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Making use of data vs. data privacy
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Data asset



Scenario 1: Multi-source data mining

Compute servers see nothingGet nothing other than the
final results

Private inputs of data owners
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Scenario 2: Inference w/ secret models and data

Private data Private model

Inference
result
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Similar setting: federated learning, but want to protect the model itself.



A nice theory provide solution

uSecure multi-party computation (MPC)
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F(x1, x2, …. xn) y

x1

x2

xn

• We can compute any function F() without
revealing the inputs xi.

• No noise introduced in computation, and do
not reveal anything.



Tons of cryptography-based solutions tell us …

ØMany novel theoretical solutions
• Secret Sharing (Shamir 1979)
• Garbled Circuit (Yao 1986)
• Fully Homomorphic Encryption (Gentry 2009)

ØEven many “practical” solutions exist
• Sharemind (2008)
• TASTY (2010)
• PICCO (2013)
• SPDZ (2008)
• SecureML(2017)
• ABY3(2018)

ØBut, why people still not using it to mine real world data?
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The gap between cryptography and data science

• Efficient bit-wise and integer operations • Efficient operations on real numbers

• Fast single number arithmetic • Fast vector and array operations

• Theoretically innovative • Scalable system implementation

• A custom and beautiful programming language • Familiar language with rich algorithm libraries

The Cryptography World The Data Science World

The gap is like
a set of data structures v.s. a relational database
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PrivPy attempts to bridge the gap

• A fast (4,2)-secret-sharing protocol and
engine

• Python language with automatic code
optimizer

• NumPy types and libraries

• Runs non-trivial algorithms on real data

Computation Engines

Interpreter Optimizer

Convenient APIs Language
Front-end

Back-end

PrivPy
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Crypto preliminary: basic secret sharing

S1 S2

𝜑(𝑢) = (𝑢1, 𝑢2)
𝑢1: uniformly distributed in 𝜙𝑝
𝑢2: = 𝑢 - 𝑢1 (mod 𝑝)

- Two semi-honest servers: S1 and S2
- A large (e.g. 256 bits) number 𝑝
- Computation in the field 𝜙𝑝= {0, 1, …,𝑝-1}

+ 𝑢2𝑢1=𝑢
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Multiplication: Our (42)-secret sharing scheme

𝑢* 𝑢+

Sa

𝑢+ 𝑢*

S1 S2

Sb

𝑢*, 𝑢+,

𝑢*, 𝑢+,
𝑣* 𝑣+𝑣*, 𝑣+,

𝑣+ 𝑣*𝑣*, 𝑣+,

=𝑢 × 𝑣 +𝑢*𝑣*, +𝑢+𝑣+, +𝑢+𝑣*, 𝑢*𝑣+,𝑤 =
𝑡* 𝑡+ 𝑡1 𝑡2

• Two auxiliary servers Sa and
Sb to compute the cross terms

• Benefit: one round of
communication only for×
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Using fixed-point to represent real numbers

010010011100100.11011001001…
Fixed-length 𝑙 − 𝑘
Integer part

Fixed-length 𝑘
decimal part

010010011100100 11011001001

• Use expensive bit-level operations
Ø PICCO, Sharemind, SPDZ, etc

• Support built-in fixed-point operations
Ø SecureML, ABY3, PrivPy
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The PrivPy computation engine
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The PrivPy computation engine
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Python compatible programming front-end

uOverload basic operations for private variables: +, -,×, >, etc
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Most existing solutions define their own language

PICCO OblivC SPDZ
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Why? Many pitfalls if written in Python resulting in inefficiency.
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AST-level code optimization to avoid pitfalls

×
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Still adding more optimizations to the language frontend.

Common factor

Auto vectorization



SS(𝑑)
=(𝑑1,𝑑2) Mul

Cmp

Add Division

Sigmoid
function

ReLU

Garbled
circuit

Basic OPs Derived OPs

APIs: from basic OPs to algorithms

u Division: Newton-Raphson method
u Sigmoid: Euler Method
u ReLu: comparison
u Other functions: e𝘹, log(x), …

𝑦 𝑥 =
1

1 + 𝑒FG

𝑦′ 𝑥 = 𝑦(𝑥)(1 − 𝑦(𝑥))

𝑦 𝑥IJ* = 𝑦 𝑥I + 𝑦,(𝑥I)Δ𝑥
= 𝑦 𝑥I + 𝑦 𝑥I 1 − 𝑦 𝑥I Δ𝑥

17



APIs: arrays are first-class citizen

• Array is a built-in type
Ø 𝐴 = 𝑝𝑝. 𝑠𝑎𝑟𝑟 … ; 𝐵 = 𝑝𝑝. 𝑠𝑎𝑟𝑟( … )
Ø Both 𝐴 ∗ 𝐵 and 𝐴 + 𝐵 work

• Array type is essential for data mining: reduces # of ops, thus # of rounds

• Support large arrays (e.g. 1 million× 5000, ~200GB) using automatic
disk buffer management
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Beyond arrays: NumPy’s broadcasting and ndarray

uAllow operations between arrays of different shapes
ØE.g.

Ø 12d-scalar 𝑥, a 3 * 4 array 𝐴 and a 2 * 3 * 4 array 𝐵
Ø𝑥 + 𝐴, 𝐴 ∗ 𝐵 and 𝑥 > 𝐵 all work
ØCan even mix plaintext and cipher text

uNdarray methods

𝑦 = 𝑓(𝑤⊺ ⋅ 𝑋 + 𝑏)
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API example: neural network inference

model

Inference result

image

PrivPy
Engine
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Basic operation performance
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Throughput of basic operations (ops per second)

Engine Approach
LAN (10Gbps)

decimal multiplication comparison

PrivPy SS 10,473,532 1,282,027 

Helib FHE 258 -

Obliv-C GC 3,930 78,431

P4P+HE SS+HE 4,344 -

SPDZ SS with active
security 83,073 20,472

SPDZ+PrivPy SS with active
security 83,229 20,320

Our thin wrapper



Real world algorithm performance
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Dataset: MNIST with 70,000 labeled handwritten digits
Algorithm:
• Logistic Regression (LR): trained using SGD
• Matrix Factorization (MF): decomposes a 𝑚 × 𝑛 matrix to a 𝑚 ×5 matrix and a 5 ×𝑛 matrix
• CNN: LeNet-5

Time of training/inference for 1 iteration (seconds)

Batch size
LAN (10Gbps) WAN (50Mbps)

LR training MF
training

CNN
inference LR training MF

training
CNN

inference

Single op 5.3e-3 7.1e-3 9.6e-2 2.61 0.37 7.64 

Batch (1000
ops) 3.92 5.67 12.02 7.3 13.2 56.3  



Conclusion and future work

u MPC can be useful in data mining, but big gap to bridge
u PrivPy is an early attempt to make MPC practical for large datasets

Ø Language, data types, function libraries
Ø Scalable and efficient system implementation
ØHeavily rely on language-level optimizations

u PrivPy is an on-going effort
Ø Integrating with other privacy-preserving techniques – differential privacy,

federated learning, trusted execution etc.
ØMore libraries, algorithms and compiler optimizations
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