 440 nodes. Since failure infor-
mation is sensitive, the company sharing this data prefers to
be anonymous (we refer to it as company X or system X).
The data was recorded during a 20-day period and its size
is about 2.5 TB.

The data set contains three types of data:
Request data.Every request executed in the system re-

ports at least the following attributes:time, machine, user
id, andapplication. In addition to that, a request reports
a subset of 450 attributes includingrequest type, content
lengthor queue duration; the actual attributes that are re-
ported depend on the application that is executed and the
events that happen during the execution. Note thatrequests
are not restricted to requests fromusers; requests from other
parts of the system are also included. Due to privacy rea-
sons, some of the attributes wereanonymized; replaced by
a hash of their string value. The peak rate of requests is
about 11,000 requests per second. Each 1 minute of request
data from all machines is stored in one compressed file of
size≈ 20 MB (uncompressed size is≈ 80 MB).

Performance data.Every node reports its performance
statistics every five minutes – 17 attributes such as:memory
utilization, swap utilization, load average, CPU idle time,

or TCP segments received in error. The size of the perfor-
mance data for 20 days is≈ 850 MB; the data rate is about
10,000 times slower than for the request data.

Trouble ticket data. The problems detected by opera-
tors were written to a log (≈ 450 kB) that includes possible
causes for the failures.

2.2. What is useful

Our experience with several companies suggests that the
following types of automatic log data analysis would be
useful in general:

1. localizing the root cause of a failure: Often the
system operators know thatsomethingin the system
failed, but localization of the root cause is a significant
problem. As reported by [9], one large site estimates
that about 93% of recovery time from application-level
failures is spent in detecting and diagnosing them.

2. predicting failures before they happen: If we could
predict failures of particular machines, we could redi-
rect the traffic from the affected machine and avoid ser-
vice disruptions.

3. detecting (unexpected) patterns in the data: During
thepost-mortemanalysis of a failure it would be use-
ful to have models of typical and unexpected system
behavior. These models would allow the operators to
better understand the system.

The automated analysis systems should not replace the
operators but help them understand the system better. Hu-
man operators are experienced with the system, so we need
to exploit it in our analysis. The analysis systems should
thus also incorporate feedback from the operators.

2.3. Analyzing the data

It is still not known what algorithms work best for system
log analysis. However, as summarized in Section 8, current
research mostly applies off-line algorithms such as decision
trees, Bayes nets or association rules along with time series
analysis and statistical tests. For analysis of our data set we
decided to start with a simple decision tree algorithm and
then gradually extend it.

Decision trees for important attributes
The basic algorithm uses decision trees to generate inter-
esting rules about the behavior of the system. Some of
the reported attributes indicate a possible error:error-code,
response-code, result, or db-error. For the system operators
it is important to understand what requests report different
values of such attributes. Since we prefer output in human-
readable format, it is natural to use decision trees to classify

2

the values of such attributes using the values of the remain-
ing attributes.

Thus, this simple algorithm would look at all requests on
one machine during a specified time interval (say, an hour),
treat one of the attributes as aclass attributeand train a
decision tree using this data set. An operator can then easily
extract useful rules that define the classes.

It is often not enough to use only the original attributes
from the raw data. An operator who understands the sys-
tem might like to addnew attributesthat he would like to
classify or use in classification of other attributes. For ex-
ample, since most attributes are not reported most of the
time (such aserror-code), the presence of an attribute indi-
cates an event of interest. Therefore, for every attributeA in
the original raw log data, we define new boolean attribute
R A: ”is attribute A reported?”.

An anomalous value of a numeric attribute (such asdu-
ration) is yet another interesting event. For every numeric
attributeB in the original raw data, we define new boolean
attributeO B: ”is attribute B anomalous?”. We compute
the averageµB and standard deviationσB of the past val-
ues and define the new attribute to be true if its value is
outside the following interval:(µB − 3σB , µB + 3σB).

The algorithm described in this subsection (referred to
as algorithm A1) was implemented and the results are pre-
sented in Section 6.

Alternate algorithms

In the more advanced algorithm (A2) we would like to cor-
relate the performance and request data. We noticed many
short peaks in the performance data that last only for one
5-minute interval; values in the previous and the following
5-minute intervals appear normal. It would be interesting
to compare the requests during theanomalousinterval with
the requests during the previous or the following interval.
The details of the algorithm are as follows: 1) look at the
performance data and detect outliers/peaks, and 2) after de-
tecting an outlier at time intervalT , build a data set from
requests during intervalT − 1 (classnormal) and requests
during intervalT (classoutliers). The decision tree algo-
rithm will then try to classify the requests into these two
classes; the resulting tree would indicate the most impor-
tant differences between the classes.

Other extensions include using data from all machines
to detect types of requests of particular machines that cause
problems and using a better outlier detection algorithm such
as a one-class SVM (algorithm A3).

We tried to perform the required preprocessing ad-hoc
using Python scripts, but we found that it is very tedious
and time consuming to do, as described in the next section.

3. Practical problems of log data processing

When presented with terabytes of data, before trying out
any SLT algorithm, we need to think about how to handle it
efficiently. In this section, we describe our experience with
analyzing huge amounts of data. We first describe our early
attempts which use ad-hoc Python scripts and traditional re-
lational database systems for handling the data. We discuss
the need for a flexible architecture both for processing raw
log data and for providing input for SLT algorithms.

3.1. Preprocessing data for SLT algorithms

In practice, system log data are in arbitrary formats, and
thus, far from ready to be fed into an SLT algorithm. The
required preprocessing includes the following:

• Sampling: we need to sample the original log because
we are not able – and it is not necessary – to look at all
the observed data. Other reasons for sampling include
temporally variable data rate, dealing with unbalanced
data sets, removing duplicate entries or removing en-
tries that do not report the class attribute. Thus, a re-
configurable sampling algorithm must be supported.

• Cleaning the data: we need to filter out some unnec-
essary attributes from each of the event log entries: at-
tributes not reported by any sample and attributes with
constant values.

• Adding new attributes: the original attributes in the
raw data are often not enough or not suitable for anal-
ysis using SLT algorithms, as described in Section 2.3.
Values of some new attributes are easily generated;”is
attribute A reported?”. However, other attributes –
such as”is attribute B anomalous?”– might require
running a simple algorithm.

• Integrating streams from multiple sources: System
logs are generated on separate machines describing
different aspect of the system. For example, our data
set contains performance statistics, request log and
problem tickets, as described in Section 2.1. It is also
often necessary to integrate data sources unanticipated
at design time, since we might find more related infor-
mation as our familiarity of the system increases.

• Running multiple algorithms : Applying several dif-
ferent algorithms to our data is an important part of
our research. However, different types of algorithms
(such as on-line and off-line) require different exper-
iment setup and many publicly available implementa-
tions require different format of input data. Because
of huge amounts of raw log data, accessing it is a very

3

expensive operation. Thus, we need to produce a sepa-
rate output file for each algorithm with one scan of the
raw data.

We needed a flexible system that can be configured to
generate input data for SLT algorithms in a more convenient
way.

3.2. Early experience with Python scripts

At the early stages of this project, we did not realize all
of the practical problems discussed in the previous section.
In order to get started testing the algorithms as soon as pos-
sible, we began writing Python scripts to process the data.

Python is a scripting language, which is very efficient
(in terms of code length) in processing text files. The sim-
plest preprocessing (scan through the data, project certain
attributes of each entry and output them as a text file) can
be expressed in about 50 lines of code, and some of our
original results were obtained with the data preprocessed in
this manner.

However, as we were trying out more algorithms, we
found ourselves frustrated by the following problems:

1. It takes a huge amount of time to scan through the
data. In our case, a single scan through one minute of
log data takes more than 10-12 minutes. Most of the
time is spent on reading the data from disk, uncom-
pressing it, and parsing it.

2. It is hard to handle multiple queries in a single
script. Producing data for multiple algorithms in a sin-
gle script makes the Python scripts significantly more
complex. A couple of aggregation queries take about
150 lines of Python code. It became even more com-
plex when we wanted to save some of the intermediate
results to disk for future use.

3. It is hard to add/modify existing queries. Adding
one query to the code may require changing the code
for existing queries, because we share the buffer and
intermediate results among the queries.

4. Fine grained parallelism is much harder to achieve.
We observed that preprocessing is CPU bounded (in-
stead of I/O bounded) on our cluster, so speedup can
only be obtained by using multiple processors. Paral-
lel processing of the data is very hard to implement in
fine granularities (such as at single-request level).

Our experience shows that even though ad-hoc scripts
are enough for small data sets, they can be very difficult to
maintain if re-running the script is slow and the set of SLT
algorithms we need to preprocess the data for is not known
in advance.

3.3. Problems with relational databases

We also considered using traditional relational databases
for our data, since the preprocessing can be specified as
SQL queries, reducing the complexity of preprocessing
scripts. We rejected this approach for the following reasons:

1. System logs do not have a fixed schema.System
logs usually have no fixed schema. Efficient relational
database operations require a well designed schema;
both logical (tables) and physical (file organization, in-
dexing etc.). Changing schema is assumed rare and ex-
pensive. However, the format of system logs changes
as the system evolves.

2. One-time-queries are not suitable for generating
multiple data output. The queries in a relational
database areone-time queries; generating another re-
sult usually requires a separate query. If a scan is re-
quired on a terabyte data base, each of the queries will
take days to run.

3. It is hard to support queries involving temporal
properties of data. However, this is essential in tem-
poral data analysis.

4. The cost of using a relational database is high.
Importing multi-terabytes of data into a relational
database would have brought to us very high initial
cost (both I/O and CPU) and storage cost.

4. A flexible architecture

In this section, we introduce a better data model –data
streamsand Telegraph Continuous Query processor to solve
the problem described in previous section.

We focus on the functionality and flexibility of our soft-
ware architecture and experience we get from running a
prototype implementation. For the interested readers, we
describe the details of the design and implementation of the
system in Section 7.

4.1. Stream model of system log data

As our early experience suggests, a good data model is
necessary for processing huge amounts of system log data.
A data modelis a collection of high-level data description
constructs that hides the underlying low-level storage de-
tails [16]. It helps people to understand the data better and
they can build proper data processing systems to manipulate
the data.

We found that system logs fit the stream data models
well, because of the following characteristics [2]:

4

1. Log data entries arrive on-line. The rate is determined
by the data source and the temporal rate variation can
be large. Also, the stream processor does not have any
control over the order in which data elements arrive.
In large scale distributed computer systems, such as
the system X, logs are generated continuously on each
of the machines with different data rate.

2. A data stream is an infinitely long sequence of data
elements, but the memory on the stream processor is
limited. Once a data element is processed, it has to be
either discarded or archived, which makes it hard to lo-
cate the element and process it again. This situation fits
our application well, since old system events are much
less valuable, for failure detection, and even for long
term client behavior analysis. Once the desired statis-
tics have been obtained from the raw data, it becomes
less important, and people usually do not have a chance
to look into the old data again. Typical companies
archive raw system log data for a few weeks before
discarding them, but the statistics and data represent-
ing interesting system events are preserved. Stream
processing and SLT can help us find and preserve the
interesting data more efficiently.

3. A time stamp is attached to every entry in the data
stream explicitly or implicitly (i.e., the arrival time at
the stream processing system). Therefore, the system
preserves the temporal properties of the data. It also
allows most recent data to be accessed more efficiently
so that temporal algorithms can be used easily.

The benefits of using data stream over ad-hoc scripts and
relational databases are the following:

Continuous queries

The queries on data streams are usuallycontinuous queries,
in contrast to one-time-queries. One-time-queries run on a
snapshot of the data, and return a single result to the user,
while continuous queries are evaluated as data elements in
the stream arrive.

Here is an example of a continuous query:Which ma-
chine has handled 5 times more requests than any other
machine over the last 10 minutes?This query has to be re-
evaluated each time a new system log entry arrives, and thus
produces an output data stream containing the name of ma-
chines. The output stream can be used directly as an indica-
tor of system failures or can be used as a regular data stream,
for example, as an input to an SLT algorithm. Continuous
queries can either be pre-defined or ad-hoc, and multiple
queries can run on a single data stream concurrently. The
ability to perform continuous queries has great advantage
for preparing data for SLT algorithms.

Off-line SLT algorithms can be used too
As described in Section 8, many commonly used SLT algo-
rithms are off-line algorithms (e.g., our decision tree algo-
rithm), which work onchunksof data instead of streams. It
is trivial to accumulate preprocessed stream in a buffer to
get a data chunk large enough for the off-line algorithm. It
is better than traditional methods in that preprocessing the
databeforebuffering it allows us to save only the data we
want, thus making the buffering much more efficient.

Easy-to-change schemas
It is easy to change stream schema, since there is no data
stored in database. This makes it easy to add new streams
and modify the output desired. For example, to generate the
data for algorithm A2 (Section 2.3) we needed to integrate
performance and request data.

The idea of stream processing has been commonly used
in the past. For example,grep in UNIX is a program that
processes stream queries specified as regular expressions.
The Python scripts we wrote are also stream processors.
However, they resulted in ad-hoc and complex solutions.

4.2. Overview of the architecture

We wanted to build an infrastructure to support data anal-
ysis research of system log data. A major concern issim-
plicity. It should be simple enough that the initial con-
figuration should either be automatically generated or be
specified with a high-level description. The interface be-
tween our architecture and the system monitored should al-
low easy deploymentin production environment. This ar-
chitecture should beflexibleenough to accommodate many
algorithms, both on-line and off-line, without significant re-
configuration. It should also be easy to add or remove data
streams and components.

The purpose of the system is also tomake the algorithm
implementation as easy as possible, so that SLT researchers
can focus on the algorithm rather than on tedious job of
accommodating various input formats of raw data.

We tried tomake use of available softwarefrom other
research projects. The major component we use is Tele-
graph Continuous Query engine (TCQ) [12, 18]. TCQ
is a continuous dataflow processing engine build on the
code base of PostgreSQL, a popular open-source object-
relational database system. It contains functionality of both
relational database and stream processing. It supports con-
tinuous queries over streams, the cost of query evaluation
is shared among all queries and the executor adapts to the
characteristic change of the streams. It overcomes the prob-
lems with relational databases discussed in Section 3.3.

The use of TCQ helped us to easily specify and
add/remove continuous queries, which solved the second
and third problem discussed in Section 3.2.

5

load
splitter456 123

4 1

5 2

6 3

Q4 Q1

Q5 Q2

Q6 Q3

combine

Q6 Q5 Q4 Q3 Q2 Q1 SLT
algorithm

TCQ
query RQ6 Q5 Q4 Q3 Q2 Q1 SLT

algorithmR2 R1
TCQ

query Q

TCQ
query Q

TCQ
query Q

TIER 1
time independent

TIER 2
time ordered

input stream
of data

Figure 1. A general structure of the system. We used publicly available TCQ implementation as our major building block, and
other components are currently written in Python. Our data are originally stored in a single data file. To make the data processing
rate as fast as possible, we used 4 machines as stream sources, and load splitter is used to split the the stream round-robin by time
to a set of (up to) 36 identical TCQ instances. Before splitting, a unique sequence number is assigned to all the entries of the log
to allow a later reconstruction of the original order. The first tier of TCQ nodes performs queries that are independent of time (i.e.
queries that do not have a time window specification). The output streams are directed to the stream combiner to reconstruct the time
order. If many output streams are required, multiple combiners can be implemented. After the streams are combined, the second
tier of TCQ instances performs time dependent queries. The final output streams are output to SLT algorithms. The output from
SLT algorithms is also modelled as a data stream which can be displayed in a GUI and/or redirected to a centralized controller as
feedback from the system.

Turn-around timeis our next concern, or more specifi-
cally, the delay before one can start evaluating an SLT al-
gorithm. We organized our architecture in multiple tiers
and run each tier in parallel. Our software architecture is
build on TCQ, which has all benefits of TCQ and it allows
user to specify fine-grained parallel execution over a com-
puter cluster to achieve short turn-around time and scalabil-
ity. The main features include:

1. Data in the system are modelled as data streams, which
are easy to understand and manipulate. Design of the
system is driven by the flow of data. The output of
one stream processor can be used as input of another
and any stream can be buffered and used by an off-
line algorithm. Another advantage of using streams,
is that users unfamiliar with SQL can simply specify
their queries in other languages such as Java.

2. It is easy to buffer a stream of data for a certain pe-
riod of time to support off-line algorithms that require
chunks of data. Result-saving policy can be specified
separately for each stream in order to deal with tempo-
ral variation of stream data rate, importance of differ-
ent streams and storage constraints.

3. It is also simple to cache/store any intermediate stream
to disk and reuse it later. This is especially impor-
tant for research purposes, as we are constrained by
the hardware resources available to us.

The architecture also supports the functionality de-
scribed in Section 3.1, which we present with an example
in the following section.

5. Experience with our prototype

We implemented a prototype of software architecture
on a local cluster. The prototype is designed to be mod-
ular enough so each component can be easily replaced as
long as it follows a simple stream interface. Major compo-
nents include: data source, load splitter, stream combiner,
TCQ processor, and SLT algorithm wrapper. The struc-
ture of the system is easily specified in an object oriented
way (description of the components and the interconnec-
tions among them), and then automatically translated into a
sequence of scripts which start all the components on mul-
tiple nodes of the cluster.

The general structure of the architecture is described in
Figure 1. The functionality and interface of these compo-
nents are described in more detail in Section 7. Here we
focus on how to use the system and the benefits of using it,
which we believe is of more interest to our readers.

This example uses two tiers; the first tier performs time-
independent sampling and processing that reduces the size
of the stream for time-dependent processing. The data are
currently processed in the order they enter the system for
the ease of implementation. We consider more advanced
load balancing as an important part of our future work.

A simple query
We start with a simple query from a traditional monitoring
system; query R:the average latency for HTTP requests
over last 30 seconds. Note that this query cannot be run on
TCQ instances of tier 1 (query Q on Figure 1), since not
all the data for ”last 30 seconds” is present in either one of
the queries Q. Instead, query Q just performs sampling to
decrease the size of the stream (time independent) and the

6

select avg(f_delay) as f_delay_avf,
stddev(f_delay) as f_delay_stddev

from rawlog
where f_app=’http’
group by f_app window r [’30sec’];

Figure 2. A continuous query that computes the average
latency for HTTP requests in the input stream over the last
30 seconds. This query can only run on tier 2 in Figure 1,
since it involves time-dependent queries.

request data A1Q

request data

performance data

anomaly
detectionQ

buffer

A2R

control stream

request data

performance data

Q

buffer

A3R

use SVM

build SVM

control stream

Figure 3. System architecture for algorithm A1. The
outer rounded rectangle corresponds to the whole architec-
ture from Figure 1. For this algorithm the input stream con-
sists of 450 attributes. If an attribute is not present in the
entry, its value is defined as NULL.

actual query R is executedafter the combiner in the sec-
ond tier of TCQ instances. Adding a query (as specified
in Figure 2) only takes one SQL statement and running a
single-line shell command and can be done on-line without
stopping the stream sources.

Supporting Algorithm A 1

Figure 3 presents the simplified system configuration for al-
gorithm A1 (Section 2.3). In particular, we want to generate
a decision tree for attributef class for requests from ma-
chinemachine54 and applicationproxy . Query Q on
Figure 4 shows all the required preprocessing. The output
stream generated by Q is formatted as comma-separated-
values and can be directly used in a decision tree imple-
mentation. Note that this stream must be buffered to form
a chunk before passed to the algorithm. The description of
the system takes 48 lines of code.

select f_class, f_app, f_machine, f_bytes-served, f_ip,
(f_error-code is not null) as f_error-code_reported,
(f_duration < LOW OR HIGH < f_duration)

as f_duration_outlier
from rawlog
where f_app=’proxy’

f_machine=’machine54’
f_class is not NULL

Figure 4. Query Q for algorithm A1: the first line projects
the specified attributes and the next two lines generate two
new attributes (Section 2.3) from raw log. Thewhere
clause specifies that only accepted entries are from ma-
chinemachine54 and applicationproxy that also report
a value for the class attribute. Note that we prefer to let this
query run on tier 1 (Figure 1), since the output stream is
much smaller than the input.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40
number of TCQ nodes

en
tri

es
/s

ec

4 data sources

real time

Figure 5. When increasing the number of TCQ instances
running in parallel, average throughput increases linearly.
System X generates about 8360 log data entries per second
which can be handled on 8 TCQ nodes in real-time. 36
TCQ nodes can handle 36500 entries per second which is≈
600GB of log data per day. We used 4 parallel data sources;
with fewer data sources, their throughput will eventually
become bottleneck of the system.

The speedup when using multiple machines in parallel is
shown in Figure 5. We used 4 parallel stream sources (i.e.,
we split the log file containing data for all of the 430 ma-
chines into four pieces and used 4 nodes to generate stream).
Running up to 36 TCQ instances in parallel, we observed
linear speedup and the system processed 1 minute of the
system log (501572 log entries) in 13.7 seconds. We think
that this turn-around time is good enough for us. Also, since
the data are produced in time order, we can run algorithms
on the output streams without waiting for the processing to
complete. In a real world implementation, the data source
itself is naturally parallel since the logs are generated on
different machines.

Supporting algorithms A2 and A3

To support algorithm A2, we need to add the performance
data stream to the system. This can be done by simply
adding a data source and since the data rate is very low,
a load splitter is not required. We connect this stream di-
rectly to one of the TCQ instances in the second tier, after
the first tier processing is done. This TCQ instance looks
at the performance metrics and uses their average and stan-
dard deviation to detect outliers. The output stream of this
query (called acontrol stream) is non-zero when an outlier
is detected. The control stream is then connected to another
TCQ instance in the first tier that generates an appropriate
stream for A2.

The architecture for A3 presented on Figure 6 is very

7

request data A1Q

request data

performance data Q

buffer

decision
tree alg.R

control stream

use SVM

build SVM
update
model

request data

performance data

anomaly
detectionQ

buffer

A2R

control stream

Figure 6. structure of the architecture that supports A3.
The data stream is used to build a Support Vector Machine
(SVM), which is an off-line algorithm. the SVM built is
then used on-line to detect outliers. Once an outlier is de-
tected, a new query is initiated so that the data from last 10
minutes are preprocessed for decision tree algorithm C4.5
as described in Section 2.3.

similar to A2. The outlier detection is now performed by an
external algorithm – an off-line one-class SVM. The per-
formance data stream is thus forwarded to two components:
one that generates the model and another one that use a pre-
viously generated model for outlier detection. The rest of
the architecture remains unchanged. These simple changes
to the architecture for A1 show the flexibility of the system.

Supporting any algorithm
Since the data flows in streams that can be buffered we can
use this architecture with any on-line or off-line data mining
or SLT algorithm. All entries entering the system contain a
time stamp and, in addition, we assign them a unique se-
quence number. All the processing (such as SQL queries
or merging different data streams) preserves the original or-
der of entries and thus temporal algorithms can be used too.
Further, because the output of any algorithm is also mod-
elled as a stream, we can arbitrarily combine multiple algo-
rithms.

Updating a component of the system
In our initial setup, we used a very simple stream source
component which was implemented using a single-threaded
Python script. After the system was up and running, we
found its performance unsatisfactory, so we implemented a
new stream source with multi-threading. Removing the old
source and adding the new one took only two shell com-
mands (one to stop the old one and the other to start the
new one), while all other components were left intact with-
out restarting. The whole process took only a couple of
minutes, before the system continued to produce new output
data. All the stream source implementations are straightfor-
ward and even the multi-threaded one consists of only 90
lines of Python code.

6. Results of algorithm A1

In this section we present results of the algorithm A1

from Section 2.3. We used the standard implementation
of C4.5 decision tree algorithm from the machine learning
tools package Weka [23]. The depth of the trees was con-
strained to be no more than 7 and the minimal number of
samples in a leaf was set to 10.

The results are based on 4 hours of request data from a
single machine running mainly the proxy application. The
following preprocessing was applied: a) add new attributes
as described in Section 2.3, b) remove useless samples (ones
that did not report the class attribute), c) remove useless at-
tributes (ones that are constant), and d) resample the data
to obtain smaller data set (about 20 - 30 MB) and to bal-
ance the classes of the class attribute. The resulting trees
are presented in Figure 7. The decision treesB’ and C’

were generated from the original data set after filtering out
attributesR cache-served andduration , respectively.

How useful this is for the operators
As this is work in progress, we didn’t yet carry out any ex-
tensive evaluation of this algorithm. However, the early re-
sults are encouraging; we showed these decision trees to
one of the operators in company X and he thinks they are
very useful.

For the operators, there are two main characteristics that
make this approach very valuable. First, the decision tree al-
gorithm can automatically search through the large number
of attributes and find a small subset that is correlated with
the class attribute. For example, the first decision tree for
attributeR error-code says the following:”the requests
that report anerror-code (almost certainly) do not re-
port attributescache-served and server-duration ” .
The structure of the decision tree also allows the operator
to quickly identify points of interest: for example URLs
6520... and2336... (see the decision treeB’) almost
always generate anerror-code . The possibility of defin-
ing new attributes on-the-fly makes this very attractive.

We can hardly expect an automated analysis system to
replace the operators; an ideal system will thus accept feed-
back from the operators and improve its analysis accord-
ingly. Decision trees allow a simple version of this: if the
decision tree generates rules that are trivial for the operator
and he understands them, a few attributes can be filtered out
from the data set and the algorithm can generate an alterna-
tive explanation.

An example can be seen in the decision tree for attribute
O client-write-duration ; the first decision tree gener-
ated a simple decision tree that is probably clear for the op-
erator (”attribute duration is almost perfectly correlated
with the outliers in attributeclient-write-duration ”).
After removing the attributeduration from the data set,
the alternative decision tree offers more interesting insights.

8

A: class attribute: error-code
bytes-served <= 195: 145 (135/9)
bytes-served > 195
| R_content-len = yes: 32 (98)
| R_content-len != yes
| | R_not-cached-reason = yes: 32 (45/19)
| | R_not-cached-reason != yes
| | | duration <= 15.2
| | | | bytes-received <= 2680: -13 (39)
| | | | bytes-received > 2680
| | | | | bytes-received <= 2805: 131 (30/7)
| | | | | bytes-received > 2805: -13 (85/13)
| | | duration > 15.2: 131 (69/6)

B: class attribute: R error-code
R_cache-served = yes: no (10469)
R_cache-served != yes
| R_server-duration = yes: no (7686)
| R_server-duration != yes: yes (18094/5)

B’: class attribute: R error-code
attribute R_cache-served removed
duration <= 2.25
| client-write-duration <= 0.0: yes (200/4)
| client-write-duration > 0.0
| | bytes-served <= 210
| | | R_server-duration = yes: no (873)
| | | R_server-duration != yes: yes (1969/10)
| | bytes-served > 210
| | | visit-url = 6520...: yes (69)
| | | visit-url != 6520...
| | | | visit-url = 2336...: yes (72/1)
| | | | visit-url != 2336...: no (18909/1934)
duration > 2.25
| R_server-duration = yes: no (291)
| R_server-duration != yes: yes (13866/6)

C: class attribute: O client-write-duration
duration <= 9.71: false (18018)
duration > 9.71: true (18231/71)

C’: class attribute: O client-write-duration
attribute duration removed
bytes-served <= 67958
| R_error-code = yes
| | R_content-type = yes: true (253/6)
| | R_content-type != yes: false (17)
| R_error-code != yes
| | gmt = 2003-06-24 00:01:07: true (54)
| | gmt != 2003-06-24 00:01:07
| | | user-id = 96848766314153157: true (99/6)
| | | user-id != 96848766314153157
| | | | gmt = 2003-06-24 02:23:28: true (45)
| | | | gmt != 2003-06-24 02:23:28
| | | | | visit-url = 8227...: true (43)
| | | | | visit-url != 8227...: false (18005)
bytes-served > 67958: true (17733/55)

Figure 7. Binary decision trees for the attributeserror-
code, P error-code, and O client-write-duration. Every
line represents one conditional branch in the tree. The class
attribute is in bold. The numbers in brackets represent the
number of samples in that leaf (x) or number of samples
and number of false positives for that leaf (x/y). The top of
the treeA thus means: ”Ifbytes-served≤ 195, the value of
error-codeis 145 (if the error code is reported). This rule
is valid for 135 samples and invalid for 9 samples. Ifbytes-
served> 195 ...” (we move to the other branch). The at-
tribute ”R attr” represents a newly generated attribute ”was
attributeattr reported?”, ”Oattr” represents ”is attribute
attr an outlier?”.

Remember that these results were generated using data
from a single machine and a single application running on
that machine. After we add requests from all the machines
and all the applications we get a much more powerful tool
that allows us to correlate events across the whole cluster.

7 Design and Implementation details

In this section, we describe the components and their in-
terfaces in our architecture in more detail.

7.1. Key component, Telegraph Continuous Query
Engine

General stream processing techniques have been studied
in database community in great depth [1, 6]. A number
of general purpose stream processing systems have been
built [2, 12]. We use Telegraph Continuous Query en-
gine [12], which is designed to process data streams with
adaptive, continuous queries.

The queries are specified in PostgreSQL SQL, with all
data types and functions. One query is usually specified by
a few lines of SQL and all the query plans are automati-
cally optimized. This makes adding and modifying queries
significantly easier than ad-hoc scripts.

As the characteristics of the data stream change, the
query execution changes adaptively. For example, during
a system failure the average delay may suddenly go very
high and thus a selection condition ”delay> 10 sec”, which
normally throws away almost all tuples suddenly becomes
not selective. Without adaptive query execution, the query
evaluation may become very inefficient for other operators
in the query plan.

TCQ supports running multiple queries on a single data
stream and generating multiple outputs concurrently. This
best fits our case of running different SLT algorithms re-
quiring different input data on a single log file. The compu-
tation and storage are shared aggressively, so running more
queries on the same stream does not increase workload sig-
nificantly.

TCQ is still in its early research stage [18]. The released
version is functional, but not optimized for performance. A
single node running TCQ takes 7 to 14 minutes to process
one minute of system log data in our data set, which is the
reason why we used multiple instances of TCQ running in
parallel. We are interacting with the TCQ research team to
investigate higher performance and new features.

7.2. Other building blocks

Modularity is an important goal of our design. We de-
signed the system so that it consists of simple building

9

blocks (see Figure 1) that communicate with each other us-
ing sockets. They can be deployed on a single physical node
or over multiple nodes in a cluster. These components were
written in Python and comprise about 750 lines of code.

Data sourceis the interface for getting the various kinds
of data, translating them into data streams and feed them
into the stream processing system. It provides a small inter-
face to the production system, and can be overridden to use
multiple types of data, such as logs stored on disk, network
monitoring readings, or live stream of system event reports.

Load splitter is a small component used for load balanc-
ing that takes a single input stream, divides it into multiple
streams and redirects them on to multiple nodes. When the
data rate cannot be handled by a single TCQ instance, we
create multiple instances and use the load splitter to route
the stream to all the instances. The data processing within
the load splitter should be simple and fast, since it is on the
critical path of the system and always sees a large data rate.
Currently we think the best algorithm is splitting by time,
i.e. sending data elements in round-robin manner to each
of the stream processors. This provides best throughput
since there is no cost for examining and parsing the data.
Of course, more advanced load splitter can be built, espe-
cially considering the properties of the source stream. Load
splitter can be changed in the system without affecting any
other components.

Stream combineris a component used to combine mul-
tiple streams generated by load splitter to re-create the orig-
inal order of entries. It works on the original time-stamp
attached to each entry in the stream. If the time-stamp is
too coarse grained to order the entries (for example, there
are 600 events in a single second and some of them have
causal dependency), we attach a unique sequence number
to each entry when it is pushed into the system.

TCQ instances, as described in Section 7.1, are the key
components in the system. They take in multiple SQL
queries, multiple data streams and output the results of the
queries as data streams. The output data streams can be
buffered for off-line algorithms or written to files for future
use. The raw stream can be configured to be archived. The
TCQ instances also output its own performance statistics as
data streams (which is called introspective query) to cen-
tralized controllers.

SLT algorithms are defined as a components taking data
streams or a file as input and output another data stream.
The data stream can be interpreted by a GUI component for
human administrators to review or achieved for future refer-
ence. Publicly available algorithms can be plugged into the
system with only a minor wrapper for reading data streams
(for example, through JDBC or simply through a UNIX
pipe).

Note that the data streams between each component are
not necessary in the same format. They can be implemented

as text streams, but we can also use binary streams with type
definition which saves parse time. Changing the format of
a stream is simple; it only requires to change the output
format of the sender and input format of the receiver or add
a separate wrapper around the receiver.

7.3. Putting everything together

We provided a simple way to build the system from com-
ponents with simple object oriented specifications. All the
components are modeled as a class. To build the system,
one only needs to specify the parameters of the components
or override some of the functionalities and the interconnec-
tions among them. A program we provide automatically
generates a shell script that starts the components on mul-
tiple machines in the cluster. There are separate scripts for
adding and removing streams and queries from each.

There are two steps to add a new SLT algorithm. First,
the algorithm ”subscribes” a stream from the system, which
is done by specifying a new query. Second, the user may
need to write a simple wrapper to generate the correct for-
mat and/or add a header.

We feel that although now it takes only less than half
an hour to write the script that generate the architecture in
Section 5, it would be more convenient to use a GUI.

8. Related work

This research is a multi-disciplinary research involving
SLT, data mining, dependable system design, data ware-
housing and processing.

SLT for systems
Recently, a few researchers started using SLT algorithms for
detecting and localizing system failures and software bugs.

In [4], Chen uses decision trees for localization of fail-
ures on the eBay web site. Each executed request reports at-
tributes such as name, type, machine, version and status of
the request. A decision tree is trained to predict the status
attribute and the generated rules are used to localize what
machine, type of request, or version of software is causing
problems.

In his work on Pinpoint [3, 9], Kiciman instrumented the
JBoss application server so that a J2EE application reports
execution pathsof all requests. The path is a list of J2EE
components that the particular request used. Pinpoint can
detect anomalous paths and correlate them to identify the
failed components.

Cohenet al. [5] uses Tree-Augmented Bayes Nets for
automated performance analysis. 124 types of performance
metrics are measured on a sample server and the induced
model is used for prediction of Service Level Objective vi-
olation.

10

Researchers at IBM Research [21, 22, 17] apply tempo-
ral data mining and time series analysis to predict critical
events in computer system such ashigh CPU utilizationor
imminent router failure.

Liblit [10] proposes a sampling infrastructure for gather-
ing information about execution of C programs. He instru-
ments the source code of the program at every branch, as-
signment and function call. The recorded information from
runs of the program that crash are correlated to obtain the
possible bugs.

Most of the work mentioned above has the same goal as
our research – use automated analysis of computer systems.
However, experiments conducted in the referenced papers
use smaller data sets (10 – 100MB) compared to our data
set of a few terabytes.

System monitoring and management
There have been a lot of efforts on monitoring systems in
both academia and industry. Simple Network Management
Protocol (SNMP) [8] allows user to instrument and monitor
aggregated performance of heterogeneous component in a
network environment. It provides a visualized and hierar-
chical infrastructure to support high volume data collection
and separating management boundaries.

There are commercial tools that allow user to
monitor and do simple analysis on the data col-
lected. The major tools include HP OpenView (http://-
www.openview.hp.com/), IBM Tivoli (http://www-306.-
ibm.com/software/tivoli/), Microsoft Operations Manager
(http://www.microsoft.com/mom/). These tools allow user
to navigate through the collected and stored data, and run
statistical analysis on them. However, they are not designed
for preparing data for SLT algorithms.

Traditionally, the collected data are sent to some cen-
tralized servers which may waste bandwidth. Both Astro-
labe [20] and PIER [7] manage to collect and analyze the
data on the node where they are generated. Astrolabe makes
use of gossip protocol and the architecture is formed in a hi-
erarchical structure of domains. PIER is implemented on a
DHT [19]. Both allow user to run queries in SQL which are
then evaluated in a distributed way in the system.

Stream data processing and mining
Our work is also related to the stream processing and data
mining work in database community. Stream processing ad-
dressed the issue of dealing with data that arrive in multiple,
continuous, rapid and time-varying data streams [2].

A number of stream processing systems have been pro-
posed to handle continuous queries over a data stream [2, 1].
TelegraphCQ [12] addresses this problem with eddy query
processing framework that adapts the temporal variation of
data streams in data rate and statistical characteristic of the
data stream. It also allows to share evaluation path among
multiple queries.

Several new algorithms that are suitable for mining data
streams were proposed. The characteristic of most of these
algorithms is that they only look at every tuple in the stream
once [6]. In contrast, for most of the SLT algorithms it is
not enough to look at each data tuple just once. Buffering
and caching of old data are supported in our work to solve
this problem.

Stream processing is also used in sensor network data
monitoring and analysis [11]. Though the data rate from
sensor network can also be high, it is much less complex
than logs generated by a large cluster of computers.

9. Future work

As a joint disciplinary research project, we have two
tracks of future research that are interleaved.

SLT algorithms
There are a few interesting challenges for SLT researchers.
To understand a system better, we can – in the extreme
case – instrument every line of source code of the appli-
cations running on the servers. However, this instrumenta-
tion is highly redundant and so an interesting question to
ask is ”how much instrumentation do we need to get the
best results?”Source code instrumentation at even a much
coarser level will generate a few orders of magnitude more
attributes;”how can we select a subset that contains the
most interesting attributes?”

Another problem of current SLT algorithms is that they
assume global knowledge of all the data. However, with
tens of thousands of machines, the central storage will cer-
tainly become a bottleneck; we cannot even download all
the data. The possible solutions include: a) store history
of the raw log data in the machines, monitor only a few
selected attributes and download the necessary data only af-
ter we detect a problem, b) do early processing of the log
data in the machines, or c) sample all the attributes and over
time decide which ones are less/more important and sample
slower/faster.

Software architecture
We will turn the prototype discussed in the paper into a
more general toolkit and make it publicly available to the
SLT researchers. There are several other components that
we plan to add into our system, which are not implemented
in the prototype.

• We want to support the operator-automated system in-
teraction. We want to implement this by a GUI for
viewing the output of the algorithm, modify the param-
eters and data fed into the algorithm to generate better
result. We also want to model human input as another
stream into the system and let the system adjust queries
automatically.

11

• Adding a centralized controller to the architecture,
which collects statistics from different components
and dynamically allocates physical nodes to each of
the components. This gives us the ability to monitor
and analyze the architecture itself. We can monitor
the load of each component of the system and dynam-
ically balance load when sudden load change happens
or query behavior changes.

• A distributed optimizer for query evaluation. Currently
adaptive query executor only works on single node, but
we need a centralized/distributed query optimizer in
order to remove the job of routing the stream manually
among the nodes, and thus providing a single system
image of the distributed architecture.

10. Conclusion

Our experience suggests that we cannot use ad-hoc sys-
tems for automated analysis of huge system log data set
from on-line services. Instead, we propose a modular archi-
tecture that was shown to easily handle 600 GB of system
log data a day. The architecture is flexible enough to be used
for any type of on-line or off-line data analysis algorithm.

References

[1] C. C. Aggarwal. A framework for diagnosing changes in
evolving data streams. InProceedings of the 2003 ACM
SIGMOD international conference on Management of data,
pages 575–586. ACM Press, 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InProceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pages 1–16. ACM
Press, 2002.

[3] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. DSN 2002.

[4] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. A
statistical learning approach to failure diagnosis. InInter-
national Conference on Autonomic Computing (ICAC-04),
New York, NY, May 2004.

[5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase.
Correlating instrumentation data to system states: A build-
ing block for automated diagnosis and control. InOSDI,
2004. To be published.

[6] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: you only get one look, a tutorial.
In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 635–635. ACM
Press, 2002.

[7] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the internet with PIER.
In Proceedings of the 29th VLDB Conference, 2003.

[8] M. S. J. Case, M. Fedor and J. Davin. A simple network
management protocol (SNMP).RFC1157, May 1990.

[9] E. Kiciman and A. Fox. Detecting and localizing anoma-
lous behavior to discover failures in component-based inter-
net services. Technical report, Stanford, 2004.

[10] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProceedings of
the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, San Diego, California,
June 9–11 2003.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. InProceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pages 491–
502. ACM Press, 2003.

[12] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Con-
tinuously adaptive continuous queries over streams. InPro-
ceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, pages 49–60. ACM Press,
2002.

[13] J. Markoff and G. P. Zachary. In searching the web, Google
finds riches. NY Times, April 13, 2003.

[14] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it? In
4th USENIX Symposium on Internet Technologies and Sys-
tems, March 2003.

[15] D. A. Patterson. A simple way to estimate the cost of down-
time. Submission to 16th Systems Administration Confer-
ence (LISA ’02), 2002.

[16] J. G. Raghu Ramakrishnan.Database Management Systems.
McGraw-Hill Higher Education, 2003.

[17] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira,
and S. Ma. Critical event prediction for proactive manage-
ment in large-scale computer clusters. InKDD, 2003.

[18] S. K. Sirish. Telegraphcq: An architectural status report.
[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In R. Guerin, editor,Proceedings
of SIGCOMM-01, volume 31, 4 ofComputer Communica-
tion Review, pages 149–160, New York, Aug. 27–31 2001.
ACM Press.

[20] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining.ACM Transactions
on Computer Systems, 21(2):164–206, 2003.

[21] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M.
Weiss. Predictive algorithms in the management of com-
puter systems.IBM Systems Journal, 2002.

[22] R. Vilalta and S. Ma. Predicting rare events in temporal
domains using associative classification rules. Technical re-
port, IBM Research, T. J. Watson Research Center, York-
town Heights, NY, 2002.

[23] I. H. Witten and E. Frank.Data mining: practical machine
learning tools and techniques with Java implementations.
Morgan Kaufmann Publishers Inc., 2000.

12

