
PrivPy: Scalable and General
Privacy-Preserving Data Mining

Yi Li∗, Yitao Duan†, Yu Yu§, Shouyao Zhao§, Wei Xu∗
∗ Institute for Interdisciplinary Information Sciences, Tsinghua University

† NetEase Youdao
§Shanghai Jiaotong University

Making use of data vs. data privacy

2

Privacy
Compliance
Data asset

Scenario 1: Multi-source data mining

Compute servers see nothingGet nothing other than the
final results

Private inputs of data owners

3

Scenario 2: Inference w/ secret models and data

Private data Private model

Inference
result

4

Similar setting: federated learning, but want to protect the model itself.

A nice theory provide solution

uSecure multi-party computation (MPC)

5

F(x1, x2, …. xn) y

x1

x2

xn

• We can compute any function F() without
revealing the inputs xi.

• No noise introduced in computation, and do
not reveal anything.

Tons of cryptography-based solutions tell us …

ØMany novel theoretical solutions
• Secret Sharing (Shamir 1979)
• Garbled Circuit (Yao 1986)
• Fully Homomorphic Encryption (Gentry 2009)

ØEven many “practical” solutions exist
• Sharemind (2008)
• TASTY (2010)
• PICCO (2013)
• SPDZ (2008)
• SecureML(2017)
• ABY3(2018)

ØBut, why people still not using it to mine real world data?
6

The gap between cryptography and data science

• Efficient bit-wise and integer operations • Efficient operations on real numbers

• Fast single number arithmetic • Fast vector and array operations

• Theoretically innovative • Scalable system implementation

• A custom and beautiful programming language • Familiar language with rich algorithm libraries

The Cryptography World The Data Science World

The gap is like
a set of data structures v.s. a relational database

7

PrivPy attempts to bridge the gap

• A fast (4,2)-secret-sharing protocol and
engine

• Python language with automatic code
optimizer

• NumPy types and libraries

• Runs non-trivial algorithms on real data

Computation Engines

Interpreter Optimizer

Convenient APIs Language
Front-end

Back-end

PrivPy

8

Crypto preliminary: basic secret sharing

S1 S2

𝜑(𝑢) = (𝑢1, 𝑢2)
𝑢1: uniformly distributed in 𝜙𝑝
𝑢2: = 𝑢 - 𝑢1 (mod 𝑝)

- Two semi-honest servers: S1 and S2
- A large (e.g. 256 bits) number 𝑝
- Computation in the field 𝜙𝑝= {0, 1, …,𝑝-1}

+ 𝑢2𝑢1=𝑢

9

Multiplication: Our (42)-secret sharing scheme

𝑢* 𝑢+

Sa

𝑢+ 𝑢*

S1 S2

Sb

𝑢*, 𝑢+,

𝑢*, 𝑢+,
𝑣* 𝑣+𝑣*, 𝑣+,

𝑣+ 𝑣*𝑣*, 𝑣+,

=𝑢 × 𝑣 +𝑢*𝑣*, +𝑢+𝑣+, +𝑢+𝑣*, 𝑢*𝑣+,𝑤 =
𝑡* 𝑡+ 𝑡1 𝑡2

• Two auxiliary servers Sa and
Sb to compute the cross terms

• Benefit: one round of
communication only for×

10

Using fixed-point to represent real numbers

010010011100100.11011001001…
Fixed-length 𝑙 − 𝑘
Integer part

Fixed-length 𝑘
decimal part

010010011100100 11011001001

• Use expensive bit-level operations
Ø PICCO, Sharemind, SPDZ, etc

• Support built-in fixed-point operations
Ø SecureML, ABY3, PrivPy

11

The PrivPy computation engine

𝑥

𝑧

……

𝐶1

𝐶𝑛

SS Store
1

PO
Engine

SS Store
2

PO
Engine

PO
Engine

PO
Engine

……

Clients Servers

𝑆𝑏

𝑆1

𝑆2

𝑆𝑎

𝑦𝐶𝑘

SS Store
a

SS
Store b

TASK CONFIG
Python code
Data source addr
Result addr

12

The PrivPy computation engine

𝑥

𝑧

……

𝐶1

𝐶𝑛

SS Store
1

PO
Engine

SS Store
2

PO
Engine

PO
Engine

PO
Engine

……

Clients Servers

𝑆𝑏

𝑆1

𝑆2

𝑆𝑎

𝑦𝐶𝑘

SS Store
a

SS Store
b

𝑥1

𝑦2

𝑥2

𝑦1

𝑧1

𝑧2

𝑥1

𝑥2

Private Ops
Protocols

res1

res2

res1 + res2 = res

13

Python compatible programming front-end

uOverload basic operations for private variables: +, -,×, >, etc

14

Most existing solutions define their own language

PICCO OblivC SPDZ

15

Why? Many pitfalls if written in Python resulting in inefficiency.

�

�

! "�

�

! "�

�

! "�

……

� �

!

�

"� "�

……

�

"�

AST-level code optimization to avoid pitfalls

×

16

Still adding more optimizations to the language frontend.

Common factor

Auto vectorization

SS(𝑑)
=(𝑑1,𝑑2) Mul

Cmp

Add Division

Sigmoid
function

ReLU

Garbled
circuit

Basic OPs Derived OPs

APIs: from basic OPs to algorithms

u Division: Newton-Raphson method
u Sigmoid: Euler Method
u ReLu: comparison
u Other functions: e𝘹, log(x), …

𝑦 𝑥 =
1

1 + 𝑒FG

𝑦′ 𝑥 = 𝑦(𝑥)(1 − 𝑦(𝑥))

𝑦 𝑥IJ* = 𝑦 𝑥I + 𝑦,(𝑥I)Δ𝑥
= 𝑦 𝑥I + 𝑦 𝑥I 1 − 𝑦 𝑥I Δ𝑥

17

APIs: arrays are first-class citizen

• Array is a built-in type
Ø 𝐴 = 𝑝𝑝. 𝑠𝑎𝑟𝑟 … ; 𝐵 = 𝑝𝑝. 𝑠𝑎𝑟𝑟(…)
Ø Both 𝐴 ∗ 𝐵 and 𝐴 + 𝐵 work

• Array type is essential for data mining: reduces # of ops, thus # of rounds

• Support large arrays (e.g. 1 million× 5000, ~200GB) using automatic
disk buffer management

18

Beyond arrays: NumPy’s broadcasting and ndarray

uAllow operations between arrays of different shapes
ØE.g.

Ø 12d-scalar 𝑥, a 3 * 4 array 𝐴 and a 2 * 3 * 4 array 𝐵
Ø𝑥 + 𝐴, 𝐴 ∗ 𝐵 and 𝑥 > 𝐵 all work
ØCan even mix plaintext and cipher text

uNdarray methods

𝑦 = 𝑓(𝑤⊺ ⋅ 𝑋 + 𝑏)

19

API example: neural network inference

model

Inference result

image

PrivPy
Engine

20

Basic operation performance

21

Throughput of basic operations (ops per second)

Engine Approach
LAN (10Gbps)

decimal multiplication comparison

PrivPy SS 10,473,532 1,282,027

Helib FHE 258 -

Obliv-C GC 3,930 78,431

P4P+HE SS+HE 4,344 -

SPDZ SS with active
security 83,073 20,472

SPDZ+PrivPy SS with active
security 83,229 20,320

Our thin wrapper

Real world algorithm performance

22

Dataset: MNIST with 70,000 labeled handwritten digits
Algorithm:
• Logistic Regression (LR): trained using SGD
• Matrix Factorization (MF): decomposes a 𝑚 × 𝑛 matrix to a 𝑚 ×5 matrix and a 5 ×𝑛 matrix
• CNN: LeNet-5

Time of training/inference for 1 iteration (seconds)

Batch size
LAN (10Gbps) WAN (50Mbps)

LR training MF
training

CNN
inference LR training MF

training
CNN

inference

Single op 5.3e-3 7.1e-3 9.6e-2 2.61 0.37 7.64

Batch (1000
ops) 3.92 5.67 12.02 7.3 13.2 56.3

Conclusion and future work

u MPC can be useful in data mining, but big gap to bridge
u PrivPy is an early attempt to make MPC practical for large datasets

Ø Language, data types, function libraries
Ø Scalable and efficient system implementation
ØHeavily rely on language-level optimizations

u PrivPy is an on-going effort
Ø Integrating with other privacy-preserving techniques – differential privacy,

federated learning, trusted execution etc.
ØMore libraries, algorithms and compiler optimizations

23
Wei Xu –http://iiis.tsinghua.edu.cn/~weixu
Yi Li – xiaolixiaoyi@gmail.com

http://iiis.tsinghua.edu.cn/~weixu
mailto:xiaolixiaoyi@gmail.com

