SR P
cela) COMNFLLIX
I“Q;Q 4% ;&y -

1111
Ry 19117 &5

A Decentralized Blockchain with High
Throughput and Fast Confirmation

Chenxing Li*, Peilun Li*, Dong Zhou, Zhe Yang', Ming Wu",
Guang Yang', Wei Xu, Fan Long*', Andrew Chi-Chih Yao
Tsinghua University TConflux Foundation *University of Toronto

*The first two authors contributed equally.

S¢ CONFLLUX

An ldeal Blockchain System

* Robustness
= Safety against double spending attacks
= [jveness against denial of service attacks

 Performance
= High throughput
= Fast confirmation
 Decentralization

= Scale to large amount of participants
= Permissionless to join and leave

S COnNFLLUX
Blockchain Performance Problem

< VISA
/ PayPal

Transactions ~30 ~200 ~3000

per Second:

Confirmation

1 hour 7710 minutes Few seconds Few seconds
Latency:

Undesirable user experience, long processing delay,
and skyrocketing transaction fees!

FL S¢ CONFLLUX
Bitcoin and Ethereum Background

P2P gossip network ™\

o)

Secured by
“Proof-of-Work”

/L Y,

Sybil Attack

The Blockchain:

A record of transactions

—
B

aaaaa

S COnNFLLUX
Standard Nakamoto Consensus

* Longest-chain: all participants agree on the
longest chain as the valid transaction history

= Security assumption is >50% computation
power owned by honest nodes.

* Slow/small block generation
= Bitcoin: 1MB block per 10 minutes
" Ethereum: ~100KB block per 15 seconds

What if we run Nakamoto
Consensus with large
blocks or fast generation?

S COnNFLLUX

SSSSSyy
SR B)
F8 5 BN X
-8 (28"
da oy th
Ai @ Xl 2d
B2 ey
X AL S S
NS4
Ry pesss

%

.. «—1| BlockO

Block1l

Block2

<

&t

=y
<

S COnNFLLUX

Agreed chain

\

< ... +—] Blockn-1

Blockn

<

Mining are concurrent and block broadcast has delay

Larger block size/faster block-gen rate -> more forks

Forks waste network/processing resources

Downgrade safety

CHL S¢ conFLux

- Longest Chain is Not Safe with Fast Generation

4 Suppose the Longest Chain
has 10% of blocks

.. +—1 BlockO Block1 Block2 [— ... +—{ Blockn-1 Blockn
AO Al A2 «— ... < Am-3 Am-2 Am-1 |H Am

Attacker with more than 10% computation power
will be able to revert the longest chain

Cr e $¢ COnFLUX
GHOST Consensus

* Proposed by Sompolinsky et. al., ICFCDS’15, adopted partially by
Ethereum

e Heaviest subtree rule
e Start from the Genesis block

* Iteratively advance to the child block with the largest subtree

ﬁ"m;’% P
7

A

Genesis

Subtree A has 6 blocks

A

GHOST Rule:

1. Start from the Genesis block

Subtree B has 5 blocks

F

S COnNFLLUX

A

A

New Block

A

2. Iteratively advance to the child block with the largest subtree

All the blocks including forked blocks contribute to the chain selection

S COnNFLLUX

GHOST is Weak to Liveness Attacks

AttackerA [« AttackerA
/ Honest
A A A AF{A A AF]A Group A
G Maximum
delay of d
— B B B B B B B y

Honest

\ AttackerB

Group B

A

AttackerB

* When the block generation is much faster than d, an attacker with
little computation power can stall the consensus forever!

SSSSSyy

AR, sl s

CERR . COMNFLLUX
0% ey s 4

25{1‘?,{5

One Fix: Structured GHOST Approach

* Only 1/h of blocks have weights for chain selection
= Remaining blocks only contribute transactions

e Secure against liveness attacks if h is large enough
= Because concurrent generation of weighted blocks is rare

* Cons: Slow confirmation!
= Need to wait for enough weighted blocks being generated to confirm

--

%ﬁ S¢ CONFLUX
Greedy Heaviest Adaptive SubTree (GHAST)

* Assign different weights to generated blocks

* Select pivot chain using heaviest subtree rule and decide total order
of all blocks based on the pivot chain.

* In normal scenarios, assigh equal weights to all blocks

= Operate like GHOST
= Achieve near optimal throughput and confirmation latency

* When attack happens, assign high weights to a small subset of blocks
= Operate like structured GHOST
= Slow confirmation to ensure consensus progress

S COnNFLLUX

How to make honest participants
automatically switch between
two scenarios?

<— Parent edges

S COnNFLLUX
------ Ref edges

Genesis [« A N C |« E |« H
[‘\ 4 \
Tx0 Tx2 ; BRI \
Tx1 \ / AR
1 / *\N
! / ~‘~\ \\
v » el 4
B < F |« J | | [« K
Tx3
Tx4

Conflux operates with a Tree-Graph structure.

Each block has one parent edge.

T o2 —
) rarent edées - 3¢ COMNFLILIX
: ------ Ref edges

E admits that D is generated before E

Genesis [«
Tx0
Tx1
< K
Tx3
Tx4

Each block may have multiple reference edges

Reference edges simply denote happens-before relationships

<— Parent edges x COMFLLIX

------ Ref edges
G
Tx4
0
Genesis [A < C |« E |« H | New Block
Tx0 Tx2 LTS N\ !
Tx1 :
v v ey v
B < F | J I | K
Tx3
Tx4

When generating a new block:

1. Select the last block in the pivot chain as the parent

2. Create reference edges to all other blocks without incoming edges

* & P
* “}Q‘%’; [J
Fakio P

S JNEIE
Azl Xl 3

) 4%‘ <:D "fé”

<— Parent edges S{’ COMNFLLUX
a--=--- Ref edges -

G
Tx4
A
Genesis [« A N C |« E |« H New Block
X0 T2 [N :
Tx1 :
v ' ey v
B < F |«] [« | K
Tx3
Tx4

Edges in the Tree-Graph capture the history blockchain state for each generated block

The past-subgraph of a block = All blocks that the block generator saw

%‘%ﬂ S CONFLLUX
Determine Weights from Past Sub-graphs

"

S =

< B Yes: Assign weight 1
s th b- h N
S tstzlslaeszzzu ghrgp \ . No: Assign weight h for 1/h

o o blocks, O for other blocks
\ /YB@ Weight of the /
fé%,cif) == generated
B block

* All honest participants will agree on the weights
* Even with the presence of attackers!

@< ¢ CONFLLUX

‘‘‘‘‘‘‘‘
"y =

Determine Sub-graph Stability

* Rationale: For any pivot chain block A that is generated long enough,
one of its child A" must become dominant

 Most future blocks after A should accumulate under the subtree of A’

All blocks generated after A

Subtree of A’

%ﬂ S¢ CONFLUX
Trusted Block Generation Time: TimerChain

* TimerChain: a blockchain embedded in TreeGraph with longest-chain
rule and low generation rate.

= A small subset of blocks (Timer Blocks) have weights, like structured GHOST
* Block generation time: the height of the latest Timer Block in its past.

GenerationTime(A) = TimerChainHeight(C)
Past of A

%ﬂ S¢ CONFLUX
Conflux Ordering Algorithm

* Key Idea: deterministically define a block total order of a Tree-Graph
based on a chain

* First use GHAST to agree on a pivot chain of blocks

* Then extend the agreed pivot chain into a total order of all blocks in
the Tree-Graph

i Ny DE—
gﬁ Parent edges X COMNFLLX
‘ ------ Ref edges

D belongs to the epoch of E, because D happens
before E but does not happen before C

_—

/ \\
Genesis F\ A < C |« E |« H
N 1-..~~ /I N
'II II \‘~~§\~NN§\ \‘
N B < F |«) |« | | K
Epoch of
Genesis Epoch of A| Epoch of C | Epoch of E Epoch of H

1. Each pivot chain block forms one epoch

2. An off-chain block belongs to the first epoch whose
corresponding pivot chain block happens after it.

[, <—— Paren
& . S ONFLLUX
ﬂ 1. Order based on epoch first a---e- Ref edges

2. Topologically sort blocks in each epoch
3. Break ties based on block id

_—

/ \\
Genesis |v\ A < C |« E |« H
N el : :
'II II \‘~~§\~NN§\ \\‘
N B < F |«) |« | | K
Epoch of
Genesis Epoch of A| Epoch of C | Epoch of E Epoch of H

Block Total Order: ,AB,C,D,FEG,J I H,K

%ﬂ S¢ CONFLUX
Implementation & Optimizations

* Implemented in Rust with a modified EVM to handle smart contract
transactions.

* Several key optimizations:

* Link-cut tree and lazy validation
= Efficiently maintain weights in Tree-Graph

* Deferred execution
= Avoid redundant execution rollbacks

S COnNFLLUX

Fvaluation

%ﬂ S¢ CONFLUX
Experimental Environment

* Run up to 12k Conflux full nodes on Amazon EC2 m5.2xlarge VMs
* Limit the bandwidth of each full node to 20Mbps
e Simulate network latency between full nodes

* Measure the achieved throughput and confirmation latency

= Consider a block confirmed if its confidence is the same as waiting for 6
Bitcoin blocks

S COnNFLLUX

Throughput, Latency, and Scalability

» 107 - e SRt @ - °
£ * 300K block size and 4
g block per second.
5 . Conflux Throughput]
£ 0.1; . GHOST Throughput | | | ° Conﬂux aCh|eveS
3.0k 6.0k 9.0k 12.0k
Number of nodes 9.6Mbps throughput
geor—)) . * Up to GHOST
g 404 throughput.
-(4;320_ —¥— Conflux Confirmation speed ¢ Confirm tra nsaCtiOnS
;E GHOST Confirmation speed
§ ol — o e on avg. 51.5 seconds.

Number of nodes

Run up to 15 full nodes per EC2 VM and disabled
transaction executions

e Scales to 12k full nodes

(G s s
CHL S¢ CconFLux
Conclusion

* Conflux achieves both high throughput and fast confirmation.
e Conflux is safe against both double spending and liveness attacks.

* Conflux achieves this with a novel consensus protocol GHAST, which
assigns different weights to blocks adaptively and automatically.

* With 12K nodes, Conflux can reach 9.6Mbps throughput and confirm
blocks within one minute.

S COnNFLLUX

Thanks!

Presenter Email: Ipl15@mails.tsinghua.edu.cn

Conflux Website: https://www.conflux-chain.org/

https://www.conflux-chain.org/

