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Predicting Inter-Data-Center Network Traffic Using
Elephant Flow and Sublink Information

Yi Li, Tsinghua University, Hong Liu, Baidu, Xiaojing Wang, Baidu, and Wei Xu, Tsinghua University

Abstract—With the ever increasing number of large scale
Internet applications, inter-data-center (inter-DC) data transfers
are becoming more and more common. Traditional inter-DC
transfers suffer from both low-utilization and congestion, and
traffic prediction is an important method to optimize these
transfers. Inter-DC traffic is harder to predict than many other
types of network traffic, because it is dominated by a few large
applications. We propose a model that significantly reduces the
prediction errors. In our model, we combine wavelet transform
with artificial neural network (ANN) to improve prediction
accuracy. Specifically, we explicitly add information of sublink
traffic and elephant flows, the least predictable yet dominating
traffic in inter-DC network, into our prediction model. To
reduce the amount of monitoring overhead for the elephant flow
information, we add interpolation to fill in the unknown values in
the elephant flows. We demonstrate that we can reduce prediction
errors over existing methods by 5%∼30%. Our prediction is in
production as part of the traffic scheduling system at Baidu, one
of the largest Internet companies in China, helping reducing the
peak network bandwidth.

Index Terms—Datacenter Network, Network Management,
Network Traffic Prediction, Elephant Flow, Sublink.

I. INTRODUCTION

LARGE scale and geographically distributed applications
are on the rise. These applications, such as web search,

video streaming and file sharing are commonly distributed
to several data centers. Partitioning applications into multiple
data centers can help reducing cost and improve service
reliability.

All these applications can lead to heavy network traffic
among the data centers. We call this type of traffic inter-
data-center (inter-DC) traffic to differentiate it from the traffic
from end-users accessing these applications from the Internet
(which we call Internet traffic). Many large service providers
use dedicated fibers either owned or leased to handle inter-DC
traffic [4]. Given the cost of inter-DC bandwidth, it is essential
to keep the inter-DC links highly utilized.

Many Internet service providers (ISPs) charge for bandwidth
by the peak bandwidth that a customer uses. Pure traffic
shaping might be useful to reduce the peak bandwidth but it
may hurt the performance of some critical applications (esp.
when the priority is not configured correctly). Thus scheduling
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traffic over multiple links available with traffic engineering
methods to reduce peak bandwidth of each link is important
to reduce costs. Existing work such as Google’s B4 and
Microsoft’s SWAN uses software defined network (SDN) to
accurately monitor and schedule the inter-DC data transfers.
However, most conventional data centers do not have the
infrastructure to support flow-level monitoring and scheduling,
and thus rely on an accurate prediction of the future traffic to
perform short-term / long-term traffic scheduling.

With the high utilization of inter-DC links, spikes and fluctu-
ations in the traffic can cause congestions, which are especially
harmful to interactive applications. Accurate network traffic
prediction is an important component for tasks like network
resource provisioning, scheduling and traffic engineering [1].
For example, if we can predict short-term traffic patterns (1
minute or less), we can move latency sensitive flows out of
a network link, if we predict that the link will be congested
soon. This is especially helpful as we always have multiple
redundant paths between data centers. If we can predict even
longer-term traffic, say 30 minutes, we can help the job
scheduler to decide if it should delay some batch jobs to
further reduce network bandwidth cost. Thus traffic prediction
has been a hot research topic. However, to our knowledge,
there is no work taking the special inter-DC traffic patterns
into account.

In this paper, we present our new model for predicting
the network traffic on inter-DC links at Baidu, one of largest
Internet companies in China. The links serve as Baidu’s inter-
DC backbone, connecting multiple data centers with tens of
thousands of servers. These data centers host hundreds of
large scale applications, both interactive and batch. Using our
prediction method, we can reduce the prediction errors by
10%∼30% and Baidu is able to reduce the peak bandwidth
for about 9% on average.

While researchers have proposed many network prediction
models under different network environments, these models
do not work well for inter-DC traffic prediction. There are
several reasons why it is hard to predict inter-DC traffic:

First, inter-DC traffic neither represents linear processes nor
has stable statistical properties, thus widely used linear models
for time-series prediction, such as Autoregressive models
(AR) [17], Autoregressive moving average models (ARMA)
[18] and Autoregressive Integrated Moving Average models
(ARIMA) [20] do not work well. As we will show in Section
IV, much of the inter-DC traffic exhibits a highly non-regular
and non-linear pattern, mainly because of the existence of
many network-resource hungry applications. Linear methods
like ARIMA, though proven good for Internet traffic, not
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Fig. 1. The view of sublinks. A sublink connect two data centers and the
network traffic of the link of DC1 in the figure is contributed by traffic of
many sublinks. We can use sublink traffic information to help predict the total
incoming/outgoing traffic of the link of DC1.

enough for inter-DC traffic. Our evaluation confirms the fact.
Thus, we need some models to capture the non-linearity in the
data.

Second, inter-DC traffic exhibits different patterns compared
to Internet backbone traffic. Studies have shown that data
center traffic is bursty and unpredictable at such long time-
scales (especially at 100 seconds or longer timescales) [2].
In fact, with the data collected at Baidu, we can predict the
Internet traffic 10 minutes ahead with only about 2% error
from the real value. However, the inter-DC traffic prediction
error is as high as 8% to 9%.

Third, the recurring patterns in inter-DC traffic are not
obvious because this traffic is often generated by a small
number of large applications. For example, in our case, the top
5 applications account for about 80% of the inter-DC traffic.
The elephant flows generated by these applications usually
occupy large portion of traffic [24] and impact more on the
total traffic than mice flows. Usually, the number of elephant
flows is far smaller than the number of mice flows, which is
referred to as "the elephants and mice phenomenon" [8]. A
network flow is called an elephant flow if it occupies a large
proportion of network traffic. Specifically, in this paper, we
take the largest few flows that contribute to at least 80% of
the total traffic as elephant flows. In our application, we only
observe five applications producing such flows.

Fourth, usually a data center is connected to multiple
other data centers and thus the incoming/outgoing traffic is
contributed by many data centers. If a link connects two data
centers and its traffic contributes to the total traffic of one data
center, we call it a sublink, as Figure 1 shows. A sublink not
only carries the traffic between two data centers, but also acts
as a bypass for other data centers, thus different sublinks may
reveal different traffic patterns and they have different impacts
on the total incoming/outgoint traffic, which makes the total
traffic more unpredicable.

There are five key ideas in our prediction method:
First, we apply wavelet transform [22] to decompose the raw

time domain traffic to capture both the time and frequency
features. We apply Daubechie’s 4 (Db4) wavelets with ten
levels of decomposition [23] and show that it works well in
reducing prediction errors.

Second, we put incoming and outgoing traffic together for
training. Thus we can predict incoming and outgoing traffic
using a single model, greatly saving the model training time.

Third, we recognize the contribution of elephant flows to the
inter-DC traffic. We explicitly add information about elephant
flows as separate feature dimensions in the prediction. A
practical difficulty is that it is quite expensive to capture all
elephant flow information frequently enough to help with the
short term prediction. We use different interpolation methods
to fill in the missing values of elephant flow traffic, which
allow us to incorporate elephant flow information without
introducing much data collection overhead.

Fourth, we also add sublink traffic information as dimen-
sions for training to separate the impacts of different data
centers so that our model can capture more features of the
total traffic.

Last but not least, as the patterns are highly non-linear, we
use artificial neural network (ANN) to build the prediction
model. ANN not only handles non-linearity well, but also
allows us to combine different features into the same model.

Note that all the features from wavelet transform, elephant
flows and sublink traffic can be regarded as decompositions.
The wavelet transformation is an internal decomposition as we
are decomposing the traffic time series using the series itself,
while separating out the elephant traffic and sublink traffic is
an example of external decomposition using additional infor-
mation. Combining the internal and external decomposition is
the key for our prediction accuracy improvements.

We make the following three contributions:
1) We propose a network traffic prediction model for inter-

DC traffic, a traffic type that is hard to predict using previous
models, by including the elephant flow and sublink informa-
tion into our model explicitly. We show that by combining
wavelet transform and artificial neural networks, we can reduce
prediction errors significantly.

2) We introduce effective interpolation methods to reduce
the amount of expensive flow-level observations for the ele-
phant flows.

3) We evaluate our model on a real world, massive scale
inter-DC network with tens of thousands of servers and reduce
prediction errors by 10%∼30% over existing work.

The rest of this paper is organized as follows. Section II
presents the researches on network traffic prediction in recent
years. Section III describes our model. Section IV shows the
experiment results, including comparisons between different
strategies. We conclude in Section V.

II. RELATED WORK

Many studies have been done on network traffic prediction
with traditional linear models. Hu et al. [26] used Seasonal
Trend Decomposition using Loess (STL) [21] to decompose
original series into three components: season component,
trend component and irregular component and then used
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X11-ARIMA for network traffic prediction. Yoo et al. [10]
developed a model to support prediction on high-bandwidth
network. FARIMA, known as autoregressive fractionally inte-
grated moving average, which captures the characters of long-
memory time series, is also widely used in traffic prediction
[28]. Zhou et al. [27] combined ARIMA and GARCH, which
is a non-linear model, to create a conditional mean and condi-
tional variance model called ARIMA/GARCH, and compared
the differences of the performance between ARIMA/GARCH
and FARIMA. Periyanayagi et al. [29] proposed a time series
model called S-ARMA, using Swarm intelligence and ARMA,
for the network traffic prediction in wireless sensor networks.
Wavelet transform have been used to preprocess series before
the prediction with linear models [7], [32]. However, as inter-
DC traffic is bursty and unpredictable at long-time scales,
linear models are not suitable for inter-DC traffic prediction,
especially for long-time-ahead prediction.

Learning methods are useful in network traffic prediction.
Researchers have applied Support Vector Machine (SVM)
based classification and regression for time series prediction.
For example, Feng et al. [33] applied SVM for one-step-
ahead prediction on WLAN and compared the performance
for various prediction methods. Qian et al. [34] used Empirical
Mode Decomposition (EMD) to reduce the noise in the data
before applying SVM for prediction.

Another important and useful learning model for time-series
prediction is artificial neural networks (ANNs) [15]. ANNs
have the capability to do non-linear modeling and approximate
any continuous function to any desired accuracy theoretically
[19], thus ANNs can be used to predict complex time series.
Some variants of ANNs have been proposed. For example,
algorithms such as PSO [6] can be used to optimize the
training process. We can also embed new tools such as wavelet
transformation into a neural network, like [12] did. G. Peter
Zhang [14] proposed a hybrid approach to time series forecast
using both linear ARIMA model and the nonlinear ANN to
predict complex series data with both linear and nonlinear cor-
relation structures. Wavelet Neural Network (WNN) employs
nonlinear wavelet basis functions to solve nonlinear fitting
problems and have been used for traffic prediction [37]. Xiao
et al. [36] studied fuzzy-neural network prediction models
with wavelet decomposition. Alarcon-Aquino et al. combined
maximal overlap discrete wavelet transform (MODWT) with
ANNs and proposed a multi-resolution finite-impulse-response
(FIR) neural-network-based learning algorithm, which would
be suitable for capturing low- and high-frequency information
as well as the dynamics of time-varying signals [13].

On our inter-DC traffic dataset, we experimented different
prediction models, and did not find significant improvements
on prediction accuracy. It is not coincidental: the inter-DC
traffic is consisted of traffic of different sublinks and domi-
nated by a combination of elephant flows, which demonstrates
less patterns. In this work, instead of keep improving the
prediction models, we focus on designing better features to
capture information of the elephant flow and link traffic.
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Fig. 2. The process flow of our model. After training, when we get a new data
item, which contains the total incoming and outgoing traffic, the sublink traffic
and the sampled or interpolated traffic data of elephant flows, we perform
decomposition to it. Then we take the features of previous k steps, including
this step, as the input of the predict function, and get the predicted future
total traffic.

III. MODEL OVERVIEW

In our model, we collect the total incoming/outgoing traffic
data, traffic data of elephant flows and traffic data of different
sublinks. As the traffic data of elephant flows is sampled
less frequently than the total traffic and sublink traffic, we
use interpolation methods to construct the missing values so
that we can align total traffic data samples with that of the
elephant flows. Then we decompose the collected data with
wavelet transform to reveal additional frequency information
for training. After decomposition, we normalize the data and
train it with ANN to get a prediction function. With the
prediction function and new inputs, we can predict the total
incoming/outgoing traffic data in near future. Figure 2 shows
the process flow of our model.

A. Data Collection

We collect three types of data from each inter-DC link:
the total traffic for both incoming and outgoing directions,
a sample of elephant flows and the traffic of sublinks for
both directions. Given a time series (t1, t2, . . . , tn), we denote
the total incoming/outgoing traffic at time ti as ini and out i .
To reduce useless information and improve the efficiency
of computation, we only use information from the top M
applications which account for a great proportion of total
traffic (we use 80% in this paper). We use a 2M-dimenstional
vector to represent the raw elephant flow information at
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each sample time: (ein1, eout1, ein2, eout2, . . . , einM, eoutM ),
where eink and eoutk (where k = 1, 2, . . . , M) denotes the
number of incoming/outgoing traffic of the k-th largest appli-
cation. To represent the traffic values of sublinks, we use a 2L-
dimensional vector: (sin1, sout1, sin2, sout2, . . . , sinL, soutL ),
where L is the number of sublinks that connects other data
centers with this data center.

As the traffic data of elephant flows is sampled less fre-
quently, we use interpolation methods to construct the missing
values to roughly align the data sample of the total traffic
and the elephant flow samples. Thus for each timestamp ti ,
we get a (2 + 2M + 2L)-dimensional vector as our raw data:
(ini, out i, eini

1, eout i1, eini
2, eout i2, . . . , eini

M, eout iM,
sin1, sout1, sin2, sout2, . . . , sinL, soutL ).

The goal of the prediction is that given all the history, we
want to predict the traffic at different time points in the near
future. Formally, we want to predict the next k-step total traffic
tuple (ini+k, out i+k ), where k = 1, 2, . . . .

Note that we have an alternative approach to model the
incoming and outgoing traffic separately, using two (1+M+L)-
dimensional vectors for each. Intuitively, the incoming and
outgoing traffic of a data center are highly correlated. Using
a combined model can help us save model training cost by
about 40% while not affecting the prediction accuracy much.
We compare these two models in Section IV.

B. Interpolation

The elephant flow data are sampled less frequently to
reduce the resource cost. We fill in the missing values using
interpolation, a common method in numerical analysis. There
are many interpolation methods. In this paper, we compare the
following four methods.

One of the simplest methods is zero interpolation, which
fills zeros for all unknown points. Surprisingly, even with
this simple method, we can still significantly reduce the
prediction errors compared to methods without using elephant
flow information.

We call the second method scale interpolation. As the ele-
phant flows occupy large part of the total traffic, we construct
the missing values by filling in a number that is proportional to
the total traffic. Given the total incoming traffic ini and ini+s

at time ti and ti+s respectively, assume that the traffic data
of elephant flows is sampled at that two time points but not
sampled at ti+1, ti+2, . . . , ti+s−1. Then the unsampled incoming
traffic eini+s′

k
(0 < s′ < s) of application k, the interpolation

value, namely the incoming traffic of the elephant flow, is

eini+s′

k = eini
k ×

ini+s′

ini
.

Intuitively, this method may reduce the effectiveness of adding
elephant flow information, as we “pollute” the elephant flow
data with numbers that is highly correlated with the total
traffic, and our experiments confirm the intuition.

The third method is linear interpolation. Using the same
notations as above, the interpolation value is

eini+s′

k = eini
k + (ti+s′ − ti ) ×

eini+s
k
− eini

k

ti+s − ti

which means (ti+s′, eini+s′

k
) is a point in a line segment linking

(ti, eini
k

) and (ti+1, eini+s
k

).
The last interpolation method we use is spline interpolation.

With spline interpolation, we can get a smooth curve linking
points. To make the interpolation error small and make the
computation simple, we decide to use third order polynomials
as interpolation functions (also known as cubic spline interpo-
lation) [25]. It is more complex than zero interpolation, scale
interpolation and linear interpolation. With spline interpola-
tion, we can get a smooth curve linking points. Given different
kinds of spline functions, we can get different kinds of spline
interpolations. Then the interpolation function S(t), which is
used to construct the missing values of the incoming traffic of
k-th elephant flow, is a piecewise function:

S(t) =




S0(t) t ∈ [t0, ts1 ]
S1(t) t ∈ [ts1, ts2 ]

...
Sm (t) t ∈ [tsm, tn]

where t0, ts1 , ts2 , . . . , tsm and tn are the time points at which
the elephant flows are sampled.

To ensure the curve is smooth, for each adjacent point pair
(tsi , einksi ) and (tsi+1, einksi+1 ) ,where k = 1, 2, . . . , n, and the
corresponding interpolation function Si , we have




Si (tsi ) = einksi
Si (tsi+1 ) = einksi+1

S′i (tsi ) = S′
i−1(tsi ) (i ≥ 1)

S′′i (tsi ) = S′′
i−1(tsi ) (i ≥ 1)

For each i, Si is a third order polynomial of t, which means
Si can be written in the form of ai t3+bi t2+ci t+di , where ai ,
bi , ci and di are constants. Thus, there are total 4n unknowns
and 4n − 2 equations. With some initial conditions, such as
S′′1 (0) = S′′m (tn ) = 0, we can solve the equation sets and get
the smooth curve passing through given points. With S(t), we
have ein∗

ki
= S(ti ).

Using interpolations allows us to use the elephant flow
information while keeping the monitoring cost low. We eval-
uated all four kinds of interpolations and show the results in
Section IV.

C. Decomposition
As we use learning algorithms to predict the traffic, we

need “features” (in machine learning terminology) to capture
the predictable information at each time point. We use decom-
position to provide better features.

We decompose the raw data into new series using wavelet
transform, which extract deeper information from the raw data.
Wavelet transform is a powerful technique to analyze time
series. Comparing to Fourier transform, wavelet transform has
advantages in processing time-domain series data as it can
reserve both time and frequency information while Fourier
transform can only reserve frequency information. Wavelet
transform uses wavelet functions to decompose time series.
A wavelet is a function Ψ that is used to decompose the time
series to a low-frequency part and a high-frequency part:

X (a, b) =
1
√

b

∫ +∞
−∞

x(t)Ψ(
t − a

b
)dt
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Fig. 3. Wavelet Decomposition. Ai is the low-frequency part at level i, which
represents the trend of the series, while Di is the high-frequency part at level
i, which represents the details of the series. After the preprocess, we can get
n + 1 new time series: D1, D2, . . . , Dn , An .

where a is the scaling parameter and b is the translation
parameter. In practice, we use discrete wavelet (DWT) instead
of continuous wavelet transform (CWT) as CWT computation
is much more expensive than DWT. We recursively decompose
the low-frequency part, adding one new series per recursive
run. This process continues to produce more new series
until some conditions, such as enough number of levels, are
satisfied. For example, we choose to 10-level decomposition
in our paper, following the choice in [23]. Fig. 3 shows this.

Assuming we use wavelet transform with w levels of
decomposition, we decompose each series in the raw data
into w + 1 new series. We directly feed all the w + 1
dimensions to the machine learning algorithms for training. We
are able to do so because the neural network algorithm handles
multi-dimensional data with different types of correlations
well. Intuitively, the dimensions represent a mix of different
frequencies at a time point, which may be correlated to the
current mixture of workloads running in the data centers. We
expect the learning algorithm to capture the correlations and
thus improve prediction results. Assume the raw time series
data of total incoming traffic is (in1, in2, . . . , inn ). Given a time
point t and length l (l � n), we decompose the time series data
s = (int−l+1, int−l+2, . . . , int ) using Db4 into (w + 1) series

s1 = (int−l+1
1 , int−l+2

1 , . . . , int
1)

s2 = (int−l+1
2 , int−l+2

2 , . . . , int
2)

...

sw = (int−l+1
w , int−l+2

w , . . . , int
w )

Then we choose (int
1, in

t
2, . . . , in

t
w ) as new features of time

point t. Note that the relationship between int and the new
features is

int =

w∑
i=1

int
i .

The new features can be regarded as decomposition of the
raw value and contain the relationship information between
the value and the old values. As we can see, each raw
dimension is decomposed into w dimensions. Now we have
(2 + 2M + 2L) time series data, where M is the number of
applications generating elephant flows and L is the number
of sublinks related with the data center. With decomposition,
we get (2 + 2M + 2L) × (w + 1) - dimensional features for
each time point. We denote the new features by f i . We can
choose the parameter l heuristically. In our experiment, we find
that l = 60, or using 30 minutes of data for decomposition,
provides good results.

We then normalize the data before training. The goal of
normalization is to scale the data to a given bound. Data
normalization can help the learning algorithms avoid com-
putational problems and facilitate network learning [19]. We
use z-score [40] to standardize the series data. The z-score is
defined as

z =
x − µ
σ

where x is the raw data to be scaled, µ is the mean of dataset
and σ is the standard deviation of the dataset. The same µ and
σ used to normalized training data are also used to normalize
new inputs for prediction.

D. Prediction

We train the normalized data with Artificial Neural Net-
works (ANNs). ANNs are inspired by biological neural net-
works. Generally, an ANN consists of multiple layers, in-
cluding an input layer, a number of hidden layers and an
output layer. ANNs can capture non-linear characteristics and
find complex relationships between inputs and outputs. ANNs
are widely used in function approximation, classification, data
processing and robotics [38]. The architecture (e.g. the number
of layers, the number of nodes in each layer and so on) of an
ANN and optimization algorithms used can affect the final
training results.

As usual, we need to specify features and labels for training.
Without loss of generality, a data item can be represented as
di = ( fi, li ), where fi stands for the feature vector while li
stands for the label vector. Usually, we first train a dataset
to get a predict function. Then we can predict the labels (li)
with the function and the features ( fi). As mentioned above,
by decomposing the total traffic data and the traffic data of
elephant flows, we get (2+2M+2L)×w new features, denoted
by f i , for each time point. Obviously, we should use previous
data to predict ini and out i . Assume we use the data of k
previous steps for one-step-ahead, then we have

fi = [ f i−k+1, f i−k+2, . . . , f i]

li = [ini+1, out i+1]

As to multiple-step-ahead prediction, we just need to re-
place each element of li with the corresponding one (e.g.
[ini+2, out i+2] for two-step-ahead prediction and [ini+s, out i+s]
for s-step-ahead prediction). Thus fi is a vector of length
(2+2M +2L)×w× k. This means that when we get a predict
function F, we pass the (2+2M +2L)×w× k features derived
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from the k previous steps as input to F and get the predicted
ini and out i .

E. Measure Prediction Errors

We use Relative Root-Mean-Squared Error (RRMSE) to
measure prediction errors. It is calculated as follows:

RRMSE =

√√
1
n

n∑
i=1

(
θ̂i − θi
θi

)2,

where θ̂i is the predicted value and θi is the raw value. We
can see that it is unitless and can reflect variance and bias at
the same time [39].

IV. EXPERIMENTAL RESULTS

We first describe the dataset we use in the evaluation.
Then we show that we can achieve significant prediction error
reduction over existing methods. Finally we provide details
on the effects of different methods and parameters in our
prediction model.

A. Experiment Setup

We collect the inter-DC network traffic data of multiple
connected production data centers from Baidu for six weeks
and our goal is to predict the total incoming/outgoing traffic
of a specific data center. The total incoming/outgoing traffic
data are direct snapshots of the counters on the edge routers
of the specific data center using SNMP, and we collect traffic
data for both directions every 30 seconds. We use the data
of the last day for testing and the rest for training. Figure 4
shows the total incoming and outgoing traffic of the data center
whose total incoming/outgoing traffic is to be predicted. Due to
confidentiality concerns, we normalize the Y-axis of all figures
so we do not reveal the actual amount of data transfers. The
normalization does not affect the results of this paper. For
the same reason, as we discuss in the previous section, we
present the prediction errors using relative root-mean-square-
error (RRMSE), instead of RMSE directly.

We use tags, such as source and destination IPs, port,
protocol ids, type of service and input/output interface, to
identify a flow. We collect the number of packets each flow
contributes during a certain period of time and then calculate
the average traffic. We sample the flow statistics every five
minutes (comparing to the 30 seconds sampling rate for the
total traffic) due to the limit of computation and storage
resource. We observe the distribution of the traffic and see
that the elephant flows from the top-5 applications dominate
the traffic, which account for about 80% of the total traffic.
In our data center, which runs a few large applications, we
only observe these five applications contributing to the vast
majority of traffic. Of course, we can add more flows to the
elephant flow list, but we feel that 80% is good enough to
capture the impact of the large applications on the overall
traffic. Figure 5 shows the total traffic of elephant flows we
choose. We can see that the traffic of the chosen elephant
flows displays a substantial, but not perfect correlation with the
traffic of the total flows. The production data center connects
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Fig. 5. Correlations between total traffic and the total traffic of the elephant
flows. The elephant flows occupy a large portion of the total traffic.

with 4 other data centers, so we collect the traffic data of 4
sublinks. Note that the summation of incoming/outgoing traffic
of the sublinks equals the total incoming/outgoing traffic of the
production data center.

In our experiment, we use one day data as test data. As
we take a sample every 30 seconds, there are 2880 values
we are predicting for the day. We then perform 30-second-
ahead, 1-minute-ahead, 5-minute-ahead, 10-minute-ahead, 15-
minute-ahead and 20-minute-ahead prediction and compare
the differences between among strategies in each case.

B. Overall Prediction Measurement

We reduce the prediction error by performing wavelet
transformation, and adding interpolated traffic data of elephant
flows and sublinks. We also put the total incoming and
outgoing traffic together for training, thus we can use one
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TABLE I
PREDICTION ERRORS (RRMSE) FOR INCOMING TRAFFIC

30s 1min 5min 10min 15min 20min
ANN 0.0439 0.0525 0.080 0.096 0.105 0.113

ARIMA 0.0398 0.0496 0.0793 0.0971 0.111 0.119
Ours 0.0305 0.0444 0.0751 0.0901 0.0993 0.107

TABLE II
PREDICTION ERRORS (RRMSE) FOR OUTGOING TRAFFIC

30s 1min 5min 10min 15min 20min
ANN 0.0439 0.0522 0.0808 0.0967 0.1089 0.117

ARIMA 0.0396 0.0492 0.0795 0.0980 0.112 0.122
Ours 0.0306 0.0444 0.0766 0.0909 0.102 0.109

model to predict both the incoming and outgoing traffic. We
then found a suitable training set size.

We compare our model with two well-known models: one
is a representative traditional linear model ARIMA [20], the
other is ANN without wavelet transform and interpolation, as
many existing works do [6], [19].

In the following evaluation, we use one input layer, one
hidden layer and one output layer for the artificial neural
network. We also evaluate the prediction accuracy using more
than one hidden layers and did not find much difference. We
use Stochastic Gradient Descent (SGD) [11] as the optimiza-
tion algorithm for model training. To include elephant flow
data, we use zero interpolation method. We will evaluate other
interpolation methods in the next section.

Table I, II and Figure 6 show the comparison results. We
show that for 30-second-ahead prediction, our model reduces
the prediction errors by about 30% for incoming/outgoing
traffic compared to the linear model and 23% compared to the
conventional ANN. Also, for 1-minute-ahead prediction and
longer-time-ahead prediction, our model reduces the predicion
errors by 5%∼15% for incoming/outgoing traffic compared to
the linear model and conventional ANN.

The accuracy improvement is essential for production: us-
ing the improved prediction results as guidance for traffic
scheduling, Baidu is able to reduce the peak inter-DC link
utilization (the ISP’s billed utilization) by about 9%. The
actual implementation and the evaluation of the prediction-
based traffic scheduling system is out of the scope of the paper
and thus omitted here.

C. Effect of Different Factors in Our Model

The prediction error reduction is the result of a combination
of different methods and parameters. We evaluate the effects
of the key components in our model.

1) Length of Training Set: Intuitively, using longer history
as training set can help reducing the data noise and thus
prediction errors can be reduced to a certain point. A large
training set may be of little use while bringing in extra
and unnecessary training cost. Our evaluation confirms this
intuition.

Thus we need to balance the advantages with the disad-
vantages of increasing the training set size. We compare the
performance of different training set sizes. Figure 7 shows that
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Fig. 6. Prediction error reduction over ARIMA and ANN. Positive numbers
mean that we reduce the prediction errors actually while negative numbers
mean the opposite. We can see that our model reduces prediction errors
significantly for long-term-ahead prediction.
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Fig. 7. Prediction errors of the models with different training set sizes.

using a training history of longer than 4 weeks, we can obtain
a good enough model. We are still evaluating if it is related to
a regular monthly pattern, collecting data for a much longer
term, which is an important future work for us.

2) Effectiveness of Wavelet Transform: We use Daubechie’s
4 (Db4) wavelets with ten levels of decomposition, as [23] did.
For each time point, we decompose the subseries consisting of
60 values (including the current one) to get 11 new feature as
Section III-C describes. We use a 4-week history for training.
Figure 8 compares the prediction errors with and without
wavelet transform.

Wavelet transform is an essential preprocessing step: for
different steps prediction, the wavelet transform reduces the
average prediction errors by 5.4% and 2.9% for incoming and
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Fig. 8. The reduction in prediction errors with/without wavelet transform.

outgoing traffic. Intuitively, learning methods like ANNs work
because they capture the (non-linear) correlations among mul-
tiple dimensions of data. Wavelet transform adds dimensions
representing the reoccurring patterns of the data and reveals
another level of important correlations. Thus the combination
of wavelet transform and ANN brings a satisfying prediction
error reduction.

3) Combining Incoming/Outgoing Traffic in The Same
Model: As we discussed in Section III-A, we can either train
separate models for incoming and outgoing traffic, or we can
combine both traffic numbers into the same model. This is a
key benefit of using learning methods like ANN – we have
the flexibility to combine prediction models without changing
to the model itself. Here we compare the result of these two
alternatives.

Figure 9 shows the comparison results. There is no signif-
icant difference in prediction accuracy. This is as expected
because the incoming and outgoing traffic are highly corre-
lated.

It is beneficial to use the combined model. The single model
is not only easier to implement and maintain, but also it needs
less time to train comparing to the two separate models. In
our experiments, using the combined model approach reduces
the training time by about 40% comparing with the separate
models.

4) Elephant Flows: The elephant flows play an important
role in our model. Figure 10 shows the results of adding ele-
phant flow information using different interpolation methods.
We have the following observations from the figure.

First, elephant flow information reduces the prediction er-
rors. For both incoming and outgoing traffic, adding elephant
flows information reduces prediction errors, especially for the
5-minute or longer time ahead prediction.

Second, different interpolation methods have similar effects,
except for the scale interpolation. As we have discussed in
Section III-B, as ANN works on the correlations among dif-
ferent dimensions, the assumed correlation between the traffic
of elephant flows and total traffic actually negatively affects
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Fig. 9. Prediction errors: combining incoming flows and outgoing flows vs.
training separate model for them. We can see that they provide similar results.
Giving that the combined model trains faster, we use the combined model

the power of ANN. Interpolation methods that consider the
neighbor values (e.g. the linear or cubic interpolation) perform
slightly better than zero interpolation, which is as expected.
Given the good balance between simplicity and performance
of zero interpolation, we choose it as our interpolation method
in production.

Third, we observe that the more accurate number of elephant
flow is, whether the measurement comes from interpolation or
actual measurements from flow sampling, the better the overall
prediction accuracy is.

Intuitively, the wavelet transform and ANN capture all the
recurring patterns of the total traffic, but the elephant flows
contribute to the overall traffic in a much more random way.
We use the traffic data of elephant flows to “calibrate” the
total traffic prediction, and thus the accuracy of elephant flows
plays an important role. As an on-going future work, we are
improving our elephant flow monitoring system to provide
more frequent measurements.

We compare the prediction errors of the models using
these four kinds of interpolations, as Fig.10 shows. We can
see that cubic spline interpolation performs the best. Linear
interpolation performs similar with cubic spline interpolation,
especially for long-term-ahead prediction. Zero interpolation
performs a little worse than the two pervious ones, but
performs better than scale interpolation. Scale interpolation
performs worst among the four kinds of interpolations. For
incoming inter-DC network prediction, the model without
elephant flows performs a little better than the models with
elephant flows for 30-second-ahead prediction (namely one-
step-ahead here), but performs worse for 1-minute-ahead or
longer time ahead prediction. For outgoing inter-DC network
prediction, the model without elephant flows performs worse
than most of the models with elephant flows, especially for
long-term-ahead prediction. The reason why zero interpolation
and scale interpolation perform a little worse than linear
interpolation and cubic spline interpolation may be that, each
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Fig. 10. Prediction errors of the models with/without elephant flows using
different kinds of interpolations.

traffic value is not independent with the previous and next
ones, but zero interpolation and scale interpolation use only
the previous values to interpolate new values while the other
two methods consider both the previous and future ones.

However, as we know, when we perform linear interpolation
at x between xi and xi+1, we should know xi and xi+1 in
advance. Cubic spline interpolation even require that all the
points should be known in advance (see Sec. III). In practice,
we have no way to know the future traffic so that we cannot
perform such interpolations correctly while trying to construct
the missing values of the traffic of the elephant flows for
prediction. On the other hand, interpolations like zero inter-
polation and scale interpolation don’t require this. As we can
see, zero interpolation performs better than scale interpolation,
we use zero interpolation in real-world applications.

As the better interpolation methods here (i.e. linear inter-
polation and cubic spline interpolation) take the dependency
of missing traffic values and previous and future ones, the
interpolated values using these methods may be closer to the
real ones. Besides, we found that the average prediction errors
at the time point where the traffic data of elephant flows were
sampled were a little smaller than the average prediction errors
at the time point where the traffic data of elephant flows were
interpolated. Thus, we can say that, the more frequently we
sample the elephant flows, the more real traffic data we get,
the smaller the bias between the constructed values and the
real values is and the better results we can get.

Figure 11 shows the comparison results between ANN and
ARIMA and our model with elephant flows. From the figure,
we can see that our model with elephant flows (without
sublinks) performs worse than convential methods for 30-
second-ahead and 1-minute-ahead prediction but better for 5-
minute-ahead or longer-ahead prediction.

5) Sublink Traffic: Adding explicitly the sublink traffic
information to our model is as important as adding the
elephant flows. To see the effectiveness of adding traffic data
of sublinks, we first remove traffic data of elephant flows
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Fig. 11. Prediction errors of the models with elephant flows (but without
sublink traffic information).

and test our model with sublink traffic. Figure 12 shows
the comparison results between ANN and ARIMA and our
model with sublink traffic (but without elephant flows). From
the figure, we can see that our model with sublink traffic
performs pretty better than convential methods for 30-second-
ahead and 1-minute-ahead predciton and a little better for 5-
minute-ahead or longer-time-ahead prediction. Meanwhile, we
should notice that for 5-minute-ahead or longer-time-ahead
prediction, our model with sublink traffic information performs
a little worse than that with elephant flows. In other words,
elephant flows help improve the prediction accuracy of long-
term-ahead prediction while we benefit more from sublink
traffic for short-term-ahead prediction. That is, sublink traffic
and elephant flows are complementary.

Why does this happen? One possible explanation is that
the elephant flows, such as the flows generated by Hadoop,
always last for a relatively long time but may fluctuate
significantly during their lifetime, so elephant flows help long-
term-ahead prediction a lot but may interfere short-term-ahead
prediction. On the other hand, traffic of each sublink consists
of many flows generated by different jobs, thus the statistical
characteristics are relatively stable and will not be affected
by the changes of a fraction of jobs in a short time. Thus
the sublink traffic data can help more for short-term-ahead
prediction. Based on this, we decide to include both elephant
flows and sublink traffic information in our model to help
improving the prediction accuracy, as Figure 6 shows, from
which we can see that both the short-term-ahead and long-
term-ahead prediction errors are reduced significantly.

V. CONCLUSION AND FUTURE WORK

We propose a new model for inter-DC network traffic
prediction. In contrast with normal network traffic, inter-DC
traffic are dominated by a few large applications producing
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Fig. 12. Prediction errors of the models with/without sublink traffic informa-
tion.

elephant flows and the combination of sublink traffic further
complicates the issue. We can view the traffic as a combination
of reoccurring patterns and some large noise.

The key for the traffic prediction is decomposing the various
components from the combined traffic pattern. We decompose
the traffic in two ways: first we use Db4 wavelet transform
to decompose the time domain traffic data. Then we also add
explicit information about elephant flows and sublink traffic.
The elephant flow information provides multiple calibration
points that significantly reduce the prediction errors, especially
for 5-minute-ahead or longer-time-ahead prediction. Traffic
of sublinks, on the other hand, helps more for 30-second-
head and 1-minute-ahead prediction. We show that using the
combination of wavelet transform, elephant flows and sublink
traffic data, we can reduce the prediction errors significantly

We emphasize on practical issues in the prediction model
design, especially the cost of measurements. We show that
we can significantly reduce the flow sampling overhead using
interpolation methods. We also evaluate the possibility of
reducing the training overhead by combining both incoming
and outgoing traffic into the same model, reducing the training
overhead by 40%. Our prediction method can help Baidu
reduce the peak bandwidth for about 9% on average. The
monetary cost reduction is significant for large scale inter-
DC network. Thus the accuracy improvement is necessary and
worthwhile.

As future work, we will extend the prediction to a longer
time periods (weeks to months) to support tasks like resource
provisioning. We will also explore models to predict the traffic
on core switches within a data center. On the engineering side,
we are improving the technique to elephant flows traffic at a
higher frequency.
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