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Abstract—Carotid plaques may cause strokes. The composition
of the plaque helps assessing the risk. Magnetic resonance imag-
ing (MRI) is a powerful technology for analyzing the composition.
It is both tedious and error-prone for a human radiologist to
review such images. Traditional computer-aided diagnosis tools
use manually crafted features that lack both generality and
accuracy. We propose a novel approach using Deep convolutional
neural networks (CNN) to classify these plaque tissues. In order
to accommodate the multi-contrast MRI images, we modify state-
of-the-art CNN models to support different number of input
channels, and also adapt the models to do pixel-wise predictions.
On a dataset with 1,098 human subjects, we show that we achieve
significantly better accuracy than previous models. Our result
also indicates interesting relations between contrast weightings
and tissue types.

I. INTRODUCTION

Carotid atherosclerosis is a common disease. It is caused
by the building-up of cholesterol, fat, calcium, and other
substances in the artery walls. The buildup is called a plaque.
The plaque clogs the arteries, causing a local change in
vessel size [1]. The narrowed vessel reduces blood supply.
If a plaque suddenly ruptures, the blood clot may cause a
stroke. Stroke keeps the second place in global death ranks
from 1990 to 2010 [2], and rises from fifth to third in global
disability-adjusted rank [3]. Of the different causes of stroke,
atherosclerosis plaque has been identified as a major cause [4].

People have developed effective interventions / treatments
for atherosclerosis, such as lipid-lowering drugs and calcium
channel blockers, according to different stages and risks in the
course of the disease development.

As most people do not develop symptom for atherosclerosis,
it is essential that we can diagnose the condition early and
reliably assess the risk of a certain plaque. Clinically, plaque
composition, such as lipid core, calcification, and hemorrhage,
are important indicators of their risks. For example, plaques
with hemorrhage (bleeding) are vulnerable and are highly
likely to cause strokes.

The most widely used techniques for plaque detection is
B-mode ultrasound. However, ultrasound is highly operator
dependent and thus not suitable for tracking the progression /
regression of the disease for longer terms.

High-resolution multi contrast magnetic resonance imaging
(MRI) has emerged as a promising tool for visualization of

atherosclerotic plaques. Trained radiologist can identify plaque
composition using MRI [5], [6].

However, it remains a challenge to review these images.
Firstly, training experienced radiologists takes effort, resulting
in the lack of qualified reviewers in hospitals in less developed
regions. Secondly, the results may vary even with experienced
reviewers on different readings. This is because the review
guidelines are quite qualitative, based on the difference in the
brightness between the plaques and the surrounding muscle
tissues (see Section III-A). Thus, human factors still play an
important role, making the results less repeatable [7]. Last but
not least, the review process is time-consuming, as there are
many locations per subject, and each location contains multiple
images representing different contrast weightings. A reviewer
needs to compare multiple images to identify the vessel walls
and plaque composition.

All these problems call for an automated way to analyze
the composition of atherosclerotic plaques. In other words, we
need a way to segment the regions in an MRI representing dif-
ferent tissue types. Morphology-Enhanced Probabilistic Plaque
Segmentation (MEPPS) [8] is a popular framework. MEPPS
proposes a novel segmentation method using maximum a
posteriori probability Bayesian theory. MEPPS models the
likelihood of each pixel to be one of the tissue types. The
model also includes morphologic information, such as local
vessel wall thickness. MEPPS provides a general methodology
for MR image analysis that many projects adopt [9], [10].
People have developed other Bayesian models demonstrating
the feasibility of automatic MR image segmentation, such as
[11], [12].

The limitation of the existing methods, however, is that they
depend on hand-crafted features, and thus very specific to
certain problems or sequences.

Recently, people have successfully applied convolutional
neural networks (CNNs) in different applications including
medical imaging processing [13]-[20]. There are several ad-
vantages with the CNN approach: 1) the CNN model is an
end-to-end model that directly output the class labels for each
pixel, eliminating most of the guessing work on different
thresholds; 2) the CNN model does not depend on any domain-
specific knowledge, such as the notion of vessel wall thickness.
Of course, as we will see in the paper, data-specific tuning
optimizes model performance, but even these optimizations



do not require application-semantic-dependent features; 3) The
CNN model improves with the amount of training data, which
matches the current trend of data collection throughout the
health care industry.

In this paper, we demonstrate a novel method that au-
tomatically segments the atherosclerotic plaques using deep
convolutional neural networks and provides pixel-level clas-
sification of plaque tissue types. We build our model based
on CNNs pre-trained on ImageNet [21] so we can obtain a
good model with a limited number of training samples. To
adapt the multi-contrast MRI images into existing models, we
modify the network’s input and output layers. Specifically, we
expand the input to accept the four independent weightings.
For the output, we modify the network to perform pixel-wise
prediction. We also reassign the image downsampling rate to
preserve high resolution.

We evaluate our method on a recent research dataset with
over 70,000 images from 1,098 human subjects. In almost of
the cases, we achieve significant accuracy improvements over
the widely-used MEPPS approach.

II. RELATED WORK

Automatic medical imaging analysis and diagnostics has
been a hot area for many years. Traditional medical image
analysis tools are based on hand-crafted features. Most of
them use features about a region-of-interest (ROI) in an image,
such as morphologic information in MEPPS [8], histogram
of oriented gradients (HoG) [22] and scale-invariant feature
transform (SIFT) [23]. These features are then used to train a
classifier to differentiate normal anatomy from abnormal.

Researchers try to apply CNN on different medical images
in recent years, such as MRI [13], [14], [16], [17], CT [18],
[19] and chest X-rays [15]. Similar techniques are also used
in classifying skin cancers [20]. Researchers use CNNs in
medical imaging applications in the following three ways.

1) Combining off-the-shelf CNNs (pre-trained CNNs with-
out fine-tuning) features with hand-crafted image features. The
hope is that off-the-shelf CNNs complement the limited hand-
crafted features with some general features like the lines and
textures. Ginneken et al. [14] uses off-the-shelf CNN features
in pulmonary nodule detection. Another application is chest
pathology detection [15], and the best performance is achieved
using CNN and GIST [24] features.

2) Training a CNN model from scratch. The technique is
common for applications with abundant training data. For
example, brain disease diagnosis [13], [16], [17] and detecting
coronary artery calcifications [18].

3) Fine-tuning an ImageNet (or other database) pre-trained
CNN model on medical image. Shin et al. [19] explores the
possibility of fine-tuning a pre-trained CNN on CT images for
lymph node detection and interstitial lung disease detection.
An ImageNet pre-trained GoogleNet is fine-tuned for skin
cancer classification on a dataset of 129,450 skin lesions
comprising of 2,032 different diseases [20].

All the above works are dependent on one image (in CT,
MRI, X-ray or natural RGB images), where each image is
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Fig. 1. An example of preprocessing of 4 contrast weightings, with necrotic
core colored in yellow, hemorrhage in orange, calcification in dark blue and
fibrous tissue in red.

taken in a very short period of time. While in our study,
different contrast images are scanned separately. Different
contrast weightings in the same slice may slightly differ in
shape, scale and position due to patient movement. To our
knowledge, our study is the first work on learning multi-
contrast MRI in medical image area.

ITII. BACKGROUND
A. MRI and image contrast weighting

Magnetic resonance imaging (MRI), developed in the
1970s [25] and widely used today, is a tomographic imaging
technology. It uses magnetic resonance phenomenon to form
images of the human body anatomy.

In a nutshell, MRI generates images using pulses of radio
waves to excite the nuclear spin energy transition so the
atoms generate some detectable radio signal. Of all the atoms,
hydrogen atoms, which are abundant in waters and fat in the
body, are most often used in the detection. By varying the
parameters of the pulse sequence and use a magnetic field to
localize the signal in space, we can get different contrasts from
different tissues, based on the hydrogen atoms within them.

In order to reveal different anatomical structures or patholo-
gies, the MRI scans each position with different scan parame-
ters, such as varying the repeat time (TR) or the echo time
(TE). Under these scan parameters, as each type of tissue
exhibits a unique way of returning to its equilibrium state
after excitation (called relaxation), people can tell apart these
tissues and their intrinsic properties such as blood flow speed.
For example, there are T1 (spin-lattice) and T2 (spin-spin)
relaxations.

Clinically, these contrasts are weighted in multiple ways to
generate the final images. For example, T1-weighted (TIW)
images put more weight on the tissues with more T1 re-
laxation, while T2-weighted (T2W) images emphasize the
T2 relaxation process. Thus, tissues with different properties
shows distinguishable intensity on TIW and T2W images.

Figure 1(a) provides an example of the four contrast weight-
ings we use in this study. From image analysis point of view,
we can treat these different contrast weightings as multiple
channels of an image, like the RGB channels. However, there
are two major differences: 1) these images contain much



TABLE I
TISSUE CLASSIFICATION GUIDELINE
TIW T2W  TOF

Necrotic/Lipid Core with

A. No or little hemorrhage  o/+ —/o o

B. Fresh hemorrhage + —/o +

C. Recent hemorrhage + + +

D. Old hemorrhage —/o — —/o
Calcification - — —
Hemorrhage

A. Fresh + — +

B. Recent + + +
Loose Matrix —/o + 0
Fibrous Tissue o —

The symbols describes the signal intensities relative to
adjacent muscle: + is hyper-intense, o is iso-intense
and — is hypo-intense.

redundant information - a specific tissue can show some signal
on one or more weightings; 2) different from a digital photo
where all RGB channels are captured at the same time, the
MRI equipment collects different contrast data at different
time. During the collection, the subject (patient) may move,
resulting in more noise.

B. Tissue classes
We focus on identifying the following tissues in a vessel.

o Lipid-rich/necrotic core (LR/NC) is an extracellular mass
in the intima. Lipid cores may flow out mostly through a
fissure or rupture of a fibrous cap into lumen, and it may
cause severe cerebrovascular embolism.

o Calcification happens when calcium builds up in blood
vessels. Calcium is transported through the bloodstream,
and thus calcification can be found in almost any part of
the body.

« Intraplaque hemorrhage is a liquid plaque component, and
occurs frequently during the development of atheroscle-
rotic lesions. Hemorrhage is prone to rupture, resulting
in acute thrombosis.

o Loose matrix includes tissues that are loosely woven,
such as proteoglycan-rich fibrous matrix and organizing
thrombus.

« Fibrous tissue includes all other remaining tissues in the
vessel except for four types above. It is considered the
“normal” tissues in this study.

For the past years, people have developed guidelines to i-
dentify each tissue type [26], [27]. The reviewers of our dataset
roughly follows the methods established in the literature [28],
[29], and we summarize these guidelines in Table L.

C. Convolutional Neural Networks (CNN)

Comparing to a traditional three-layer neural network, a
convolutional neural network (CNN) is stacked by many
layers. Most of these layers are either convolutional layers
or pooling layers. The CNN takes its input, i.e. images with
multiple channels, at the lowest layer, and output the final
results at the highest layer.

Most computation happens within the convolutional layers.
These layers combine the information of adjacent pixels, as
well as pixels from different input channels and produce a
new output pixel. Assume that the input size of a convolutional
layer is d X h x w, let p; ;. , be the pixel at channel i with
position (z,y), and let g; . , be the pixel of the output channel
J with position (z,y). Given a convolution filter w; ;, we can
compute the output pixel by

Qjxy = Zpi,m+s,y+twj,i,s,t + bj
,8,t
where b; is the bias of channel j. To compute g¢; . ,, we
enumerate ¢ over all input channels, and s,¢ over the filter
with typical size of 3 x 3 or 5 X 5.

The pooling layers reduce the size of their input, so that
the input to the following convolutional layers can be smaller,
allowing efficient computation. The size reduction is controlled
by the window size w of a pooling layer. The output of a
pooling layer is

Qi,z,y = g(pi,z*w+s,y*w+t)

where s,t < w, g is the pooling function, such as max() or
average().

To enable the network to capture nonlinear relationships in
the input data, usually we add a non-linear function such as
ReLu or sigmoid after layers with only linear transforma-
tions, such as the convolutional layer.

CNNs are widely used in classification tasks. In these tasks,
we usually use a fully connected (FC) layer as the second-to-
last layer. The FC layer receives the output from the previous
pooling layer. It works in a similar way as to the hidden layer
in traditional three-layer artificial neural networks.

IV. OUR APPROACH
A. Datasets

Data Acquisition. The dataset in this study comes from
Chinese Atherosclerosis Risk Evaluation study (CARE II,
[30]). This study consecutively recruits over 1000 patients,
between ages 18 and 80, from 13 medical centers and hospitals
all over China. All patients have stroke or transient ischemic
attack within two weeks after onsets of symptoms. Also, B-
mode ultrasound imaging has detected atherosclerotic plaques
in carotid artery. This study is approved by institutional review
board of each participating institution. All study participants
have provided written informed consent.

These centers conduct the study in collaboration with the
Vascular Imaging Laboratory (VIL) at the University of Wash-
ington, who has extensive experience in quantitative review of
the carotid plaques. Also, Center for Biomolecular Imaging
Research (CBIR) of Tsinghua University severed as a hub for
the study, collecting all the data.

All MR imaging in this study is performed on state-of-
the-art 3.0T MR scanners with 8-channel phase array coil.
All centers adopt a multi-contrast high-resolution vessel wall
imaging protocol for the carotid plaque imaging. The protocol
includes the following imaging sequences (see Section III-A):



TABLE II
IMAGING PARAMETERS

Standardized multicontrast imaging protocol

TOF TIW T2W MP-RAGE
Sequence FFE! TSE? TSE FFE
Black blood None QIR MDIR
Repeat time (ms) 20 800 4800 8.8
Echo time (ms) 4.9 10 50 5.3
Flip angle 20° 90° 90° 15°
Field of view (cm) 14x14 14x14 14x14 14x14
Matrix 256x256  256x256  256x256 256x256
Scan plane axial axial axial axial
Slice thickness (mm) 1 2 2 1
! FFE: Fast Field Echo
2 TSE: Turbo Spin Echo
o three-dimensional time-of-flight (TOF, TR=20ms,

TE=4.9ms) [31];
o Tl-weighted (T1W, TR=800ms, TE=10ms) quadruple
inversion recovery [32];
o T2-weighted (T2W, TR=4800ms, TE=50ms) multislice
double inversion recovery [33];
o magnetization-prepared rapid acquisition with gradient
echo (MP-RAGE, TR=8.8ms, TE=5.3ms) [34].
Table II [30] details the imaging parameters of each imaging
sequences for completeness. However, this detail is unimpor-
tant to the core method of this paper.

Data collection and reviewing. CBIR of Tsinghua University
collects and archives all images in a centralized database.
Trained reviewers with over three years’ experience then
review each image. The reviewers uses a custom-designed
software, the Computer-Assisted System for Cardiovascular
Disease Evaluation (CASCADE) [35]. CASCADE provides
data storage as well as the labeling tool to draw the boundaries
of different tissues. The software then stores the boundaries
as contours in the database. Each image is reviewed by two
reviewers with consensus.

Qualities of these images vary. Thus, the reviewers also
grade these images on a 5-level image quality scale (1 being
the worst). In this study, we only use the images with quality
gradings of 2 or above.

The dataset contains 4 image sequences corresponding 4
contrast weightings for each subject. As different centers
provide a different number of images per sequence, we align
the different sequences using the bifurcation level and slice
thickness. Finally, we keep 16 slice locations per sequence per
subject, we call them the study locations. Each study location
contains 4 images representing 4 different contrast weightings.
With 1,098 subjects, we have 1,098 x 16 = 17,568 study
locations and 70, 272 images in total.

Data preparation. Before any analysis, all images goes
through three preprocessing steps. 1) the reviewer identifies
the regions of left and right carotid arteries; 2) she enlarges
the artery region by 400% using bilinear interpolation, so
people can see the details more clearly; and 3) she adjusts
the regions with manual delineated shifts, so that the four
images are co-registered (i.e. aligned). The co-registration is

an approximation and it may be off by a few pixels. After the
preprocessing, the reviewers draw contours to mark the vessel
walls and each tissue type.

In addition, we add two steps before feeding the images
to our model training. 1) we cut out from the image a square
region of size from 256x256 to 480x480, containing the entire
artery; and 2) we convert the contour labels into a pixel-level
label, by assigning all pixels enclosed in a contour as the same
class.

Figure 1 summarizes the preprocessing steps. After pre-
processing, for each study location, we get 4 co-registered MR
images of same size as the input (Fig. 1(b)) with pixel-wise
labels (Fig. 1(c)).

B. Goal and challenges

Our goal is to identify the plaque tissue types, as well as
the vessel walls, in each study location, using the 4 contrast
weightings. In other words, we would like to classify each
pixel with its tissue type. We treat the 4 images at each
location as 4 separate input channels, much like the RGB input
channels in a colored image.

Although we are using a fairly large dataset with over a
thousand subjects, the data size is still orders of magnitude
smaller than normal image classification training set, such as
the ImageNet. In fact, the training fails to converge to a usable
model using only the MRI dataset. Thus, we use pre-trained
models as a starting point, like many existing projects do [19],
[20].

There are two challenges adapting the pre-trained models
in MRI images.

Firstly, we have four input channels, while all our pre-
trained models take three channel (RGB) images.

Secondly, unlike many image segmentation problems, where
the object we want to recognize is significant in the image, the
tissues we care about are small in the images. For example, a
calcification we detect is only about 20 by 20 pixels in size.
The output labels of most commonly used networks do not
provide the pixel-level resolution enough for this problem.

Thus, we would like to design a model that provides enough
resolution on our four channel MRIs, while still be able to use
a pre-trained model to improve its quality.

C. Our Model

Base models. We build models based on three state-of-the-
art CNN models: GoogleNet [36], VGG-16 [37] and ResNet-
101 [38].

VGG adopts a framework very similar to traditional net-
works such as LeNet [39] and AlexNet [21]. However, it stacks
convolutional layers with kernel size of 3 x 3, the smallest
kernel size required to capture neighboring information. The
receptive field of 3 stacked convolutional layers with kernel
size 3 X 3 is same as one convolutional layer with kernel
size 7 x 7, while the former has fewer parameters and more
nonlinearity. This structure allows VGG to have more layers,
and thus improves performance over LeNet or AlexNet.
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Fig. 2. Modification on input layers to accommodate four contrast weightings

GoogLeNet introduces the inception module, which com-
bines the output of 1 x 1, 3 x 3, 5 X 5 convolutions and 3 x 3
max pooling on its input. The designers further propose 1 x 1
convolution before 3 x 3 and 5 x 5 convolutions to reduce
dimension, in order to prevent blowing-up in computational
complexity in large networks. This architecture actually gen-
erates a multi-scale output for a given input image, and it
allows the next stage to process feature maps of different scales
simultaneously. However, as the 3 x 3 max-pooling layers lead
to spatial information loss, GoogLeNet usually performs worse
than VGG in localization tasks.

Residual network is a recent work that allows the network to
go much deeper, by addressing the degradation problem. The
basic idea of ResNet is to learn the residual of a mapping
F(z), which is F(x) — z. Learning the residual instead of
the mapping itself allows us to train a much deeper network.
Thus it has outperformed VGG and GoogleNet on ImageNet
classification by a significant margin in many tasks. We use
ResNet-101 with 100 layers.

We obtain the pre-trained model for each of the network
from the Caffe Model Zoo [40]. We make the following three
key modifications to each base model to adapt them to the
MRI application.

Adapting 4-channel images into models pre-trained on
RGB images. In order to adapt our data into a CNN model
pre-trained on the RGB color images on ImageNet, we make
4 copies of the data layer in each model. Each data layer
takes a single channel as input. We also make 4 copies of the
first convolutional layer, and connect them to each of the data
layer. Then we connect these 4 convolutional layers to a sum-
up layer that merges several feature maps with the same size
into a single feature map by simple summation. The output of
this sum-up layer is then connected to the rest of the network.
Figure 2 illustrates the modifications to the input part of the
network, where Figure 2(a) shows the structure of original
network, and Figure 2(b) shows the modified version.

Making the network to output pixel-level class labels. The
base networks are designed to do classifications. Thus, they
all have a fully connected layer near the end to produce the
classification label. However, we want to classify each pixel,
rather than the entire image.

Some methods [41], [42] approximate pixel-level classifi-
cation by extracting patches from an image and predicting
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Fig. 3. Changing the stride of the last downsampling layers to retain resolution

the label of the pixel at the center of each patch. With
this approach, it is crucial to determine a reasonable patch
size. Unfortunately, the sizes of tissues in our images vary
dramatically, making the patch size hard to choose.

Instead, we adopt the fully convolutional neural network
(FCN) [43] approach. With this design, we replace the last
fully connected layer in classification models, such as AlexNet
and VGG, to a fully convolution layer. This structure elimi-
nates the need for extracting patches and thus improves the
effectiveness and efficiency of pixel-wise prediction. We also
adopt the skip layer fusion, in which we combine upsampling
of lower layers with the final prediction layer to predict finer
details while retaining semantic information.

Reduce the downsampling factor to retain resolution. The
base model employs some downsampling layers in order to
reduce the size of the images propagating through the network
to save computation cost. This is usually enough for tasks like
image classification. However, the downsampling causes too
much information loss for pixel-wise prediction.

Thus, following the methods in DeepLab [44], we change
the downsampling from 32x to 8x by changing the stride of
the last two pooling layers of each model from 2 to 1 and
apply the atrous algorithm.

Figure 3 shows an example of this algorithm in 1-dimention.
Figure 3(a) shows the original structure with 2x downsam-
pling, and receptive field of neuron X is composed of A, B
and C. After changing the stride, neuron X in Figure 3(b)
should not convolute on any three continuous neurons, since
this would make a wrong receptive field. Neuron X still need
to convolute on neurons A, B and C, so we do the convolution
by skipping neurons, and the number of skipped neurons
is specified by dilation parameter in Caffe [45]. Thus the
receptive field of neuron X stays unchanged.

V. EVALUATION

We perform all model training and evaluations using a
Ubuntu server with one Titan X GPU. We use Caffe [45] as our
deep learning framework. We randomly select 20% subjects
out of the 1,098 as test set, while using the remaining for
training. We count the percentage of different tissue types in
both training and test set and Figure 4 shows the result !. We

'We omit the fibrous tissue as they are too common.
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can see that both datasets have a similar distribution of tissue
types, confirming the unbiased choice of the test set.

To provide the readers with some intuition before the formal
evaluation, Figure 5 presents two concrete examples, showing
the manual labels, and segmentation results using both MEPPS
and ResNet-101. We can see that ResNet-101 detects all tissue
types, even though the actual shape is a little different from
the manual labels.

To formally evaluate our CNN models, we compare them
to off-the-shelf MEPPS on two independent sets of accuracy
metrics. We use reviewers’ manual labels as the ground truth.

Firstly, we treat the problem as a pixel-level binary clas-
sification task for each tissue class, i.e. determining whether
a pixel belongs to each of the classes. We present the recall,
precision and F-measure for each tissue class. Let TP, F P,
F'N to be the true positive, false positive and false negative,
respectively, we define the metrics as:

e precision = TP / (TP + FP)

o recall = TP / (TP + FN)

o F-measure = 2 (precision X recall) / (precision + recall)

Secondly, following the evaluation metrics in [43], [44],
we present the problem as an image segmentation task and
evaluate pixel-level accuracy between the manually drawn
regions and predicted regions. Let a;; be the number of pixels
of tissue 4 predicted to be tissue j, s; = > j Gij be the total
number of pixels of tissue ¢ and n; be the number of tissues
(ny = 5 in our case). We define the following three metrics:

e pixel accuracy = 3;a/%;8;

o mean accuracy = (1/n¢)X;(asi/8;)

e IMcan IU = (l/nt)Ea“/(sz + Zjaﬂ — a“)

The mean IU stands for the region intersection over union.
Intuitively, a larger IU means the predicted tissue region
overlaps more with the manually labeled regions.

A. Comparison Results

Table III presents the pixel-wise classification results for
each tissue class, and Table IV shows the metrics on image
segmentation. From both tables, we have the following obser-
vations:

1) CNNs outperform MEPPS in almost all tissue classes and
metrics. The improvements mainly come from the elimination
of manually crafted features, as well as the large amount of
training data with consistent labels.

2) Among all the CNNs, ResNet-101 performs the best, as
it does in many other image classification tasks, due to the
depth it achieves.

TABLE III
PIXEL-WISE CLASSIFICATION ACCURACY

(a) Precision

Tissue MEPPS  GoogleNet VGG-16  ResNet-101
Fibrous Tissue 0.947 0.922 0.944 0.951
Calcification 0.698 0.673 0.663 0.704
Necrotic/Lipid Core 0.373 0.533 0.536 0.576
Hemorrhage 0.526 0.710 0.717 0.729
Loose Matrix 0.103 0.422 0.522 0.488

(b) Recall

Tissue MEPPS  GoogLeNet VGG-16  ResNet-101
Fibrous Tissue 0.946 0.955 0.978 0.973
Calcification 0.457 0.446 0.481 0.492
Necrotic/Lipid Core 0.273 0.419 0.372 0.474
Hemorrhage 0.299 0.499 0.487 0.622
Loose Matrix 0.253 0.091 0.138 0.246

(c) F-measure

Tissue MEPPS  GoogleNet VGG-16  ResNet-101
Fibrous Tissue 0.947 0.939 0.961 0.962
Calcification 0.552 0.536 0.557 0.580
Necrotic/Lipid Core 0.315 0.469 0.439 0.520
Hemorrhage 0.382 0.586 0.580 0.671
Loose Matrix 0.146 0.150 0.218 0.327

3) All methods identify the fibrous tissue class quite accu-
rately. We believe the high accuracy is the results of abundant
samples in the training data: fibrous tissue is the ‘“normal”
class that dominates the vessel walls.

4) We also get good accuracy on the calcification class.
It is because this class is quite obvious: the calcified tis-
sues produces hypo-intense relative to adjacent muscle in
all weightings [29], which is easy to separate both by the
reviewers and algorithms.

5) In contrast, although CNNs achieve several times im-
provements over MEPPS on the loose matrix cases, all metrics
remain low comparing to other classes. The reason is that the
review guidelines are vague for the loose matrix. This type of
tissue is not crucial clinically and thus its labels are more noisy
than other classes. Also, there is not enough training data for
this class. For both reasons, the accuracy is lower than other
classes.

6) All the pixel accuracy in Table IV is high because we
can accurately classify the dominating fibrous tissue class. We
also show the accuracy results excluding this class, which is
much higher than MEPPS.

Table V reports the average running time for processing the
16 study locations of a subject. ResNet runs about 20% slower
than other methods, but all the performance are acceptable
considering that it takes minutes for a human reviewer to read
these images.

B. Contribution of each contrast weighting

All our MRI results come as a bundle of four images with
different contrast weightings, and our base model makes use of
all these weightings. We want to see which contrast weighting
contributes the most to the detection of each tissue class. To
do so, we train four ResNet-101 models separately, using one
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Fig. 5. Examples of composition analysis, with necrotic core colored in yellow, hemorrhage in orange, calcification in dark blue and fibrous tissue in red.

TABLE IV
SEGMENTATION ACCURACY

pixel acc.

pixel acc. (no fibrous tissue) mean acc. mean [U
MEPPS 0.903 0.287 0.434 0.351
GoogLeNet 0.927 0.405 0.488 0.421
VGG-16 0.929 0.389 0.492 0.427
ResNet-101 0.933 0.486 0.563 0.481
TABLE V
PER-SUBJECT RUNNING TIME
MEPPS  GoogleNet VGG-16  ResNet-101
Time (sec) 10.0 9.1 8.9 11.4

contrast weighting each, and the top half in Table VI reports
the F-measure for each case.

We find that each contrast weighting does contribute to
different tissues types in different ways. For example, TIW
mainly contributes to calcification, while helping loose matrix
little, and T2W helps lipid core and loose matrix mostly.
The most extreme case is that MP-RAGE dominates the
hemorrhage classification, achieving a higher F-measure than
all weightings combined.

We also try to combine the most common weightings, TIW
and T2W, and include the result in Table VI. We can see
that there are some improvements over the single-weighting
models, but not significant.

We confirm with the expert reviewers that the difference is

TABLE VI
CONTRIBUTIONS OF EACH CONTRAST WEIGHTING

Contrast Fibrous JETR Lipid . Loose
Weighting Tissue Calcification Core Hemorrhage Matrix
TIW 0.961 0.536 0.496 0.443 0.020
T2W 0.958 0.494 0.515 0.323 0.387
TOF 0.957 0.468 0.465 0.487 0.080
MP-RAGE 0.957 0.337 0.437 0.681 0.015
ALL 0.962 0.580 0.520 0.671 0.327
TIW_T2W 0.962 0.545 0.525 0.468 0.401

consistent with their review guidelines - reviewers often em-
phasis on one or two weightings only for a specific tissue type.
Reviewers also confirm that MP-RAGE can be understood as
an enhanced T1, while hemorrhage is best detectable on T1s.

Note that our model training and evaluation all use the
reviewer labels as the ground truth. Thus, our models emulate
the reviewers’ logic, e.g. using only one or two weightings to
identify the tissue type. Though we can emulate the human be-
havior quite accurately, these labels prevent us from exploring
the correlations among these different weightings and further
improve the results. As an important future work, we will train
models based on the actual pathological result.

VI. CONCLUSION AND FUTURE WORK

With the accumulation of high-quality medical imaging
data, we believe it has come to the point that we can use
CNNs to replace many traditional computer-aided diagnosis
software using hand-crafted features. This paper provides an
example application using MRI, with an emerging application
of plaque composition analysis. The application is quite new
that there is still no definite guideline how to review these
images. CNN is suitable for this case as it learns on examples
rather than rules. We show that the CNN achieves very good
accuracy.

CNN works in an end-to-end way on any kind of labels. As
future work, we would replace the human reviewer labels with
pathological images, in order to learn about the fundamental
correlations between the MRI image and the actual tissue.
Also, we would like to eliminate the need for manual image
co-registration, allowing the model to use information on
different contrasts without first aligning them.
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