
LVMT: An Efficient Authenticated Storage for Blockchain

Chenxing Li
Shanghai Tree-Graph Blockchain Research Institute

Sidi Mohamed Beillahi
University of Toronto

Guang Yang, Ming Wu, Wei Xu
Shanghai Tree-Graph Blockchain Research Institute

Fan Long
University of Toronto

Abstract
Authenticated storage access is the performance bottle-

neck of a blockchain, because each access can be amplified
to potentially O(logn) disk I/O operations in the standard
Merkle Patricia Trie (MPT) storage structure. In this paper, we
propose a multi-Layer Versioned Multipoint Trie (LVMT), a
novel high-performance blockchain storage with significantly
reduced I/O amplifications. LVMT uses the authenticated
multipoint evaluation tree (AMT) vector commitment proto-
col to update commitment proofs in constant time. LVMT
adopts a multi-layer design to support unlimited key-value
pairs and stores version numbers instead of value hashes to
avoid costly elliptic curve multiplication operations. Our ex-
periments show that read and write operations are 7x faster
in LVMT than in an MPT. Our experiments also show that
LVMT increases the execution throughput of a blockchain
system by up to 3.1x.

1 Introduction

Blockchains that provide decentralized, robust, and pro-
grammable ledgers at internet scale have recently gained in-
creasing popularity across different domains such as financial
services, supply chain, and entertainment. For example, smart
contracts built on top of blockchain systems now manage
digital assets worth tens of billions of dollars [1].

Although the early classical blockchain systems like Bit-
coin [32] and Ethereum [13] have serious performance bot-
tlenecks in their consensus protocols which limit the sys-
tem throughput under 30 transactions per second, recent tech-
nique evolutions on consensus and peer-to-peer network pro-
tocols [6,17,18,21,24,26,28,31,33,39,40,46,47] have driven
the achievable blockchain throughput to more than thousands
of transactions per second. This makes the transaction exe-
cution, which is dominated by the storage access, the new

bottleneck of the blockchain system. Our investigation (see
Sec. 6) shows that 87% of the transaction execution time is
consumed at the storage layer.

The inefficiency of the blockchain storage layer originates
from the requirement of the authentication. In a standard
permission-less blockchain system, there exist two types of
blockchain nodes: the full nodes and the light nodes. A full
node synchronizes and executes all the transactions, and main-
tains the blockchain ledger state accordingly. A light node
(client) only synchronizes the block headers without trans-
actions and blockchain ledger state. The ledger state of a
blockchain is in the form of key-value pairs. When a light
node wants to know the value of the given key, it must query
to a full node. However, because blockchain nodes are per-
missionless, the light node should not trust the response from
the full node. Therefore, the blockchain protocol requires the
block proposer to compute a commitment (called the state
root) for the latest ledger state and fill it in the proposed block
header. A block header with an incorrect commitment is in-
valid. When responding to the queries from light nodes, a full
node can generate proofs with respect to the corresponding
commitments to convince the queriers. Thus, the ledger state
is called authenticated.

The authenticated storage typically employs the structure
of Merkle Patricia Trie (MPT) [3], a specific form of Merkle
tree. Each leaf node in an MPT stores a value and, as a trie,
the path from the root to the leaf node corresponds to the key
of the stored value. Each inner node in the MPT stores the
crypto hash of the concatenated contents of all its children.
The root hash of the MPT serves as the commitment of the
blockchain state for authentication.

Unfortunately, this authentication comes with a heavy per-
formance price. Modifying one key-value pair in the state
requires an MPT to update hashes of all nodes in the path
from the corresponding leaf node to the root. If not cached,

1

each state update operation will be amplified into O(logn)
disk I/O operations, where n is the size of storage. Note
that even a simple payment transaction contains at least two
ledger state updates, i.e., deducting and increasing balances
of senders and receivers, respectively. As the throughput of
recent blockchains approaches thousands of transactions per
second, it is not surprising that the storage becomes the new
bottleneck.

This paper presents LVMT, a novel high-performance au-
thenticated storage framework with significantly reduced disk
I/O amplifications. LVMT achieves high efficiency by com-
bining a multi-level Authenticated Multipoint evaluation Tree
(AMT) and a series of append-only Merkle trees. AMT is
a cryptographic vector commitment scheme that can update
commitment (i.e., the hash root) in constant time [45]. Al-
though it has constant commitment update time, we still face
several key challenges when fitting AMT in LVMT design.

The first challenge is that the AMT commitment update
algorithm uses expensive elliptic curve multiplication opera-
tions. A naive approach would cause a state update operation
on AMT slower than MPT in practice in spite of the reduced
amplification. LVMT addresses this challenge with its novel
key-versioned-value design. LVMT assigns the value of each
key a version that increments as the value changes. LVMT
uses AMT to store key-version pairs instead and uses Merkle
Trees to maintain an append-only authenticated list of key-
version-value triples. Each update to LVMT will therefore
translate into an increment of the stored version in AMT. Be-
cause during a commitment update, the AMT algorithm mul-
tiplies a precomputed elliptic curve point with the difference
between the old value and the new value (i.e., one for a ver-
sion increment), LVMT effectively eliminates the expensive
multiplication. Also, because the key-version-value triple list
is append-only, LVMT only needs to construct these Merkle
Trees once during the block commit time, and therefore the
process is very efficient.

The second challenge is that AMT cannot support enough
bits for blockchain state keys. An AMT with k-bit key-space
requires public parameters with 2k elliptic curve points. To
enable efficient update, AMT also needs to pre-compute and
cache elliptic curve points proportional to the same size of
public parameters. Even when the number of bits is 32, the
pre-computed metadata size would exceed 256 GB, but keys
in blockchain ledgers typically have 256 bits. To address this
challenge, LVMT operates with multiple AMTs organized
in a novel multi-level multi-slot structure. Each AMT in the
structure has a 16-bit key-space and when a collision happens
the structure will automatically create a sub-AMT in the next
level to hold collided key-version pairs. Also, because colli-

sions are rare after the first level and creating sub-AMT will
make subsequent access more expensive, LVMT also makes
each entry in AMTs contain five slots. LVMT therefore only
expands to the next level if we have more than five collisions.

The third challenge is that maintaining the proof genera-
tion metadata is expensive. Unlike just updating the root hash
for AMT which takes constant time, maintaining the proof
generation metadata still takes O(logn), and it would trigger
the same amount of I/O amplifications as MPT. To address
this challenge, LVMT uses a proof sharding technique to par-
allelize the proof generation workload across the blockchain
network. In LVMT, each full node only maintains the proof
generation metadata for a shard of the blockchain state (e.g.,
the keys share the same 4-bit prefix). Our observation is that
there are typically thousands of full nodes in a production
blockchain and that having all nodes to maintain proof gen-
eration capabilities for all key-value pairs in the entire state
is unnecessary. Even sharded, for any part of the state, there
will still be enough nodes serving proof generation requests
from light clients. Note that different from other sharding de-
signs [14,24,30,46,48], our proof sharding does not sacrifice
any security. All full nodes in LVMT still maintain the entire
blockchain state, execute all transactions, update the root hash
of LVMT, and verify all blocks. Only the proof generation
workload is sharded.

We implemented LVMT and integrated it into Conflux [28],
a high-performance blockchain production with smart con-
tract support. We compared LVMT with MPT on both
the stand-alone read/write workload and the end-to-end
blockchain processing workload. Our results show that
LVMT achieves up to 10x higher throughput on random state
read/write operations. When integrated end-to-end with a
high-performance blockchain, LVMT achieves up to 3.1x
higher simple payment transaction throughput and up to 2.7x
higher ERC20 [36] token transfer transaction throughput. The
performance improvement comes from the significantly re-
duced disk I/O amplifications. The amplification of LVMT
is up to 4x less than MPT on reading operations and is up to
11x less than MPT on write operations.

2 Background

In this section, we recall some background on cryptographic
concepts that our system builds on. In particular, we intro-
duce the cryptographic building blocks of the authenticated
multipoint evaluation tree (AMT) [45], an efficient vector
commitment protocol.
Notations: Let [n] to denote the integers in {x ∈ Z+|1≤ x≤
n}. G denotes an elliptic curve group and symbols in upper

2

cases like G,P denote the elements in the elliptic curve groups.
Zp denotes an additive group with order p.

2.1 Authenticated Storage in Blockchain

In a standard permission-less blockchain system, blockchain
nodes can be distinguished into two types: the full nodes and
the light nodes. A full node will synchronize and executes
all the transactions and maintain the blockchain ledger state
accordingly. A light node (client) only synchronizes the block
headers without transactions and blockchain ledger state.

When a full node proposes a new block, the blockchain
protocol requires it to execute transactions in the block and
put the commitment of the ledger state after execution in the
block header. So a blockchain full node maintains a write-
back cache in transaction execution and flushes all the changes
to the storage after executing all transactions in a block. The
authenticated storage is required to provide two interfaces to
the execution engine:

• Get(k)→ v: Gets the value v of given key k.
• Set({(k,v)i},e)→ comm: Flushes a series of key-value

pairs (k,v) to the storage with block number e and get
the commitment comm of the ledger state after changes.

When a light node wants to know the value of a given key,
it will query with a full node and expect the full node returns
the value with proof with respect to the ledger commitment.
The light client will check whether the commitment is a know
valid commitment and verify the correctness of the proof. So
the authenticated storage is required to provide two algorithms
for proving and verifying:

• Respond(k)→ (v,π,comm): Answeres the value v of
key k with proof π with respect to the most recent com-
mitment comm.

• Verify(k,v,π,comm)→ 0/1: Verifies the response from
the full node.

2.2 KZG Commitment

In [23], Kate et. al. proposed KZG polynomial commitment
protocol, which allows someone to commit a polynomial func-
tion f to a commitment, and prove the value f (x) of any given
position x to verifiers with the commitment.

KZG commitment protocol is built on a bilinear map. Let
G1 and G2 be the starting points of two elliptic curve groups
G1,G2 of the same group order p respectively. A bilinear
map e : G1×G2→GT is homomorphic such that e(a ·G1,b ·
G2) = ab · e(G1,G2) holds for any a,b ∈ Zp, where GT is
another group with the same order p. BLS12-381 [10] from
BLS families [7] and BN254 [9] from BN families [8] are
widely-used deployed systems that implement bilinear maps.

G1 and G2 are elliptic curve groups in order of p, and G1 and
G2 are starting points of G1 and G2.

For a given polynomial function f : Zp→ Zp in the degree
of n, KZG commitment assumes a series of public parame-
ters τ ·G1,τ

2 ·G1,τ
3 ·G1, · · · ,τn ·G1 in a trusted setup1 and

commits function f to C, C := f (τ) ·G1.
For any index i∈Zp, x− i divides f (x)− f (i) (i.e., hi(x) :=

f (x)− f (i)
x−i is a polynomial). The proof π of f (i) is defined by

hi(τ) ·G1. As long as the prover can compute the coefficient of
hi(x), hi(τ) ·G1 is a linear combination of public parameters
with known coefficients. A verifier querying i with answer
y = f (i) and proof π := hi(τ) ·G1 can verify the proof by
e(π,(τ− i) ·G2) = e(C− y ·G1,G2).

If the proof π is constructed correctly, e(π,(τ− i) ·G2) =

(h(τ) · (τ− i)) · e(G1,G2) = e((f (τ)− f (i)) ·G1,G2). So it
must pass the check. If f (i) ̸= y, h(x) is a fraction. So it is
hard to find a proper proof without knowing τ. In [23], the
authors proved the binding property of this protocol.

KZG commitment also supports proving a batch of posi-
tions. To prove that f (x) equals to 0 at a set of positions S,
the proof π is constructed by f (τ)

∏i∈S(τ−i) ·G1.

A vector commitment scheme can be built with KZG com-
mitment by converting a vector a⃗ to a polynomial function
f by Lagrange interpolation. Formally, for an input vector
a⃗ with n elements, the interpolated function f is defined
by f (x) = ∑

n
i=1 ai · Ii(x), where ai is the i-th element of a⃗

and Ii,n(x) is a Lagrange function satisfying Ii,n(i) = 1 and
Ii,n(x) = 0 for x ̸= i and 1≤ x≤ n.

When updating the value at position i from ai to a′i, the
corresponding commitment C can be simply updated to

C′ :=C+(a′i−ai) · Ii,n(τ) ·G1. (1)

If the prover cached results Ii,n(τ) ·G1 for all i, updating
commitment only needs one multiplication and one addition
on the elliptic curve G1, which takes O(1) time.

2.3 Authenticated Multipoint Evaluation Tree

Although KZG commitment can update the commitment C in
constant time, it requires O(n) time to construct a proof for a
position or maintain proofs for all the position. In a blockchain
system, the vector to be committed is changing. KZG com-
mitment cannot generate proofs efficiently for queries with
arbitrary index i.

1A trusted party generates the public parameters with a random τ and
forget τ after generation. Secure multi-party computation protocols for the
trusted setup [11, 12, 20] allows multiple participants to generate the public
parameters collaboratively while no one can learn the exact τ. More details
are in the supplymentary material.

3

In [45], the authors propose authenticated multipoint evalu-
ation trees (AMT) commitment protocol to solve this problem.
AMT maintains auxiliary information in the size of O(n logn)
and can generate a proof in O(logn) time.

We illustrate the high-level idea of AMT through an ex-
ample with n = 8 = 23. For an input vector a⃗ with eight ele-
ments, AMT computes its Lagrange interpolation f (x) which
satisfies f (i) = ai for 1 ≤ i ≤ 8. AMT splits f (x) into two
functions f0(x) and f1(x) in the same degree as f (x) with
f (x) = f0(x)+ f1(x).

f0(x) :=
{

f (x) x ∈ {2,4,6,8}
0 x ∈ {1,3,5,7}

f1(x) :=
{

f (x) x ∈ {1,3,5,7}
0 x ∈ {2,4,6,8}

Similarly, AMT also divides f0(x) into two functions f0,0(x)
and f0,1(x) with f0(x) = f0,0(x)+ f0,1(x). f0,0(x) equals f (x)
for x ∈ {4,8} and f0,1(x) equals f (x) for x ∈ {2,6}. Repeat-
ing this process recursively gives a full binary tree. Each node
corresponds to a function (e.g., f0,1(x)). Each leaf is a multi-
plication of a Lagrange function (e.g., f0,0,1(x) = a4 · I4,8(x))

AMT associates each inner node with two elements: 1) the
KZG commitment of the corresponding function and 2) a
batch proof for the indices that always be zero of this func-
tion. The formal definition for associated elements is pro-
vided in the appendix. For example, for the node of func-
tion f0,0(x), AMT maintains its commitment f0,0(τ) · G1

and a batch proof f0,0(τ)
∏1≤i≤8∧i/∈{4,8}(τ−i) ·G1. When proving the

value of a given entry, e.g., a4, since f (x) = f1(x)+ f0,1(x)+
f0,0,0(x)+ a4 · I4,8(x), the prover outputs the associate com-
mitments (f1(τ) ·G1, f0,1(τ) ·G1, f0,0,0(τ) ·G1) and proves
f1(4) = f0,1(4) = f0,0,0(4) = 0 by the associated batch proofs.
The verifier checks the correctness of batch proof and if
f (τ) ·G1 = (f1(τ)+ f0,1(τ)+ f0,0,0(τ)+a4 · I4,8(τ)) ·G1.

When updating one entry, AMT finds the path from the root
to the leaf corresponding to that entry and update the associate
elements on the path. The rest nodes have no change. So AMT
can take O(logn) time to maintain the proofs.

The nodes are auxiliary information for generating proofs
only. For a blockchain miner which does not serve client
queries, it can skim the auxiliary information and only main-
tain the commitment, which takes O(1) time.

3 Overview

Recent works [27, 37] have shown that the majority of trans-
actions execution time is spent on operations that access the
blockchain state. For instance, a profiling experiment done

Pairing engines BLS12-381 BN254
Addition 682 341
Multiplication 168,863 92,042

Table 1: Time cost of operations over the primary curve G1
of pairing functions (ns).

in [27] shows that read and write operations to the blockchain
state account for more than 67% of the execution time for the
transaction executing the transfer function of ERC-20 smart
contract [2, 36]. In this section, we present an overview of
how LVMT tackles this problem. In particular, we propose a
new authenticated storage system to reduce the amplification
of read and write operations that access the blockchain state.

Our proposed system is based on AMT since it has an
ideal time complexity, i.e., constant cost in updating the com-
mitment. In particular, our proposed system solves several
challenges to implement an efficient blockchain storage sys-
tem using AMT:

First, although AMT costs constant time in updating the
commitment, the constant ratio is large for a blockchain sys-
tem. Table 1 shows the result of a micro-benchmark carried
on an Intel i9-10900K CPU machine. It shows the time cost
for basic cryptographic operations. Note that an elliptic curve
multiplication takes about 0.1 ms, which is even much slower
than accessing the disk.

Second, to support data with n maximum entries, AMT
requires precomputed parameters in size of O(n logn) and
maintains auxiliary information in size of O(n log2 n). Thus,
AMT cannot support key-value pairs for an arbitrary-length
bit string. As the size of the blockchain ledger state continues
to grow, AMT is not a scalable solution.

Last, a blockchain system must consider the slowest node.
Even if most miners do not need to maintain the auxiliary in-
formation for proof. The authenticated storage must guarantee
the nodes for responding queries can keep up.

We propose the following techniques to resolve the chal-
lenges above. First, we design a versioned database, which
only stores the version number of keys in AMT. This can
avoid the elliptic curve multiplications and support an arbi-
trary length of values since the values are not stored in AMT.
Second, we extend AMT to multiple levels to store version
numbers for unlimited keys. So the size of AMT could be
relatively small to save cache for parameters. To support the
arbitrary length of keys and avoid deep updates in the multi-
level hierarchy, we use key hashes to allocate slots for version
numbers. Last, we introduce proof sharding to reduce the cost
of a single node in maintaining the auxiliary information for
proofs.

4

AMTs

Input vector with four
elements

Multiple slots for version
numbers in one element

Commitment of AMT

Occupied slot for
key-version pairs

Vacant slot for
key-version pairs

A Slot for sub-AMT
with label

Allocated slot for
key 100111…

A Commitment
with label

R

The root AMT

A

A

Sub-AMT-2

B

B

Sub-AMT-(2,1)

1st level 2nd level 3rd level ······

00

01

10

11

00

01

10

11

00

01

10

11

(a) Multi-level AMTs

Set (key,val)

Append-only
Merkle treesMulti-level AMTs

Store tuple
(key,ver,val,loc)

Prove existence of tuple
(key,ver,val,loc)

Increase ver of
key by 1

Prove key

Prove the current
ver of key

(b) Versioned key-value database

Set (key,val)

(key , , val, (3,4))

((2,1), ,)B B

(2 , ,)A A

1. Incease version numbers
in , and by 1
and update commitments.
2. Add the tuples to the
 Merkle trees.

A B

Prove key
1. Prove the version numbers with
respect to the AMT commitment:

2. Prove the existence of the left
three tuples in Merkle trees to
show the commitments at given
version numbers.

B A RB A

B A RB A

(c) Maintenance and proving on Multi-level AMTs

Figure 1: LVMT architecture.

3.1 Versioned Key-value Database

We designed a versioned authenticated storage to avoid multi-
plication on elliptic curve in updating commitment. As shown
in Figure 1b, the multi-level AMTs stores key-version pairs
and are only used to resolve the recent version number of a
key. LVMT stores the key-version-value tuples in an append-
only authenticated data structure consisting of a series of
Merkle trees. Each block constructs one Merkle tree from the
key-version-value tuples for value changes in the block.

Suppose when the blockchain processes a block, it sets a
key-value pair (key,val). LVMT first locates the correspond-
ing entry of key in the multi-level AMTs to increment the
stored version number by one. Suppose the new version
number for key is ver. LVMT then appends a new tuple
(key,ver,val, loc) to the constructed Merkle tree for the block.
Here, loc is a tuple (level,slot) that records at which level
and which slot in the multi-level AMTs the version of the
key is located. When generating a proof for a key-value pair
(key,val), LVMT first use the multi-level AMTs to prove the
most recent version ver of the key key. It then uses Merkle
trees to prove the existence of a tuple (key,ver,val, loc). Note

that because these Merkle trees will never be modified once
they are constructed, their maintenance is very efficient.

Note that updating one element ai to a′i requires computing
(a′i−ai) · Ii,n(τ) ·G1 (equation 1), which multiplies a′i−ai to
the elliptic curve point Ii,n(τ) ·G1. In the versioned key-value
database, ai is essentially a version number and a′i−ai always
equal to 1, so we avoid an elliptic curve multiplication and
save about 100 us in each storage write.

Since the frequency of bumping version number is limited
by the block generation rate, we can then save the bits used for
storing version number and store multiple version numbers
in a single vector entry. For example, when using BN254 as
the underlying bilinear mapping parameter, each entry is an
element in Zp, where p is a prime integer in

(
2254,2255

)
. It

implies each entry can store at most 254 bits. In a blockchain
system generating 100 blocks per second, the version number
will not exceed 240 in 300 years. So each entry can be divided
into six slots with 40 bits as shown in Figure 1a. Note that the
block rate of 100 blocks per second is already unreasonably
high according to the practical setup of typical blockchain
systems.

5

3.2 Multi-level AMT

To make AMT scalable and store the version number for
unlimited keys, we introduce multi-level AMTs as shown in
Figure 1a. The authenticated storage is initiated by one AMT
as the root AMT. Each entry in the AMT contains several slots
for storing version numbers. One slot in each entry is reserved
for storing the version number of the commitment hash of the
sub-AMT, and the other slots are for key-value pairs. Let k
be the height of AMT. When allocating a slot for a new key,
LVMT accesses the entry in the root AMT whose index is the
first k bits of the key hash. If this entry does not have a vacant
slot, it accesses the sub-AMT corresponding to this entry and
accesses the entry in the sub-AMT whose index is the next k
bits of the key hash. LVMT visits the sub-AMTs recursively
to find a vacant slot for a new key. Figure 1a presents an
example with k = 2 for allocating a version slot for a key
with hash 100111 · · · . Since the first two bits of key hash are
10, LVMT accesses the entry with index 2 and tries to find
a vacant slot. Since all the slots in the entry are occupied,
LVMT visits the corresponding sub-AMT-2. It picks the next
two bits 01, accesses the entry with index 1, and recursively
visits the sub-AMT-(2,1) because there is no vacant slot again.
Finally, LVMT finds the fourth slot at the third level being
vacant and allocates this slot.

The commitment of a sub-AMT is treated similar with a
key-value pair, where the key is the index of the sub-AMT
and the value is the commitment. The Merkle trees not only
store key-version-value tuples for normal key-value pairs, but
also stores the tuples of the sub-AMT index, the version of
the sub-AMT commitment, and the commitment hash.

Figure 1c illustrates when a block changes the key with
hash 100111 · · · , how LVMT maintains the AMTs and Merkle
trees. LVMT first increases the version number for this key
by one. This changes the commitment of sub-AMT-(2,1),
so LVMT also increases the version number for the com-
mitment (the slot labeled “B”) by one. And recursively, the
commitment of sub-AMT-2 is changed and the version num-
ber labeled “A” is updated. Finally, LVMT gets the updated
commitment of the root AMT. LVMT appends the tuples of
changed keys and commitments into the Merkle trees along
with the normal tuple of the key-value pair. When generating
a proof for this key, LVMT finds the most recent version of
tuples for sub-AMT-2, sub-AMT-(2,1) and this key. LVMT
proves the existence of these tuples in Merkle trees and proves
the correctness of appeared version numbers with respect to
their AMT commitments. When proving the non-existence of
a key, LVMT proves that all the possible slots for this key are
vacant or has been allocated to other keys.

3.3 Proof Sharding

We recall that the AMT maintains a binary tree, in which each
node contains a commitment and a batched proof. Each entry
in the input corresponds to a leaf in this tree. When generating
a proof, AMT picks commitments and batch proofs from the
siblings of the nodes on the path from this leaf to the root.
Each node can be updated without the information from the
other nodes, so the maintenance of the proof tree is easy to
parallelize. Each blockchain node can maintain a shard of
proof. It picks a subtree of the root AMT and is responsible
for generating proofs for the leaves in this subtree and the sub-
AMTs extended from this leaf. Multiple blockchain nodes
can generate proof for any key collaboratively. Similarly, the
storage for the Merkle tree can be distributed to multiple
nodes by the block number.

4 LVMT Design

Now we formally define LVMT, which utilizes a key-value
database as a backend and maintains a tuple of key-value
maps (KM,AM,MM,VM,LM) where KM stores the key-
value pairs, AM stores the AMTs data structures, MM stores
the Merkle trees, VM stores the keys version slots metadata,
and LM stores the position of a key or a sub-AMT in the
Merkle trees. LVMT decouples the data storage and data au-
thentication. KM stores data without authentication, AM and
MM store the authenticated information, VM and LM store
the metadata and indices for authenticated information. Note
that each AMT contains the following elements:

• comm: the commitment of AMT;
• proof_tree: the proof tree of AMT;
• leaves: a list of leaves; leaves[i] denotes the leaf corre-

sponding to the i-th element of the input vector. A leaf is
constituted of the two lists vers and keys. vers[0] stores
the version number for the sub-AMT. vers[1] to vers[5]
store the version numbers for the keys keys[1] to keys[5],
respectively. (Note that only vers contribute to the AMT
commitment.)

4.1 Interfaces to the Transaction Execution

LVMT provides the following two interfaces (instructions)
for the blockchain execution layer:

• Get(k)→ val: Reads the value val stored in k;
• Commit(W,e)→ (aroot,hroot): Flushes the changed

key-value pairs in W with block number e and produces
the commitment of LVMT.

These interfaces match the requirements from the
blockchain execution engine introduced in Section 2.1. The

6

Algorithm 1 A procedure to compute a commit changes. It
takes the list of key-value pairs W and an epoch number e,
and returns the commitments aroot and hroot.

1: procedure COM(W, e)
2: M← []; T←{ };
3: foreach (k,val) in W
4: (lv,tidx,sidx,ver)← ComKV(k,val);
5: M← (k,ver,val, lv,sidx) :: M;
6: T←{(lv,tidx)}∪T;
7: i←maximum lv in T;
8: while i≥ 0
9: foreach (lv,tidx) in T with lv = i

10: (C,ver)← UpdComVer(lv,tidx);
11: M← (lv,tidx,ver,comm) :: M;
12: if lv > 0
13: T←{(lv−1,⌊tidx/n⌋)}∪T;
14: foreach (k,ver,val, lv,sidx) in M with index i
15: LM[k]← (e, i);
16: foreach (lv,tidx,ver,C) in M with index i
17: LM[(lv,tidx)]← (e, i);
18: Build merkle tree of M and store inner nodes in MM;
19: mroot←Merkle root of M;
20: hroot←Merkle root of the mroot of all the commits;
21: aroot← AM[(0,0)].comm;
22: return (aroot,hroot);

Algorithm 2 A procedure to compute the commit of a key-
value pair. It returns the level lv, the tree index tidx, the slot
index sidx of the changed AMT, and the version ver.

1: procedure COMKV(k,val)
2: if KM contains k
3: (lv,sidx)←V M[k];
4: else
5: (lv,sidx)← ALLOCATESLOT(k);
6: V M[k]← (lv,sidx);
7: (tidx, lf)← LEAFATLEVEL(lv,k);
8: ver← lf.vers[sidx];
9: lf.vers[sidx]← lf.vers[sidx]+1;

10: Update the corresponding commitments and proofs.;
11: ver← ver+1;
12: return (lv,tidx,sidx,ver);

execution engine uses Get to fetch data from the storage and
LVMT simply loads the value correspondingly from KM.

The instruction Commit is invoked after the execution of a
block. LVMT commits the key-value pairs W using the proce-
dure COM defined in Algorithm 1. The returned commitments
will be filled in the block header. The commit returned values
consist of the roots of both the top-level AMT and MPT.

The procedure COM first commits the key-value pairs in
W (Lines 3 to 6) with the sub-procedure COMKV. Then it
updates the version numbers of all the affected sub-AMTs
from the deepest sub-AMT to the root AMT (Lines 7 to
13) using the procedure UPDCOMVER that maintains the
version number for commitments of sub-AMTs similar to
COMKV. While maintaining the version numbers, it collects
the tuples of keys, versions, values, and other metadata in a list
M (Line 5). A pair of the sub-AMT index and its commitment

Algorithm 3 A procedure to allocate a version slot to a new
key. It takes the key k to allocate a slot for, and returns the
level and the allocated slot index.

1: procedure ALLOCATESLOT(k)
2: lv← 0;
3: while true
4: (tidx, leaf)← LEAFATLEVEL(lv,tidx);
5: for j ∈ [5]
6: if leaf.vers[j] == 0
7: leaf.keys[j]← k;
8: return (lv, j);
9: lv← lv+1;

Algorithm 4 A procedure to compute the AMT index and the
leaf index of a key kat a AMT level lv. It returns the tree index
tidx and the leaf leaf corresponding to the key k at level lv.

1: procedure LEAFATLEVEL(lv,k)
2: tidx← first bit to (k · lv)-th bit of H(k);
3: lidx← (k · lv+1)-th bit to ((k+1) · lv)-th bit of H(k);
4: leaf← AM[(lv,tidx)].leaves[lidx];
5: return (tidx, leaf);

is treated similarly to a key-value pair (Line 11). LVMT builds
a Merkle tree for M, so the value of the given key and version
is authenticated (Line 19). It also stores the positions of these
elements in the Merkle trees (Lines 15 and 17). So when
generating a proof, the prover can locate the corresponding
Merkle leaves of a key or an AMT commitment.

The sub-procedure COMKV (Algorithm 2) is used to main-
tain and update the version numbers. COMKV(k,val) first
finds the allocated version slot for the given key k (Line 3). If
the key has not been allocated a version slot, it allocates a slot
for it (Line 5). It uses the sub-procedure ALLOCATESLOT

(Algorithm 3) to find a vacant slot in the AMT to allocate.
In particular, starting from the root AMT, ALLOCATESLOT

computes the tree and leaf indices for the given key at each
level, checks if the leaf has a vacant slot then returns the level
and slot indices of the slot, otherwise, it moves to the next
level in case the leaf has no vacant slot. Then, COMKV com-
putes the corresponding tree index tidx and the leaf lf for k
at level lv (Line 7) using the sub-procedure LEAFATLEVEL

(Algorithm 4), which finds the corresponding AMT index

Algorithm 5 A procedure to update the commitment and
version of an AMT at level lv and tree index tidx. It returns
the commitment C and the updated version number ver.

1: procedure UPDCOMVER(lv, tidx)
2: C← AM[(lv,tidx)].comm;
3: ptidx← ⌊tidx/n⌋;
4: plidx← tidx mod n;
5: ver← AM[(lv,ptidx)].leaves[plidx].ver[0];
6: Increase AM[(lv,ptidx)].leaves[plidx].ver[0] by 1;
7: Update the corresponding commitments and proofs;
8: ver← ver+1;
9: return (C,ver);

7

Algorithm 6 A procedure to generate a proof for an existing
key k. It returns the proof of the key.

1: procedure GENPROOF(k)
2: keypf← PROVEKEY(k);
3: (lv,sidx)← VM[k];
4: while lv > 0
5: tidx← first bit to (k · lv)-th bit of H(k);
6: commpfs[lv]← PROVECOM(lv,tidx);
7: lv← lv−1;
8: return (keypf,commpfs);

Algorithm 7 A procedure to verify the proofs keypf and
commpfs with respect to an AMT root aroot and Merkle root
mroot.

1: procedure VERIFYPROOF(keypf, commpfs, aroot, mroot)
2: Verify the AMT proofs and the merkle proofs in keypf and

commpfs;
3: Verify the commitment in commpfs[1] equals to amtroot
4: if all the verification pass
5: return true;
6: else
7: return false;

and leaf for the key k at the level lv using the hash H(k) of
k. Since each AMT has m levels and 2m leaves, the first m · lv
bits of H(k) decides the AMT index and the subsequent m
bits locate the leaf in the tree. Finally, COMKV locates the
slot for this key and updates its version and other information
according to AMT’s rule (Line 8 to 10). The sub-procedure
UPDCOMVER (Algorithm 5) updates the commitment and its
version number given an AMT located by its level and index.

4.2 Proving Key-value Pairs

As an authenticated storage, LVMT provides the following
two interfaces to allow a user to query a value from an un-
trusted server and to verify the value with the commitment.

• GenProof(k)→ π: Generates proof π for key k;
• Verify(k,v,π,comm) → true/false: Verifies the key

value pair (k,v) with respect to a ledger state commit-
ment.

When responding a query k from a light node, a full node
will generate proof π using the procedure PROVE and re-
sponse with the loaded value and the current commitment.

The procedure PROVE (Algorithm 6) consists of two parts:
1) the proof of the value val of the key k with respect to
the sub-AMT it belongs to (line 2) using the sub-procedure
PROVEKEY; 2) the proof of the commitment for all the sub-
AMT along the path from k’s sub-AMT to the root AMT (ex-
cept the root AMT) (line 4 to line 7) using the sub-procedure
PROVEKEY.

The generated proof consists of a merkle proof for the ex-
istence of the tuple of the key (or the AMT index), the value

(or the AMT commitment) and the version, an AMT proof
for the version number, and other metadata. We provide the
definition for the sub-procedures PROVEKEY (Algorithm 8)
and PROVECOM (Algorithm 9) in the supplementary mate-
rial. In the supplementary material, we also introduce how to
generate a non-existing proof.

The light node verifies the proof using the procedure
VERIFY (Algorithm 7), which recovers the tuple of Merkle
leaves to be verified from the proof and verifies the AMT
proofs and the merkle proofs.

5 Implementation

We implemented AMT using Arkworks [4], a Rust library
for elliptic curve operations. AMT is built using the pairing
parameters BN254 and supports vector commitment in the
length of 216. Each entry contains 254 available bits and is
divided into six slots with 40 bits. Based on the above AMT
implementation, we implemented LVMT in Rust. LVMT sup-
ports any backend database that provides a key-value interface
defined in rust crate “kvdb” [34]. We also ported the imple-
mentation of MPT from the OpenEthereum client [43], which
also supports any backend with the same interface.
Combining entries in different maps: Note that for a given
key, we use three maps KM, VM, and LM to store its value,
version slot index, and the position of the Merkle tree for
the recent change. In our implementation, we combine these
entries into one key-value pair to save the read and write
operation for each key.
Cache the root AMT: Since the root AMT is accessed fre-
quently, the leaves and inner nodes of the first layer are always
stored in memory. The commitments of the LVMT in the sec-
ond layer are also cached. Each leaf and inner node of an
AMT has two points on the elliptic curve. Since we set the
height of AMT as 16, the root AMT and the commitments of
AMTs in the second layer stores about 200000 elliptic curve
points in memory. Each point takes 96 bytes in our parameter,
so it takes 20MB memory to store them.
Cache cryptographic parameters: We recall that the com-
mitment of AMT with polynomial function f (x) is C = f (τ) ·
G1. So when increasing the input entry a⃗i by δ, the polynomial
function will be updated to f ′(x) = f (x)+δ · Ii,n(x), where n
is the length of vector input and I is the Lagrange function.
So the commitment will be updated to C′ =C+δ · Ii,n(τ) ·G1.
Thus, LVMT can precompute the elliptic curve point Pi =

Ii,n(τ) ·G1. Each time the i-th entry is updated from a⃗i to a⃗′i,
the commitment can be updated by C′ =C+δ ·Pi. In LVMT,
an input entry only changes when the version number in-
creases by 1. As each entry is divided into six slots with 40

8

bits, the difference between the new value a⃗′i and the old value
a⃗i must be one of 1,240,280,2120,2160,2200. LVMT precom-
putes P(j)

i = 240 j · Ii,n(τ) ·G1 for 0≤ j ≤ 5 and 1≤ i≤ n, so
no matter which version slot changes, LVMT only needs to
update the commitment by increasing a precomputed point.
Each elliptic curve point takes 96 bytes, so a node not main-
taining proofs needs only 37 MB memory to store them. A
node maintaining a shard of proof needs to cache more pa-
rameters, which will take about 650 MB memory in total.
Representation of elliptic curves points: Each point on
the elliptic curve has a unique affine coordinate (x,y) ∈ Z2

p,
where p is a large prime number. A projective coordinate
(x,y,z) ∈ Z3

p can also represent an elliptic curve point whose
affine coordinate is (x/z2,y/z3) ∈ Z2

p. Elliptic curve addi-
tion on projective coordinates is much faster than it on affine
coordinates since it allows to avoid the slow operation, i.e.,
division on a large prime field, on the projective coordinates.
2 Since elliptic curve points may have multiple projective
coordinates, it may cause inconsistency when computing the
hash for an elliptic curve point by its projective coordinate. So
LVMT must convert the projective coordinates to the affine
coordinates when computing the hash of a sub-AMT com-
mitment. However, each conversion takes about 60 us in our
experiment, which significantly slows down the write speed.
Fortunately, if we convert the projective coordinates in batch,
the average time cost can be reduced to 0.4 us. Thus, LVMT
postpones computing the hash of elliptic curve points to the
end of executing one block and converts all the projective
coordinates to the affine coordinates in batch.
Garbage collection of append-only Merkle trees: As the
version number of a key increases, the tuples of the old ver-
sions of the key in the append-only Merkle trees will no longer
be required in future proofs. When the Merkle tree of an old
block only contains one or two useful entries, LVMT can
garbage collect the remaining entries and instead store only
the path from these useful entries to the root. This garbage
collection is performed by a background thread to avoid im-
pacting the performance of LVMT under a heavy workload.

6 Evaluation

We evaluate the performance of LVMT and compare with
MPT on a machine equipped with Intel i9-10900K CPU,
32 GB DDR4 RAM, and SSD. Both LVMT and MPT use
rocksdb [42] as the backend key-value database with an
1500 MB cache budget. To save the time cost in crypto-
graphic hash function, we replace the keccak hash function
with blake2b [5]. We evaluate the end-to-end performance

2The benchmarks in Table 1 is computed on projective coordinates.

1m 3m 5m
Number of initialized keys

0

10000

20000

30000

40000

50000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

39148

27851
2517323325

13707
10016

37458

27065
24518

21950

11190
8790

36929

26597
24112

21358

103268480

Throughput for random native transfers

RAW
LVMT
LVMT64
LVMT16
LMPT
MPT

(a) Transaction execution for balance transfers.

1m 3m 5m
Number of initialized keys

0

5000

10000

15000

20000

25000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

18339

14560
1357712861

8090

5957

17631

14109
13236

12254

7115
5361

17590

13984
13088

12009

6702
5150

Throughput for random erc20 transfers

RAW
LVMT
LVMT64
LVMT16
LMPT
MPT

(b) Transaction execution for ERC-20 transfers.

Figure 2: Breakdown of time cost in executing one transac-
tion.

of authenticated storage in Conflux [29], a high-performance
blockchain. A single Conflux node executes transactions with
different storages:

• LVMT: LVMT without auxiliary information (proof
sharding),

• LVMT64 and LVMT16: LVMT with 1/64 and 1/16 of
proof sharding,

• MPT: the authenticated storage in OpenEthereum, one
of the most popular Ethereum clients,

• RAW (non-authenticated): the read and write operations
are applied on the key-value based backend directly.

End-to-end performance: To measure the maximum per-
formance, we set an extremely large block generation rate
of 100 blocks per second. In the experiment, 20000 senders
randomly pick addresses in the receiver space and transfer the
non-zero balance to them, i.e., simple payment transactions.
Each sender is initialized with enough balance. We evaluate
the receiver space with one million, three million, and five
million addresses. We run Conflux for a sufficiently long time,
so the number of executed transactions is five times larger
than the receiver space. We also compare the end-to-end per-

9

RAW LVMT LVMT64 LVMT16 MPT
Storages

0

10

20

30

40

50

60

70

Ti
m

e
co

st
 p

er
 tr

an
sa

ct
io

n
(u

s)

16 16 16 16 16

1

10 13 15

46

11 11 13 16

56

Time usage breakdown for transaction execution
Execution Engine
Authenticated Structure
Backend Database

(a) Time cost breakdown for balance transfers.

RAW LVMT LVMT64 LVMT16 MPT
Storages

0
10
20
30
40
50
60
70
80
90

Ti
m

e
co

st
 p

er
 tr

an
sa

ct
io

n
(u

s)

39 41 41 41 43

1

13 17 20

66

16 17 18 21

78

Time usage breakdown for executing ERC20 transfers
Execution Engine
Authenticated Structure
Backend Database

(b) Time cost breakdown for ERC20 transfers.

Figure 3: Break down of the time usage in transaction execu-
tion on 5 million receivers.

formance with LMPT [16], a variant of MPT, in the same
code base. Figure 2a shows that LVMT achieves a maximum
throughput of 27851 TPS on average and is up to 3.1 times
faster than MPT and 2.5 times faster than LMPT. We also
evaluate the performance of transactions executing the trans-
fer function of the popular ERC-20 smart contract [36], the
most common transactions on the Ethereum blockchain [2].
As shown in Figure 2b, LVMT is up to 2.7 times faster than
MPT and 2.0 times faster than LMPT in this workload.

To further study the time usage in execution of one transac-
tion, we breakdown the time usage into three parts: 1) Execu-
tion Engine, i.e., transactions execution without access to the
authenticated storage, 2) Authenticated Structure, i.e., access
to the authenticated storage without accesses the backend
database, 3) Backend Database, i.e., accesses to the backend
database. Figure 3a shows the breakdown of time usage in
executing random balance transfer transactions with 5 million
receivers. The execution engine takes the same time 16 us
across the different storages. LVMT takes a similar time 11
us with RAW in accessing the backend. It implies LVMT
almost eliminates the overhead of the authenticated storage
from backend access. LVMT64 and LVMT16 take a similar
time to LVMT. MPT requires 46 us and 56 us to access the
authenticated structure and the backend database, respectively,
which is more than 4x the time used in LVMT. As shown

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

Op
er

at
io

ns
 p

er
 se

co
nd

 (1
00

0x
)

238

165
129

61

171
133

105

36

240

189

142

38

168

127
90

29

140
102

61

13

Throughput of authenticated storage
LVMT
LVMT64
LVMT16
MPT

Figure 4: Throughput of authenticated storage on random
workload

real fresh 1m 10m 100m
Number of initialized keys

0

25

50

75

100

125

150

175

Op
er

at
io

ns
 p

er
 se

co
nd

 (x
10

00
)

129 131

105 109

142 149

90 94

61 58

Throughput of LVMT16 with different memory sizes
1500 MB
800 MB

Figure 5: Throughput of authenticated storage on random
workload

in Table 1, a single elliptic curve multiplication requires 92
us, which is even slower than MPT. Therefore, eliminating
the expensive elliptic curve operation is necessary to make
LVMT practical. Figure 3b shows the breakdown in executing
random ERC20 transfers. The execution engine still takes the
same time across the different storages but takes more time
than the execution of the balance transfer. This is because
the execution of ERC20 transfers requires more I/O accesses
(e.g., loading contract bytecode). All the storages take about
20% more time than executing balance transfers.

This experiment shows that LVMT is able to maintain better
throughput than MPT for both simple payment transactions
and the typical ERC-20 smart contract transfer transactions.
Stand-alone performance: We also evaluate the stand-alone
performance of authenticated storage in micro-benchmarks.
Since most transactions simply read the accounts of the sender
and the receiver and update their balances, we launch a work-
load of 10 million random “read then write” operations and
commit the changes every 1000 operations. The authenticated
storage is initiated with random key-value pairs whose size
ranges from 106 to 108. Both the key and the value are 256-
bit strings. We use “1m”, “10m”, and “100m” to indicate the
initialized size 106, 107 and 108. The workload picks the keys
from the initialized set randomly. Since LVMT needs to al-
locate version number slots for new keys, we also evaluate
with a “fresh” setting: the storage has no initialization, and

10

real fresh 1m 10m 100m
Workloads

0

1

2

3

4

5

Re
ad

s p
er

 o
pe

ra
tio

n

1.61.7
2.1

2.4
2.02.2

3.0

2.0

1.01.2
1.7

2.6

1.01.3

2.0

3.0

1.0
1.3

2.1

4.3

Read amplication of authenticated storage
LVMT
LVMT64
LVMT16
MPT

(a) Read amplification of authenticated storage.

real fresh 1m 10m 100m
Workloads

0

2

4

6

8

10

12

14

W
rit

es
 p

er
 o

pe
ra

tio
n

0.91.11.4

5.0

2.02.3
3.0

8.3

1.01.21.7

8.2

1.01.3
2.0

8.9

1.01.3
2.1

11.6

Write amplication of authenticated storage
LVMT
LVMT64
LVMT16
MPT

(b) Write amplification of authenticated storage.

Figure 6: Read and write amplifications of authenticated stor-
age.

the workload accesses distinct keys. In addition, to evaluate
the performance under the real world access pattern, we ex-
tract the storage access trace on Ethereum, the largest smart
contract platform. We choose transactions in 2021 winter,
when Ethereum is going through its latest boom. We replay
the Ethereum transactions from block 13,500,000 to block
13,546,700 and recover the I/O operations in these blocks.
These transactions access 1.3 million distinct keys, and make
4.2 million reads and 2.4 million writes in total. We use “real”
to denote the results from real world transactions.

Figure 4 shows the throughput under the different settings.
LVMT is at least five times faster than MPT. When main-
taining 1/64 of auxiliary information, LVMT64 achieves 70%
to 80% throughput of LVMT. Since the experiment runs 10
million operations in total, in the “fresh” setting, the authenti-
cated storage is initiated with an empty ledger and is ended
with a ledger containing 10 million key-value pairs. So the
throughput of “fresh” is slightly larger than “10m”.

LVMT64 and LVMT16 need to maintain a shard of proof,
which takes about 700 MB memory to cache the crypto-
graphic parameters. As a fair comparison, we also evaluate
LVMT16 with a lower memory budget 800 MB, instead of
1500 MB, to study how the cache size influences the per-
formance. Figure 5 compares the throughput of LVMT16
between 1500 MB and 800 MB memory budgets and shows

real fresh 1m 10m 100m
Workloads

0

200

400

600

800

1000

1200

1400

Da
ta

 si
ze

 (b
yt

es
)

47 60 89

317

0 21 85

582

65 98
196

326

65112
253

722

65114
259

1145

Data reads per operation
LVMT
LVMT64
LVMT16
MPT

(a) Size of data read from the backend per operation

real fresh 1m 10m 100m
Workloads

0

1000

2000

3000

4000

5000

Da
ta

 si
ze

 (b
yt

es
)

39 58102

1192

104153297

3259

65 98196

2353

65112253

3335

65114259

4285

Data writes per operation
LVMT
LVMT64
LVMT16
MPT

(b) Size of data write to the backend per operation

Figure 7: Size of data i/o to the backend per operation

that the throughput is not influenced by the memory budget.
This is expected since the root AMT is cached in memory
and different keys access different parts of the second level of
AMTs.

Read and write amplification: We further study the read and
write amplification on the interface of the key-value database.
Figure 6a shows the read amplification under the different
settings. As the size of the initialized set grows, LVMT has
similar read amplifications. The root AMT contains 216 input
entries, and the second level of AMTs contains 232 input en-
tries in total. Since each entry has five slots for key-value pairs,
the first level of AMTs can only store 0.3 million keys, and
the second level of AMTs can store 21 billion keys. So LVMT
always requires two levels of AMT in the order of millions of
keys. Since the read amplification of a key grows linearly with
its level in the AMTs, it is reasonable that LVMT has similar
read amplifications. In contrast, the read amplification of MPT
grows from 2.56 to 4.31. Figure 6a also reveals the read am-
plification grows linear with the size of auxiliary information.
LVMT16 maintains four times the auxiliary information than
LVMT64. So the surplus of LVMT16 compared to LVMT
is four times larger than the surplus of LVMT64. When ac-
cessing the fresh ledger state, allocating slots for the version
number increases the read amplification of LVMT by 1. The
read amplification of real-world transactions is approximately
equal to the mean value of “1m” and “fresh” settings, because

11

about half of the write operations creates a new storage en-
try. MPT has lower read amplification on the “fresh” setting
than LVMT since MPT benefits from a smaller tree while
LVMT takes one additional read for allocating version slot.
Figure 6b shows the write amplification. The write amplifi-
cation of LVMT is similar with the read amplification. MPT
has a much larger write amplification since half of the write
operations are deletion. Even excluding this factor, MPT has
four to five times larger write amplification than LVMT.

We also study the size of read and write data per operation.
Figure 7 shows that MPT reads hundreds of bytes and writes
thousands of bytes per operation. Because each inner node
in MPT may have at most 16 children, and MPT stores a 32-
byte hash for each child. So each node in MPT may contain
hundreds of bytes. As comparison, LVMT only loads a small
constant size no matter the size of ledger. Because LVMT
caches the root AMT and the commitments of AMTs in the
second level. For a key whose version is stored in the second
level, all the accessing to AMTs can be cached.

7 Related Works

Improved MPT structures: mLSM proposes to maintain
multiple levels of MPTs [38]. The most recent updates are in
the lowest level (level 0). The key-value pairs in a lower level
will be merged to higher levels periodically. LMPT proposes
maintaining three MPTs, one large MPT containing old state
and two small MPTs containing recent state changes [16].
LMPT periodically merges small MPTs into large ones. For
both mLSM and LMPT, the concatenation of the Merkle roots
of all the MPTs becomes the commitment for the ledger state.

These techniques reduce the number of disk I/O operations
on the critical path because the recently accessed state will
be stored into MPTs with smaller heights, and the merge of
MPTs can happen in a background thread. In contrast, LVMT
reduces the disk I/O amplifications directly from O(logn)
to O(1). Our results show that when integrated end-to-end
into Conflux, LVMT outperforms LMPT by up to 2.5x. The
mLSM paper only contains its conceptual design without
implementation and evaluation [38]. It is unclear how mLSM
would perform end-to-end with a blockchain in practice.
Parallelize storage I/O: RainBlock [35] introduces three
different nodes in a blockchain system to accelerate the trans-
action execution: the storage prefetchers, the miners executing
transactions, and the storage nodes. When executing transac-
tions, the miners obtain needed data from multiple prefetchers
and send the updates to multiple storage nodes. Each stor-
age node maintains a shard of MPTs in memory. RainBlock
changes the local storage I/O to network distributed storage

I/O and benefits from the parallel I/O and in-memory storage.
To reduce the read latency of network storage, RainBlock in-
troduces I/O prefetchers and requires the miners to attach all
the accessed key-value pairs and the witnesses (MPT nodes)
when broadcasting blocks. RainBlock reports the average size
of witnesses per transaction is 4 KB and their optimizations
reduce the size of witnesses by 95% , so the additional net-
work message per transaction is about 200 bytes, two times
of a transaction. However, the inefficient usage of networks
brings a bottleneck to a high-performance blockchain sys-
tem [21]. RainBlock also suffers attacks in data availability.
Since in-memory storage is costly, the number of replicas in
RainBlock is much less than in Ethereum. As a comparison,
LVMT does not introduce additional network bandwidth con-
sumption and data availability risk. Even if proof of shard
in LVMT is lost, the other nodes can recover the auxiliary
information of an AMT in minutes.

Vector commitment for data sharding: Several vector com-
mitment protocols [15, 19, 23, 25, 41, 44] have been proposed
to reduce the proof size, support revealing elements in batch,
or make the commitment efficiently updatable under some
requirements. Some research also considers utilizing the vec-
tor commitment for data sharding on blockchain. In [44], the
authors use KZG commitment protocol [23] to replace the
underlying Merkle tree for data sharding. Unlike LVMT, the
goal of this technique is not to improve the throughput but
to reduce the data size of the blockchain storage. It requires
the clients to maintain the proofs for their own data, keep
updating the proof, and attach the values and proofs for the
accessed storage in a transaction. Each client needs to be on-
line and update the proofs of all of its data each time a write
operation happens on the blockchain. Note that this protocol
takes O(n) time to generate proof or maintain proofs for all
data, which costs O(n) time to add a new key-value pair. It
is therefore not designed for a high throughput blockchain
system. When thousands of transactions are executed on the
blockchain per second, a client cannot maintain its proofs
efficiently.

Pointproofs [19] proposes an aggregatable and maintain-
able vector commitment protocol that can maintain the aux-
iliary information for proofs in O(logn) time (like AMT)
and reveal any k-element subset of elements in O(k) time
with a batched proof. Pointproofs allows a consensus node to
generate a batched proof for all the accessed key value pairs
during block execution, so a node without the whole ledger
can verify the correctness of execution. However, for every
1024 transactions, Pointproofs takes 5 seconds to maintain
the auxiliary information for proofs, which cannot match the
requirements in a high throughput blockchain system.

12

8 Conclusion

LVMT significantly reduces the disk I/O amplifications asso-
ciated with each blockchain state access. When integrated into
a high performance blockchain, LVMT has up to 3.1x higher
throughput than the standard MPT structure. The promising
results of LVMT demonstrate the potential of eliminating
the performance bottleneck at the storage layer with vector
commitment schemes.

References

[1] DefiLlama - DeFi Dashboard. https://defillama.

com.

[2] ERC-20 Top tokens. https://etherscan.io/

tokens.

[3] Patricia Tree. https://eth.wiki/en/

fundamentals/patricia-tree.

[4] arkworks contributors. arkworks zksnark ecosystem,
2022.

[5] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. BLAKE2: sim-
pler, smaller, fast as MD5. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, Applied Cryptography and Net-
work Security - 11th International Conference, ACNS
2013, Banff, AB, Canada, June 25-28, 2013. Proceed-
ings, volume 7954 of Lecture Notes in Computer Sci-
ence, pages 119–135. Springer, 2013.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia
Fanti, and Pramod Viswanath. Prism: Deconstructing
the blockchain to approach physical limits. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 585–602, 2019.

[7] Paulo SLM Barreto, Ben Lynn, and Michael Scott. Con-
structing elliptic curves with prescribed embedding de-
grees. In Proceedings of the 2002 International con-
ference on security in communication networks, pages
257–267. Springer, 2002.

[8] Paulo SLM Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Proceedings
of the 2005 International Workshop on Selected Areas
in Cryptography, pages 319–331. Springer, 2005.

[9] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In Proceedings of
the 23rd USENIX Security Symposium, pages 781–796,
2014.

[10] Sean Bowe. BLS12-381: New zk-snark elliptic curve
construction.

[11] Sean Bowe, Ariel Gabizon, and Matthew D Green. A
multi-party protocol for constructing the public param-
eters of the pinocchio zk-snark. In Proceedings of the
2018 International Conference on Financial Cryptogra-
phy and Data Security, pages 64–77. Springer, 2018.

[12] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable
multi-party computation for zk-snark parameters in the
random beacon model. Cryptology ePrint Archive, 2017.

[13] Vitalik Buterin. Ethereum whitepaper. Technical report.

[14] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[15] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In Proceedings of the 2013 Inter-
national Workshop on Public Key Cryptography, pages
55–72. Springer, 2013.

[16] Jemin Andrew Choi, Sidi Mohamed Beillahi, Peilun
Li, Andreas Veneris, and Fan Long. LMPTs: Elimi-
nating storage bottlenecks for processing blockchain
transactions. In Proceedings of the 2022 International
Conference on Blockchain and Cryptocurrency. IEEE,
2022.

[17] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Rob-
bert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In Proceedings of the 13th USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 45–59, 2016.

[18] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 51–68. ACM, 2017.

[19] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and
Zhenfei Zhang. Pointproofs: Aggregating proofs for
multiple vector commitments. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2007–2023, 2020.

13

https://defillama.com
https://defillama.com
https://etherscan.io/tokens
https://etherscan.io/tokens
https://eth.wiki/en/fundamentals/patricia-tree
https://eth.wiki/en/fundamentals/patricia-tree

[20] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah
Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-snarks.
In Proceedings of the 2018 Annual International Cryp-
tology Conference, pages 698–728. Springer, 2018.

[21] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong
Zhou, and Fan Long. Shrec: Bandwidth-efficient trans-
action relay in high-throughput blockchain systems. In
Proceedings of the 11th ACM Symposium on Cloud Com-
puting, SoCC ’20, page 238–252, New York, NY, USA,
2020. Association for Computing Machinery.

[22] Koh Wei Jie. Perpetual Powers of Tau.

[23] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptology and
Information Security, pages 177–194. Springer, 2010.

[24] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy, pages 583–598. IEEE, 2018.

[25] Russell WF Lai and Giulio Malavolta. Subvector com-
mitments with application to succinct arguments. In
Annual International Cryptology Conference, pages 530–
560. Springer, 2019.

[26] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zo-
har. Inclusive block chain protocols. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 528–547. Springer,
2015.

[27] Ao Li, Jemin Andrew Choi, and Fan Long. Securing
smart contract with runtime validation. In Alastair F.
Donaldson and Emina Torlak, editors, Proceedings of
the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 438–
453. ACM, 2020.

[28] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Wei Xu, Fan Long, and Andrew Yao. A decen-
tralized blockchain with high throughput and fast con-
firmation. In Proceedings of the 2020 USENIX Annul
Technical Conference. USENIX, 2020.

[29] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew Chi-
Chih Yao. A decentralized blockchain with high
throughput and fast confirmation. In Ada Gavrilovska
and Erez Zadok, editors, 2020 USENIX Annual Techni-
cal Conference, USENIX ATC 2020, July 15-17, 2020,
pages 515–528. USENIX Association, 2020.

[30] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 17–30, New
York, NY, USA, 2016. ACM.

[31] David Mazieres. The stellar consensus protocol: A fed-
erated model for internet-level consensus. Stellar Devel-
opment Foundation, 32:1–45, 2015.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report.

[33] Gleb Naumenko, Gregory Maxwell, Pieter Wuille,
Alexandra Fedorova, and Ivan Beschastnikh. Erlay:
Efficient transaction relay for bitcoin. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, page 817–831, 2019.

[34] Parity Technologies. Crate kvdb.

[35] Soujanya Ponnapalli, Aashaka Shah, Souvik Baner-
jee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and
Michael Wei. RainBlock: Faster transaction processing
in public blockchains. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 333–347,
2021.

[36] Ethereum Improvement Proposals. Eip-20: Token stan-
dard. https://eips.ethereum.org/EIPS/eip-20,
2015.

[37] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gi-
lad Oved, Zachary Keener, Vijay Chidambaram, and Ittai
Abraham. mlsm: Making authenticated storage faster in
ethereum. In Ashvin Goel and Nisha Talagala, editors,
10th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage 2018, Boston, MA, USA, July
9-10, 2018. USENIX Association, 2018.

[38] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,
Gilad Oved, Zachary Keener, Vijay Chidambaram, and
Ittai Abraham. mLSM: Making authenticated storage
faster in ethereum. In Proceedings of the 10th USENIX

14

https://eips.ethereum.org/EIPS/eip-20

Workshop on Hot Topics in Storage and File Systems,
page 10, 2018.

[39] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar.
Phantom and ghostdag: A scalable generalization of
nakamoto consensus.

[40] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 507–527. Springer,
2015.

[41] Shravan Srinivasan, Alex Chepurnoy, Charalampos Pa-
pamanthou, Alin Tomescu, and Yupeng Zhang. Hyper-
proofs: Aggregating and maintaining proofs in vector
commitments.

[42] Facebook Database Engineering Team. Rocksdb: A per-
sistent key-value store for flash and ram storage, 2022.

[43] Parity Technologies. Openethereum, 2019.

[44] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Ag-
gregatable subvector commitments for stateless cryp-
tocurrencies. In Proceedings of the 2020 International
Conference on Security and Cryptography for Networks,
pages 45–64. Springer, 2020.

[45] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abra-
ham, Benny Pinkas, Guy Golan Gueta, and Srinivas De-
vadas. Towards scalable threshold cryptosystems. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 877–893. IEEE, 2020.

[46] Jiaping Wang and Hao Wang. Monoxide: Scale out
blockchains with asynchronous consensus zones. In
Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 95–
112, 2019.

[47] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek
Saxena. OHIE: Blockchain scaling made simple. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 90–105. IEEE, 2020.

[48] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: A fast blockchain protocol via
full sharding.

15

Supplementary Material

Trusted setup for protocol parameters: For an elliptic
curve group G with a starting point G and the group order p,
KZG commitment requires on a series of public parameters
τ ·G,τ2 ·G,τ3 ·G, · · · , with a random parameter τ∈Zp opaque
to anyone. So a deployed system requires a trusted party to
generate the public parameters with a random τ and forget
τ after generation. This process is called the trusted setup.
A protocol requiring the trusted setups builds its security on
the trustworthy to the third party. To mitigate this problem,
several efficient secure Multi-party computation (sMPC) pro-
tocols [11,12,20] are proposed to allow unlimited participants
to contribute to the generation of public parameters in turn.
Anyone cannot recover τ unless collecting the random input of
all the participants. A perpetual-powers-of-tau ceremony [22]
has started in 2019 to build the public parameters with 228

elements for the groups G1 and G2 of BN254.
Formal definition for inner nodes of AMT: Here we for-
mally defines the two elements associated with AMT inner
nodes. Since the proof tree is a binary tree, each node can
be located by its depth and index. For a node indexed by i at
depth d, its left child and right child are assigned indices i and
i+2d respectively. The root is indexed by 0.

Let w be a n-th root of unity (notice n = 2k), a.k.a., wn = 1.
With an input a⃗, AMT constructs the vector commitment to a⃗
to the polynomial commitment f (x) that satisfies f (wi) = ai.
Thus, f (x) can be constructed by Lagrange interpolation as:

f (x) =
n

∑
i=1

ai ·
∑

n−1
j=0(x/wi) j

n
.

For a node at depth d and index t, it only covers the input
elements whose index i satisfies i ≡ t mod 2d . So the cor-
responding polynomial function fd,t(x) only covers the La-
grange interpolation terms of these elements:

fd,t(x) := ∑
i∈Td,t

ai ·
∑

n−1
j=0(x/wi) j

n
,

where Td,t := {1≤ i≤ n|i≡ t mod 2d}. So the commitment
of this node is fd,t(τ) ·G1 and the corresponding proof is
hd,t(τ) ·G1, where hd,t(x) is defined by

hd,t(x) =
fd,t(x) ·wt·2k−d · ((x/wt)2k−d −1)

xn−1
.

For the index s of input, it corresponds to the proof node
at depth k with index R(s). Thus, when updating the as, for
each depth d, the node indexed by t ≡ s mod 2d will be up-
dated. We use f̄d,s(x) and h̄d,s(x) to denote the changes to

Algorithm 8 A procedure to prove a given key version. It
returns the proof of the key version.

1: procedure PROVEKEY(k)
2: (tidx, leaf)← LEAFATLEVEL(lv,k);
3: vers← leaf.vers;
4: C← AM[(lv,tidx)].comm;
5: (e, i)← LM[k];
6: val← KM[k];
7: (lv,sidx)←V M[k];
8: merklepf ←Prove the existence of (k,vers[sidx],val, lv,sidx)

w.r.t. the current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
10: return (merklepf,amtpf,vers,sidx,val,C);

Algorithm 9 A procedure to prove the level lv and the tree in-
dex tidx of a sub-AMT. It returns the proof of the commitment
of the sub-AMT.

1: procedure PROVECOM(lv,tidx)
2: ptidx← ⌊tidx/n⌋;
3: plidx← tidx mod n;
4: vers← AM[(lv−1,ptidx)].leaves[plidx].vers;
5: Cp← AM[(lv−1,ptidx)].comm;
6: C← AM[(lv,tidx)].comm;
7: (e, i)← LM[(lv−1,ptidx)];
8: merklepf ←Prove the existence of (lv,tidx,vers[0],C) w.r.t. the

current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

Cp
10: return (merklepf,amtpf,vers,Cp);

function fd,t(x) and hd,t(x) when increasing as by 1. These
two functions can be simplified to:

f̄d,s(x) =
∑

n−1
j=0(x/ws) j

n
,

h̄d,s(x) =
1
n
·

2k−d

∑
j=1

w j·sx2k−d− j.

Notice that f̄d,s(x) is independent with d, we denote it by
f̄s(x). So in AMT, when increasing as by δ, the commitments
and proofs of the corresponding nodes will be increased by
δ · f̄s(τ) ·G1 and δ · h̄d,s(τ) ·G1.

The sequence of f̄s(x) = { f̄s(x)}n
s=1 and {h̄d,s(x)}n

s=1 for
any d can be constructed by FFT. So AMT can precompute
O(n logn) cached parameters in O(n log2 n) time and update
the associated elements of each node with two multiplications
and two additions on the elliptic curve.

Non-existence proof of LVMT: LVMT proves the non-
existence of a key k by proving that all the possible version
number slots for the key are allocated to the other keys. In
Algorithm 10, we give the procedure for generating the non-
existence proof. The procedure first allocate a version slot
for k and rolls back the allocation (lines 2-3). Then, it proves

16

the version number of this slot is zero similar to Algorithm 6
except the merkle proof of the key (lines 5-12). Last, it shows
the other possible slots of k are allocated to other keys by gen-
erating proof for them; the second fields of these proofs can
be omitted since they have the same information as commpfs

computed in line 11.

Algorithm 10 A procedure to compute the non-existence
proof for a given key.

1: procedure NONEXISTANCEPROOF(k)
2: (lv,sidx)← ALLOCATESLOT(k);
3: Roll back the changes in allocating slot for k
4: (tidx, leaf)← LEAFATLEVEL(lv,k);
5: vers← leaf.vers;
6: C← AM[(lv,tidx)].comm;
7: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
8: zeropf← (amtpf,vers,sidx,C);
9: while lv > 0

10: tidx← first bit to (k · lv)-th bit of H(k);
11: commpfs[lv]← PROVECOM(lv,tidx)
12: lv← lv−1;
13: L← [];
14: for i ∈ [sidx−1]
15: keypf← the first component of prove(leaf.keys[i]);
16: L← (leaf.keys[i],keypf)∪L;
17: while lv > 0
18: lv← lv−1;
19: (tidx, leaf)← LEAFATLEVEL(lv,k);
20: for i ∈ [5]
21: keypf← the first component of prove(leaf.keys[i]);
22: L← (leaf.keys[i],keypf)∪L;
23: keypfs← L;
24: return (zeropf,commpfs,keypfs);

17

	Introduction
	Background
	Authenticated Storage in Blockchain
	KZG Commitment
	Authenticated Multipoint Evaluation Tree

	Overview
	Versioned Key-value Database
	Multi-level AMT
	Proof Sharding

	LVMT Design
	Interfaces to the Transaction Execution
	Proving Key-value Pairs

	Implementation
	Evaluation
	Related Works
	Conclusion

