Inter-Data-Center Network Traffic Prediction with Elephant Flows

Yi Li^{*}, Hong Liu[†], Wenjun Yang[†], Dianming Hu[†], Wei Xu^{*} * Institute for Interdisciplinary Information Sciences, Tsinghua University

[†]Baidu Inc.

Inter-Data-Center Network Traffic

- Inter-DC traffic is growing with applications
 - Video streaming
 - File sharing
- Heavy inter-DC traffic with spikes and fluctuations
 - Congestions
 - Cost: ISPs charge by peak bandwidth
- Accurate inter-DC traffic prediction is important
 - Network resource provisioning
 - Traffic engineering.

Challenges in inter-DC traffic prediction

- Neither representing linear processes nor having stable statistical properties.
 - linear models, e.g. ARIMA, do not work well
- Different patterns from Internet traffic
 - bursty and unpredictable
- conventional prediction methods for Internet traffic do not work well

- No obvious recurring traffic patterns
 - a small number of **elephant flows** dominates

Our Contributions

- We propose a network traffic prediction model for inter-DC traffic by **treating elephant flows explicitly**.
- We introduce **effective interpolation method** to reduce the amount of expensive flow-level observations for the elephant flows.
- We evaluate our model on a real-world datacenter and help Baidu reduce the peak bandwidth for about 9% on average.

Model Overview

- Elephant flows
- Interpolation
- DB4 wavelet transform
- ANN
- RRMSE (Relative Root Mean Squared Error)

$$RRMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\frac{\hat{\theta}_i - \theta_i}{\theta_i})^2}$$

Model Overview

Data Collection

- Real traffic from a production data center in Baidu
- Counters on the data center edge routers using SNMP, every 30 sec.
- Data of six weeks
- The data of the last day for testing

Length of Training Set

Training set of 4 weeks performs better!

Wavelet Transform

Wavelet Transform

Training with wavelet transform performs better!

Combing Incoming/Outgoing Traffic

Combine incoming/outgoing traffic numbers into the same model

No significant difference in accuracy

40% reduction in training time

- Identified by the tuple (src IP, dest IP, src port, dest port, protocol id, type of service, interface)
- Sampled every 5 minutes
- Contributed by the top-5 applications
- Account for about **80%** of the total traffic

- Sampled every 5 minutes
 - Due to resource cost concerns
 - vs 30 seconds (total traffic)
- Interpolation
 - Construct missing values
 - Tried four methods

Tried different Interpolation

- Zero interpolation
 - fill zeroes for unknown points
 - simplest
- Scale interpolation
 - fill numbers proportional to the total traffic
- Linear interpolation
 - a filled point is in a line segment linking the previous and the following points
- Spline interpolation
 - give a smooth curve linking points
 - third order polynomials as interpolation functions
 - error is small
 - most complex

- Elephant flow information reduces the prediction errors
 - for both incoming and outgoing traffic
 - especially for long-time prediction
 - The more smooth the constructed curve is, the better the overall prediction accuracy is
 - cubic interpolation performs best
- Zero interpolation is chosen in production
 - different interpolation methods have similar effects
 - good balance between simplicity, practicability and performance

Compared with other models

- Compared with two well-known models: ARIMA and ANN without WT and elephant flows
- ARIMA performs the best only for very short prediction
- Our model performs the best for long-timeahead prediction
 - It is difficult for linear models to capture long-term patterns of inter-DC traffic
 - Wavelet transform and elephant flow information are helpful for training with ANN

Conclusion and Future Work

- A new model for inter-DC network traffic prediction
 - treat elephant flow information explicitly
- Key idea: decompose the various components from the combined traffic pattern
 - the wavelet transform is an internal decomposition
 - separating out the elephant traffic can be treated as an external decomposition
- Practical considerations: reduce production cost
 - reduce the flow sampling overhead using interpolation methods
 - reduce the training overhead by 40% by combining incoming/outgoing traffic
 - Accurate prediction => reduce the peak bandwidth for about 9% for Baidu
- Future Work
 - Predicting longer period trends (weeks to months)
 - Models on multiple inter-DC link prediction

Yi Li

Tsinghua University li-yi13@mails.tsinghua.edu.cn