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Abstract
This paper presents Conflux, a scalable and decentralized
blockchain system with high throughput and fast confir-
mation. Conflux operates with a novel consensus pro-
tocol which optimistically processes concurrent blocks
without discarding any as forks and adaptively assigns
weights to blocks based on their topologies in the Con-
flux ledger structure (called Tree-Graph). The adaptive
weight mechanism enables Conflux to detect and thwart
liveness attack by automatically switching between an
optimistic strategy for fast confirmation in normal sce-
narios and a conservative strategy to ensure consensus
progress during liveness attacks.

We evaluated Conflux on Amazon EC2 clusters with
up to 12k full nodes. The consensus protocol of Conflux
achieves a block throughput of 9.6Mbps with 20Mbps
network bandwidth limit per node. On a combined work-
load of payment transactions and Ethereum history trans-
actions, the end-to-end system of Conflux achieves the
throughput of up to 3480 transactions per second while
confirming transactions under one minute.

1 Introduction
Following the success of cryptocurrencies [2, 23],
blockchain has evolved into a technology powering se-
cure, decentralized, and consistent transaction ledgers
at Internet-scale. Newer blockchain platforms such as
Ethereum [2, 35] support customized transaction rules as
smart contracts, which greatly extend the capability of
blockchain ledgers beyond value transfers.

Blockchain platforms like Bitcoin [23] use Nakamoto
consensus. It organizes transactions into an ordered list
of blocks, each of which contains multiple transactions
and a link to its predecessor. Participants (miners) solves
proof-of-work (PoW) puzzles to compete for the right of
generating the next block. To prevent an attacker from
reverting previous transactions, honest participants agree

∗The first two authors contributed equally.

on the longest chain of blocks as the correct history. Each
new block is appended at the end of the longest chain to
make the chain longer and therefore harder to revert.

However, the performance remains one of the most
critical issues of blockchains. Nakamoto consensus is
bottlenecked by its slow block generation rate. For exam-
ple, Bitcoin generates one 1MB block every 10 minutes
and can therefore only process 7 transactions per second.
Users have to wait for typically one hour (i.e., six blocks)
to obtain high confidence on the finality of a transaction.

An ideal blockchain has the following four desirable
properties, security, decentralization, high throughput,
and fast confirmation. The key challenge of building
such a blockchain system is the threat of security attacks.
To obtain high performance, the system typically has to
operate with a fast block generation rate. Because block
propagation takes time, the system may therefore gen-
erate many concurrent blocks (i.e., forks). In Nakamoto
consensus, concurrent blocks waste PoW computation be-
cause they do not contribute to the finality of the longest
chain. They make the system vulnerable to double spend-
ing attacks that attempt to revert history transactions.

Moreover, a high block generation rate can make sev-
eral recently proposed protocols vulnerable to liveness
attacks [17, 31, 32]. An attacker can simultaneously gen-
erate blocks at two competing branches and strategically
withhold/release these blocks to maintain the balance of
the two branches. The attacker with little PoW computa-
tion power can stall the consensus progress [36].
Conflux: We present Conflux, the first blockchain system
that achieves all of the four desirable properties. Conflux
can process thousands of transactions per second while
confirming each transaction with within one minute on
average. With its novel consensus protocol, the consensus
layer of Conflux is no longer the performance bottleneck,
i.e., the throughput saturates its underlying gossip net-
work bandwidth and the confirmation speed is within the
same order of magnitude as the gossip network propa-

USENIX Association 2020 USENIX Annual Technical Conference    515



gation delay. Conflux is provably secure (see our formal
proof in [19]). It is also as decentralized and permission-
less as Bitcoin — participants can join and leave the
consensus process at any time and there is no privileged
committee or super-node dictating the process. Conflux
also implements a modified version of Ethereum Vir-
tual Machine (EVM) [35] and most smart contracts in
Ethereum can be directly ported to Conflux.

To address the security attack challenge, Conflux orga-
nizes blocks into a novel Tree-Graph structure, which is
a tree embedded inside a direct acyclic graph (DAG). In
Tree-Graph, concurrent blocks are not considered harm-
ful and they contribute to the Conflux ledger as well.
Their PoW solutions will improve the finality of all of
their ancestors and their transactions will be optimisti-
cally included into the ledger total order. This secures
Conflux against double spending attacks and improves
the Conflux throughput. To address liveness attacks, the
consensus protocol of Conflux inherently encodes two
different block generation strategies: an optimistic strat-
egy that allows fast confirmation and a conservative strat-
egy that ensures the consensus progress. Conflux uses its
novel adaptive weight mechanism to combine these two
strategies into a unified consensus protocol.
Adaptive Weight: Conflux assigns a weight to each
block, which indicates the amount of finality that the
block contributes to its ancestors. For each new block,
Conflux analyzes its topology in the Tree-Graph, decides
whether a liveness attack is potentially going on (e.g.,
whether there are old ancestor blocks that are not final-
ized yet), and then adaptively assigns weights to blocks
in the Tree-Graph to switch between the two strategies.
In normal scenarios, the mechanism assigns weights in
one way that enables the optimistic strategy to confirm
transactions fast. When a liveness attack happens, the
mechanism assigns weights in another way that enables
the conservative strategy to thwart the attack.
Deferred Execution: The execution order of recently
packaged transactions may oscillate temporarily in a sys-
tem with fast block generation. A naive implementation
of the transaction execution engine would have to roll
back executions many times and waste computation re-
sources. Conflux addresses this challenge with its de-
ferred execution mechanism. Instead of executing trans-
actions in every received block immediately, Conflux
waits for several blocks so that the order is relatively
stabilized. Our observation is that users need to wait for
the stabilization of the total order anyway to confirm a
transaction with high confidence. Therefore the deferred
execution does not harm the user experience at all.

Link-Cut Tree: An efficient consensus implementation
is important to the performance of Conflux. To maintain
the Conflux Tree-Graph, a naive implementation has the
time cost of O(n) for processing a new block on average,
where n is the number of existing blocks. To address this
challenge, Conflux uses link-cut tree to maintain weight
values in Tree-Graph efficiently. It reduces the processing
time from O(n) to O(logn) per block.
Experimental Results: We implemented Conflux and
evaluated it with Amazon EC2 machines under the same
experimental setup as previous work like Algorand and
OHIE [11, 36]. Our experimental results show that with
the bandwidth limit of 20Mbps and the simulated real
world network latency setting, Conflux achieves a trans-
action throughput of 9.6Mbps and a confirmation latency
of 47.75-51.54 seconds when running 3000-12000 nodes.
For a combined workload of payment transactions and
Ethereum history transactions, Conflux achieves up to
3480 transactions per second and confirms transactions
within one minute with high confidence. Comparing to
Algorand [11], Conflux has more than 4x higher through-
put and comparable confirmation speed. Comparing to
OHIE [36], Conflux has the same throughput and one
order of magnitude faster confirmation speed.
Contribution: This paper makes the following contribu-
tions: 1) we design and implement Conflux, a decentral-
ized and smart-contract-enabled blockchain system with
high throughput and fast confirmation; 2) we present a
novel consensus protocol with the adaptive weight mech-
anism; 3) we present a set of novel and critical optimiza-
tions, including deferred execution and link-cut tree.

2 Related Work
Nakamoto Consensus in Bitcoin: Transactions are
packed into blocks in Bitcoin. Each block has one pre-
decessor block and all blocks form a tree structure with
the genesis block as the root. Participants agree on the
longest chain as the valid transaction history. Nakamoto
consensus has to use a relatively slow block genera-
tion rate to avoid the generation of concurrent blocks,
i.e., forks. This is essential for the safety against dou-
ble spending attacks as shown in Figure 1a. More forks
would mean relatively less blocks in the longest chain.
In Figure 1a, due to forks, only 20% of blocks are on the
longest chain so that an attacker with more than 20% of
the network computation power can revert the longest
chain to launch double spending attacks.
GHOST: GHOST is a previous proposal to replace the
longest chain rule to improve the consensus safety under
a fast block generation rate [32]. It is partially imple-
mented in Ethereum [2]. Figure 1b presents an exam-
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ple to illustrate the GHOST algorithm. GHOST starts
from the genesis block and iteratively advances to the
child block with the largest subtree to select the agreed
chain [32]. In Figure 1b, the new block appends to the
end of the agreed chain, which is in the subtree of X
(containing 6 blocks) not in the subtree Y (containing 5
blocks). The difference between GHOST and the longest
chain rule is that all blocks generated by honest partici-
pants will contribute to the finality of the agreed chain.
Suppose G is an old enough block that is on the agreed
chains of all honest participants. Future blocks generated
by honest participants will all contribute the finality of G
regardless of whether they are concurrent or not, because
all of these blocks will be under the subtree of G. Unlike
the longest chain rule, an attacker would need more than
half of computation power to revert G from the agreed
chain even with the presence of concurrent blocks [32].

Liveness Attack on GHOST: Unfortunately, GHOST is
vulnerable to liveness attacks if the block generation rate
is very fast. Figure 1c presents one example of such at-
tacks. The example has the following settings: 1) the total
block generation rate of honest participants is λ; 2) hon-
est participants are devided into two groups with equal
computation power (group X and group Y in Figure 1c);
3) blocks will transmit instantly inside each group, but
the propagation between these two groups has a delay
of d. In Figure 1c, each of the two groups extends its
own subtree following the GHOST rule. Note that re-
cent generated blocks within the time period of d are
in-transit blocks (gray blocks in Figure 1c), which are
only visible by the group who generates them. Therefore
each group will believe its own subtree is larger until one
group generates sufficiently more blocks than the other
to overcome the margin caused by the in-transit blocks.

In normal scenarios, one of the two groups will get
lucky to enable the blockchain to converge. However,
an attacker can mine under two subtrees simultaneously
to delay the convergence. The attacker can strategically
withhold or release the mined blocks to maintain the
balance of the two subtrees as shown in Figure 1c.

Theoretically, if honest participants evenly split due to
network delay and the margin caused by in-transit blocks
is significant, i.e., λd > 1, a small portion of computation
power is enough to launch attacks. Previous work [36] in-
cludes a simulation shows only 10% will do. In practice,
even if honest participants do not have an even parti-
tion, the more computation power the attacker controls,
the more likely the attacker will succeed. Consider the
presence of mining pools, it is not rare to see one miner
controlling more than 20% of computation power. Such
a miner will be able to launch successful balance attacks
without even partition.
DAG-based Structures: To improve the throughput and
the confirmation speed, researchers have explored sev-
eral alternative structures to organize blocks. Inclusive
blockchain [17] extends the Nakamoto consensus and
GHOST to DAG and specifies a framework to include
off-chain transactions. In PHANTOM [31], participating
nodes first find an approximate k-cluster solution for its
local block DAG to prune potentially malicious blocks.
They then obtain a total order via a topological sort of the
remaining blocks. Unfortunately, when the block genera-
tion rate is high, inclusive blockchain and PHANTOM
are all vulnerable to liveness attacks similar to Figure 1c.
Therefore, unlike Conflux they cannot achieve both the
security and the high performance.

Some protocols attempt to obtain partial orders instead
of total orders for payment transactions. SPECTRE [30]
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produces a non-transitive partial order for all pairs of
blocks in the DAG. Avalanche [4] connects raw transac-
tions into a DAG and uses an iterative random sampling
algorithm to determine the acceptance of each transac-
tion. Unlike Conflux, it is very difficult to support smart
contracts on these protocols without total orders.
Hierarchical and Parallel Chains: Besides DAG, al-
ternative ways to organize blocks include hierarchi-
cal chains and parallel chains. For example, in Bit-
coinNG [9], a macro block is generated every 10 minutes.
The miner of such a block becomes the leader to gen-
erate micro blocks that contain actual transactions until
the next macro block. Similarly, FruitChain [27] packs
transactions first into fruits (i.e., micro blocks) and then
packs fruits into blocks. OHIE [36] runs multiple parallel
chains with the standard Nakamoto consensus and then
deterministically sorts blocks to obtain a total order.

The shared property of these protocols is that only a
small portion of blocks (e.g., macro blocks in BitcoinNG
and FruitChain) influence the total order of the transac-
tion ledger. It mitigates the liveness attack issue in Fig-
ure 1c because it reduces the chance of in-transit blocks
influencing the total order. But these protocols have slow
confirmation speed because they need to wait for more
blocks to confirm transactions than other protocols. For
example, BitcionNG has the same slow confirmation
speed as Bitcoin [9]; OHIE confirms transactions in about
10 minutes on average only under an extremely fast block
generation rate of 64 blocks per second [36]. In contrast,
Conflux has a much faster confirmation speed in normal
circumstances with no ongoing liveness attack.

Prism operates with one proposer chain and many par-
allel vote chains, each of which casts vote to decide the
total order of blocks in the proposer chain [6]. The theo-
retical simulation in [6] shows that Prism may achieve
high throughput and fast confirmation speed similar to
our Conflux results in Section 6. But the simulation as-
sumes a block propagation delay of one second, which
is too ideal (e.g., the measured block delay is 10-15 sec-
onds in our experiments). It is therefore unclear how fast
a blockchain system that implements Prism can confirm
transactions when running under practical P2P networks.
Byzantine Fault Tolerance: ByzCoin [14] and Thun-
derella [28] propose to achieve consensus by combining
the Nakamoto consensus with Byzantine fault tolerance
(BFT) protocols. Algorand [11], HoneyBadger [22], and
Stellar [21] replace the Nakamoto consensus entirely
with BFT protocols. In practice, all these proposals run
BFT protocols within a confined group of nodes, since
BFT protocols only scale up to dozens of nodes. The
confined group is often chosen based on their recent

PoW computation power [14, 28], their stakes of the sys-
tem [11], or external hierarchy of trusts [21, 22]. How-
ever, these approaches may create undesirable hierarchies
among participants and compromise the decentralization
of blockchain systems. In contrast, Conflux allows any
participant to join and leave the network without permis-
sion. In addition, instead of eagerly deciding the total or-
der of blocks as in BFT-based approaches, Conflux allows
multiple blocks to be generated in parallel and finalizes
their orders later, which leads to its higher throughput.
Sharding: Elastico [20], OmniLedger [15], Rapid-
Chain [37], and Monoxide [33] split the blockchain state
into shards. Instead of having every node to verify all
transactions, the systems select a small committee to
maintain each shard to improve scalability. Unlike Con-
flux, such systems sacrifice security for scalability, i.e.,
the committee configuration can only be changed slowly
(like days) due to reconfiguration overhead and therefore
a small shard may be vulnerable to powerful attackers
who can adaptively corrupt participants. This security
issue is so important that Vault [16] chooses to only use
sharding to mitigate storage cost with the trade-off of
increased network bandwidth cost. Also despite the high
combined throughput of all shards, the throughput of
inter-shard transactions is still limited.

3 Overview
We will first present an example to illustrate a straw-
man algorithm called structured GHOST that can de-
fend against liveness attacks but has a sub-optimal con-
firmation speed. We will then present an overview of the
Conflux consensus protocol, which uses the straw-man
algorithm as a building block.
Structured GHOST: In our structured GHOST algo-
rithm, only 1/h of blocks are weighted blocks that would
count in the chain selection process. These blocks are
selected randomly based on their PoW solution quali-
ties (e.g., the number of leading zeros of the PoW hash).
During the chain selection, the structured GHOST itera-
tively advances to the subtree with the largest number of
weighted blocks, instead of considering all blocks.

Figure 1d shows an example to illustrate how struc-
tured GHOST can defend against the liveness attack we
described before. With a sufficiently large h value, the
expected number of in-transit weighted blocks (λd/h)
will be very small. As shown in Figure 1d, the genera-
tion of a weighted block of one group will very likely to
make the two subtrees to converge, unless another group
generates a concurrent weighted block. When λd/h� 1,
the chance of such concurrent generation is very unlikely.
Without the margin caused by the in-transit blocks, the
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liveness attack is not possible without significant com-
putation power. Although structured GHOST is secure
against liveness attacks, it sacrifices the confirmation
speed — a user has to wait for the accumulation of
enough weighted blocks to confirm a transaction.
Consensus with Two Strategies: The Conflux consen-
sus protocol operates with two strategies, an optimistic
strategy similar to the GHOST algorithm and a conser-
vative strategy similar to the above straw-man algori-
htm. Our adaptive weight mechanism enables Conflux
to encode these two strategies in a unified framework.
In normal scenarios, Conflux would use the optimistic
strategy to achieve high performance. If a liveness attack
happens, the adaptive weight mechanism enables honest
participants of Conflux to cooperatively switch to the
conservative strategy to thwart the attack automatically.
Tree-Graph: The Conflux consensus protocol operates
on the local Tree-Graph state of each individual node.
Figure 2a presents a running example of the local Tree-
Graph state of a node in Conflux. We will use this ex-
ample in the remaining of this section to illustrate the
high-level ideas of the Conflux consensus protocol. Each
vertex in the Tree-Graph in Figure 2a corresponds to a
block. In Figure 2a, Genesis is the predefined genesis
block. Only Genesis, A, B, and G are associated with
transactions. There are two kinds of edges in the Tree-
Graph, parent edges and reference edges:
Parent and Reference Edges: Each block except Gen-
esis has exactly one outgoing parent edge (solid line
arrows in Figure 2a). For example, there is a parent edge
from C to A. Each block can have multiple outgoing refer-
ence edges (dashed line arrows in Figure 2a). A reference
edge corresponds to generated-before relationships be-
tween blocks. For example, there is an edge from E to D.
It indicates that D is generated before E.
Pivot Chain: Note that all parent edges in the Tree-
Graph together form a parental tree in which the genesis
block is the root. In the tree, Conflux selects a chain from
the genesis block to one of the leaf blocks as the pivot
chain. Each block in the Tree-Graph may have a different

weight determined by our novel adaptive weight mech-
anism. Conflux iteratively advances to the subtree with
the heaviest total block weight to select the pivot chain.
In Figure 2a before the liveness attack, Conflux selects
Genesis, A, C, E, and H as the pivot chain to append the
new block N. Note that Conflux does not selects the chain
of Genesis, B, F, J, I, and K, because the subtree of A has
heavier weights than the subtree of B.
Generating New Block: Whenever a node generates a
new block, it first computes the pivot chain in its local
Tree-Graph state and sets the last block in the chain as
the parent of the new block. The node then finds all tip
blocks in the Tree-Graph that have no incoming edge
and creates reference edges from the new block to each
of those tip blocks. For example, in Figure 2a, when
generating N, the node chooses H as the parent of N and
creates a reference edge from N to K.
Adaptive Weight: Figure 2b illustrates the basic idea of
the adaptive weight mechanism. The goal is to assign a
different weight to each generated block so that Conflux
can adaptively switch between the optimistic strategy
with a fast confirmation and the conservative strategy
that ensures the consensus progress. Conflux determines
the weight of a new block based on its past sub-graph,
i.e., all blocks that are reachable via a traversal from the
new block. As shown in Figure 2b, if the past sub-graph
is safe — every old enough ancestor of the new block
in the past sub-graph is secured on the pivot chain with
high probability, the weight of the new block will be one.
If not, the new block will be assigned an adaptive weight
— it gets a weight of h with the chance of 1/h (depending
on the PoW quality) or zero otherwise. Note that we set
h = 600 in Conflux. See Section 4.1.
Liveness Attack Resilience: Figure 2a shows how the
adaptive weight mechanism stops liveness attacks. Sup-
pose after the generation of N, an attacker launches a
liveness attack similar to one described in Figure 1c
to balance the subtree of A and B. After a while, all
honest participants start to generate blocks with adap-
tive weights, because they find that the old ancestors of
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their new generated blocks (e.g., A or B in Figure 2a) are
still not secured on the pivot chain with high probabil-
ity. This essentially enables the consensus protocol to
operate in the conservative strategy similar to the struc-
tured GHOST algorithm. In Figure 2a, the heavy weight
blocks make Conflux to converge to the the subtree of
A. After more blocks being generated under A, the past
sub-graph of new generated blocks will become safe. Par-
ticipants therefore assign weight one to the new blocks,
automatically swtiching back to the optimistic strategy.
Epoch and Block Order: Parent edges, reference edges,
and the pivot chain together enable Conflux to split all
blocks in a Tree-Graph into epochs. Every block on the
pivot chain corresponds to one epoch. Each epoch con-
tains all blocks 1) that are reachable from the correspond-
ing block in the pivot chain via the combination of parent
and reference edges (including the pivot chain block it-
self) and 2) that are not included in previous epochs. For
example, in Figure 2a, J belongs to the epoch of H be-
cause J is reachable from H but not reachable from the
previous pivot chain blocks.

Conflux then derives a total order of all blocks in the
Tree-Graph with the following rules. Conflux first sorts
blocks based on their epochs. For blocks within the same
epoch, Conflux sorts them based on their topological
order. Conflux break ties determinisitcally (e.g., with
the PoW quality or the block hash). For example, in Fig-
ure 2a, Conflux will obtain the following block total order
for all blocks before the liveness attack: Genesis, A, B,
C, D, F, E, G, J, I, H, K, and N.
Transaction Order: Conflux first sorts transactions
based on the total orders of their enclosing blocks. If
two transactions belong to the same block, Conflux sorts
the two transactions based on the appearance order in
the block. Conflux checks the conflicts of the transac-
tions at the same time when deriving the order. If two
transactions are conflicting with each other, Conflux will
discard the second one. If one transaction appears in mul-
tiple blocks, Conflux will only keep the first appearance
and discard all redundant ones. In Figure 2a, the transac-
tion total order is Tx0, Tx1, Tx2, Tx3, and Tx3. Conflux
discards Tx2 because it conflicts with Tx1.

4 Consensus on Tree-Graph
The local state of a node in Conflux is S = 〈B,g〉, where B
is the set of blocks and g ∈ B is the genesis block. There
are several fields associated with a block b ∈ B. b.parent
denotes the parent block of b. b.pred_blocks denotes the
set of predecessor blocks linked by the reference and
parent edges from b. b.pow_quality is the quality of the
PoW solution — for b to be valid, b.pow_quality must no

Child(B,b) = {b′ | b′ ∈ B, b′.parent= b}
SubT(B,b) = (∪i∈Child(B,b)SubT(B, i))∪{b}
SubTW(B,b) = ∑i∈SubT(B,b) i.weight
Past(b) = (∪i∈b.pred_blocksPast(i))∪b.pred_blocks
PastW(b) = ∑i∈Past(b) i.weight

Figure 3: The definitions of utility functions.
Input :A set of blocks B and a starting block b.
Output :The pivot block for the subtree of b.

1 if Child(B,b) = /0 then
2 return b

3 else
4 w←max{SubTW(B, i) | i ∈ Child(B,b)}
5 a← argmin

i∈Child(B,b)
{i.hash | SubTW(B, i) = w}

6 return Pivot(B,a)
Figure 4: The definition of Pivot(B,b).

less than the PoW difficulty D. b.weight is the adaptive
weight of b. We use b.hash to denote the hash of b – all
nodes in Conflux share a predefined deterministic hash
function that maps each block to a unique id.

Figure 3 defines several utility functions and notations.
Child() returns the set of child blocks of a given block.
SubT() returns the set of blocks in the subtree of a given
block in the parental tree. SubTW() returns the sum of
the weights in the subtree. Past() returns the set of blocks
that are generated before a given block. PastW() returns
the sum of the weights of the past block set of a block.
Note that Past(b) and PastW(b) are determined at the
generation time of b and remain constant afterwards. In
this section, we use lists to denote chains and serialized
orders. “◦” denotes the concatenation of two lists.

4.1 Pivot Chain and Adaptive Weight
Pivot Chain: Figure 4 presents the pivot chain selection
algorithm in Conflux. Given a set of blocks B and the
starting genesis block g, Pivot(B,g) returns the leaf block
of the selected pivot chain. The algorithm recursively
advances to the child block whose corresponding subtree
has the largest total weights (lines 4-6). To break ties,
the algorithm selects the child block with the smallest
unique hash id (line 5). The algorithm terminates until it
reaches a leaf block (lines 1-2).
Adaptive Weight: Figure 5 presents how we calculate
the weight of a block b. The algorithm first determines
whether the block should have adaptive weight or not
based on the past block set of b (lines 1-11). If not, the
weight of the block will be one (lines 12-13). If so, the
algorithm checks the PoW solution quality against a dif-
ficulty that is h times higher than the base validation
difficulty. The weight of the block will be h if it passes
the check and be zero if it fails (lines 14-17).

To determine whether b should have adaptive weight,
the algorithm operates at a sub-Tree-Graph that only con-
tains blocks in the past set of b. It inspects every block in
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Input :A new block b
Output :The adaptive weight of b

1 B← Past(b)
2 a← b.parent
3 adaptive← False
4 Let f (x) =

2 ·SubTW(B,x)−SubTW(B,x.parent)+x.parent.weight
5 Let t(x) = |TimerChain(b)|− |TimerChain(x.parent)|
6 Let g(x) = |SubT(B,x.parent)|
7 while a.parent 6=Nil do
8 if f (a)< α and (t(a)> β or g(a)> γ) then
9 adaptive← True

10 break

11 a← a.parent

12 if not adaptive then
13 return 1

14 else if b.pow_quality ≥ h ·D then
15 return h

16 else
17 return 0

Figure 5: The definition of AdaptiveWeight(b)

Input :A block b.
Output :The timer chain of the past sub-graph of b.

1 if b.pred_blocks= /0 then
2 return b

3 else
4 a← argmax

i∈b.pred_blocks
{|TimerChain(i)|}

5 if b.pow_quality > h0 ·D then
6 return TimerChain(a)◦b

7 else
8 return TimerChain(a)

Figure 6: The definition of TimerChain(b).

the path from the genesis to b.parent. For each inspected
block a, it determines 1) whether a is still not secure on
the pivot chain with high probability – the subtree weight
of a is not significantly larger than the weight of the sib-
ling subtrees of a (i.e., f (a)< α) and 2) whether a is old
enough – there is an enough amount of timer ticks or an
enough number of blocks in the subtree of its parent (i.e.,
t(a) > β or g(a) > γ). If any inspected block satisfies
these two conditions, b should have adaptive weight.

The intuition is that to make progress, for any pivot
chain block a′ in Tree-Graph, after a certain period of
time, one of the child subtree of a′ (e.g., the subtree of a)
should become dominant. If the attacker attempts to main-
tain the balance between the subtrees of two (or more)
children of a′ for a long time, the condition at line 8 will
become true for a. Therefore, all honest participants will
start to generate blocks with adaptive weights. Conflux
will essentially operate with a conservative strategy simi-
lar to the structured GHOST algorithm (see Section 3).
This will thwart the attack to ensure the progress.
Timer Chain: Because an attacker with enough compu-
tation power may influence the subtree sizes of recent

Input :The local state S = 〈B,g〉 and a new discovered
block b

1 if b.pow_quality ≥ D then
2 Wait until Past(b)⊆ B
3 if Pivot(Past(b),g) = b.parent then
4 b.weight← AdaptiveWeight(b)
5 S← 〈B∪{b},g〉

Figure 7: The block validation procedure.
Input :A block b
Output :An ordered list of all blocks in Past(b)∪{b}

1 if b.parent= Nil then
2 return /0

3 L← ConfluxOrder(b.parent)
4 B∆← (Past(b)−Past(b.parent)−{b.parent})∪{b}
5 while B∆ 6= /0 do
6 B′

∆
←{x | |x.pred_blocks∩B∆|= 0}

7 Sort all blocks in B′
∆

in order as a1,a2, . . . ,ak
8 such that ∀1≤ i < j ≤ k, ai.hash< a j.hash
9 L← L◦a1 ◦a2 ◦ . . .◦ak

10 B∆← B∆−B′
∆

11 return L

Figure 8: The definition of ConfluxOrder().
pivot chain blocks via strategically withholding mined
blocks, only counting the number of blocks under the
subtree of a pivot block is not sufficient to detect whether
the pivot block is old enough or not. To this end, Con-
flux uses a timer chain mechanism to obtain an attacker
resilient estimation for the generation time of each block.

Figure 6 presents the definition of TimerChain(b),
which is the longest chain of blocks in the past sub-graph
of b whose PoW qualities are h0 times higher than the nor-
mal difficulty. We then use the length of the timer chain
as the timer tick of the generation time estimation of each
block (i.e., line 5 in Figure 5). When h0 is large enough
respecting the network delay, the attacker cannot stop the
growth of the timer chain, because honest participants
will contribute to the timer chain almost synchronously.
In Conflux we set h0 = 360. See Section 6.1.

4.2 Block Validation and Total Order
Block Validation: Figure 7 presents the validation pro-
cedure for a new discovered block. It first checks whether
the block has a PoW solution with a sufficient quality
(line 1). The procedure will wait for all blocks in its past
sub-graph being processed first (line 2). The procedure
will then compute the pivot chain in its past sub-Tree-
Graph to check whether it selects the right parent (line
3). If so, the procedure computes the weight of the new
block and adds it to the local Tree-Graph state (lines 4-5).
Block Order: Figure 8 defines ConfluxOrder(),
our block ordering algorithm. Given a block b,
ConfluxOrder(b) returns the total order of all blocks in
Past(b)∪{b}. The algorithm sorts the blocks based on
their corresponding epochs, i.e., it first recursively orders
all blocks in previous epochs. It then computes all blocks
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in the epoch of b as B∆ (line 4). It topologically sorts all
blocks in B∆ and appends them to the result list (lines
5-10), and uses the hashes to break ties (lines 7-8).

4.3 Correctness
We next discuss the intuitions behind the correctness of
our consensus algorithm. Suppose the network together
has a block generation rate of λ. The correctness of Con-
flux is based on the following assumptions: 1) attackers
control at most δ of the total block generation power
(δ < 0.5); 2) the network is d-synchronous, i.e., if at time
t one honest node broadcast a block via the gossip net-
work, then before time t+d, all honest nodes will receive
this block and add this block into their local states.
Adversary Model: The attacker can choose arbitrary
strategies to disrupt honest nodes. We also assume 1)
attackers immediately receive all blocks and transactions
from the gossip network, 2) attackers can arbitrarily con-
trol the communication of honest nodes as long as the
d-synchronous assumption holds. The attacker however
does not have the capability to reverse cryptographic
functions. Therefore honest nodes can reliably verify the
integrity of a block in the presence of the attacker.
Safety: Conflux is safe against double spending attacks
because of two facts: 1) to revert a transaction in an
epoch, the attacker has to revert the pivot chain block
associated with the epoch from the pivot chain; 2) revert-
ing an old pivot chain block that is on the common pivot
chain of all honest nodes requires the attacker to compete
with all honest nodes together. Although honest nodes
may generate blocks that are concurrent with each other,
all of these blocks will be under the subtree of the com-
mon pivot chain block. As the time passes by, it will be
impossible for the attacker to forge an alternative heavier
subtree without the pivot chain block.
Liveness: Many previous consensus algorithms based
on tree and DAG can only provide liveness guarantees
if the block generation rate is significantly slower than
the block propagation delay (i.e., λ ·d� 1) [13, 26]. In
contrast, Conflux is safe against liveness attacks at the
protocol level even when the block generation rate is fast,
because if the consensus does not make progress for a
certain period of time, all honest nodes will start to gen-
erate blocks with adaptive weights. In this scenario, only
blocks with very high PoW quality will decide the total
order and the block generation rate of these blocks is sig-
nificantly slower than the block propagation delay (i.e.,
λ·d
h � 1 for a large enough h). Because concurrent gener-

ation of such heavy weight blocks is rare, an attacker has
to release a large number of previously withheld blocks to
balance a new generated heavy block or all honest nodes

will make progress and will recognize the heavy block as
a common pivot chain block. Because block withholding
capability of an attacker is limited by its block generation
power, the attacker will eventually run out of blocks to
continue the liveness attack. We prove in [19] that when
δ < 1/2, once a block in Conflux is seen by an honest
node, its order will become irreversible with exception
risk ε after d ·O(log(1/ε)) time.
Confirmation Policy: Conflux confirms a block b if for
any ancestor block of b, the corresponding subtree total
weight is heavier than all of the subtrees of its siblings by
a margin. This margin is not a preset value. It depends on
the status of blockchain protocol. With the parameter set-
ting used in our experiments, this margin is about 20∼30
in normal scenarios for obtaining the same confidence
as waiting six blocks in Bitcoin. Specially, if Conflux is
in the conservative mode and is generating blocks with
adaptive weights, we need to wait six blocks with heavy
weights instead. See [19] for the detailed formulas of the
risk in confirming a block.

5 Implementation and Optimizations
We have implemented Conflux in Rust [1].
Difficulty Adjustment: For brevity, our algorithm in
Section 4 assumes a constant PoW difficulty. Conflux
operates with a difficulty adjustment mechanism tailored
for Tree-Graph. Every 5000 epochs, Conflux counts the
number of blocks generated in the last 5000 epochs and
adjusts the difficulty accordingly to maintain a stable
block generation interval. Instead of setting the weight of
every normal block to one, Conflux sets the weight to the
difficulty of the block. For a block with a heavy adaptive
weight, its weight will be its difficulty multiplied by h.
The rationale is to allow the block weight to align with
the accumulated PoW as the difficulty changes.
Storage: A Conflux full node stores the blockchain ac-
count state as Merkle Patricia Trees [35] in a key-value
DB. To save storage space, Conflux periodically forms
checkpoints at specific epoch heights (e.g., every 200k
epoch heights) when the confirmation risk of the pivot
chain blocks at these heights become extremely low. Af-
ter a checkpoint, all history transactions before it can be
safely discarded — all full nodes treat the checkpoint
block as the new genesis. Note that full nodes still store
all block headers to help new nodes bootstrapping.
Bootstrap: To bootstrap a new full node to join the net-
work, it first synchronizes all the block headers in the
ledger from the peers and decides the latest confirmed
checkpoint block based on the headers. It then fetches
the corresponding checkpoint state from the peers and
continues the execution from that state.
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Figure 9: Save Redundant Execution by Deferred Execution

Transaction Relay: For a high performance blockchain
like Conflux, it is critical to minimize the redundant trans-
actions that are transferred. Ideally and optimally, each
node should only receive each transaction exactly once.
In current Bitcoin and Ethereum implementation, transac-
tions are disseminated among nodes via flooding, which
may waste network bandwidth resources. Erlay [24] tries
to solve this issue of Bitcoin by letting peers exchange
sets of unsent transactions that are encoded with PinS-
ketch algorithm [8]. However, this method cannot be
applied in Conflux, since it only works well when the
difference between the transaction sets of two peers is
small. Conflux is not this case because the transaction
throughput of Conflux is orders of magnitude higher than
Bitcoin. Conflux instead only floods 4-byte short trans-
action ids and pulls the missed transactions from peers.
The short id is built by a SipHash [12] on the SHA-3
hash of the transaction and a peer-specific random nonce
to significantly decrease the id conflict rate.
Signature Verification: Signature verification is
computation-intensive and may become a bottleneck
when the throughput is high. Conflux therefore uses a
thread-pool to parallel the signature verification for differ-
ent transactions to avoid bottlenecking other components.
Incentive Mechanism: For every mined block, Conflux
assigns its block generation reward based on how many
other blocks that are generated in parallel in Tree-Graph,
i.e., blocks that are not in the past and future sets of the
mined block. The more blocks are in parallel with the
mined block, the smaller the block reward would be. This
incentive mechanism penalizes malicious behaviors such
as withholding mined blocks and not referencing other
blocks. Because every block receives reward regardless
of whether they are on the pivot chain or not, this mecha-
nism nullifies selfish mining attack strategies [10, 25, 29].
See [7] for the details of the incentive mechanism.

5.1 Deferred Execution
In Conflux, when a block just enters the Tree-Graph struc-
ture, its position in the total order will change frequently.
Although such oscillation will stop in a short time, it
poses a challenge for the transaction execution engine.
In typical blockchain systems, all transactions in a block
immediately get executed in a node as soon as it is dis-
covered. Such naive approach may execute transactions
in a block many times as the order of the block oscillates.
This incurs significant execution overhead. The top part
of Figure 9 illustrates this problem. When a full node just
gets the Block2, it is on the pivot chain and the total or-
der of transactions is {T X1,T X2}. T X2 is then executed
in this order. But, when the node later gets Block3 and
Block4, Block2 does not belong to pivot chain anymore
and T X3 is positioned between T X1 and T X2 in the newly
decided total order. T X2 has to be executed again.

Conflux uses a novel deferred execution mechanism to
address this issue. The insight is that, just like users wait-
ing for a period of time to confirm transactions, Conflux
can wait for the total order position of a block to almost
stabilize to execute its transactions. Conflux delays the
execution by k-epochs. Specifically, unlike Ethereum
where the header of each block b contains a merkle state
root that corresponds to the execution results after pro-
cessing all transactions in and before b, the header of b in
Conflux contains a deferred root that corresponds to the
execution results of the block that are k-hops older than
b along its path to the root. We set k to five in Conflux
so that Conflux can avoid re-execution of transactions in
most cases. Five is also smaller than the typical number
of epochs that an user needs to wait to confirm transac-
tions and therefore it does not impact the user experience.

Figure 9 presents an example to illustrate the saving
of redundant executions by using deferred execution. For
illustration purpose, we set k to be one in this example.
Therefore in Figure 9, the Block2 stores the state root
based on the execution of T X1. When the full node gets
Block3 and Block4, in order to verify the deferred state
root of Block4, the system needs to execute T X3 but does
not need to execute T X2 because T X2 is positioned after
T X3 in the decided total order. When getting and veri-
fying Block5, Conflux then needs to produce the state
based on the execution of T X4 which depends on T X2. In
the process, although the pivot chain oscillates between
Block2 and Block3, T X2 only gets executed once.

5.2 Link-cut Tree Optimizations
Maintaining pivot chain in Conflux is not trivial. Adding
a new block to the Tree-Graph requires updating the
subtree weights of all the blocks from this new block back
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to the genesis. The naive approach will takes O(n) time
to complete, because the Tree-Graph height is usually
linear to the number of blocks. To efficiently update the
subtree weights, Conflux uses a data structure called link-
cut tree [3]. Link-cut tree splits a tree structure into one
or more paths, and represents each path using a splay
tree, a form of balanced binary search tree invented by
Tarjan et al. [5]. The link-cut tree is ideal for maintaining
values like the subtree weights in the Conflux consensus
protocol, because it enables the following operations at
an amortized cost of O(logn): 1) increase or decrease
values of all nodes along a path in the tree by a given
value; 2) find the minimum or maximum value among
values of all nodes along a path; 3) find the least common
ancestor (LCA) of two nodes in the tree.
Update Pivot Chain: Conflux tracks the last pivot chain
block of the current Tree-Graph state. Conflux uses the
link-cut tree to maintain the total subtree weights of each
block. When Conflux discovers a new block b, it inserts
b into the link-cut tree and increases the total subtree
weights of all blocks along the path from b to the root
(i.e., genesis) by b.weight. Note that adding b may trig-
ger a pivot chain change — instead of running the chain
selection algorithm from the root, Conflux uses the link-
cut tree to calculate the LCA of b and the current last
pivot block p. If the weight of the subtree p belongs to
is still heavier than the one b belongs to, no pivot chain
update occurs. Otherwise, Conflux re-runs the selection
algorithm from the LCA block. Because long range pivot
chain reorganization is extremely rare, rerunning the al-
gorithm from the LCA block is not expensive in practice.

6 Experimental Results
We next present a systematic evaluation of Conflux on
its throughput, confirmation speed, and scalability. We
also evaluate important design aspects of Conflux, e.g.,
the adaptive weight mechanism for defending against
liveness attacks, the deferred execution for optimizing
the transaction execution, as well as link-cut tree for
optimizing the Tree-Graph maintainance.

We deployed Conflux on up to 800 Amazon EC2
m5.2xlarge virtual machines (VM), each of which has 8
cores and 1Gbps network throughput. By default, we run
one Conflux full node in each VM. To model the network
latency, we use the intercity latency measurements [34]
and assign each VM to one of 20 major cities. We emu-
late the intercity delay by inserting artificial delays. For
each full node, the gossip network of Conflux connects
it to an average of 10 randomly selected peers.

When we measure the confirmation speed of a trans-
action, we count a transaction as confirmed if we can

obtain the same confidence as empirically confirming a
transaction in Bitcoin after waiting six Bitcoin blocks.
In our experiments, unless otherwise noted, we limit the
bandwidth of each full node to 20Mbps and we assign
each full node with an equal block generation power.

6.1 Protocol Parameter Calibration
To calibrate Conflux consensus protocol parameters, we
run a set of experiments with 200 Conflux full nodes
on Amazon EC2 with one full node per VM. We run
Conflux with a set of different combinations of block size
limits and block generation rates to measure the block
propagation delays. For each setting, we run Conflux
from the genesis for 10 minutes and fill each block to full
with randomly generated simple payment transactions.

Figure 10a and 11a presents the experimental results
of Conflux where we fix the block generation rate at four
blocks per second and change the block size limit. Aver-
age network delay corresponds to the number of seconds
on average for a generated block to reach more than 50%
of participants. Network delay (99%) corresponds the
number of seconds for all blocks to reach more than 99%
of participants. In our experiments, we use the network
delay (99%) number as the network diameter d for calcu-
lating parameters. There are often one or two machines
lagging behind for some blocks and we can tolerate them
as temporary failure nodes.

Conflux achieves the throughput of 9.6Mbps at the
setting of 300K × 4 blocks per second. We find that
Conflux almost saturates its underlying gossip network
capability, considering that we limit the bandwidth of
each full node to 20Mbps, which is only enough to send
each block twice on average. With block sizes of 350K
and beyond, full nodes start to experience significantly
higher delay and may not be able to catch up new blocks.

Figure 10b and 11b presents the experimental results
of Conflux where we fix the block generation through-
put at 9.6Mbps and change the block generation rate
from 2 blocks/s to 16 blocks/s. Our results show that as
Conflux operates with faster block generation rate and
smaller blocks, the network propagation delay decreases.
But the delay no longer decreases much as it approaches
the latency limit of the network. Smaller network prop-
agation delay will improve the confirmation speed of
transactions, but there are additional costs for using high
generation rate. 1) Conflux full nodes have to store all
block headers (block content could be pruned away with
checkpoint techniques) and the average header size of
Conflux is 300∼500 bytes; 2) high block generation rates
incur more blocks in parallel and these blocks cannot pro-
cess transactions with dependencies.
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Figure 10: Network Delay and Confirmation Speed
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Figure 11: Throughput

Based on the above trade-off, we choose the block
generation rate of 4 blocks per second and the block size
limit of 300K. With the measured network propagation
delay, we determine the adaptive weight algorithm param-
eters following suggestions in our theory analysis [19].
1) h = 600 is large enough to enable Conflux to tolerate
liveness attacks from a powerful attacker that controls
40% of the network computation power; 2) β = 160 and
γ = 10000 so that the confirmation policy gives a desir-
able margin; 3) α = 1800 since it requires α ≥ 3h; 4)
h0 = 360 so the timer chain will have rare forks. Fig-
ure 10 plots the average confirmation speed under this
set of parameters.

Compared to GHOST (by only considering pivot
blocks as valid), Conflux achieves the similar confirma-
tion latency while provides significantly higher through-
put. As Figure 11b shows, the transaction throughput of
GHOST decreases with increasing block generation rate
since more concurrently generated blocks with smaller
size lead to less valid transactions.

6.2 Performance Results
Consensus Scalability Results: We next evaluate the
consensus protocol performance as the number of nodes
increases. Due to our resource limitation, we have to run
15 full nodes per VM. Because we are evaluating the con-
sensus protocol only, we turn off signature verification
and transaction execution to ensure enough computation
resources for 15 full nodes sharing each VM.

Figure 10c presents the network propagation delay
and the average transaction confirmation speed when run-
ning Conflux with different numbers of full nodes. In
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Figure 12: End-to-end Results for ETH Workload

all the experiments, Conflux successfully operates with
the block throughput of 9.6Mbps (300K × 4 blocks per
second). Our results highlight the fast confirmation speed
of Conflux, it confirms transactions on average in 47.75-
51.54 seconds when running 3000-12000 full nodes. Our
results also show that the consensus protocol of Conflux
scales well. As the number of nodes increases, the net-
work propagation delay only increases slightly so does
the confirmation speed.

Note that our experimental setup is as same as the
Algorand and OHIE papers [11, 36], therefore we can
directly compare our results with their results. Com-
pared to Algorand [11], Conflux achieves more than 4x
throughput and similar confirmation latency. Compared
to OHIE [36], Conflux achieves similar throughput but
one order of magnitude faster confirmation.
End-to-end Results: With the calibrated parameters, we
run Conflux on 400 VMs (one node per VM) to mea-
sure the throughput and the confirmation speed of Con-
flux. To obtain a representative workload, we collected
the first four million transactions from the Ethereum
blockchain [2]. This includes both payment transactions
and smart contract transactions. We converted these col-
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Figure 13: Subtree Weights under Liveness Attack

lected transactions into Conflux transaction format. We
run two experiments, one experiment with the collected
Ethereum transactions only and another experiment with
a combined workload of the collected Ethereum trans-
actions and randomly generated payment transactions.
We terminate an experiment once Conflux processes four
million transactions in total.

Figure 12 presents the number of processed transac-
tions overtime. Our experimental results show that Con-
flux achieves a throughput of 1392 transactions per sec-
ond for Ethereum workload and 3480 transactions per
second for the combined workload. The average con-
firmation latencies are under one minute for both the
Ethereum workload and the combined workload. Note
that in the combined workload experiment, 14% of pro-
cessed transactions are from Ethereum history.

Conflux achieves higher transaction throughput on
the combined workload than on the Ethereum history
workload. A primary reason is that Ethereum is a much
slower blockchain and its transaction history does not
have enough parallelism to saturates the Conflux con-
sensus layer. We find that during the execution, future
transactions in the Ethereum history often depends on
previous transactions and full nodes of Conflux often
do not have enough pending transactions ready to pick
up so concurrent blocks pack duplicate transactions. A
secondary reason is that Ethereum history contains more
smart contract transactions which are more expensive to
process than payment transactions.
Deferred Execution: Conflux by default defers the exe-
cution of transactions by five epochs k = 5. To illustrate
the effect of the deferred execution optimization, we run
a modified version of Conflux on the Ethereum history
workload with k = 1. The results in Figure 12 show that
this causes a 11.6% slowdown of Conflux on the transac-
tion throughput because of the frequent re-execution of
transactions during order oscillation.

6.3 Liveness Attack and Link-cut Tree
Liveness Attack: We conducted a liveness attack experi-
ment to evaluate the security of Conflux. The experiment
includes three nodes, two honest nodes and one attacker

node. They keep a four block per second block generation
rate for entire network. The block propagation network
delay between the two honest nodes are 20 seconds and
the attacker node does not relay honest blocks. We use
only two honest nodes with significant delay to simulate
the ideal liveness attack scenario in Figure 1c — a power-
ful attacker that evenly splits honest nodes in two groups
and honest nodes with no latency inside a group and max-
imum latency between the two groups. The attacker node
controls 30% of the total computation power. It launches
the attack by finding the first fork between the two honest
nodes and try to mine blocks under the lighter subtree to
keep the two subtrees balanced.

Figure 13 shows how the weights of the two forked
subtrees change along the time. The attack starts at the
timestamp 0. During the time when the attack is per-
formed and no adaptive weight is triggered, the weights
of the two forked subtrees are almost perfectly balanced.
The adaptive weight mechanism triggers the conserva-
tive strategy at timestamp 2,909 s. After that, the liveness
attack quickly fails and the two honest nodes can then
agree on the same pivot block and generate blocks under
its subtree. After another 1,264 s, the two honest nodes
come back to the optimistic strategy.
Link-cut Tree: To evaluate the benefits of link-cut tree,
we run experiments on a micro-benchmark, a Tree-Graph
that contains 1.5 million blocks, to measure the block
processing throughput of the naive as well as our opti-
mized approaches. Our experimental results show that
the naive appraoch slows down to less than 4 blocks per
second when the number of blocks in the Tree-Graph
grows to one million, while our approach processes 5000
blocks per second on average.

7 Conclusion

Conflux is a scalable and decentralized blockchain plat-
form with high throughput and fast confirmation. Its
novel consensus protocol makes Conflux secure against
both double spending attacks and liveness attacks, even if
Conflux operates with a fast block generation rate. Con-
flux provides a promising solution to address the perfor-
mance bottleneck of blockchains and opens up a wide
range of blockchain applications.
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