
 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

FDHelper: Assist Unsupervised Fraud Detection Experts
with Interactive Feature Selection and Evaluation

Jiao Sun1†, Yin Li1†, Charley Chen1, Jihae Lee1, Xin Liu1, Zhongping Zhang2, Ling Huang1,3,
Lei Shi4∗, Wei Xu1∗

1 Institute for Interdisciplinary Information Science, Tsinghua University
2 Computer Science Department, Boston University 3 AHI Fin-tech Inc.

4 ACT and BDBC, School of Computer Science and Engineering, Beihang University
{j-sun16,liyin16,ctj12}@tsinghua.org.cn, {lizhihui17,liuxin16}@mails.tsinghua.edu.cn, zpzhang@bu.edu

linghuang@fintec.ai, leishi@buaa.edu.cn, weixu@mail.tsinghua.edu.cn

ABSTRACT
Online fraud is the well-known dark side of the modern Inter-
net. Unsupervised fraud detection algorithms are widely used
to address this problem. However, selecting features, adjusting
hyperparameters, evaluating the algorithms, and eliminating
false positives all require human expert involvement. In this
work, we design and implement an end-to-end interactive visu-
alization system, FDHelper, based on the deep understanding
of the mechanism of the black market and fraud detection
algorithms. We identify a workflow based on experience from
both fraud detection algorithm experts and domain experts.
Using a multi-granularity three-layer visualization map em-
bedding an entropy-based distance metric ColDis, analysts
can interactively select different feature sets, refine fraud de-
tection algorithms, tune parameters and evaluate the detection
result in near real-time. We demonstrate the effectiveness and
significance of FDHelper through two case studies with state-
of-the-art fraud detection algorithms, interviews with domain
experts and algorithm experts, and a user study with eight
first-time end users.

Author Keywords
Human Computer Interaction, Fraud Detection, Visualization

CCS Concepts
•Human-centered computing → Visualization systems
and tools; Information visualization;

INTRODUCTION
Nowadays, many online services are rife with frauds such
as fake accounts on forums and video websites, and bots on
social networks. Frauds conduct malicious activities, and thus
compromise the business value of online services, causing

†equal contribution; ∗corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376140

millions of complaints and billion dollars of economic losses
each year globally [2].

Online fraud detection is a well-known problem in the research
community [18]. Researchers often formulate fraud detection
as a binary classification problem that categorizes users into
frauds and normal ones based on their log records. User
logs usually come from web access records and demographic
information provided upon registration. Most log records are
categorical features, e.g., the cities, the operating system of
their devices, the source IP addresses, timestamps, etc.

We use the following terminology throughout this paper. Users
refer to the users in the log records, i.e., the subject for fraud
detection. They are either normal or fraud. We refer to people
who use FDHelper as analysts, which includes both algorithm
experts and domain experts.

Researchers have proposed many fraud detection algorithms
based on the grouping behavior of frauds, in particular, un-
supervised learning methods [10, 13, 19]. However, it is
challenging to design and evaluate these algorithms: 1) the
log records contain many dimensions describing user behav-
iors, and it is hard to select the most relevant dimensions to
fraud patterns; 2) the selection of feature sets and algorithms
depends heavily on domains and scenarios; 3) there are very
few or no fraud labels for training or evaluation. We can not
confirm fraud behaviors until a materialized damage suffered,
often after a long time. Meanwhile, finding an appropriate
algorithm, choosing useful feature sets, and excluding false
positives are all critical for a successful fraud detection pro-
cess. Nevertheless, all of these processes need the involvement
of human experts, for which visualization is an indispensable
component in any successful fraud detection system.

The visualization for group-based fraud detection is different
from traditional methods for clustering [24] and anomaly de-
tection [3]: 1) fraud groups expose various structures under
different sets of features; 2) the size of the user base can be
huge (e.g., millions of users), making a full-scale visualization
impractical; 3) the number of frauds can be even larger than
normal users, making the visualization focusing on normal
behavior impractical; 4) in addition to detecting frauds, ana-
lysts also need to interpret the detection result for verification,
evaluation, and comparison of different algorithm configura-

Paper 13 Page 1

http://dx.doi.org/10.1145/3313831.3376140
mailto:permissions@acm.org
mailto:linghuang@fintec.ai
mailto:zpzhang@bu.edu

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

tions for optimization. Finally, the detected fraud groups are
characterized for knowledge externalization; 5) the instruction
for configuring algorithms needs to be actionable, i.e., we
should guide analysts on how to tune the algorithms.

Besides, we highlight the feature selection process in our
system. There are three reasons why the interactive feature
selection is necessary. 1) It is well known that feature selection
is extremely important in the fraud detection process [8]; 2)
in many cases, feature selection is a trial-and-error process,
even for experts; 3) the visualization provides instant feedback
for feature selection. After choosing different features, we
run the fraud detection algorithm with new features selected.
Algorithm experts can then access the visualization result
using these new features. This interactive process dramatically
reduces the time spent in refining the algorithm.

In this paper, we present FDHelper, an interactive visualization
tool that integrates effective and visualization-friendly fraud
detection algorithms with the visualization design. FDHelper
integrates feature selection, algorithm parameter tuning and
algorithm refinement into an interactive end-to-end visualiza-
tion system. To the best of our knowledge, it is the first visual
fraud detection system that reveals the detected fraud group
structure. Analysts can explore the result of fraud detection
algorithms at three levels of detail (i.e., the algorithm level,
the feature level, and the hyperparameter level). Instead of
trying to explain the detail of fraud detection algorithms, we
keep the fraud detection algorithm as a black box and only
provide user-friendly interfaces for users to interact with. The
main contributions of this paper are as follows:

• An analysis of the fraud black market and an identifica-
tion of user requirements in the interaction process with
unsupervised fraud detection methods.

• An interactive visualization tool that enables users to choose
(algorithm and dataset), refine (feature selection and algo-
rithm setting) and evaluate (the detection result) during an
unsupervised fraud detection process.

• An evaluation of FDHelper through two case studies and an
interview with two kinds of fraud detection experts.

RELATED WORK

Frauds and the Black Market
The key to conducting online frauds lies in collecting dispos-
able accounts on the target website. Fraudsters established a
professional chain of fraud services through the dark web (aka,
the black market) [21] to break into the defense of website
providers with low cost (e.g., $140 ∼ $420 for 1000 mobile
SIMs). Compared with legitimate accounts, frauds exhibit
unusually similar behaviors in certain aspects, e.g., re-use of
phone numbers, similar phone access durations, highly recur-
rent IP ranges, and the regular frequency of activities.

This resource sharing mechanism enables a fundamental way
to detect fraud behaviors based on these resources, so the goal
of fraud detection algorithms is efficiently discovering these
grouping behaviors. In other words, it is much more effective
to hunt down these resource-sharing groups than detecting just
a few individual accounts.

Algorithmic Fraud Detection
Nevertheless, it is non-trivial to detect these grouping behav-
iors. Researchers always take unsupervised detection algo-
rithms because frauds are not labeled. There are two kinds
of algorithms to detect such behaviors: feature-vector based
like [15] and graph-based. Researchers in [4, 22] use clus-
tering to find synchronized behaviors. For graph-based mod-
els, [27, 28, 30] use spectral methods to analyze the graph.

Different from most problems where users can try various ma-
chine learning models easily, fraud detection algorithms are
way more complicated. Meanwhile, these algorithms normally
do not offer end-to-end interfaces for analysts, which makes
the deployment of algorithms much harder. FDHelper is com-
patible with fraud detection algorithms with fraud groups as
outputs. It integrates two built-in state-of-the-art fraud detec-
tion algorithms: CrossSpot [11] and D-Spot [29], and allows
analysts to change and compare algorithms. Besides, the fea-
ture selection process is also quite important. FDHelper solves
this problem by automatically loading all the potentially useful
features and ranking them accordingly, which allows analysts
to change and choose feature sets easily.

Visualizing Fraud Detection
In EVA [14], Leite et al. focused more on identifying fraudu-
lent events, e.g., unauthorized transactions from the financial
data. In the VISFAN [7] and VISFORFRAUD [6], the authors
synthesized numerous reports on currency transactions and
suspicious activities/transactions together to build a financial
activity network. They proposed a complex network visual-
ization design to display such networks. Beyond the financial
fraud detection, the use of visualization also extends to many
other domains, including occupational fraud detection [1] and
computer network intrusion detection [5].

These existing systems either avert the complicated fraud de-
tection algorithms and feature selection process, or use a sim-
ple scoring criteria [14] that can not handle the high dimen-
sional data in the real case. Differently, FDHelper utilizes
an advanced metric, ColDis, in an end-to-end system and is
compatible with different algorithms, and is also scalable to
large high-dimensional datasets.

Visualizing Algorithms with Interaction
There has been a long history since visualization was used
for facilitating fine-tuning models [16, 17]. Some new works
come up to visualize the algorithm adjustment. For exam-
ple, Google Vizier [9] uses parallel coordinates to analyze
searched models. ATMSeer [25] first uses the visualization
to assist the automated machine learning process. In terms of
Google’s FACETS 1, it is similar to our work and has the fea-
ture embedding of dataset statistics analysis and visualization.
AutoAIViz [26] visualizes the AI model generation process to
increase the interpretability. However, none of these systems
are designed for fraud detection. Fraud detection problems are
different since frauds have unusual synchronized property on
a subset of high-dimensional data, and the visualization needs
to be flexible on choosing the feature set and to focus on the
grouping behavior.
1https://pair-code.github.io/facets/

Paper 13 Page 2

Ta
bl

e
1:

 I
ns

tr
uc

tio
n

ta
bl

e:
 H

ow
 to

 h
el

p
yo

ur
se

lf
 o

ut
 a

cc
or

di
ng

 to
 th

e
vi

su
al

 p
at

te
rn

s
in

 s
pe

ci
fic

 s
itu

at
io

ns
?

(P
: P

re
ci

si
on

 /
R

: R
ec

al
l)

Paper 13 Page 3

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Si
tu

at
io

n
V

is
ua

l P
at

te
rn

P/

R

So
lu

tio
n

D
et

ai
le

d
A

ct
io

n
R

el
at

ed
 P

an
el

V
is

ua
l P

at
te

rn
 1

:
A

U
L

&
 F

U
L

 a
re

 s
im

ila
r

in
 b

ot
h

th
e

lo
ca

tio
n

an
d

br
ig

ht
ne

ss
 o

f
cl

us
te

rs

↓/
↑

C
ho

os
e

th
e

to
p

th
re

e
fe

at
ur

es
 w

ith

hi
gh

es
t e

nt
ro

pi
es

D
el

et
e

fe
at

ur
es

 w
ith

lo

w
 K

L
-d

iv
er

ge
nc

e
hi

gh
 e

nt
ro

py
 o

r
re

du
ce

 th
ei

r w
ei

gh
ts

V
is

ua
l P

at
te

rn
 2

:
To

o
m

an
y

m
ix

ed

co
lo

rs
 n

ea
rb

y
in

 G
L

↓/
↑

T
he

 n
um

be
r o

f b
ri

gh
t c

lu
st

er
s

is
 lo

w
er

 th
an

 th
e

ex
pe

ct
ed

 v
al

ue
(e

.g
. 1

0)

↑/
↓

K
ee

p
cu

rr
en

t f
ea

tu
re

s
an

d
ad

d
so

m
e

ot
he

rs
 w

ith

lo
w

 e
nt

ro
py

/h
ig

h
K

L
-d

iv
er

ge
nc

e

V
is

ua
l P

at
te

rn
 3

.1
:

A
lth

ou
gh

 th
e

ov
er

al
l

pe
rf

or
m

an
ce

 is
fin

e,

so
m

e
lo

ca
l a

re
as

st

ill
 c

on
si

st
 o

f
di

ff
er

en
t c

ol
or

s

↓/
↑

In
cr

ea
se

 th
e

m
em

be
r

or
 t

hr
es

ho
ld

 e
dg

e
co

nn
ec

tio
n

th
re

sh
ol

d

V
is

ua
l P

at
te

rn
 3

.2
:

T
he

 c
ol

or
 o

f g
ro

up

sc
at

te
re

d
bo

th
 in

 G
L

an

d
de

ta
ile

d
vi

ew
 o

f
th

is
 s

pe
ci

fic
 g

ro
up

↓/

If
 it

 is
 c

om
m

on
, c

ha
ng

e
fe

at
ur

e
se

ts
. I

f f
ew

cl

us
te

rs
 h

av
e

m
ix

ed
 c

ol
or

ch

ec
k

th
os

e
su

sp
ic

io
us

gr

ou
ps

.

↑/

A
cc

ep
t t

hi
s

la
rg

e
gr

ou
p

as
 tr

ue

po
si

tiv
es

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

TARGET USERS AND DESIGN PROCEDURE
Target Users. We collaborate closely with a successful fraud
detection company, which employs more than sixteen experts.
The company has been working with top-tier giants and finan-
cial companies on real fraud detection problems for several
years already. From our side, we have seven students working
on both the algorithm and visualization for fraud detection,
and we already published several papers about fraud detection
on top conferences. Therefore, we have access to resources
from both the academia and industry. During the collaboration,
we can not only work with the top-tier experts from the real
industry but also their customers. The customers understand
frauds perfectly in their scenario and can evaluate the result of
machine learning algorithms, but they have little knowledge
about the mechanism of algorithms. We regard the experts
from the company as a combination of both algorithm and
domain experts.

In a word, we have three types of experts evolved: 1) algorithm
experts from academia; 2) domain experts from the industry;
3) a team of experts who know both the algorithm and domain
from a successful fraud detection company. For simplicity, we
categorize them into algorithm experts and domain experts.
Mainly domain experts refer to business-side people in the
company and their customers.

Design Procedure. We followed the agile development pro-
cess and went through many iterations. There are three major
phases during the process, which are evaluation metric design,
display metric design and interaction design phases. Before
each phase, we collected experts’ answers to carefully de-
signed questions with different focus on evaluation, display or
interaction. Then we extracted and refined the information, set
up meetings with experts, double-checked the requirements
and used the confirmed information to guide the design. Dur-
ing each phase, we developed several prototypes, showed the
experts the updated demo every week, modified it according
to the advice, and then showed them again.

• Phase 1: design the evaluation metric. We asked how can
we tell the detection result is good or not? What do you
usually look at for evaluation? What do you care the most
when refining the algorithm?. After the iterative feedback
collection and discussion, we picked the KL-divergence.

• Phase 2: design the display metric. Firstly, we asked the
algorithm experts about which properties should a good
fraud detection metric have? What are the state-of-the-art
methods researchers are using? What rules do you follow?.
Then we came up with ColDis after many iterations. We
also showed other prototypes with other metrics such as
Euclidean distance, cosine distance, part of ColDis etc, and
showed them to the experts. According to their feedbacks,
we decided to use ColDis in Section 5.1.

• Phase 3: customize the interaction. We asked what are
helpful interactions? How many features do you want to see
in the system (with options from [0-10] to [all of them])?
Which statistical metrics are useful? How fast can you
tolerate the system to respond after updating the algorithm?
What information do you want to confirm after you fine-tune

the algorithm?. We collected the feedback from both the
algorithm experts and domain experts with allowing skips
of questions by semi-structured interviews.

We also went through the iterative process for design details,
such as the color selection, parameter choice of KDE, projec-
tion methods and etc with both algorithm and domain experts.
We always picked up the design which gets the most agree-
ments during the discussion.

FraudVis [20] was the preliminary prototype in the early it-
eration. We gradually came up with metrics and the design
of FDHelper after more iterations. We also noted that the
feedback did not fully cover what they wanted during our it-
erative discussion. Therefore, we took notes of their needs,
maintained and enriched a requirement list, then concluded
them in the Design Requirement Section, which guided the
core design of FDHelper.

SYSTEM REQUIREMENTS AND DESIGN

Online Frauds and Grouping Effect
Fraudsters have to reuse resources to lower the cost as we
discussed in Section 2.1. The same is true for IP addresses,
accounts, and other resources. This similarity is the key to
fraud detection, and researchers usually refer to the similarity
as “synchronized behavior” [12]. These activities usually are
hard to detect since different fraud groups can synchronize
on the different sets of features, and there are many features
to consider. Unfortunately, synchronized behavior itself does
not always indicate a fraud. For example, it is usual for many
people to follow President Trump on Twitter, but if many
people follow a nobody, it implies a suspicion. We want to
capture both how surprising the similarity is and how likely
people have such similarities.

Data Abstraction
The outputs of many unsupervised fraud detection algo-
rithms [11, 29] are groups of fraudulent candidates with syn-
chronized feature values. Intuitively, we illustrate a group as a
set of detected users who share features. The quality of feature
selection highly impacts algorithm performance. Therefore,
the input of our visualization system is the algorithm itself and
all categorical features. One of the main tasks of our system is
to illustrate the unique structure for detected groups, which is
also used to evaluate the algorithm performance.

Design Requirements
After the semi-structured interview in Section 3, we summa-
rize their analytical tasks with visualization as below. Besides,
we classify all the tasks into two categories: one is observation-
based tasks, and the other is action-based tasks.

For observation-based tasks, we have:

R1 Fraud detection overview: What is the distribution of
frauds in the high-dimensional feature space? How is this
distribution similar to or different from the distribution of all
users? Both algorithm and domain experts gain an overview
of the quality of the algorithm output.

R2 Quality evaluation: Are the fraud detection results cor-
rect? Which group contains more true positives, how is one

Paper 13 Page 4

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 1: The workflow of FDHelper includes the user configuration part, algorithm in the backend and visualization display.

particular fraud group? Algorithm experts can know better
about the quality of the fraud detection output.

R3 Feature importance analysis: Which features contribute
the most to the detection result? For one particular fraud
group, how important are all the related features? This task
helps algorithm experts select an appropriate feature set for
fraud detection.

R4 Fraud group details: How many users are there in each
fraud group? What is the distribution of their feature val-
ues? What are the feature values of some specific fraud?
Experts can drill down to the details for further inspection.

R5 Fraud group characterization: What common patterns
do the users in one fraud group share? How to characterize
such pattern for this fraud group? Domain experts address
these questions to form a hypothesis about the collective
behavior of the same fraud group. Analysts can validate
and learn this hypothesis as domain knowledge.

For action-based tasks, we have:

R6 Interactive feature selection: What is the fraud detection
result under a given feature set? What will happen if we ad-
just the weight of features? Analysts can tune the feature set
and weights. Upon applying the new setting, analysts can
rerun the algorithm and reevaluate through visualization.

R7 False positive exclusion: Did the algorithm make a mis-
take on a specific user? Domain experts marked it as a
final process before exporting fraud detection result. FD-
Helper also helps to carefully examine positives for a better
understanding of the algorithm.

FRAUD GROUP PROJECTION
One fraud user can have implicit grouping behavior with some
other frauds. Meanwhile, normal users scatter randomly on
the feature space. In this section, we propose a novel entropy-
based metric ColDis to reveal the characteristics of online
frauds.

A Novel Entropy-based Distance Metric: ColDis
A basic distance metric on raw user logs is the Euclidean
distance between K-dimensional feature vectors. However,

some vital limitations make the Euclidean distance impracti-
cal: 1) most features are categorical, using one-hot encoding
to compute the Euclidean distance does not make sense; 2)
only suspiciously synchronized feature values are useful as dis-
cussed in Section 4.1. It is not helpful to discover that 50% of
users on the website is female; 3) the combination of one-hot
encoding and Euclidean distance leads to an O(∑K

k=1 |Vk|N2)
overall complexity in computing the distance matrix among
users, which is impractical for a large user base.

We introduce a new distance metric, Collision Distance
(ColDis), which captures the relationship of users on the subset
of features relevant to their specific common fraud behavior.
The metric is designed to have three desirable properties:

Enhance the rarity and similarity. First, we define the simi-
larity of two users ui and u j on the kth feature:

S k(ui,u j) = ∑ − log(pk(v)), (1)
∀v∈ fk

i∩ f j
k

where pk denotes the distribution of values on the kth feature
and pk(v) is the probability of taking a value v on this feature.
Intuitively, each v in fk

i ∩ fk
j indicates a collision on the kth

feature between ui and u j, i.e., having the same value on the
kth feature. − log(pk(v)) corresponds to the Kullback-Leibler
Divergence (KL(·)) from the all-user distribution on the kth
feature (pk(·)) to the distribution of ui and u j on the collision
value v (F(·)). In details, KL(F ||pk) = −log(pk(v)) where
F(x) denotes the fixed value distribution of ui and u j on the
kth feature, F(x) = 1(x = v) or F(x) = 0(x =6 v).

In some cases, a user can have more than one value/collision
on a single feature (e.g., IP subnets used). Eq. (1) sums over
all such collisions on the kth feature. The KL divergence also
measures the information gain on the kth feature if two users
colliding on a value v are detected in the same fraud group.
The users with a larger similarity by Eq. (1) will have a better
chance to be grouped if we maximize the total information gain
on the group structure according to the kth data feature. From
another perspective, a higher user similarity also indicates

Paper 13 Page 5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

smaller pk(v), which suggests more suspicious collisions on
rare feature values.

We define the overall similarity between ui and u j by the
average of their similarities on all K data features.

K
S (ui, u j) =

1
∑ S k(ui,u j). (2)

K k=1

Finally, we compute the pairwise ColDis by �
S (ui,u j)

−1 S (ui,u j) > 0
D(ui,u j) = . (3)

Dmax × Smax S (ui,u j) = 0

Magnify the differences between normal users and frauds.
The (·)−1 operator converts the similarity to a distance met-
ric on the similarity-based affinity graph. Dmax denotes the
maximal non-zero distance between all pairs of users. Smax is
a parameter controlling the degree of grouping in the projec-
tion. By this metric, the distance between a pair of users is no
longer uniformly weighted by all the K features, but biased
toward the features having suspicious value collisions between
the two users. By projection with ColDis, a fraud group is
supposed to be well-separated from other fraud groups and
normal users.

Note that ColDis also works for different feature types. For
features with numerical value, we apply the similarity defini-
tion by Eq. (4), where the closeness between numerical values
is used as the degree of value collision.

S k(ui, u j) = − log(∑ pk(v)). (4)
∀ fk

i≤v≤ f j
k

Unified standard. The ColDis metric helps us to tolerate noise
in the raw feature values and focuses on important information
that distinguishes normal users from frauds. Given the same
feature set of user data, the projection by ColDis will always
be the same, allowing us to pre-compute projection results.
Different fraud detection algorithms may change the classi-
fication result of normal v.s. fraud users, but not the visual
layout of their projections. This makes it easier to evaluate
different fraud detection algorithms from the ColDis-based
visualization, which builds a unified interface for comparison
across all these algorithms. We introduce FDHelper over the
definition of ColDis, which supports side-by-side comparisons
of fraud detection result both among algorithms and within
the same algorithm using different feature sets.

OVERVIEW OF FDHelper
Analysts interact with FDHelper in an iterative process. Each
iteration contains three steps:

• Given a particular dataset, users choose their desirable fea-
tures, the corresponding weights and different algorithms
in the interactive session;

• Feeding all of these configurations to the algorithm, FD-
Helper automatically runs the selected algorithm in the
backend and prepares the formatted data for the display;

• FDHelper displays the result of the algorithm with ColDis
visually in the front-end. With visualization, both domain
experts and algorithm experts can evaluate the algorithm
performance, and if needed, fine-tune the feature selection
and hyperparameters, and iterates through the above steps.

FDHelper Interfaces Overview. Figure 2 illustrates the over-
all interfaces of FDHelper. We design the system according
to the visual fraud detection tasks characterized in Section 4.
Both algorithm experts and domain experts start by picking
the data set and fraud detection algorithm in the model con-
figuration panel (Figure 2 (a)). Then we display the user data
distribution and the detection result from the specified algo-
rithm in the group projection view (R1, the overview task),
which includes a multi-layer fraud map for quality evaluation
(Figure 2 (b), R2) and a user map for group details (Figure 2
(c), R4). There are three layers in the multi-layer fraud map:
the All-User Layer (AUL), Fraud-User Layer (FUL) and the
Group Layer (GL). Algorithm experts can visually explore
the results by selecting important features for fraud detection
through the feature view (Figure 2 (d), R3, R6). Domain
experts can drill down to the categorical feature distribution
and value of the users in the detail view (Figure 2 (e)). The
detail view helps to characterize the fraud group behavior (R5),
examine potential false positives (R7), and finally extract the
learned fraud detection rules.

Connection between fraud patterns, interfaces, and the
workflow. To illustrate the connection, Table 1 summarizes
each visual pattern and how it relates to the fraud patterns with
concrete examples, where we also define the visual patterns.

Visual Patterns for AUL and FUL. After running the algo-
rithm with all features and corresponding positive weights, one
observation is that AUL and FUL look quite similar, which
indicates that those algorithms give high recall but low preci-
sion. It is usually because we use too many features, and the
noise confuses the algorithm. Thus, the user needs to improve
algorithm precision by removing less important features.

Visual Patterns for GL. If we can get a relatively satisfying
result in Visual Pattern 1, we can go to Visual Pattern 2 to
check the overall quality of the detected groups. Generally
speaking, frauds in the same detected group should have syn-
chronized behavior so if we can keep this property even in the
2D panel, users in the same group should also locate nearby,
which indicates a “good” result.

As the most important design in our system, GL can provide
us with information on different levels. For suspicious groups
in GL, we can project it using the raw feature values and
check the quality. A high-quality group appears as a tight clus-
ter. A group with highly overlapping color indicates obvious
synchronized behaviors. We accept this group as the correct
detection shown in Table 1. Then we can focus on the details
of these good groups, such as if there are any outliers. We will
introduce the design of the three visual layers in Section 6.1

Multi-Layer Fraud Map Design
The key design of FDHelper is the map in the upper part of
the group projection view (Figure 2 (b)). It is composed of
multiple layers, including an overview of all online users with

Paper 13 Page 6

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 2: The interfaces of FDHelper. The model configuration panel (a), multi-layer visualization map (b), selected group
inspection (c), brush and link selected users for details (e) and adjust the feature sets selection panel (d).

the suspect to potential fraud behavior and a visual interpre-
tation of fraud detection result. In the base layer, we project
the high dimensional user profile data into a 2D space using
tSNE dimensionality reduction algorithm [23] and the ColDis
distance metric.

When the data size gets large, the point-based visualization
can lead to severe overlapping, and we can hardly observe
the real distribution. Therefore, we apply the Kernel Density
Estimation (KDE) method with a Gaussian kernel. We call the
resulting metric User-KDE density and compute it as:

1 N 1 (x− 2xi)

f −
(x) = ∑ √ e 2h2 , (5)

N i=1 2πh

where N is the number of all the users, xi is the projected 2D
position of the ith user ui, and h is the bandwidth of KDE
initialized by the Gaussian approximation h = 1.06σN−0.2,
where σ is the standard deviation of all user’s positions. As
the base layer, we draw the User-KDE density using a black-
white color palette. We use a darker color to represent the
denser areas. Over the base layer, we design another panel to
illustrate the distribution of frauds detected by the algorithm.
We compute a Fraud-KDE to represent the distribution of
frauds. The coloring of Fraud-KDE is also similar to User-
KDE. We fill the denser fraud area with lighter colors, but we
use the red color hue to highlight the existence of frauds.

At the top of the fraud map, the group layer further displays
the distribution of fraud-user groups. First, we define the Per-
Group-KDE density that represents the distribution of each
fraud group. In the group layer, the color hue indicates the
dominating group and the color lightness indicates the Group-

KDE density, lighter means that there are only a few members
of this group at this location.

On the multi-layer map, we also display the relationship be-
tween features and detected frauds. When analysts select a
feature from the current selected feature list, we color detected
frauds who have the same value for the selected feature with
the same hue. Switching from one feature label to another will
also help identify the importance of different features. The
more synchronized the color appears in the cliques, the more
important the corresponding feature is. It helps to improve the
feature selection in the fraud detection algorithms (R3).

Interactive Feature Selection
As we mentioned before, the quality of feature selection has a
great impact on the algorithm performance. Different features’
combinations result in different detection accuracies.

On the right-hand side of group projection view (Figure 2 (b)),
we list all features in a feature view. In Figure 2 (d), the se-
lected features are arranged in top lines and other unselected
ones are attached to the bottom. Each feature line consists
of a thumbnail chart on the left and the statistics on the right.
The thumbnail chart integrates two lines: black line shows the
value distribution of this feature in the entire user data set, and
the red line shows the value distribution of all the detected
frauds. By comparing these two distributions, algorithm ex-
perts can obtain an initial idea about the importance of this
feature in separating the frauds (R3). Meanwhile, we compute
two information-theoretic metrics, including the average en-
tropy of this feature across all fraud groups, and the average
KL divergence of the value distribution on this feature from
all users to each fraud group. The features with lower entropy

Paper 13 Page 7

 CHI 2020 Paper

(e) Increase Min Dominate(d) Decrease Bandwidth (f) Decrease Min Dominate to 0

(c) Decrease Grid Size(b) Increase Grid Size(a) Default Setting

Figure 3: Screenshots of tuning visual design parameters

and higher KL divergence will be more important to currently
detected fraud groups. We display these metrics, together with
the feature weights as the feature statistics.

The feature view (Figure 2 (d)) offers several interactions to
facilitate the feature selection process. Upon clicking a feature,
the thumbnail chart expands to a full feature chart. The full
feature chart emphasizes the fraud feature distribution as bar
charts. When selecting a fraud group in the group layer, we
highlight the feature value distribution of this group on the bar
charts. As the number of user features can be quite high, we
allow analysts to sort them according to any feature statistics.
Algorithm experts interactively select important features and
adjust their weights to refine the fraud detection algorithm.
By clicking the “Apply” button, we update the parameters
and rerun the backend computation. Finally, we display the
visualization result as the start of the next iteration of this
visual analysis.

There are two kinds of configurable hyperparameters:

Visual design related parameters. As Figure 3 shows, Band-
width is a smoothing parameter of Kernel Density Estimation
(KDE) algorithm. Min Dominate filters out the grids that are
not dominated by any group. Grid size controls granularity
of density estimation. Intuitively, if a color spreads the entire
map, its corresponding group will have a big impact. Increas-
ing Min Dominate or decreasing Bandwidth can optimize the
visual effect under this situation. However, these visual pa-
rameters only affect the visual design, but not provide insights
about the performance of the algorithm itself.

Min Dominate filters out the grids that are not dominated by
any group, which makes the map more clear and meaningful.
In the extreme case, when we set it to zero, we get a GL as
Figure 3 (f), which provides few insights. The bandwidth is
a parameter of KDE that exhibits a strong influence on the
resulting estimation. Decreasing the bandwidth (Figure 3 (d))
and increasing the min dominate value (Figure 3 (e)) can both
separate the cliques further. They provide a more clear view
of the given result but are not scalable to large datasets with
many groups. In most cases, we can use the default grid size
to balance the efficiency and the visual effect.

Algorithm-related parameters. We extract parameters which
are most often used so that users can easily access and adjust

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

them. Member threshold filters out small groups and thus
helps users to focus on the bigger groups. Edge threshold
filters out loosely connected users. A weak connection implies
users in the dataset are not closely synchronized and have less
in common. Increasing member threshold and edge threshold
reduces false positives, but a large value also lowers the re-
call. We present our heuristic of adjusting these parameters in
Table 1 (row 4) and in the next section.

EVALUATION

Case Study on E-commerce Website
First, we applied FDHelper onto the e-commercial website.
As we mentioned above, in this case, we find the number of
fraudsters in the registration process is even greater than the
normal users according to the experience of domain experts,
which we call “fraudulent registration”.

Dataset. We visualize eight thousand registration records
in this case, to demonstrate FDHelper and analyze frauds.
We have only partially labeled data from our collaborators.
They get the label according to both their experience and the
subsequent shopping behavior of these users. The labels are
accurate but not adequate. In other words, the precision of the
labels is 100% while the recall is not.

Tuning process. In the beginning, we use all categorical fea-
tures with equal weights. Unsurprisingly, the algorithm clas-
sifies all users as frauds and thus AUL and FUL look pretty
similar, which indicates a high recall but low precision, and
it categorizes all the users as frauds. Other case studies also
start from this default setting, and we take the same actions ac-
cording to Table 1 (the first row). Firstly, we sort the features
by their entropies in descending order. The bigger entropy it
has, the more information the feature can provide.

1) We roughly categorize the top ten potentially useful features
into three categories: time-related features, IP-related features,
and phone-related features.

2) Given any of these three feature combinations, we can easily
get AUL and FUL like Figure 4 (a) and (b), which indicates
we can move forward.

3) Figure 4 (c) shows the result for time-related features. Fol-
lowing the Table 1, we find the timestamp of user registration
is the most important one here. The same works for Figure 4
(d) and (e) which show the result for IP-related features and
phone-related features respectively. We also get the prefixes
of IP addresses is the best feature in this category and the two
phone-related features are equally representative.

4) When we drilled down the detailed feature values in all
of these results, we surprisingly found the device used by
any given group highly synchronized. It also shows a low
entropy and high KL-divergence. Next, we keep the most
useful features and adjust weights proportionally while we
identify the device feature as the most important one.

5) After applying these features, we get a promising result.
However, there are still mixed up groups, e.g. the fourth row
of Table 1. We then increase the edge threshold. It results
a better result that we show in Figure 4 (f). Also, since we

Paper 13 Page 8

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 4: Screenshots for tuning algorithms on the e-commercial scenario.

Figure 5: Screenshots for tuning algorithms on the video case.
have labels in this case to evaluate our result, we showed the
performance with a precision of 1.0 and a recall of 0.6 in the
performance panel. We gave feedback to the domain experts,
and they consider this result promising given the small false
positive, which is described in Section 4.

Using CrossSpot. Additionally, we also apply CrossSpot to
FDHelper. Ban et al. [29] claim that D-Spot outperforms
CrossSpot in detecting frauds effectively, which is also ap-
plicable in our case. Normally, we have the performance of
CrossSpot as Figure 4 (g), which shows a poor performance
with chaotic colors mixed in each clique. Following the in-
struction we proposed, we can surprisingly get a better perfor-
mance shown as Figure 4 (h) with a precision of 0.81 and a
recall of 0.21. Even our algorithm experts never expect such a
good performance from CrossSpot. After the discussion, we
reach a consensus that CrossSpot only perform well when we
omit IP-related features. It is probably the noise in IP-related
features destroys the locality for CrossSpot’s search.

Case Study on Social-video Website
Dataset. In order to detect frauds in social networks, we
get a sample of clickstream records from an online social
video website. We filtered out less important non-interactive
records, such as registers, logins, and logouts, and focus only
on user interaction records, such as follow, like and send gifts.
Different from the last e-commerce case, here we do not have
any labels to evaluate the performance.

Tuning process. Like what we did before in the e-commercial
case in Section 7.1, applying all the features results in poor
performance, while also provides insight on distributions of
all features on the feature statistical panel. After sorting these
features in the descending order of their entropies, we get
potentially useful features – timestamp, the target user, the
source user, the IP address and the type of an event. With the
procedure, we can get AUL and FUL views as (a) and (b)
in Figure 5, which means we can move forward on the GL
exploration. After getting the view shown as (c), we think
the feature sets are applicable since they can distinguish the
frauds from the normal users, and the color is not very mixed
except for only one large group. Therefore, we need to adjust
the weights of these values. Finally, we choose the timestamp
with the lowest entropy value as the most important feature
and adjust the weights of others proportionally. We get the
improved result as (d) with a less chaotic mixture of colors in
big cliques. It also detects more purely colored groups, which
indicates a better result.

Using CrossSpot. We also test CrossSpot in our system.
Changing from the original five features to four hand-picked
features derived from the experiment of D-Spot, it also gets an
obvious improvement from (e) to (f). Checking the mixture
of colors, drilling down the details of groups and the feature
statistic panel can all prove this. However, it still fails to match
D-Spot’s performance even with our best efforts, limited by
the inferior algorithm design.

EXPERT INTERVIEW
We held regular discussions with two fraud detection algo-
rithm experts, E1 and E2, throughout FDHelper development
that lasted six months. We have weekly discussions to collect
feedbacks and refine FDHelper’s design iteratively. For both
registration and video cases, experts were actively involved in
choosing the subset of datasets and fraud detection algorithms
to deploy, testing the algorithm performance, designing inter-
faces for connecting algorithms and evaluating FDHelper. We
also held discussions with two domain experts, D1 and D2.

Feature Selection in FDHelper. FDHelper can help algorithm
experts better understand the contribution of different features
to the detection result as we discussed in Section 6.2.

Paper 13 Page 9

 CHI 2020 Paper

E1 commented that being able to select important features
timely helps her a lot to eliminate her pain in selecting proper
features. She also commented on the statistical information en-
tropy and KL-divergence calculated from the current detected
groups. She always looks at the two metrics, and FDHelper
makes things a lot easier. E2 commented switching feature
labels is also useful and has a strong visual impact. E2 said
that “Just by switching those labels, I know which features are
more synchronized. I normally only look at this and use those
two statistical metrics for verification.”

Human-Computer Interaction in Fraud Detection. All ex-
perts appreciate the interactions introduced in FDHelper. They
believed the interaction can simplify and improve a fraud de-
tection process for analysts to find the best algorithm. They
commented that “people with little algorithm knowledge can
now easily play with the system visualization panel and feature
selection panel, and identify some surprisingly useful features,
and even get their own fraud detection result!”

Diagnose the Detection Result. Last but not least, it is a sur-
prise that algorithm experts and domain experts love FDHelper
when it comes to diagnosing the result. D1 commented that
“With brushing the users in one group, I can use my domain
knowledge to exclude some less suspicious users. We can’t
stand the outcome of losing good users. ”E1 commented that
“I can clearly know which group needs a future investigation
from the group layer. I have more confidence about algorithm
performance after using FDHelper.” E2 also commented that
“Although D-Spot outperforms CrossSpot, I still find some out-
liers in good groups in FDHelper, maybe we will add some
rules to D-Spot to fix this problem.”

USER STUDY
After knowing how experts like FDHelper, we also want to
know how can FDHelper help analysts new to the field to get
started on fraud detection? Can they start fine-tune the model
after a brief introduction and exploration?

Participants and Apparatus. We recruited five Ph.D. students
and three master students (six females and two males, age
23-29, µ = 25, θ 2 = 3.5) with diverse backgrounds includ-
ing computer science, statistics, biology and etc, denoted as
P1-P8. All of them have experience in data science but do
not have experience of fraud detection. We conduct the ex-
periments with eight 13-inch MacBook Pros. We use the
registration dataset in Section 7.1 for evaluation.

Tasks and Procedure. The participants are asked to perform
two tasks and fill out a 17-question survey. Among them,
twelve questions Q1-Q12 are objective, while Q13-Q16 are
subjective questions. The questions are designed to investigate
how FDHelper helps from the visualization wise, feature wise,
hyper-parameter wise, and algorithm wise.

The procedure consists of three major steps: 1) We give a
quick tutorial about FDHelper to all of our volunteers. Vol-
unteers know more about each component of FDHelper and
how to use in this process. 2) We showed both a live demo
and a recorded demo for volunteers. 3) Then we let volun-
teers explore FDHelper on their wills, and we record their
clickstreams during the process.

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

useful for tuning models
easy to learn

easy to use
willing to use

0 2 4 6 8
strongly agree agree neutral disagree strongly disagree

Figure 6: Results of usability questions

Our anonymous questionnaires are accessible online, and ev-
ery volunteer can only submit once. From the clickstream
records, we find that volunteers usually spend 13-30 minutes
on exploring FDHelper with 84.8% clicks for the multi-layer
visual map, 5.5% for the feature panel and 9.7% for the detail
inspection. They run 2-4 rounds of FDHelper to finish the
survey. It indicates that the feature panel and the multi-layer
map provides more information for analysts.

We collected all eight surveys we sent out, and seven of volun-
teers correctly answered all twelve objective questions. Fig-
ure 6 shows the result of usability questions. Although one
volunteer thinks FDHelper is not easy to learn, all of them
agree that FDHelper is useful for tuning models and easy to
learn. The majority of them strongly believe they will use it
for future fraud detection tasks. In future work, we will find
more volunteers to use and provide feedback about FDHelper.

CONCLUSION
In this work, we presented FDHelper, an interactive visual-
ization tool that supports fraud detection algorithm experts to
fine-tune the weights and features timely. The workflow of
using FDHelper was proposed based on the deep understand-
ing of the requirements of both algorithm experts and domain
experts. The three key designs in the workflow - choosing
the algorithm and dataset, refining the feature selection and
algorithm setting, and evaluating the detection result - are iden-
tified to guide the implementation of FDHelper. It brings the
controllability, readability, and dependability to visual fraud
detection. We next propose a multi-granularity three-layer
visualization map with in-situ configuration to enable users to
refine and check a fraud detection progress in time from the
algorithm level, feature level, and the hyperparameter level.
FDHelper works for fine-tuning both supervised algorithms
and unsupervised algorithms. We also prove the efficiency
through two real-world datasets and two state-of-the-art algo-
rithms respectively. To the best of our knowledge, our work
is the first interactive visual fraud detection system based on
the grouping behavior of online fraud users. We hope this
work can inspire both algorithm experts and visualization re-
searchers on the subject of interactive fraud detection.

ACKNOWLEDGEMENT
This work was supported in part by the National Natu-
ral Science Foundation of China (NSFC) Grant 61532001
and 61772504, Tsinghua Initiative Research Program Grant
20151080475, Fundamental Research Funds for the Central
Universities and gift funds from Huawei, Ant Financial and
Nanjing Turing AI Institute.

Paper 13 Page 10

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES
[1] Evmorfia N Argyriou, Aikaterini A Sotiraki, and

Antonios Symvonis. 2013. Occupational fraud detection
through visualization. In IEEE International Conference
on Intelligence and Security Informatics. 4–6.

[2] Richard J. Bolton and David J. Hand. 2002. Statistical
Fraud Detection: A Review. Statist. Sci. 17, 3 (2002),
235–249.

[3] Nan Cao, Conglei Shi, Sabrina Lin, Jie Lu, Yu-Ru Lin,
and Ching-Yung Lin. 2016. Targetvue: Visual analysis
of anomalous user behaviors in online communication
systems. IEEE TVCG 22, 1 (2016), 280–289.

[4] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher
Palow. 2014. Uncovering large groups of active
malicious accounts in online social networks. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM,
477–488.

´
visualization of network traffic data for intrusion
detection. Applied Soft Computing 11, 2 (2011),
2042–2056.

[5] Emilio Corchado and Alvaro Herrero. 2011. Neural

[6] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
and Pietro Palladino. 2010. Visual analysis of financial
crimes. In Proceedings of the International Conference
on Advanced Visual Interfaces. 393–394.

[7] Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,
and Pietro Palladino. 2011. An advanced network
visualization system for financial crime detection. In
IEEE Pacific Visualization Symposium. 203–210.

[8] Tom Fawcett and Foster Provost. 1997. Adaptive fraud
detection. Data mining and knowledge discovery 1, 3
(1997), 291–316.

[9] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. 2017.
Google Vizier: A Service for Black-Box Optimization.
In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD ’17). ACM, New York, NY, USA, 1487–1495.
DOI:http://dx.doi.org/10.1145/3097983.3098043

[10] Bryan Hooi, Neil Shah, Alex Beutel, Stephan
Günnemann, Leman Akoglu, Mohit Kumar, Disha
Makhija, and Christos Faloutsos. BIRDNEST: Bayesian
Inference for Ratings-Fraud Detection. 495–503.

[11] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi,
Shiqiang Yang, and Christos Faloutsos. 2016. Spotting
Suspicious Behaviors in Multimodal Data: A General
Metric and Algorithms. IEEE TKDE 28, 8 (2016),
2187–2200.

[12] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos,
and Shiqiang Yang. 2014. CatchSync: catching
synchronized behavior in large directed graphs. (2014),
941–950.

[13] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit
Kumar, Christos Faloutsos, and V. S. Subrahmanian.
2017. FairJudge: Trustworthy User Prediction in Rating
Platforms. CoRR (2017).

[14] Roger A Leite, Theresia Gschwandtner, Silvia Miksch,
Simone Kriglstein, Margit Pohl, Erich Gstrein, and
Johannes Kuntner. 2018. EVA: Visual Analytics to
Identify Fraudulent Events. IEEE transactions on
visualization and computer graphics 24, 1 (2018),
330–339.

[15] Emaad Manzoor, Hemank Lamba, and Leman Akoglu.
2018. xStream: Outlier Detection in Feature-Evolving
Data Streams. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, London, UK. 19–23.

[16] Joe Marks, Paul Beardsley, Brad Andalman, William
Freeman, Sarah Gibson, Jessica Hodgins, Thomas Kang,
Brian Mirtich, Hanspeter Pfister, Wheeler Ruml, and
others. 1997. Design galleries: A general approach to
setting parameters for computer graphics and animation.
In Proceedings of SIGGRAPH. Association for
Computing Machinery.

[17] Sean McGregor, Hailey Buckingham, Thomas G
Dietterich, Rachel Houtman, Claire Montgomery, and
Ronald Metoyer. 2015. Facilitating testing and
debugging of Markov Decision Processes with
interactive visualization. In 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 53–61.

[18] Animesh Patcha and Jung-Min Park. 2007. An overview
of anomaly detection techniques: Existing solutions and
latest technological trends. Computer networks 51, 12
(2007), 3448–3470.

[19] Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu,
Stephan Gunnemann, Disha Makhija, Mohit Kumar, and
Christos Faloutsos. 2017. EdgeCentric: Anomaly
Detection in Edge-Attributed Networks. In IEEE ICDM.
327–334.

[20] Jiao Sun, Qixin Zhu, Zhifei Liu, Xin Liu, Jihae Lee,
Zhigang Su, Lei Shi, Ling Huang, and Wei Xu. 2018.
FraudVis: Understanding Unsupervised Fraud Detection
Algorithms. In 2018 IEEE Pacific Visualization
Symposium (PacificVis). IEEE, 170–174.

[21] Kurt Thomas, Danny Yuxing, Huang David, Wang Elie,
Bursztein Chris Grier, Thomas J Holt, Christopher
Kruegel, Damon McCoy, Stefan Savage, and Giovanni
Vigna. 2015. Framing dependencies introduced by
underground commoditization. In In Proceedings
(online) WEIS. Citeseer.

[22] Tian Tian, Tong Zhang, Tong Zhang, Tong Zhang, and
Tong Zhang. 2015. Crowd Fraud Detection in Internet
Advertising. In International Conference on World Wide
Web. 1100–1110.

Paper 13 Page 11

http://dx.doi.org/10.1145/3097983.3098043

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[23] Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research 9 (2008), 2579–2605. http:
//www.jmlr.org/papers/v9/vandermaaten08a.html

[24] Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng,
and Ben Y Zhao. 2016. Unsupervised clickstream
clustering for user behavior analysis. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems. 225–236.

[25] Qianwen Wang, Yao Ming, Zhihua Jin, Qiaomu Shen,
Dongyu Liu, Micah J. Smith, Kalyan Veeramachaneni,
and Huamin Qu. 2019. ATMSeer: Increasing
Transparency and Controllability in Automated Machine
Learning. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (CHI ’19).
ACM, New York, NY, USA, Article 681, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300911

[26] Daniel Karl I. Weidele, Justin D. Weisz, Eno Oduor,
Michael Muller, Josh Andres, Alexander G. Gray, and
Dakuo Wang. 2019. AutoAIViz: Opening the Blackbox
of Automated Artificial Intelligence with Conditional
Parallel Coordinates.

[27] Liang Xiong, Barnabas´ Póczos, and Jeff Schneider.
2012. Group Anomaly Detection using Flexible Genre
Models. Advances in Neural Information Processing
Systems (2012), 1071–1079.

[28] Liang Xiong, Barnabás Póczos, Jeff G. Schneider,
Andrew Connolly, and Jake Vanderplas. 2011.
Hierarchical Probabilistic Models for Group Anomaly
Detection. Journal of Machine Learning Research 15
(2011), 789–797.

[29] Ban Yikun, Liu Xin, Huang Ling, Duan Yitao, Liu Xue,
and Xu Wei. 2019. No Place to Hide: Catching
Fraudulent Entities in Tensors. In The World Wide Web
Conference (WWW ’19). ACM, New York, NY, USA,
83–93. DOI:
http://dx.doi.org/10.1145/3308558.3313403

[30] Rose Yu, Xinran He, and Yan Liu. 2015. GLAD:Group
Anomaly Detection in Social Media Analysis. Acm
Transactions on Knowledge Discovery from Data 10, 2
(2015), 1–22.

Paper 13 Page 12

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://dx.doi.org/10.1145/3290605.3300911
http://dx.doi.org/10.1145/3308558.3313403

	Introduction
	Related Work
	Frauds and the Black Market
	Algorithmic Fraud Detection
	Visualizing Fraud Detection
	Visualizing Algorithms with Interaction

	Target Users and Design Procedure
	System Requirements and Design
	Online Frauds and Grouping Effect
	Data Abstraction
	Design Requirements

	Fraud Group Projection
	A Novel Entropy-based Distance Metric: ColDis

	Overview of FDHelper
	Multi-Layer Fraud Map Design
	Interactive Feature Selection

	Evaluation
	Case Study on E-commerce Website
	Case Study on Social-video Website

	Expert Interview
	User Study
	Conclusion
	Acknowledgement
	References

