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ABSTRACT 
Online fraud is the well-known dark side of the modern Inter-
net. Unsupervised fraud detection algorithms are widely used 
to address this problem. However, selecting features, adjusting 
hyperparameters, evaluating the algorithms, and eliminating 
false positives all require human expert involvement. In this 
work, we design and implement an end-to-end interactive visu-
alization system, FDHelper, based on the deep understanding 
of the mechanism of the black market and fraud detection 
algorithms. We identify a workflow based on experience from 
both fraud detection algorithm experts and domain experts. 
Using a multi-granularity three-layer visualization map em-
bedding an entropy-based distance metric ColDis, analysts 
can interactively select different feature sets, refine fraud de-
tection algorithms, tune parameters and evaluate the detection 
result in near real-time. We demonstrate the effectiveness and 
significance of FDHelper through two case studies with state-
of-the-art fraud detection algorithms, interviews with domain 
experts and algorithm experts, and a user study with eight 
first-time end users. 
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CCS Concepts 
•Human-centered computing → Visualization systems 
and tools; Information visualization; 

INTRODUCTION 
Nowadays, many online services are rife with frauds such 
as fake accounts on forums and video websites, and bots on 
social networks. Frauds conduct malicious activities, and thus 
compromise the business value of online services, causing 
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millions of complaints and billion dollars of economic losses 
each year globally [2]. 

Online fraud detection is a well-known problem in the research 
community [18]. Researchers often formulate fraud detection 
as a binary classification problem that categorizes users into 
frauds and normal ones based on their log records. User 
logs usually come from web access records and demographic 
information provided upon registration. Most log records are 
categorical features, e.g., the cities, the operating system of 
their devices, the source IP addresses, timestamps, etc. 

We use the following terminology throughout this paper. Users 
refer to the users in the log records, i.e., the subject for fraud 
detection. They are either normal or fraud. We refer to people 
who use FDHelper as analysts, which includes both algorithm 
experts and domain experts. 

Researchers have proposed many fraud detection algorithms 
based on the grouping behavior of frauds, in particular, un-
supervised learning methods [10, 13, 19]. However, it is 
challenging to design and evaluate these algorithms: 1) the 
log records contain many dimensions describing user behav-
iors, and it is hard to select the most relevant dimensions to 
fraud patterns; 2) the selection of feature sets and algorithms 
depends heavily on domains and scenarios; 3) there are very 
few or no fraud labels for training or evaluation. We can not 
confirm fraud behaviors until a materialized damage suffered, 
often after a long time. Meanwhile, finding an appropriate 
algorithm, choosing useful feature sets, and excluding false 
positives are all critical for a successful fraud detection pro-
cess. Nevertheless, all of these processes need the involvement 
of human experts, for which visualization is an indispensable 
component in any successful fraud detection system. 

The visualization for group-based fraud detection is different 
from traditional methods for clustering [24] and anomaly de-
tection [3]: 1) fraud groups expose various structures under 
different sets of features; 2) the size of the user base can be 
huge (e.g., millions of users), making a full-scale visualization 
impractical; 3) the number of frauds can be even larger than 
normal users, making the visualization focusing on normal 
behavior impractical; 4) in addition to detecting frauds, ana-
lysts also need to interpret the detection result for verification, 
evaluation, and comparison of different algorithm configura-
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tions for optimization. Finally, the detected fraud groups are 
characterized for knowledge externalization; 5) the instruction 
for configuring algorithms needs to be actionable, i.e., we 
should guide analysts on how to tune the algorithms. 

Besides, we highlight the feature selection process in our 
system. There are three reasons why the interactive feature 
selection is necessary. 1) It is well known that feature selection 
is extremely important in the fraud detection process [8]; 2) 
in many cases, feature selection is a trial-and-error process, 
even for experts; 3) the visualization provides instant feedback 
for feature selection. After choosing different features, we 
run the fraud detection algorithm with new features selected. 
Algorithm experts can then access the visualization result 
using these new features. This interactive process dramatically 
reduces the time spent in refining the algorithm. 

In this paper, we present FDHelper, an interactive visualization 
tool that integrates effective and visualization-friendly fraud 
detection algorithms with the visualization design. FDHelper 
integrates feature selection, algorithm parameter tuning and 
algorithm refinement into an interactive end-to-end visualiza-
tion system. To the best of our knowledge, it is the first visual 
fraud detection system that reveals the detected fraud group 
structure. Analysts can explore the result of fraud detection 
algorithms at three levels of detail (i.e., the algorithm level, 
the feature level, and the hyperparameter level). Instead of 
trying to explain the detail of fraud detection algorithms, we 
keep the fraud detection algorithm as a black box and only 
provide user-friendly interfaces for users to interact with. The 
main contributions of this paper are as follows: 

• An analysis of the fraud black market and an identifica-
tion of user requirements in the interaction process with 
unsupervised fraud detection methods. 

• An interactive visualization tool that enables users to choose 
(algorithm and dataset), refine (feature selection and algo-
rithm setting) and evaluate (the detection result) during an 
unsupervised fraud detection process. 

• An evaluation of FDHelper through two case studies and an 
interview with two kinds of fraud detection experts. 

RELATED WORK 

Frauds and the Black Market 
The key to conducting online frauds lies in collecting dispos-
able accounts on the target website. Fraudsters established a 
professional chain of fraud services through the dark web (aka, 
the black market) [21] to break into the defense of website 
providers with low cost (e.g., $140 ∼ $420 for 1000 mobile 
SIMs). Compared with legitimate accounts, frauds exhibit 
unusually similar behaviors in certain aspects, e.g., re-use of 
phone numbers, similar phone access durations, highly recur-
rent IP ranges, and the regular frequency of activities. 

This resource sharing mechanism enables a fundamental way 
to detect fraud behaviors based on these resources, so the goal 
of fraud detection algorithms is efficiently discovering these 
grouping behaviors. In other words, it is much more effective 
to hunt down these resource-sharing groups than detecting just 
a few individual accounts. 

Algorithmic Fraud Detection 
Nevertheless, it is non-trivial to detect these grouping behav-
iors. Researchers always take unsupervised detection algo-
rithms because frauds are not labeled. There are two kinds 
of algorithms to detect such behaviors: feature-vector based 
like [15] and graph-based. Researchers in [4, 22] use clus-
tering to find synchronized behaviors. For graph-based mod-
els, [27, 28, 30] use spectral methods to analyze the graph. 

Different from most problems where users can try various ma-
chine learning models easily, fraud detection algorithms are 
way more complicated. Meanwhile, these algorithms normally 
do not offer end-to-end interfaces for analysts, which makes 
the deployment of algorithms much harder. FDHelper is com-
patible with fraud detection algorithms with fraud groups as 
outputs. It integrates two built-in state-of-the-art fraud detec-
tion algorithms: CrossSpot [11] and D-Spot [29], and allows 
analysts to change and compare algorithms. Besides, the fea-
ture selection process is also quite important. FDHelper solves 
this problem by automatically loading all the potentially useful 
features and ranking them accordingly, which allows analysts 
to change and choose feature sets easily. 

Visualizing Fraud Detection 
In EVA [14], Leite et al. focused more on identifying fraudu-
lent events, e.g., unauthorized transactions from the financial 
data. In the VISFAN [7] and VISFORFRAUD [6], the authors 
synthesized numerous reports on currency transactions and 
suspicious activities/transactions together to build a financial 
activity network. They proposed a complex network visual-
ization design to display such networks. Beyond the financial 
fraud detection, the use of visualization also extends to many 
other domains, including occupational fraud detection [1] and 
computer network intrusion detection [5]. 

These existing systems either avert the complicated fraud de-
tection algorithms and feature selection process, or use a sim-
ple scoring criteria [14] that can not handle the high dimen-
sional data in the real case. Differently, FDHelper utilizes 
an advanced metric, ColDis, in an end-to-end system and is 
compatible with different algorithms, and is also scalable to 
large high-dimensional datasets. 

Visualizing Algorithms with Interaction 
There has been a long history since visualization was used 
for facilitating fine-tuning models [16, 17]. Some new works 
come up to visualize the algorithm adjustment. For exam-
ple, Google Vizier [9] uses parallel coordinates to analyze 
searched models. ATMSeer [25] first uses the visualization 
to assist the automated machine learning process. In terms of 
Google’s FACETS 1, it is similar to our work and has the fea-
ture embedding of dataset statistics analysis and visualization. 
AutoAIViz [26] visualizes the AI model generation process to 
increase the interpretability. However, none of these systems 
are designed for fraud detection. Fraud detection problems are 
different since frauds have unusual synchronized property on 
a subset of high-dimensional data, and the visualization needs 
to be flexible on choosing the feature set and to focus on the 
grouping behavior. 
1https://pair-code.github.io/facets/ 
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TARGET USERS AND DESIGN PROCEDURE 
Target Users. We collaborate closely with a successful fraud 
detection company, which employs more than sixteen experts. 
The company has been working with top-tier giants and finan-
cial companies on real fraud detection problems for several 
years already. From our side, we have seven students working 
on both the algorithm and visualization for fraud detection, 
and we already published several papers about fraud detection 
on top conferences. Therefore, we have access to resources 
from both the academia and industry. During the collaboration, 
we can not only work with the top-tier experts from the real 
industry but also their customers. The customers understand 
frauds perfectly in their scenario and can evaluate the result of 
machine learning algorithms, but they have little knowledge 
about the mechanism of algorithms. We regard the experts 
from the company as a combination of both algorithm and 
domain experts. 

In a word, we have three types of experts evolved: 1) algorithm 
experts from academia; 2) domain experts from the industry; 
3) a team of experts who know both the algorithm and domain 
from a successful fraud detection company. For simplicity, we 
categorize them into algorithm experts and domain experts. 
Mainly domain experts refer to business-side people in the 
company and their customers. 

Design Procedure. We followed the agile development pro-
cess and went through many iterations. There are three major 
phases during the process, which are evaluation metric design, 
display metric design and interaction design phases. Before 
each phase, we collected experts’ answers to carefully de-
signed questions with different focus on evaluation, display or 
interaction. Then we extracted and refined the information, set 
up meetings with experts, double-checked the requirements 
and used the confirmed information to guide the design. Dur-
ing each phase, we developed several prototypes, showed the 
experts the updated demo every week, modified it according 
to the advice, and then showed them again. 

• Phase 1: design the evaluation metric. We asked how can 
we tell the detection result is good or not? What do you 
usually look at for evaluation? What do you care the most 
when refining the algorithm?. After the iterative feedback 
collection and discussion, we picked the KL-divergence. 

• Phase 2: design the display metric. Firstly, we asked the 
algorithm experts about which properties should a good 
fraud detection metric have? What are the state-of-the-art 
methods researchers are using? What rules do you follow?. 
Then we came up with ColDis after many iterations. We 
also showed other prototypes with other metrics such as 
Euclidean distance, cosine distance, part of ColDis etc, and 
showed them to the experts. According to their feedbacks, 
we decided to use ColDis in Section 5.1. 

• Phase 3: customize the interaction. We asked what are 
helpful interactions? How many features do you want to see 
in the system (with options from [0-10] to [all of them])? 
Which statistical metrics are useful? How fast can you 
tolerate the system to respond after updating the algorithm? 
What information do you want to confirm after you fine-tune 

the algorithm?. We collected the feedback from both the 
algorithm experts and domain experts with allowing skips 
of questions by semi-structured interviews. 

We also went through the iterative process for design details, 
such as the color selection, parameter choice of KDE, projec-
tion methods and etc with both algorithm and domain experts. 
We always picked up the design which gets the most agree-
ments during the discussion. 

FraudVis [20] was the preliminary prototype in the early it-
eration. We gradually came up with metrics and the design 
of FDHelper after more iterations. We also noted that the 
feedback did not fully cover what they wanted during our it-
erative discussion. Therefore, we took notes of their needs, 
maintained and enriched a requirement list, then concluded 
them in the Design Requirement Section, which guided the 
core design of FDHelper. 

SYSTEM REQUIREMENTS AND DESIGN 

Online Frauds and Grouping Effect 
Fraudsters have to reuse resources to lower the cost as we 
discussed in Section 2.1. The same is true for IP addresses, 
accounts, and other resources. This similarity is the key to 
fraud detection, and researchers usually refer to the similarity 
as “synchronized behavior” [12]. These activities usually are 
hard to detect since different fraud groups can synchronize 
on the different sets of features, and there are many features 
to consider. Unfortunately, synchronized behavior itself does 
not always indicate a fraud. For example, it is usual for many 
people to follow President Trump on Twitter, but if many 
people follow a nobody, it implies a suspicion. We want to 
capture both how surprising the similarity is and how likely 
people have such similarities. 

Data Abstraction 
The outputs of many unsupervised fraud detection algo-
rithms [11, 29] are groups of fraudulent candidates with syn-
chronized feature values. Intuitively, we illustrate a group as a 
set of detected users who share features. The quality of feature 
selection highly impacts algorithm performance. Therefore, 
the input of our visualization system is the algorithm itself and 
all categorical features. One of the main tasks of our system is 
to illustrate the unique structure for detected groups, which is 
also used to evaluate the algorithm performance. 

Design Requirements 
After the semi-structured interview in Section 3, we summa-
rize their analytical tasks with visualization as below. Besides, 
we classify all the tasks into two categories: one is observation-
based tasks, and the other is action-based tasks. 

For observation-based tasks, we have: 

R1 Fraud detection overview: What is the distribution of 
frauds in the high-dimensional feature space? How is this 
distribution similar to or different from the distribution of all 
users? Both algorithm and domain experts gain an overview 
of the quality of the algorithm output. 

R2 Quality evaluation: Are the fraud detection results cor-
rect? Which group contains more true positives, how is one 
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Figure 1: The workflow of FDHelper includes the user configuration part, algorithm in the backend and visualization display. 

particular fraud group? Algorithm experts can know better 
about the quality of the fraud detection output. 

R3 Feature importance analysis: Which features contribute 
the most to the detection result? For one particular fraud 
group, how important are all the related features? This task 
helps algorithm experts select an appropriate feature set for 
fraud detection. 

R4 Fraud group details: How many users are there in each 
fraud group? What is the distribution of their feature val-
ues? What are the feature values of some specific fraud? 
Experts can drill down to the details for further inspection. 

R5 Fraud group characterization: What common patterns 
do the users in one fraud group share? How to characterize 
such pattern for this fraud group? Domain experts address 
these questions to form a hypothesis about the collective 
behavior of the same fraud group. Analysts can validate 
and learn this hypothesis as domain knowledge. 

For action-based tasks, we have: 

R6 Interactive feature selection: What is the fraud detection 
result under a given feature set? What will happen if we ad-
just the weight of features? Analysts can tune the feature set 
and weights. Upon applying the new setting, analysts can 
rerun the algorithm and reevaluate through visualization. 

R7 False positive exclusion: Did the algorithm make a mis-
take on a specific user? Domain experts marked it as a 
final process before exporting fraud detection result. FD-
Helper also helps to carefully examine positives for a better 
understanding of the algorithm. 

FRAUD GROUP PROJECTION 
One fraud user can have implicit grouping behavior with some 
other frauds. Meanwhile, normal users scatter randomly on 
the feature space. In this section, we propose a novel entropy-
based metric ColDis to reveal the characteristics of online 
frauds. 

A Novel Entropy-based Distance Metric: ColDis 
A basic distance metric on raw user logs is the Euclidean 
distance between K-dimensional feature vectors. However, 

some vital limitations make the Euclidean distance impracti-
cal: 1) most features are categorical, using one-hot encoding 
to compute the Euclidean distance does not make sense; 2) 
only suspiciously synchronized feature values are useful as dis-
cussed in Section 4.1. It is not helpful to discover that 50% of 
users on the website is female; 3) the combination of one-hot 
encoding and Euclidean distance leads to an O(∑K

k=1 |Vk|N2) 
overall complexity in computing the distance matrix among 
users, which is impractical for a large user base. 

We introduce a new distance metric, Collision Distance 
(ColDis), which captures the relationship of users on the subset 
of features relevant to their specific common fraud behavior. 
The metric is designed to have three desirable properties: 

Enhance the rarity and similarity. First, we define the simi-
larity of two users ui and u j on the kth feature: 

S k(ui,u j) = ∑ − log(pk(v)), (1) 
∀v∈ fk

i∩ f j 
k 

where pk denotes the distribution of values on the kth feature 
and pk(v) is the probability of taking a value v on this feature. 
Intuitively, each v in fk

i ∩ fk
j indicates a collision on the kth 

feature between ui and u j, i.e., having the same value on the 
kth feature. − log(pk(v)) corresponds to the Kullback-Leibler 
Divergence (KL(·)) from the all-user distribution on the kth 
feature (pk(·)) to the distribution of ui and u j on the collision 
value v (F(·)). In details, KL(F ||pk) = −log(pk(v)) where 
F(x) denotes the fixed value distribution of ui and u j on the 
kth feature, F(x) = 1(x = v) or F(x) = 0(x =6 v). 

In some cases, a user can have more than one value/collision 
on a single feature (e.g., IP subnets used). Eq. (1) sums over 
all such collisions on the kth feature. The KL divergence also 
measures the information gain on the kth feature if two users 
colliding on a value v are detected in the same fraud group. 
The users with a larger similarity by Eq. (1) will have a better 
chance to be grouped if we maximize the total information gain 
on the group structure according to the kth data feature. From 
another perspective, a higher user similarity also indicates 
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smaller pk(v), which suggests more suspicious collisions on 
rare feature values. 

We define the overall similarity between ui and u j by the 
average of their similarities on all K data features. 

K 
S (ui, u j) = 

1 
∑ S k(ui,u j). (2)

K k=1 

Finally, we compute the pairwise ColDis by � 
S (ui,u j)

−1 S (ui,u j) > 0
D(ui,u j) = . (3)

Dmax × Smax S (ui,u j) = 0 

Magnify the differences between normal users and frauds. 
The (·)−1 operator converts the similarity to a distance met-
ric on the similarity-based affinity graph. Dmax denotes the 
maximal non-zero distance between all pairs of users. Smax is 
a parameter controlling the degree of grouping in the projec-
tion. By this metric, the distance between a pair of users is no 
longer uniformly weighted by all the K features, but biased 
toward the features having suspicious value collisions between 
the two users. By projection with ColDis, a fraud group is 
supposed to be well-separated from other fraud groups and 
normal users. 

Note that ColDis also works for different feature types. For 
features with numerical value, we apply the similarity defini-
tion by Eq. (4), where the closeness between numerical values 
is used as the degree of value collision. 

S k(ui, u j) = − log( ∑ pk(v)). (4) 
∀ fk

i≤v≤ f j 
k 

Unified standard. The ColDis metric helps us to tolerate noise 
in the raw feature values and focuses on important information 
that distinguishes normal users from frauds. Given the same 
feature set of user data, the projection by ColDis will always 
be the same, allowing us to pre-compute projection results. 
Different fraud detection algorithms may change the classi-
fication result of normal v.s. fraud users, but not the visual 
layout of their projections. This makes it easier to evaluate 
different fraud detection algorithms from the ColDis-based 
visualization, which builds a unified interface for comparison 
across all these algorithms. We introduce FDHelper over the 
definition of ColDis, which supports side-by-side comparisons 
of fraud detection result both among algorithms and within 
the same algorithm using different feature sets. 

OVERVIEW OF FDHelper 
Analysts interact with FDHelper in an iterative process. Each 
iteration contains three steps: 

• Given a particular dataset, users choose their desirable fea-
tures, the corresponding weights and different algorithms 
in the interactive session; 

• Feeding all of these configurations to the algorithm, FD-
Helper automatically runs the selected algorithm in the 
backend and prepares the formatted data for the display; 

• FDHelper displays the result of the algorithm with ColDis 
visually in the front-end. With visualization, both domain 
experts and algorithm experts can evaluate the algorithm 
performance, and if needed, fine-tune the feature selection 
and hyperparameters, and iterates through the above steps. 

FDHelper Interfaces Overview. Figure 2 illustrates the over-
all interfaces of FDHelper. We design the system according 
to the visual fraud detection tasks characterized in Section 4. 
Both algorithm experts and domain experts start by picking 
the data set and fraud detection algorithm in the model con-
figuration panel (Figure 2 (a)). Then we display the user data 
distribution and the detection result from the specified algo-
rithm in the group projection view (R1, the overview task), 
which includes a multi-layer fraud map for quality evaluation 
(Figure 2 (b), R2) and a user map for group details (Figure 2 
(c), R4). There are three layers in the multi-layer fraud map: 
the All-User Layer (AUL), Fraud-User Layer (FUL) and the 
Group Layer (GL). Algorithm experts can visually explore 
the results by selecting important features for fraud detection 
through the feature view (Figure 2 (d), R3, R6). Domain 
experts can drill down to the categorical feature distribution 
and value of the users in the detail view (Figure 2 (e)). The 
detail view helps to characterize the fraud group behavior (R5), 
examine potential false positives (R7), and finally extract the 
learned fraud detection rules. 

Connection between fraud patterns, interfaces, and the 
workflow. To illustrate the connection, Table 1 summarizes 
each visual pattern and how it relates to the fraud patterns with 
concrete examples, where we also define the visual patterns. 

Visual Patterns for AUL and FUL. After running the algo-
rithm with all features and corresponding positive weights, one 
observation is that AUL and FUL look quite similar, which 
indicates that those algorithms give high recall but low preci-
sion. It is usually because we use too many features, and the 
noise confuses the algorithm. Thus, the user needs to improve 
algorithm precision by removing less important features. 

Visual Patterns for GL. If we can get a relatively satisfying 
result in Visual Pattern 1, we can go to Visual Pattern 2 to 
check the overall quality of the detected groups. Generally 
speaking, frauds in the same detected group should have syn-
chronized behavior so if we can keep this property even in the 
2D panel, users in the same group should also locate nearby, 
which indicates a “good” result. 

As the most important design in our system, GL can provide 
us with information on different levels. For suspicious groups 
in GL, we can project it using the raw feature values and 
check the quality. A high-quality group appears as a tight clus-
ter. A group with highly overlapping color indicates obvious 
synchronized behaviors. We accept this group as the correct 
detection shown in Table 1. Then we can focus on the details 
of these good groups, such as if there are any outliers. We will 
introduce the design of the three visual layers in Section 6.1 

Multi-Layer Fraud Map Design 
The key design of FDHelper is the map in the upper part of 
the group projection view (Figure 2 (b)). It is composed of 
multiple layers, including an overview of all online users with 
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Figure 2: The interfaces of FDHelper. The model configuration panel (a), multi-layer visualization map (b), selected group 
inspection (c), brush and link selected users for details (e) and adjust the feature sets selection panel (d). 

the suspect to potential fraud behavior and a visual interpre-
tation of fraud detection result. In the base layer, we project 
the high dimensional user profile data into a 2D space using 
tSNE dimensionality reduction algorithm [23] and the ColDis 
distance metric. 

When the data size gets large, the point-based visualization 
can lead to severe overlapping, and we can hardly observe 
the real distribution. Therefore, we apply the Kernel Density 
Estimation (KDE) method with a Gaussian kernel. We call the 
resulting metric User-KDE density and compute it as: 

1 N 1 (x− 2xi)

f −
(x) = ∑ √ e 2h2 , (5)

N i=1 2πh

where N is the number of all the users, xi is the projected 2D 
position of the ith user ui, and h is the bandwidth of KDE 
initialized by the Gaussian approximation h = 1.06σN−0.2, 
where σ is the standard deviation of all user’s positions. As 
the base layer, we draw the User-KDE density using a black-
white color palette. We use a darker color to represent the 
denser areas. Over the base layer, we design another panel to 
illustrate the distribution of frauds detected by the algorithm. 
We compute a Fraud-KDE to represent the distribution of 
frauds. The coloring of Fraud-KDE is also similar to User-
KDE. We fill the denser fraud area with lighter colors, but we 
use the red color hue to highlight the existence of frauds. 

At the top of the fraud map, the group layer further displays 
the distribution of fraud-user groups. First, we define the Per-
Group-KDE density that represents the distribution of each 
fraud group. In the group layer, the color hue indicates the 
dominating group and the color lightness indicates the Group-

KDE density, lighter means that there are only a few members 
of this group at this location. 

On the multi-layer map, we also display the relationship be-
tween features and detected frauds. When analysts select a 
feature from the current selected feature list, we color detected 
frauds who have the same value for the selected feature with 
the same hue. Switching from one feature label to another will 
also help identify the importance of different features. The 
more synchronized the color appears in the cliques, the more 
important the corresponding feature is. It helps to improve the 
feature selection in the fraud detection algorithms (R3). 

Interactive Feature Selection 
As we mentioned before, the quality of feature selection has a 
great impact on the algorithm performance. Different features’ 
combinations result in different detection accuracies. 

On the right-hand side of group projection view (Figure 2 (b)), 
we list all features in a feature view. In Figure 2 (d), the se-
lected features are arranged in top lines and other unselected 
ones are attached to the bottom. Each feature line consists 
of a thumbnail chart on the left and the statistics on the right. 
The thumbnail chart integrates two lines: black line shows the 
value distribution of this feature in the entire user data set, and 
the red line shows the value distribution of all the detected 
frauds. By comparing these two distributions, algorithm ex-
perts can obtain an initial idea about the importance of this 
feature in separating the frauds (R3). Meanwhile, we compute 
two information-theoretic metrics, including the average en-
tropy of this feature across all fraud groups, and the average 
KL divergence of the value distribution on this feature from 
all users to each fraud group. The features with lower entropy 
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(e) Increase Min Dominate(d) Decrease Bandwidth (f) Decrease Min Dominate to 0

(c) Decrease Grid Size(b) Increase Grid Size(a) Default Setting

Figure 3: Screenshots of tuning visual design parameters 

and higher KL divergence will be more important to currently 
detected fraud groups. We display these metrics, together with 
the feature weights as the feature statistics. 

The feature view (Figure 2 (d)) offers several interactions to 
facilitate the feature selection process. Upon clicking a feature, 
the thumbnail chart expands to a full feature chart. The full 
feature chart emphasizes the fraud feature distribution as bar 
charts. When selecting a fraud group in the group layer, we 
highlight the feature value distribution of this group on the bar 
charts. As the number of user features can be quite high, we 
allow analysts to sort them according to any feature statistics. 
Algorithm experts interactively select important features and 
adjust their weights to refine the fraud detection algorithm. 
By clicking the “Apply” button, we update the parameters 
and rerun the backend computation. Finally, we display the 
visualization result as the start of the next iteration of this 
visual analysis. 

There are two kinds of configurable hyperparameters: 

Visual design related parameters. As Figure 3 shows, Band-
width is a smoothing parameter of Kernel Density Estimation 
(KDE) algorithm. Min Dominate filters out the grids that are 
not dominated by any group. Grid size controls granularity 
of density estimation. Intuitively, if a color spreads the entire 
map, its corresponding group will have a big impact. Increas-
ing Min Dominate or decreasing Bandwidth can optimize the 
visual effect under this situation. However, these visual pa-
rameters only affect the visual design, but not provide insights 
about the performance of the algorithm itself. 

Min Dominate filters out the grids that are not dominated by 
any group, which makes the map more clear and meaningful. 
In the extreme case, when we set it to zero, we get a GL as 
Figure 3 ( f ), which provides few insights. The bandwidth is 
a parameter of KDE that exhibits a strong influence on the 
resulting estimation. Decreasing the bandwidth (Figure 3 (d)) 
and increasing the min dominate value (Figure 3 (e)) can both 
separate the cliques further. They provide a more clear view 
of the given result but are not scalable to large datasets with 
many groups. In most cases, we can use the default grid size 
to balance the efficiency and the visual effect. 

Algorithm-related parameters. We extract parameters which 
are most often used so that users can easily access and adjust 
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them. Member threshold filters out small groups and thus 
helps users to focus on the bigger groups. Edge threshold 
filters out loosely connected users. A weak connection implies 
users in the dataset are not closely synchronized and have less 
in common. Increasing member threshold and edge threshold 
reduces false positives, but a large value also lowers the re-
call. We present our heuristic of adjusting these parameters in 
Table 1 (row 4) and in the next section. 

EVALUATION 

Case Study on E-commerce Website 
First, we applied FDHelper onto the e-commercial website. 
As we mentioned above, in this case, we find the number of 
fraudsters in the registration process is even greater than the 
normal users according to the experience of domain experts, 
which we call “fraudulent registration”. 

Dataset. We visualize eight thousand registration records 
in this case, to demonstrate FDHelper and analyze frauds. 
We have only partially labeled data from our collaborators. 
They get the label according to both their experience and the 
subsequent shopping behavior of these users. The labels are 
accurate but not adequate. In other words, the precision of the 
labels is 100% while the recall is not. 

Tuning process. In the beginning, we use all categorical fea-
tures with equal weights. Unsurprisingly, the algorithm clas-
sifies all users as frauds and thus AUL and FUL look pretty 
similar, which indicates a high recall but low precision, and 
it categorizes all the users as frauds. Other case studies also 
start from this default setting, and we take the same actions ac-
cording to Table 1 (the first row). Firstly, we sort the features 
by their entropies in descending order. The bigger entropy it 
has, the more information the feature can provide. 

1) We roughly categorize the top ten potentially useful features 
into three categories: time-related features, IP-related features, 
and phone-related features. 

2) Given any of these three feature combinations, we can easily 
get AUL and FUL like Figure 4 (a) and (b), which indicates 
we can move forward. 

3) Figure 4 (c) shows the result for time-related features. Fol-
lowing the Table 1, we find the timestamp of user registration 
is the most important one here. The same works for Figure 4 
(d) and (e) which show the result for IP-related features and 
phone-related features respectively. We also get the prefixes 
of IP addresses is the best feature in this category and the two 
phone-related features are equally representative. 

4) When we drilled down the detailed feature values in all 
of these results, we surprisingly found the device used by 
any given group highly synchronized. It also shows a low 
entropy and high KL-divergence. Next, we keep the most 
useful features and adjust weights proportionally while we 
identify the device feature as the most important one. 

5) After applying these features, we get a promising result. 
However, there are still mixed up groups, e.g. the fourth row 
of Table 1. We then increase the edge threshold. It results 
a better result that we show in Figure 4 ( f ). Also, since we 
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Figure 4: Screenshots for tuning algorithms on the e-commercial scenario. 

Figure 5: Screenshots for tuning algorithms on the video case. 
have labels in this case to evaluate our result, we showed the 
performance with a precision of 1.0 and a recall of 0.6 in the 
performance panel. We gave feedback to the domain experts, 
and they consider this result promising given the small false 
positive, which is described in Section 4. 

Using CrossSpot. Additionally, we also apply CrossSpot to 
FDHelper. Ban et al. [29] claim that D-Spot outperforms 
CrossSpot in detecting frauds effectively, which is also ap-
plicable in our case. Normally, we have the performance of 
CrossSpot as Figure 4 (g), which shows a poor performance 
with chaotic colors mixed in each clique. Following the in-
struction we proposed, we can surprisingly get a better perfor-
mance shown as Figure 4 (h) with a precision of 0.81 and a 
recall of 0.21. Even our algorithm experts never expect such a 
good performance from CrossSpot. After the discussion, we 
reach a consensus that CrossSpot only perform well when we 
omit IP-related features. It is probably the noise in IP-related 
features destroys the locality for CrossSpot’s search. 

Case Study on Social-video Website 
Dataset. In order to detect frauds in social networks, we 
get a sample of clickstream records from an online social 
video website. We filtered out less important non-interactive 
records, such as registers, logins, and logouts, and focus only 
on user interaction records, such as follow, like and send gifts. 
Different from the last e-commerce case, here we do not have 
any labels to evaluate the performance. 

Tuning process. Like what we did before in the e-commercial 
case in Section 7.1, applying all the features results in poor 
performance, while also provides insight on distributions of 
all features on the feature statistical panel. After sorting these 
features in the descending order of their entropies, we get 
potentially useful features – timestamp, the target user, the 
source user, the IP address and the type of an event. With the 
procedure, we can get AUL and FUL views as (a) and (b) 
in Figure 5, which means we can move forward on the GL 
exploration. After getting the view shown as (c), we think 
the feature sets are applicable since they can distinguish the 
frauds from the normal users, and the color is not very mixed 
except for only one large group. Therefore, we need to adjust 
the weights of these values. Finally, we choose the timestamp 
with the lowest entropy value as the most important feature 
and adjust the weights of others proportionally. We get the 
improved result as (d) with a less chaotic mixture of colors in 
big cliques. It also detects more purely colored groups, which 
indicates a better result. 

Using CrossSpot. We also test CrossSpot in our system. 
Changing from the original five features to four hand-picked 
features derived from the experiment of D-Spot, it also gets an 
obvious improvement from (e) to ( f ). Checking the mixture 
of colors, drilling down the details of groups and the feature 
statistic panel can all prove this. However, it still fails to match 
D-Spot’s performance even with our best efforts, limited by 
the inferior algorithm design. 

EXPERT INTERVIEW 
We held regular discussions with two fraud detection algo-
rithm experts, E1 and E2, throughout FDHelper development 
that lasted six months. We have weekly discussions to collect 
feedbacks and refine FDHelper’s design iteratively. For both 
registration and video cases, experts were actively involved in 
choosing the subset of datasets and fraud detection algorithms 
to deploy, testing the algorithm performance, designing inter-
faces for connecting algorithms and evaluating FDHelper. We 
also held discussions with two domain experts, D1 and D2. 

Feature Selection in FDHelper. FDHelper can help algorithm 
experts better understand the contribution of different features 
to the detection result as we discussed in Section 6.2. 
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E1 commented that being able to select important features 
timely helps her a lot to eliminate her pain in selecting proper 
features. She also commented on the statistical information en-
tropy and KL-divergence calculated from the current detected 
groups. She always looks at the two metrics, and FDHelper 
makes things a lot easier. E2 commented switching feature 
labels is also useful and has a strong visual impact. E2 said 
that “Just by switching those labels, I know which features are 
more synchronized. I normally only look at this and use those 
two statistical metrics for verification.” 

Human-Computer Interaction in Fraud Detection. All ex-
perts appreciate the interactions introduced in FDHelper. They 
believed the interaction can simplify and improve a fraud de-
tection process for analysts to find the best algorithm. They 
commented that “people with little algorithm knowledge can 
now easily play with the system visualization panel and feature 
selection panel, and identify some surprisingly useful features, 
and even get their own fraud detection result!” 

Diagnose the Detection Result. Last but not least, it is a sur-
prise that algorithm experts and domain experts love FDHelper 
when it comes to diagnosing the result. D1 commented that 
“With brushing the users in one group, I can use my domain 
knowledge to exclude some less suspicious users. We can’t 
stand the outcome of losing good users. ”E1 commented that 
“I can clearly know which group needs a future investigation 
from the group layer. I have more confidence about algorithm 
performance after using FDHelper.” E2 also commented that 
“Although D-Spot outperforms CrossSpot, I still find some out-
liers in good groups in FDHelper, maybe we will add some 
rules to D-Spot to fix this problem.” 

USER STUDY 
After knowing how experts like FDHelper, we also want to 
know how can FDHelper help analysts new to the field to get 
started on fraud detection? Can they start fine-tune the model 
after a brief introduction and exploration? 

Participants and Apparatus. We recruited five Ph.D. students 
and three master students (six females and two males, age 
23-29, µ = 25, θ 2 = 3.5) with diverse backgrounds includ-
ing computer science, statistics, biology and etc, denoted as 
P1-P8. All of them have experience in data science but do 
not have experience of fraud detection. We conduct the ex-
periments with eight 13-inch MacBook Pros. We use the 
registration dataset in Section 7.1 for evaluation. 

Tasks and Procedure. The participants are asked to perform 
two tasks and fill out a 17-question survey. Among them, 
twelve questions Q1-Q12 are objective, while Q13-Q16 are 
subjective questions. The questions are designed to investigate 
how FDHelper helps from the visualization wise, feature wise, 
hyper-parameter wise, and algorithm wise. 

The procedure consists of three major steps: 1) We give a 
quick tutorial about FDHelper to all of our volunteers. Vol-
unteers know more about each component of FDHelper and 
how to use in this process. 2) We showed both a live demo 
and a recorded demo for volunteers. 3) Then we let volun-
teers explore FDHelper on their wills, and we record their 
clickstreams during the process. 
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useful for tuning models
easy to learn

easy to use
willing to use

0 2 4 6 8
strongly agree agree neutral disagree strongly disagree

Figure 6: Results of usability questions 

Our anonymous questionnaires are accessible online, and ev-
ery volunteer can only submit once. From the clickstream 
records, we find that volunteers usually spend 13-30 minutes 
on exploring FDHelper with 84.8% clicks for the multi-layer 
visual map, 5.5% for the feature panel and 9.7% for the detail 
inspection. They run 2-4 rounds of FDHelper to finish the 
survey. It indicates that the feature panel and the multi-layer 
map provides more information for analysts. 

We collected all eight surveys we sent out, and seven of volun-
teers correctly answered all twelve objective questions. Fig-
ure 6 shows the result of usability questions. Although one 
volunteer thinks FDHelper is not easy to learn, all of them 
agree that FDHelper is useful for tuning models and easy to 
learn. The majority of them strongly believe they will use it 
for future fraud detection tasks. In future work, we will find 
more volunteers to use and provide feedback about FDHelper. 

CONCLUSION 
In this work, we presented FDHelper, an interactive visual-
ization tool that supports fraud detection algorithm experts to 
fine-tune the weights and features timely. The workflow of 
using FDHelper was proposed based on the deep understand-
ing of the requirements of both algorithm experts and domain 
experts. The three key designs in the workflow - choosing 
the algorithm and dataset, refining the feature selection and 
algorithm setting, and evaluating the detection result - are iden-
tified to guide the implementation of FDHelper. It brings the 
controllability, readability, and dependability to visual fraud 
detection. We next propose a multi-granularity three-layer 
visualization map with in-situ configuration to enable users to 
refine and check a fraud detection progress in time from the 
algorithm level, feature level, and the hyperparameter level. 
FDHelper works for fine-tuning both supervised algorithms 
and unsupervised algorithms. We also prove the efficiency 
through two real-world datasets and two state-of-the-art algo-
rithms respectively. To the best of our knowledge, our work 
is the first interactive visual fraud detection system based on 
the grouping behavior of online fraud users. We hope this 
work can inspire both algorithm experts and visualization re-
searchers on the subject of interactive fraud detection. 
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