
PrivPy: General and Scalable Privacy-Preserving Data Mining
Yi Li

Tsinghua University
Beijing, China

xiaolixiaoyi@gmail.com

Wei Xu
Tsinghua University

Beijing, China
wei.xu.0@gmail.com

ABSTRACT

Privacy is a big hurdle for collaborative data mining across multiple
parties. We present multi-party computation (MPC) framework
designed for large-scale data mining tasks. PrivPy combines an
easy-to-use and highly flexible Python programming interface with
state-of-the-art secret-sharing-based MPC backend. With essential
data types and operations (such as NumPy arrays and broadcasting),
as well as automatic code-rewriting, programmers can write mod-
ern data mining algorithms conveniently in familiar Python. We
demonstrate that we can support many real-world machine learn-
ing algorithms (e.g. logistic regression and convolutional neural
networks) and large datasets (e.g. 5000-by-1-million matrix) with
minimal algorithm porting effort.

CCS CONCEPTS

• Security andprivacy→Privacy-preserving protocols; •Com-

puting methodologies→ Cooperation and coordination.

KEYWORDS

privacy-preserving, data mining, numpy, python

ACM Reference Format:

Yi Li and Wei Xu. 2019. PrivPy: General and Scalable Privacy-Preserving
Data Mining. In The 25th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330920

1 INTRODUCTION

Privacy is an important issue in big data age. The success of data
mining is often built on data, and it is often desirable to integrate
data from multiple sources for better mining results. However,
the unrestricted exchanging of sensitive data may threaten users’
privacy and is often prohibited by laws or business practices. How
to protect privacy while allowing the integration of multiple data
sources demands prompt solutions.

Due to the first author’s negligence and technical difficulties, we accidentally left out
the following coauthors who made significant contributions to this article. They are:
1. Yitao Duan, NetEase Youdao, duan@rd.netease.com; 2. Shuoyao Zhao, Shanghai
Jiaotong University, zhao_sy2016@sjtu.edu.cn; 3. Yu Yu, Shanghai Jiaotong University,
yuyuathk@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330920

Secure multi-party computation (MPC) allows players to collec-
tively compute a function without revealing private information
except for the final output. MPC often uses various cryptographic
primitives, such as garbled circuit [48] and secret sharing [42], with
different efficiency and security assumptions. After more than 30
years of development, we have started to see that the real-world
data mining applications start to use MPC [29, 47]. However, nu-
merous challenges still exist that prevent widespread adoption of
secure computation techniques.

One of the most important issue hindering MPC’s adoption is
programmability, especially for “big data” applications. Despite of
the development of efficiency improvement of MPC during the
past decades, existing MPC solutions often ignore the core require-
ments of data mining applications. They either require considerable
expertise in cryptography to understand the cost of each opera-
tion, or use special programming languages with high learning
curves [6, 14, 20, 30, 35, 41]. Some useful solutions, such as [45],
though providing rich interfaces for MPC, mainly focus on basic
MPC operations, including not only basic arithmetics but also low-
level cryptography tools such as oblivious transfer [40]. In contrast,
machine learning programmers use Python-based frameworks like
PyTorch [37], Tensorflow [1] and Scikit-learn [38] with built-in
support of high-level data types like real numbers, vectors and
matrices, as well as non-linear functions such as the logistic func-
tion and ReLu. It is almost impossible for data scientists to rebuild
and optimize all these often taken-for-granted primitives in a mod-
ern machine learning package in an MPC language. On the other
hand, it is also costly for MPC experts to rewrite all the machine
learning algorithm packages. Thus, it is essential to design an MPC
front-end that is friendly with the data mining community, which is
Python with NumPy [44] nowadays. Actually, many machine learn-
ing frameworks use Python front-ends and provide Numpy-style
array operations to ease machine learning programming.

In this paper, we propose PrivPy, an efficient framework for
privacy-preserving collaborative data mining, aiming to provide
an elegant end-to-end solution for data mining programming. The
PrivPy front-end provides Python interfaces that resemble those
from NumPy, one of the most popular Python packages, as well
as a wide range of functions commonly used in machine learning.
We also provide an computation engine which is based on secret
sharing and provides efficient arithmetics. We would like to stress
that the main goal of PrivPy is not to make theoretic breakthrough
in cryptographic protocols, but rather to build a practical system
that enables elegant machine learning programming on secure com-
putation frameworks and makes right trade-offs between efficiency
and security. In particular, we make the following contributions:
(1) Pythonprogramming interfacewithhigh-level data types.

We provide a very clean Python language integration with
privacy-enabled common operations and high-level primitives,

https://doi.org/10.1145/3292500.3330920
https://doi.org/10.1145/3292500.3330920

including broadcasting thatmanipulates arrays of different shapes,
and the ndarray methods, two Numpy [44] features widely uti-
lized to implement machine learning algorithms, with which
developers can port complex machine learning algorithms onto
PrivPy with minimal effort.

(2) Automatic code check and optimization.Our front-end will
help the programmers avoid “performance pitfalls”, by checking
the code and optimizing it automatically.

(3) Decoupling programming front-endwith computation back-

ends. We introduce a general private operator layer to allow
the same interface to support multiple computation back-ends,
allowing trade-offs among different performance and security
assumptions. Our current implementation supports the SPDZ
back-end, the ABY3 back-end and our own computation engine.

(4) Validation on large-scalemachine learning tasks.Wedemon-
strate the practicality of our system for data mining applications,
such as data query, logistic regression and convolutional neural
network (CNN), on real-world datasets and application scenar-
ios. We also show that our system can scale to large-scale tasks
by transparently manipulating a 5000-by-1-million matrix.

2 RELATEDWORK

In this paper, we mainly focus on privacy-preserving computation
systems for general arithmetics, especially for data mining tasks. A
practical such system includes two parts: an efficient computation
engine and an easy-to-use programming front-end.

Frameworks based on (fully) homomorphic encryption [18, 32]
are impractical due to heavy computation overhead. Approaches
based on garbled circuit (GC) [4, 34, 45, 50] will be impractical
for general-purpose arithmetical computations, especially for var-
ious kinds of machine learning algorithms, as they are costly in
bandwidth. There are also many MPC frameworks using secret
sharing supporting general arithmetics. For example, [3] performs
integer/bit multiplication with 1 round and optimal communica-
tion cost using three semi-honest servers. SPDZ [14] uses addition
secret sharing and can tolerate up to n − 1 corrupted parties. While
natively supporting efficient integer operations, most of them (e.g.
[7, 14]) support real numbers by parsing each shared integer into
m field elements (m is the bit length of the each field element)
and use bit-level operations to simulate fixed/floating point opera-
tions [11, 24, 26], thus requires each party to send O(m) meessages.
SecureML [35] is based on two-party secret sharing and provides
built-in fixed-point multiplication with O(1) message complexity,
but requires expensive precomputation to generate Beaver multi-
plication triples. ObliviousNN [31] optimizes the performance of
dot product, but suffers similar problem with SecureML. ABY3 [33],
which extends the work of [3] and provides three-party compu-
tation, is the state-of-the-art for general arithmetics. To perform
fixed-point multiplication, ABY3 provides two alternatives: one re-
quires a lightweight precomputation and each party needs to send
no more than 2 messages in 1 round in the online phase, while the
other requires no precomputation and each party sends no more
than 2 messages, but needs 2 rounds. In comparison, our computa-
tion engine, which also provides built-in support for fixed-points,
performs fixed-point multiplication in 1 round without precompu-
tation and each party only sends 2 messages.

We emphasize that the adoption of privacy-preserving computa-
tion is beyond the computation efficiency and the programmability
is as the same importance. TASTY [20] and ABY [16] provide in-
terfaces for programmers to convert between different schemes.
However, they only expose low-level interfaces and the program-
mers should decide by themselves which cryptographic tools to
choose and when to convert them, making the learning curve steep.
L1 [41] is an intermediate language for MPC and supports basic
operations. But L1 is a domain-specific language and does not
provide high-level primitives to ease array/matrix operations fre-
quently used in machine learning algorithms. [15] and [9] suffer
from similar problems. PICCO [51] supports additive secret sharing
and provides customized C-like interfaces. But the interfaces are
not intuitive enough and only support simple operations for array.
Also, according to their report, the performance is not practical
enough for large-scale arithmetical tasks. KSS [25] and ObliVM [30]
also suffer from these issues. [13] provides a compiler for SPDZ
and [2] extends it to support more MPC protocols. But they are
still domain-specific and do not provide enough high-level primi-
tives for machine learning tasks. PrivPy, on the other hand, stays
compatible with Python and provides high-level primitives (e.g.
broadcasting) with automatic code check and optimization, requir-
ing no learning curve on the application programmer side, making
it possible to implement machine learning algorithms conveniently
in a privacy-preserving situation.

3 PRIVPY DESIGN OVERVIEW

3.1 Problem formulation

Application scenarios. We identify the following two major ap-
plication scenarios for privacy-preserving data mining:

• multi-source data mining. It is common that multiple orga-
nizations (e.g. hospitals), each independently collecting part of a
dataset (e.g. patients’ information), want to jointly train a model
(e.g. for inferring a disease), without revealing any information.

• inference with secret model and data. Sometimes the pa-
rameters of a model are valuable. For example, the credit scoring
parameters are often kept secret. Neither the model owner nor
the data owner want to leak their data in the computation.

Problem formulation. We formulate both scenarios as an MPC
problem: there are n clients Ci (i = 1, 2, . . . ,n). Each Ci has a set
of private data Di as its input. The goal is to use the union of all
Di ’s to compute some function o = f (D1,D2, . . . ,Dn), while no
private information other than the output o is revealed during the
computation. Di can be records collected independently by Ci , and
Ci ’s can use them to jointly train a model or perform data queries.
Security assumptions. Our design is based on twowidely adopted
assumptions in the security community [3, 7, 29]: 1) All of the
servers are semi-honest, which means all servers follow the proto-
col and would not conspire with other servers, but they are curious
about the users’ privacy and would steal information as much as
possible; and 2) all communication channels are secure and adver-
saries cannot see/modify anything in these channels. In practice,
as there is a growing number of independent and competing cloud
providers, it is feasible to find a small number of such servers. We
leave extensions of detecting malicious adversaries as future work.

Computation Engines
(Privpy engine, SPDZ, …)

Parser Optimizer

Convenient APIs Language
Front-end

Back-end

PrivPy

Figure 1: The overview of PrivPy architecture.

3.2 Design overview

Fig. 1 shows an overview of PrivPy design, which has two main
components: the language front-end and the computation engine
back-end. The front-end provides programming interfaces and code
optimizations. The back-end performs the secret-sharing-based
privacy-preserving computation. We discuss our key design ratio-
nals in this section.

Decoupling the frontendwith backend. We decouple the front-
end and back-end using an extensible interface. The major benefit
is that we can adapt to multiple language and backend techniques.
While we believe Python is a natural choice for the frontend for
the data mining community, we support multiple MPC backends
to allow tradeoffs among different security assumptions and per-
formance. Our interface between frontend and backend is extensi-
ble. The basic interface only require scaler data types and opera-
tions, making it possible to use very simple engines. Then we add
extension interfaces to fully utilize backends with performance-
optimizations such as array types and complex computation func-
tions (e.g. vector outer product). It is an analogous to the extensible
instruction set architecture (ISA) design. In fact, we currently sup-
port three backends: our own backend, SPDZ [14], ABY3 [33].

Focus onperformance optimizations for the entire algorithm.

Performance is the key to enable scalable data mining tasks. We
optimize performance at three different levels: 1) optimize single op-
eration performance using the 2-out-of-4 secret sharing protocols;
2) batch up operations whenever possible; 3) perform language-
level optimizations in the language frontend.

Based on 2-out-of-4 secret sharing protocol. Handling collabo-
rative data mining tasks over multiple parties has some two unique
performance challenge: 1) the computation might happen on wide
area networks (WANs), and thus it is both bandwidth and latency
sensitive; and 2) there are vast amount of data, and thus we need
to minimize the overall computation, including the preprocessing.
Existing engines either require multiple rounds of communication
and thus perform poorly in WANs ([7, 14]), or require significant
amount of pre-computation ([33, 35]).

We design a 2-out-of-4 secret sharing protocol combining the
ideas in SecureML [35] and ABY3 [33]. By adding a fourth server, we
can eliminate the pre-computation in ABY3, but keep its one-round
only online communication feature for fixed-point multiplication
while preserving the same online communication complexity. Also,
the correctness proof of our protocol directly follows [33] and [35],
making it simple to establish the correctness.

Hierarchical private operations (POs). We call operations on
private variable private operations (POs). Table 1 provides an overview
of different POs implemented in PrivPy.

type operations

basic add/sub multiplication oblivious
transfer

bit
extraction

derived comparison sigmoid relu division
log exp sqrt abs

ndarray

all any append argmax
argmin argparition argsort clip
compress copy cumprod cumsum

diag dot fill flatten
item itemset max mean
min ones outer partition
prod ptp put ravel
repeat reshape resize searchsorted
sort squeeze std sum

swapaxes take tile trace
transpose var zeros

Table 1: Supported operations of the PrivPy front-end.

𝑥

𝑧

…
…

𝐶1

𝐶𝑛

SS
Store 1

PO
Engine

SS
Store 2

PO
Engine

PO
Engine

PO
Engine

Private Ops
Protocols

…
…

Clients Servers

𝑆𝑏

𝑆1

𝑆2

𝑆𝑎

𝑦𝐶𝑘

SS
Store a

SS
Store b

𝑥1

𝑥2
𝑦1
𝑦2
𝑧1
𝑧2

Figure 2: The overview of PrivPy computation engine.

We identified a number of POs that are either essential for com-
putation or performance critical, and we implement them directly
in secret sharing. We call them basic POs. Limited by space, we only
introduce the fixed-point number multiplication PO in Section 4.2.
Another set of POs we implement is to support vector and matrix
operations. It is essential to support the array types in Python.

One good feature of the 2-out-of-4 secret sharing is that the
result of the computation is still secret shares with exactly the
same format. Thus, we can concatenate different POs together and
implement derived POs. Note that even derived POs performs better
than a Python-library as it is pre-compiled in the engine - much
like the built-in routines in a database system.
Using frontend to provide both flexibility and performance.

PrivPy frontend not only makes it easy for data scientists to write
in familiar Python, but also it provide extensive optimizations to
support array types, including arbitrary sized arrays and operations.
Also, it automatically performs code rewriting to help programmers
to avoid common performance pit-falls.
Engine architecture. We use four (semi-honest) servers to im-
plement the 2-out-of-4 secret sharing protocol above in the PrivPy
engine: S1, S2, Sa and Sb. We adopt a client/server model, just
like many existing MPC systems [3, 7, 17, 29, 30]. Clients send se-
cretly shared data to the servers, then the servers perform privacy-
preserving computation on these shares (see Fig. 2).

Each of the four servers has two subsystems. The secret sharing
storage (SS store) subsystem provides (temporary) storage of shares
of private inputs and intermediate results. while the private opera-
tion (PO) subsystem provides an execution environment for private
operations. The servers read shares from the SS store, execute a PO,
and write the shares of the result back to the SS store. Thus we can
compose multiple POs to form a larger PO or a complex algorithm.
Task execution. In summary, PrivPy runs a machine learning
tasks in the following four steps: 1) the Python front-end analyzes

and rewrites the program for algorithm-level performance opti-
mization. 2) Each client computes the secret shares for her private
variables, and sends the resulting shares to the servers. 3) All servers
runs the Python code in parallel on the private shares without any
client involvement, until it reached the reveal() point in the code.
4) The servers invoke reveal(), the clients are notified to find the
result shares, and finally recover the cleartext result.

4 THE PRIVPY COMPUTATION ENGINE

In this section, using multiplication as an example, we introduce our
secret sharing protocol design, and then we describe the private op-
eration (POs) we support. The thread model (security assumptions)
is defined in Section 3.1.

4.1 Replicated 2-out-of-4 secret sharing

Secret Sharing. Secret sharing encodes a secret number into mul-
tiple shares and distributes the shares to a group of participants
such that no information about the raw number is revealed as long
as no sufficient is gathered. The simplest secret sharing is to encode
a number x into two numbers r and x − r where r is a random
number. Thus one can reconstruct x only if he gets both shares.
Replicated 2-out-of-4 secret sharing. We combine the thought
of SecureML [35] and ABY3 [33], and design a more efficient proto-
col for fixed-point multiplication.

We define a 2-out-of-4 secret sharing, denoted as
(4
2
)
-sharing, to

enable efficient arithmetics. And we consider all the shares are in
a Z2n ring. Concretely, to share an integer x mod 2n , we encode
it as a tuple of shares: [[x]] = (x1,x ′1,x2,x

′
2,xa ,x

′
a ,xb ,x

′
b). S1 holds

(x1,x ′1) where x1 and x
′
1 are two independent random integers; S2

holds (x2,x ′2) where x2 = x − x1 and x ′2 = x − x ′1; Sa holds (xa ,x
′
a)

where xa = x2 and x ′a = x ′1; Sb holds (xb ,x ′b) where xb = x1 and
x ′b = x ′2. It can be easily seen that the two numbers each server
holds are independently uniformlly distributed in the ring Z2n , thus
the non-colluding servers learns nothing about x . Note that all the
linear arithmetic operations of the secret shares, such as +,−,×, are
over the ring Z2n . The division operation x/2d stands for shifting
the bits of x right in the two’s-complement representation.
Sharing initialization. To share a number x , a client encodes it
to x1 and x2 where x1 is randomly sampled in Z2n and x2 = x − x1.
Then it sends x1 and x2 to S1 and S2 respectively. After receiving the
shares, S1 sends x1 to Sb, and S2 sends x2 to Sa. Thus the four servers
holds x1,x2,xa ,xb respectively. Meanwhile, S1 and S2 generate a
random number r using the same seed, and calculate x ′1 = x1 − r
and x ′2 = x2 + r respectively. Finally, S1 sends x ′1 to Sa while S2
sends x ′2 to Sb, and the servers get the

(4
2
)
-sharing of x . In this

situation, each server only sees two independent random integers
that are uniformly distributed in Z2n , and no information about x
is revealed to each server.
Free addition. It can be easily seen that the

(4
2
)
-sharing over Z2n

is additively homomorphic, i.e., [[x]] + [[y]] = [[x + y]], and the
result shares still satisfy the above constraints. Thus each server
can locally compute the share of the sum. Similarly, for shared bits
over Z2, the XOR operation is also free.
Supporting decimals. Wemap a decimal x to Z2n as a fixed-point
number: we scale it by a factor of 2d and represent the rounded

Protocol 1: Fixed-point multiplication protocol.
Input: Shares of two fixed-point values [[x]] and [[y]]
Output: [[z]] where z = xy/2d
Steps:

a) S1 generates r12 and r ′12 and
calculates t1 = x1y′1 − r12 and t ′1 = x

′
1y1 − r ′12.

Then it sends t1 to Sb and sends t ′1 to Sa.
b) S2 generates r12 and r ′12 and

calculates t2 = x2y′2 + r12 and t
′
2 = x

′
2y2 + r

′
12.

Then it sends t2 to Sa and sends t ′2 to Sb.
c) Sa generates rab and r ′ab and

calculates ta = xay′a − rab and t ′a = x ′aya − r ′ab .
Then it sends ta to S2 and sends t ′a to S1.

d) Sb generates r12 and r ′12 and
calculates tb = xby′b + rab and t ′b = x

′
byb + r

′
ab .

Then it sends tb to S1 and sends t ′b to S2.
e) S1 sets z1 = (t1 + tb)/2d and z′1 = (t ′1 + t

′
a)/2d ;

S2 sets z2 = (t2 + ta)/2d and z′2 = (t ′2 + t
′
b)/2

d ;
Sa sets za = (ta + t2)/2d and z′a = (t ′a + t

′
1)/2

d ;
Sb sets zb = (tb + t1)/2d and z′b = (t ′b + t

′
2)/2

d .

integer x̃ = ⌊2dx⌋ as a n-bit integer using the two’s-complement
reprensentation. This mapping scheme is commonly used (see [10,
11, 33, 35], and the precision is 2−d . It is obvious that, while ignoring
the precision loss, [[x̃]] remains additively homomorphic.

4.2 Fixed-point multiplication.

To support efficient fixed-point multiplication, we combine the
thought of SecureML [35] and ABY3 [33] which are also secret-
sharing based approaches. But compared with SecureML and ABY3,
our fixed-point multiplication does not require precomputation
and only needs 1 round of communication, and preserves the same
online communication complexity for each server when ultilizing
fully-duplex communication, as Protocol 1 shows. A remarkable
thing is that, each pair of servers share a random string and use the
string as the seed of a pseudorandom function, like [3, 33, 34] do,
thus they can get a same random number without communication.
The thought of this protocol is from [3, 33, 35] and the security is
similar with them. Thus we omit the proof detail here due to space
limitation. To argue the correctness, we observe that

2dz1 + 2dz2
= (x1y

′
1 − r12 + xby

′
b + rab) + (x2y

′
2 + r12 + xay

′
a − rab)

= x1y
′
1 + xby

′
b + x2y

′
2 + x2y

′
a

= x1y
′
1 + x1y

′
2 + x2y

′
2 + x2y

′
1

= (x1 + x2)(y
′
1 + y

′
2) = xy

This means that (2dz1, 2dz2), namely (t1+tb , t2+ta), is a two-party
share of xy. Thus, according to the theorem in [35], (z1, z2) is a
two-party share of xy/2d i.e. z1 + z2 = xy/2d with extremely high
probability. The same applies to z′1 and z

′
2, i.e. z

′
1+z

′
2 = xy/2d . Also,

we can see that z1 = zb , z2 = za , z′1 = z′a and z′2 = z′b . This means
that the result shares of z still satisfy the constraint of

(4
2
)
-sharing.

4.3 Other basic POs

Limited by space, we only briefly introduce other POs here. We
implement the comparison operation using oblivious transfer which
enables secure selection between two private numbers and bit ex-
traction which extracts a specific bit of a private number, in a similar
way as [33], and thus the correctness and security directly follow
[33]. We also implement two basic bitwise operations XOR and AND,
and we can get all kinds of bitwise operations by composing the
two ones. Actually, XOR is the addition modulo 2, while AND is the
multiplication modulo 2. Thus if we use use

(4
2
)
-sharing to repre-

sent a bit, we can implement XOR and AND similar to addition and
multiplication of integer operations in Z2n .

4.4 Derived POs

We can compose multiple basic POs and formmore complex derived
POs commonly used in machine learning algorithms. For example,
to compute a ReLu function f (x) = max(0,x) which is commonly
used as a activation function in neural networks, we can first extract
the most significant bit of −x (which indicates x is positive or
not), then use the OT protocol to get f (x). For division, we can
use the Newton-Raphson algorithm [49] to approximate the result.
Similarly, to implement the logistic function f (x) = 1

1+e−x , we can
use the Euler method [43]. Another alternative implementation for
the logistic function is the piecewise function in [33, 35]. We also
implement other common maths functions using similar numerical
methods, such as sqrt, log, exp and max_pooling in a similar way.
With these basic POs and derived POs, we can further implement
complex algorithms as usual.

4.5 POs for performance optimization

We provide the following three sets of POs whose functionality is
already covered by the basic POs, but the separate versions can
significantly improve performance in certain cases. Programmers
can use these POs directly.

Batching POs. Batch up is a commonly used optimization in MPC
frameworks [7, 14, 51], which batches up independent data trans-
fers among the servers and thus reduce the fixed overhead. Array
POs natively support batch up. And as many machine learning al-
gorithms heavily utilize array operations, this optimization reduces
communication rounds and can improve performance significantly.

Multiply by public variables. In a case where an operation in-
volves both public and private variables, we can optimize perfor-
mance by revealing the public variables. Multiplication benefits
from the optimization the most, as the servers only need to mul-
tiply their shares by the public variables directly and there is no
necessary communication.

Dot and outer product. Dot and outer product of matrices are
frequently used in common machine learning algorithms. For ex-
ample, logistic regression and neural networks use dot product
for forward propagation, represented as Y = W · X + b. Outer
product is often used for calculating gradients. While implement-
ing them using for-loops, there are too many duplicated transfers
for each element, as each element will be multiplied by several
other elements in a multi-dimensional situation. We thus provide

1 x = privpy.ss(clientID)

2 def logistic(x, start , iter_cnt):

3 result = 1.0 / (1 + math.exp(-start))

4 deltaX = (x - start) / iter_cnt

5 for i in range(iter_cnt):

6 derivate = result * (1 - result)

7 result += deltaX * derivate

8 return result

9 result = logistic(x, 0, 100) # main()

10 result.reveal ()

11

Figure 3: Example PrivPy code: logistic function.

import privpy as pp

x = ... # read data using ss()

factor ,gamma ,lamb ,iter_cnt = initPublicParameters ()

n,d = x.shape

P = pp.random.random ((n,factor))

Q = pp.random.random ((d,factor))

for _ in range(iter_cnt):

e = x - pp.dot(P,pp.transpose(Q))

P1 = pp.reshape(pp.repeat(P,d,axis =0),P.shape [:-1] +

(d,P.shape [-1]))

e1 = pp.reshape(pp.repeat(e,factor ,axis =1),e.shape +

(factor ,))

Q1 = pp.reshape(pp.tile(Q,(n,1)),(n,d,factor))

Q += pp.sum(gamma * (e1 * P1 - lamb * Q1),axis = 0)/n

Q1 = pp.reshape(pp.tile(Q,(n,1)),(n,d,factor))

P += pp.sum(gamma * (e1 * Q1 - lamb * P1),axis = 1)/d

P.reveal (); Q.reveal ()

Figure 4: Example PrivPy code: matrix factorization.

built-in optimized dot and outer product. Specifically, for two pri-
vate matrices [[A]] and [[B]], we can calculate the dot product as
[[A]] · [[B]] = A1 · B′

1 +A2 · B′
2 +Aa · B

′
a +Ab · B′

b . This optimization
significantly reduces communication cost. As an example, given
two n × n matrices, a for-loop for dot product triggers n3 multi-
plications and the communication complexity is O(n3), while the
optimized one only incurs communication complexity of O(n2).

5 FRONT-END AND OPTIMIZATIONS

We now introduce the design and implementation of the program-
ming interfaces. Our goal is to provide intuitive interfaces and
automatic optimizations to avoid steep learning curves and enable
programmers to focus on the machine learning algorithm itself.

5.1 PrivPy Front-end Features

A PrivPy program is a valid Python programwith NumPy-style data
type definitions. We use three real code segments to illustrate the
PrivPy features essential to implementing data mining algorithms.

Fig. 3 shows a PrivPy program that computes the logistic function
f (x) = 1/(1 + e−x) using the Euler method [43]. Fig. 4 shows an
extra example of matrix factorization, which decomposes a large
private matrix x to two latent matrices P andQ . Lastly, Fig. 5 shows
an example of neural network inference.
Basic semantics. Unlike many domain-specific front-ends [7, 20,
41], which require the programmers to have knowledge about cryp-
tography and use customized languages, the program itself (lines

import privpy as pp

x = ... # read data using ss()

W, b = ... # read model using ss()

for i in range(len(W)):

x = pp.dot(W.T, x) + b

x = pp.relu(x)

res = pp.argmax(x, axis =1)

res.reveal ()

Figure 5: Example PrivPy code: neural network inference.

2-9) is a plain Python program, which can run in a raw Python
environment with cleartext input, and the user only needs to add
two things to make it private-preserving in PrivPy: (i)Declaring the
private variables. Line 1 declares a private variable x as the input
from the client clientID using the ss function. (ii) Getting results
back. The function reveal in line 10 allows clients to recover the
cleartext of the private variable. Programmers not familiar with
cryptography, such as machine learning programmers, can thus
implement algorithms with minimal effort.

All operations support both scalar and array types. PrivPy
supports scalars, as well as arrays of any shape. Supporting array
operations is essential for writing and optimizing machine learn-
ing algorithms which rely heavily on arrays. While invoking the
ss method, PrivPy detects the type and the shape of x automat-
ically. If x is an array, the program returns an array of the same
shape, containing the function on every element in x. Following
the NumPy [44] semantics, we also provide broadcasting that al-
lows operations between a scalar and an array, as well as between
arrays of different shapes, two widely used idioms. That is why
the logistic function in Fig. 3 works correctly even when x is a
private array. As far as we know, existing MPC front-ends, such as
[7, 14, 41, 51], do not support such elegant program. For example,
PICCO [51] only supports operations for arrays of equal shape.

Private array types. Array operations are pretty common in
machine learning algorithms. The private array class in PrivPy
encapsulates arrays of any shape. Users only need to pass a private
array to the constructor, then the constructor automatically detects
the shape. Like the array type in Numpy [44], our private array
supports broadcasting, i.e. PrivPy can handle arithmetic operations
with arrays of different shapes by “broadcasting” the smaller arrays
(see [22] for details). For example, given a scalar x , a 4 × 3 array
A, a 2 × 4 × 3 array B and a 2 × 1 × 3 array C , the expressions
x
⊙

A, A
⊙

B and B
⊙

C are all legal in PrivPy, where
⊙

can
be +,×and > etc. Note that in PrivPy, the above variables can be
either public or private. With broadcasting, programmers can write
elegant machine learning algorithms regardless of the shapes of
the inputs and model parameters.

We also implement most of the ndarray methods of Numpy,
with which application programmers can manipulate arrays conve-
niently and efficiently, except for the methods related with IO (we
leave IO as the future work). Table 1 lists the ndarray methods we
have implemented (see [23] for details of numpy.ndarray).

Broadcasting and ndarray methods are essential for implement-
ing common machine learning algorithms which usually handle
arrays of different shapes.

Both Fig. 4 and Fig. 5 demonstrate ndarray methods in PrivPy.
Users can implement the algorithms in plain Python, then just
replace the Numpy package with PrivPy package and add private
variables declaration. Actually, by replacing all privpy with numpy,
the main parts of Fig. 4 and Fig. 5 can run directly in raw Python
environment with cleartext inputs.
Support for large arrays. Mapping the data onto secret shares
unavoidably increases the data size. Thus, real-world datasets that
fit in memory in cleartext may fail to load in the private version. For
example, the 1, 000, 000× 5, 048matrix require over 150GB memory.
Automatic code rewriting. With the program written by users,
the interpreter of our front-end parses it to basic privacy-preserving
operations supported by the back-end, and the optimizer automat-
ically rewrites the program to improve efficiency (see Section 5
for details). This optimization can help programmers avoid perfor-
mance “pit falls” in MPC situation.

5.2 Implementations

Based on Plain Python Interpreter. We write our backend in
C++ for performance, and we implement our frontend in Python to
keep python compatibility. The backend is linked to the frontend
as a library on each server to reduce the overhead between the
frontend and backend. During a execution task, the same Python
code is interpretered on each server and client in parallel.
NumPy-style data type definitions and operator overload-

ing. We define our own data types SNum and SArr, to represent
the secret numbers and arrays, respectively. Then we overload
operators for private data classes, so standard operators such as
+,−, ∗, >,= work on both private and public data. The implemen-
tation of these overloaded operators chooses the right POs to use
based on data types and the sizes at runtime.
Automatic disk-backed large arrays. We provide a LargeArray
class that transparently uses disks as the back storage for arrays
too large to fit in memory.

5.3 Code analysis and optimization

Comparing to the computation on cleartext, private operations
have very distinct cost, and many familiar programming constructs
may lead to bad performance, creating “performance pitfalls”. Thus,
we provide aggressive code analysis and rewriting to help avoid
these pitfalls. For example, it is fine to write an element-wise multi-
plication of two vectors in plain Python program.

for i in range(n): z[i] = x[i] * y[i]

However, this is a typical anti-pattern causing performance over-
head due to the n multiplications involved, comparing to a single
array operation (Section 4.5). To solve the problem, we build a
source code analyzer and optimizer based on Python’s abstract
syntax tree (AST) package [36]. Before the servers execute the user
code, our analyzer scans the AST and rewrites anti-patterns into
more efficient ones. In this paper, we implement three examples:
For-loops vectorization. Vectorization [46] is a well-known com-
plier optimization. This analyzer rewrites the above for-loop into a
vector form ®z = ®x ∗ ®y. The rewriter also generates code to initialize
the vector variables.

fixed-point multiplication comparison
10, 473, 532 128, 2027

Table 2: Throughput (ops/second) of fundamental opera-

tions over Z2128 in the LAN setting.

Common factor extraction. We convert expressions with pat-
tern x ∗ y1 + x ∗ y2 + · · · + x ∗ yn to x ∗ (y1 + y2 + · · · + yn). In
this way, we reduce the number of × from n to 1, saving significant
communication time.
Common expression vectorization. Programmers often write
vector expressions explicitly, like x1 ∗ y1 + x2 ∗ y2 + · · · + xn ∗ yn ,
especially for short vectors. The optimizer extracts two vectors ®x =
(x1,x2, . . . ,xn) and ®y = (y1,y2, . . . ,yn), and rewrite the expression
into a vector dot product of ®x · ®y. Note that x1,x2, . . . ,xn do not
have to be the same shape, as PrivPy supports batch operations
with mixed shapes.
Reject for unsupported statements. We allow users to write
legal Python code that we cannot run correctly, such as branches
with private conditions (actually, most MPC tools do not support
private conditions [30, 51], or only support limited scenarios [50,
51]). In order to minimize users’ surprises at runtime, we perform
AST-level static checking, then reject unsupported statements at
the initialization phase and terminate with an error.

6 EVALUATION

Testbed. We run our experiments on four Amazon EC2 virtual
machines. All machines are of type c5.2xlarge with 8 Intel Xeon
Platinum 8000-series CPU cores and 64 GB RAM. Each machine
has a 1 GB Ethernet adapter running in full-duplex mode. In our
experiments, we consider two network settings: a LAN setting
where each virtual machine has 10Gbps incoming and outgoing
bandwidth, and a WAN setting where the bandwidth of each virtual
machine is 50 Mbps and the RTT latency is 100 ms.
Parameter setting. All arithmetic shares are over Z2128 , and we
set d = 40, which means the scaling factor is 240. We repeat each
experiment 10 times and report the average values.
PrivPy implementation. We implement the front-end of PrivPy
with Python, and use C++ to implement our computation engine.
And we use the built-in __int128 type of gcc to implement 128-bit
integers. We compile the C++ code using g++ -O3, and wrap it into
Python code using the Boost.Python library [8]. We use SSL with
1024-bit keys to protect all communications.

6.1 Microbenchmarks

We first perform microbenchmarks in the LAN setting to show the
performance of basic operations and the benefits of optimizations.
Basic operations. PrivPy engine supports efficient fundamen-
tal operations, including addition, fixed-point multiplication and
comparison. Addition can be done locally, while multiplication
and comparison involve communication. Thus we demonstrate the
performance of the latter two, as Table 2 shows.
Client-server interaction. We evaluate the performance of the
secret sharing process ss , with which the clients split raw data to
secret shares and send them to the servers, and the reverse process
reveal , with which the clients receive the shares from the servers

100 300 500 700 900

dimension

0.0

0.1

0.2

0.3

0.4

0.5

ti
m

e
(s

)

ss 100 clients

ss 500 clients

ss 1000 clients

reveal 100 clients

reveal 500 clients

reveal 1000 clients

100 300 500 700 900

client count

0.0

0.1

0.2

0.3

0.4

0.5

ti
m

e
(s

)

ss 100 dims

ss 500 dims

ss 1000 dims

reveal 100 dims

reveal 500 dims

reveal 1000 dims

Figure 6: Performance of ss and reveal .

10000 30000 50000 70000 90000
NO. of elements

−4

−2

0

2

lo
g(

ti
m

e)

optimized mul

unoptmized mul

10000 30000 50000 70000 90000
NO. of elements

−4

−2

0

2

lo
g(

ti
m

e)

optimized dot

unoptmized dot

Figure 7: The optimization of doing operations in batch.

2.5 5.0 7.5 10.0
n

0.0

0.5

1.0

1.5

2.0

ti
m

e
(m

s)
x ∗ y1 + x ∗ y2 + ...+ x ∗ yn
x ∗ (y1 + y2 + ...+ yn)

2.5 5.0 7.5 10.0
n

0.0

0.5

1.0

1.5

2.0

ti
m

e
(m

s)

x1 ∗ y1 + x2 ∗ y2 + ...+ xn ∗ yn
sum((x1, x2, ..., xn) ∗ (y1, y2, ..., yn))

Figure 8: Code optimizer performance.

and recover them to the plaintexts. We evaluate the time (including
computation and communication) with different numbers of clients
and dimensions, assuming that each client holds an accordingly
dimensional vector. Figure 6 shows that even with 1000 clients
and 1000-dimension vectors, it takes only less 0.3 seconds for the
servers to collect/reveal all the data from/to all the clients.
Effects of batch operations. We evaluate the effectiveness of
batching up, using two common operations: element-wise multi-
plication and dot product on vectors. For multiplication, we batch
up the communication of independent operations, while for dot
product of twom-dimensional vectors, we only need to transfer
the dot-producted shares and the communication cost is reduced
from O(m) to O(1). We vary the number of elements and measure
the time consumption, and Fig. 7 shows the result (the y-axis is the
logarithm of time). Both cases show benefits over 1000×.
Effects of code optimizations. We evaluate the common factor
extraction and expression vectorization. As these hand-written anti-
patterns are usually small, we range the expression size from 2 to
10. Figure 8 shows that more than 4× performance improvement
for five-term expressions in both situations.
Disk-backed large array performance. The PrivPy front-end
provides a class LargeArray to automatically handle the large ar-
rays that are too large to fit in the memory. As LaregeClass uses
disks as back storage, we should consider the effect of the disk
IO time to the overall performance. To evaluate the performance

communication +
computation disk IO total

single 0.38 0.7 1.08
batched 0.172 0.574 0.746

Table 3: Time (milliseconds) for dot product of a large array.

batch size LR MF
single 0.027 0.037
batched 0.026 0.042

Table 4: Time (seconds) for real algorithmswith large arrays.

of LargeArray, we use the Movielens dataset [19] which contains
1 million movie ratings from thousands of users. We encode the
dataset to a 1, 000, 000 × 5048 matrix, which requires 150GB mem-
ory space in each machine. We then perform a dot product of a
batch of elements in the dataset and a 5048-dimensional vector. We
evaluate the performance by varying the batch size and randomly
choosing a batch of items in the dataset. As Table 3 shows, the disk
IO becomes the main cost. The reason is that the program should
sequentially scan the large array stored in the disk to retrieve the
randomly choosen batch.

We then apply LargeArray to the training of real algorithms:
logistic regression (LR) which is trained using SGD, and matrix
factorization (MF) [5] which decomposes a large matrix into two
smaller latent matrices for efficient prediction (in this paper, we
decompose eachm ×n matrix to am × 5 matrix and a 5×n matrix).
Table 4 shows the result.

6.2 Performance of real algorithms

The focus of PrivPy is the algorithm performance on real big datasets.
We present our experience in common algorithms, including logis-
gtic regression (LR), matrix factorization (MF) and neural network
(NN), using both ABY3 and our backend. ABY3 engine has several
configuration options, we use the most performance-optimized op-
tions of ABY3 (semi-honest assumption without precomputation)
in all the evaluations.

We perform our evaluation in both the LAN setting and the
WAN setting, and use theMNIST dataset [28] which includes 70, 000
labeled handwritten digits [12] with 28×28 pixels each. We evaluate
the performance for both training and inference. And as our front-
end supports both engines, we run the same algorithm codes written
with Python on the two engines.

Table 5 shows the average time consumed by 1 iteration of train-
ing. The logistic regression and matrix factorization is constructed
as above, and the neural network (NN) has a 784-dimensonal input
layer, two 128- hidden layers and a 10-dimensional output layer.

For inference, we in addition evaulate the LeNet-5 [27] model to
demonstrate convonlutional neural network (CNN). LeNet-5 has a
784-dimension input layer, 3 convolutional layers with a 5×5 kernel,
2 sum-pooling layers, 3 sigmoid layers, 1 dot product layer, 1 Radial
Basis Function layer, and an argmin function on a 10-dimension
vector to get the output. Then based on the LeNet-5 model, we
add a batch normalization [21] layer to each sigmoid layer to get a
CNN+BN model. The evaluation result is as Table 6 shows.

From the evaluation results, we can see that our computation
engine performs better than ABY3 for both training and inference,
especially in the WAN setting. This is because, although both ABY3
and our computation engine require no precomputation and have

batch
size engine LAN WAN

LR MF NN LR MF NN

single ABY3 5.2e-3 7.4e-3 1.8e-2 2.16 0.62 1.27
PrivPy 5.3e-3 7.1e-3 1.7e-2 2.61 0.37 1.16

batched ABY3 3.94 5.72 58.1 7.53 18.6 637
PrivPy 3.92 5.67 52.5 7.3 13.2 554

Table 5: Time (seconds) for training of real algorithms with

different engines.

batch
size engine LAN WAN

NN CNN CNN
+BN NN CNN CNN

+BN

single ABY3 1.3e-2 9.6e-2 0.16 2.43 6.83 8.07
PrivPy 1.3e-2 9.6e-2 0.17 2.49 7.64 8.07

batched ABY3 1.45 12.6 13.2 8.12 58.9 59.5
PrivPy 1.38 12.02 12.2 7.22 56.3 57.9

Table 6: Time (seconds) for inference of real algorithmswith

different engines.

LR MF NN CNN CNN+BN
lines 42 25 9 83 87
time 0.7 0.5 0.1 1.5 1.5

Table 7: Lines of codes and time (hours) for implementing

real algorithms.

the same communication cost for each server, ABY3 requires 1 more
round than our computation engine for fixed-point multiplication,
thus causes lower performance.

Finally, we stress the usability of our front-end. Table 7 shows
the lines of codes for each algorithm and the time for a student
who focuses on data mining but is unfamiliar with cryptography
to write each algorithm using our front-end.

7 CONCLUSION AND FUTUREWORK

Over thirty years of MPC literature provides an ocean of proto-
cols and systems great on certain aspects of performance, security
or ease of programming. We believe it is time to integrate these
techniques into an application-driven and coherent system for ma-
chine learning tasks. PrivPy is a framework with top-down design.
At the top, it provides familiar Python-compatible interfaces with
essential data types like real numbers and arrays, and use code opti-
mizer/checkers to avoid common mistakes. In the middle, using an
intermediary for storage and communication, we build a compos-
able PO system that helps decoupling the front-end with backend.
At the low level, we design new protocols that improve compu-
tation speed. PrivPy shows great potential: it handles large data
set (1M-by-5K) and complex algorithms (CNN) fast, with minimal
program porting effort.

PrivPy opens up many future directions. Firstly, we are improv-
ing the PrivPy computation engine to provide active security while
preserving high efficiency. Secondly, we would like to port existing
machine learning libraries to our front-end. Thirdly, we will sup-
port more computation engines. Fourthly, although we focus on
MPC in this work, we will introduce randomization to protect the
final results [29, 39]. Last but not least, we will also improve fault
tolerance mechanism to the servers.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
fundation of China (NSFC) Grant 61532001, Tsinghua Initiative
Research Program Grant 20151080475, and gift funds from Huawei,
Ant Financial and Nanjing Turing AI Institute.

Again, we acknowledge the significant contributions of the coau-
thors in the footnote of the first page.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard.
2016. TensorFlow: a system for large-scale machine learning. (2016).

[2] Toshinori Araki, Assi Barak, Jun Furukawa,Marcel Keller, Yehuda Lindell, Kazuma
Ohara, and Hikaru Tsuchida. 2018. Generalizing the SPDZ Compiler For Other
Protocols. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 880–895.

[3] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority. In ACM Sigsac Conference on Computer and Communications
Security. 805–817.

[4] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system
for secure multi-party computation. In CCS ’08. ACM. https://doi.org/10.1145/
1455770.1455804

[5] Arnaud Berlioz, Arik Friedman, Mohamed Ali Kaafar, Roksana Boreli, and Shlomo
Berkovsky. 2015. Applying Differential Privacy to Matrix Factorization. In The
ACM Conference. 107–114.

[6] Dan Bogdanov, Peeter Laud, and Jaak Randmets. 2014. Domain-polymorphic
programming of privacy-preserving applications. In Proceedings of the Ninth
Workshop on Programming Languages and Analysis for Security. ACM, 53.

[7] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A framework
for fast privacy-preserving computations. In European Symposium on Research in
Computer Security. Springer, 192–206.

[8] Boost. 2018. Boost C++ Libraries. http://www.boost.org/.
[9] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

Learning Classification over Encrypted Data.. In NDSS.
[10] Octavian Catrina and Sebastiaan De Hoogh. 2010. Improved primitives for

secure multiparty integer computation. In International Conference on Security
and Cryptography for Networks. Springer, 182–199.

[11] Octavian Catrina and Amitabh Saxena. 2010. Secure computation with fixed-
point numbers. In International Conference on Financial Cryptography and Data
Security. Springer, 35–50.

[12] Zong Chen. 2000. Handwritten Digits Recognition.. In International Conference
on Image Processing, Computer Vision, & Pattern Recognition, Ipcv 2009, July 13-16,
2009, Las Vegas, Nevada, Usa, 2 Volumes. 690–694.

[13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. 2013. Practical covertly secure MPC for dishonest majority–
or: breaking the SPDZ limits. In European Symposium on Research in Computer
Security. Springer, 1–18.

[14] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multi-
party computation from somewhat homomorphic encryption. In Advances in
Cryptology–CRYPTO 2012. Springer, 643–662.

[15] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of optimized
circuits for secure computation. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 1504–1517.

[16] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation.. In NDSS.

[17] Duan, Yitao and Canny, John and Zhan, Justin. 2010. P4P: Practical Large-scale
Privacy-preserving Distributed Computation Robust Against Malicious Users.
In Proceedings of the 19th USENIX Conference on Security (USENIX Security’10).
USENIX Association.

[18] Shai Halevi and Victor Shoup. 2014. Algorithms in helib. In International Cryp-
tology Conference. Springer, 554–571.

[19] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS) (2016).

[20] Wilko Henecka, Ahmad-Reza Sadeghi, Thomas Schneider, Immo Wehrenberg,
et al. 2010. TASTY: tool for automating secure two-party computations. In
Proceedings of the 17th ACM conference on Computer and communications security.
ACM, 451–462.

[21] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning. 448–456.

[22] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2011–. numpy.ndarray. https:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html.

[23] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2011–. numpy.ndarray. https:
//docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html.

[24] Liina Kamm and Jan Willemson. 2015. Secure floating point arithmetic and
private satellite collision analysis. International Journal of Information Security
14, 6 (2015), 531–548.

[25] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure
Computation with Malicious Adversaries.. In USENIX Security Symposium, Vol. 12.
285–300.

[26] Toomas Krips and Jan Willemson. 2014. Hybrid model of fixed and floating
point numbers in secure multiparty computations. In International Conference on
Information Security. Springer, 179–197.

[27] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet (2015).

[28] Yann Lecun and Corinna Cortes. 2010. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist.

[29] Yi Li, Yitao Duan, and Wei Xu. 2017. PEM: Practical Differentially Private System
for Large-Scale Cross-Institutional Data Mining.. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer.

[30] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
Oblivm: A programming framework for secure computation. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 359–376.

[31] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. 2017. Oblivious neural network
predictions via minionn transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 619–631.

[32] Wenjie Lu, Shohei Kawasaki, and Jun Sakuma. 2016. Using Fully Homomorphic
Encryption for Statistical Analysis of Categorical, Ordinal and Numerical Data.
IACR Cryptology ePrint Archive 2016 (2016), 1163.

[33] Payman Mohassel and Peter Rindal. 2018. ABY 3: a mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 35–52.

[34] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-
party Computation:The Garbled Circuit Approach. In The ACM Sigsac Conference.
591–602.

[35] P. Mohassel and Y. Zhang. 2017. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy
(SP). 19–38. https://doi.org/10.1109/SP.2017.12

[36] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. 2005. Understanding source
code evolution using abstract syntax tree matching. In International Workshop on
Mining Software Repositories, MSR 2005, Saint Louis, Missouri, Usa, May. 1–5.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[39] Martin Pettai and Peeter Laud. 2015. Combining differential privacy and secure
multiparty computation. In Proceedings of the 31st Annual Computer Security
Applications Conference. ACM, 421–430.

[40] Michael O. Rabin. 1981. How to exchange secrets by oblivious transfer. Technical
Report TR-81. Aiken Computation Laboratory, Harvard University.

[41] Axel Schropfer, Florian Kerschbaum, and Gunter Muller. 2011. L1-an intermediate
language for mixed-protocol secure computation. In Computer Software and
Applications Conference, IEEE 35th Annual. 298–307.

[42] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979).
[43] Josef Stoer and Roland Bulirsch. 1980. Introduction to numerical analysis. Math.

Comp. 24, 111 (1980), 749.
[44] Stéfan Van Der Walt, S. Chris Colbert, and Gaël Varoquaux. 2011. The NumPy

Array: A Structure for Efficient Numerical Computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[45] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[46] M Weinhardt and W Luk. 2001. Pipeline vectorization. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 20, 2 (2001), 234–248.

[47] Xiaodan Wu, Chao Hsien Chu, Yunfeng Wang, Fengli Liu, and Dianmin Yue.
2007. Privacy Preserving Data Mining Research: Current Status and Key Issues.
Lecture Notes in Computer Science 4489 (2007), 762–772.

[48] Andrew C. Yao. 1982. Protocols for secure computations. Foundations of Computer
Science Annual Symposium on (1982), 160–164.

[49] Tjalling J. Ypma. 1995. Historical Development of the Newton-Raphson Method.
Siam Review 37, 4 (1995), 531–551.

[50] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptology ePrint Archive 2015 (2015), 1153.

[51] Yihua Zhang, Aaron Steele, and Marina Blanton. 2013. PICCO: a general-purpose
compiler for private distributed computation. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 813–826.

https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1145/1455770.1455804
http://www.boost.org/
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1109/SP.2017.12
https://github.com/emp-toolkit

	Abstract
	1 Introduction
	2 Related Work
	3 PrivPy Design Overview
	3.1 Problem formulation
	3.2 Design overview

	4 The PrivPy computation engine
	4.1 Replicated 2-out-of-4 secret sharing
	4.2 Fixed-point multiplication.
	4.3 Other basic POs
	4.4 Derived POs
	4.5 POs for performance optimization

	5 Front-end and Optimizations
	5.1 PrivPy Front-end Features
	5.2 Implementations
	5.3 Code analysis and optimization

	6 Evaluation
	6.1 Microbenchmarks
	6.2 Performance of real algorithms

	7 Conclusion and Future Work
	Acknowledgments
	References

