
A Decentralized Blockchain with High
Throughput and Fast Confirmation

Chenxing Li∗, Peilun Li∗, Dong Zhou, Zhe Yang†, Ming Wu†,
Guang Yang†, Wei Xu, Fan Long‡†, Andrew Chi-Chih Yao

Tsinghua University †Conflux Foundation ‡University of Toronto

∗The first two authors contributed equally.

An Ideal Blockchain System

• Robustness
§ Safety against double spending attacks
§ Liveness against denial of service attacks

• Performance
§ High throughput
§ Fast confirmation

• Decentralization
§ Scale to large amount of participants
§ Permissionless to join and leave

Blockchain Performance Problem

Transactions
per Second: ~7 ~30 ~200 ~3000

Undesirable user experience, long processing delay,
and skyrocketing transaction fees!

Confirmation
Latency: 1 hour 7~10 minutes Few seconds Few seconds

Bitcoin and Ethereum Background

P2P gossip network

Blue: 2
Red: 1

Blue: 2
Red: 1

Blue: 2
Red: 1

Blue: 2
Red: 1

Blue: 2
Red: 1

Blue: 2
Red: 1

Blue: 2
Red: 1 Blue: 2

Red: 1

The Blockchain:
A record of transactions

4

Secured by
“Proof-of-Work” Sybil Attack

Standard Nakamoto Consensus

• Longest-chain: all participants agree on the
longest chain as the valid transaction history
§ Security assumption is >50% computation

power owned by honest nodes.

• Slow/small block generation
§ Bitcoin: 1MB block per 10 minutes
§ Ethereum: ~100KB block per 15 seconds

What if we run Nakamoto
Consensus with large

blocks or fast generation?

• Mining are concurrent and block broadcast has delay
• Larger block size/faster block-gen rate -> more forks

• Forks waste network/processing resources
• Downgrade safety

Block1… Block0 Block2 Blockn-1… Blockn

fork

fork fork

fork

fork

fork

Agreed chain

Longest Chain is Not Safe with Fast Generation

Block1… Block0 Block2 Blockn-1… Blockn

fork

fork fork

fork

fork

fork

Suppose the Longest Chain
has 10% of blocks

A1A0 A2 Am-3… Am-2 Am-1 Am

Attacker with more than 10% computation power
will be able to revert the longest chain

GHOST Consensus

• Proposed by Sompolinsky et. al., ICFCDS’15, adopted partially by
Ethereum

• Heaviest subtree rule

• Start from the Genesis block

• Iteratively advance to the child block with the largest subtree

Genesis A

B

G

C

D

E

F

H

J I K

1. Start from the Genesis block

2. Iteratively advance to the child block with the largest subtree

GHOST Rule:

Subtree A has 6 blocks

Subtree B has 5 blocks

New Block

All the blocks including forked blocks contribute to the chain selection

GHOST is Weak to Liveness Attacks

• When the block generation is much faster than d, an attacker with
little computation power can stall the consensus forever!

G

A

Honest
Group A

Honest
Group B

Maximum
delay of d

AttackerA AttackerA

AttackerB AttackerB

A A A A A A

B B B B B B B

One Fix: Structured GHOST Approach

• Only 1/h of blocks have weights for chain selection
§ Remaining blocks only contribute transactions

• Secure against liveness attacks if h is large enough
§ Because concurrent generation of weighted blocks is rare

• Cons: Slow confirmation!
§ Need to wait for enough weighted blocks being generated to confirm

G

A A A A A A B

B B B B B B

A B

Greedy Heaviest Adaptive SubTree (GHAST)

• Assign different weights to generated blocks
• Select pivot chain using heaviest subtree rule and decide total order

of all blocks based on the pivot chain.
• In normal scenarios, assign equal weights to all blocks

§ Operate like GHOST
§ Achieve near optimal throughput and confirmation latency

• When attack happens, assign high weights to a small subset of blocks
§ Operate like structured GHOST
§ Slow confirmation to ensure consensus progress

How to make honest participants
automatically switch between

two scenarios?

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Parent edges
Ref edges

Conflux operates with a Tree-Graph structure.

Each block has one parent edge.

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Parent edges
Ref edges

Each block may have multiple reference edges

Reference edges simply denote happens-before relationships

E admits that D is generated before E

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Parent edges
Ref edges

1. Select the last block in the pivot chain as the parent

2. Create reference edges to all other blocks without incoming edges

New Block

When generating a new block:

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Parent edges
Ref edges

New Block

Edges in the Tree-Graph capture the history blockchain state for each generated block

The past-subgraph of a block à All blocks that the block generator saw

Determine Weights from Past Sub-graphs

• All honest participants will agree on the weights
• Even with the presence of attackers!

Weight of the
generated

block

Is the past sub-graph
stable enough?

Yes: Assign weight 1
No: Assign weight h for 1/h
blocks, 0 for other blocks

Determine Sub-graph Stability
• Rationale: For any pivot chain block A that is generated long enough,

one of its child A’ must become dominant
• Most future blocks after A should accumulate under the subtree of A’

A’
Subtree of A’

A
…

All blocks generated after A

Trusted Block Generation Time: TimerChain

• TimerChain: a blockchain embedded in TreeGraph with longest-chain
rule and low generation rate.
§ A small subset of blocks (Timer Blocks) have weights, like structured GHOST

• Block generation time: the height of the latest Timer Block in its past.

Past of A

G A

B

C

D

… …

GenerationTime(A) = TimerChainHeight(C)

E…

Conflux Ordering Algorithm

• Key Idea: deterministically define a block total order of a Tree-Graph
based on a chain

• First use GHAST to agree on a pivot chain of blocks

• Then extend the agreed pivot chain into a total order of all blocks in
the Tree-Graph

Genesis A

B

G

C

D

E

F

H

J I K

Parent edges
Ref edges

Epoch of
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

1. Each pivot chain block forms one epoch

2. An off-chain block belongs to the first epoch whose
corresponding pivot chain block happens after it.

D belongs to the epoch of E, because D happens
before E but does not happen before C

Genesis A

B

G

C

D

E

F

H

J I K

Parent edges
Ref edges

Epoch of
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

1. Order based on epoch first
2. Topologically sort blocks in each epoch
3. Break ties based on block id

Block Total Order: Genesis, A, B, C, D, F, E, G, J, I, H, K

Implementation & Optimizations

• Implemented in Rust with a modified EVM to handle smart contract
transactions.
• Several key optimizations:
• Link-cut tree and lazy validation

§ Efficiently maintain weights in Tree-Graph

• Deferred execution
§ Avoid redundant execution rollbacks

Evaluation

Experimental Environment

• Run up to 12k Conflux full nodes on Amazon EC2 m5.2xlarge VMs
• Limit the bandwidth of each full node to 20Mbps
• Simulate network latency between full nodes

• Measure the achieved throughput and confirmation latency
§ Consider a block confirmed if its confidence is the same as waiting for 6

Bitcoin blocks

Throughput, Latency, and Scalability

• 300K block size and 4
block per second.
• Conflux achieves

9.6Mbps throughput
• Up to 32X GHOST

throughput.
• Confirm transactions

on avg. 51.5 seconds.
• Scales to 12k full nodesRun up to 15 full nodes per EC2 VM and disabled

transaction executions

Conclusion

• Conflux achieves both high throughput and fast confirmation.

• Conflux is safe against both double spending and liveness attacks.

• Conflux achieves this with a novel consensus protocol GHAST, which
assigns different weights to blocks adaptively and automatically.

• With 12K nodes, Conflux can reach 9.6Mbps throughput and confirm
blocks within one minute.

Thanks!
Presenter Email: lpl15@mails.tsinghua.edu.cn

Conflux Website: https://www.conflux-chain.org/

https://www.conflux-chain.org/

