

PrivPy: Scalable and General Privacy-Preserving Data Mining

Yi Li*, Yitao Duan[†], Yu Yu [§], Shouyao Zhao [§], Wei Xu* * Institute for Interdisciplinary Information Sciences, Tsinghua University [†] NetEase Youdao [§] Shanghai Jiaotong University

Making use of data vs. data privacy

Consulting		Enter number or search term		0
GENERAL DATA PROTECTION REGULATION (GDPR)	RECITALS	KEY ISSUES		💻 Deutsc
GDPR				
Chapter 1 (Art. 1 – 4)		Ge	neral Data Protection Regulation	
Chapter 2 (Art. 5 – 11) Principles			GDPR	
Chapter 3 (Art. 12 – 23) Rights of the data subject			ad the official PDE of the Begulation (FLI) 2016/679	
Chapter 4 (Art. 24 – 43) Controller and processor		Privacy Compliance Data asset	e current version of the OJ L 119, 04.05.2016; cor. OJ bsite. All Articles of the GDPR are linked with suitable	
Chapter 5 (Art. 44 – 50) Transfers of personal data to third countries or international organisations	(gulation is applicable as of May 25th, 2018 in all laws across Europe. If you find the page useful, feel	
Chapter 6 (Art. 51 – 59) Independent supervisory authorities				
Chapter 7 (Art. 60 – 76) Cooperation and consistency				
Chapter 8 (Art. 77 – 84) Remedies, liability and penalties		Chapter 1 - 1 2 3 4		
Chapter 9 (Art. 85 – 91) Provisions relating to specific processing situations		Chapter 2 - 5 6 7 8 Chapter 3 - 12 13 14 Chapter 4 - 24 25 26	9 10 11 5 16 17 18 19 20 21 22 23 5 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	
Chapter 10 (Art. 92 - 93)		Chapter 5 - 44 45 46	§ 47 48 49 50	

Scenario 1: Multi-source data mining

Similar setting: federated learning, but want to protect the model itself.

Secure multi-party computation (MPC)

Many novel theoretical solutions

- Secret Sharing (Shamir 1979)
- Garbled Circuit (Yao 1986)
- Fully Homomorphic Encryption (Gentry 2009)

Even many "practical" solutions exist

- Sharemind (2008)
- TASTY (2010)
- PICCO (2013)
- SPDZ (2008)
- SecureML(2017)
- ABY3(2018)

>But, why people still not using it to mine real world data?

The Cryptography World

- Efficient bit-wise and integer operations
- Fast single number arithmetic
- Theoretically innovative
- A custom and beautiful programming language

The Data Science World

- Efficient operations on real numbers
- Fast vector and array operations
- Scalable system implementation
- Familiar language with rich algorithm libraries

The gap is like a set of data structures v.s. a relational database

- A fast (4,2)-secret-sharing protocol and engine
- Python language with automatic code optimizer
- NumPy types and libraries
- Runs non-trivial algorithms on real data

Crypto preliminary: basic secret sharing

- Two semi-honest servers: S₁ and S₂
- A large (e.g. 256 bits) number p
- Computation in the field ϕ_p = {0, 1, ..., p-1}

$$u = u_1 + u_2$$

 $\varphi(u) = (u_1, u_2)$ u_1 : uniformly distributed in ϕ_p u_2 : = $u - u_1 \pmod{p}$

Multiplication: Our $\binom{4}{2}$ -secret sharing scheme

 S_2

__!

- Two auxiliary servers S_a and S_b to compute the cross terms
- Benefit: one round of communication only for imes

$010010011100100\ 11011001001$

- Use expensive bit-level operations
 - > PICCO, Sharemind, SPDZ, etc
- Support built-in fixed-point operations
 - SecureML, ABY3, PrivPy

• Overload basic operations for private variables: +, -, \times , >, etc

Most existing solutions define their own language 🛞 🖪

#include <million.h>

public int main() {
 public int i, M;
 smcinput(M, 1, 1);
 private int<1> A[M], B[M];
 private int<10> dist = 0;
 smcinput(A, 1, M);
 smcinput(B, 1, M);
 for (i = 0; i < M; i++)
 dist += A[i] ^ B[i];
 smcoutput(dist, 1);
 return 0;
}</pre>

#include <obliv.oh> is_match_at =
void millionaire (void *args) {
 ProtocollO *io = args; def _(i):
 obliv int a, b; @for_
 obliv bool res = false; def _
 a = feedOblivInt (io->myinput, 1)
 b = feedOblivInt (io->myinput, 2)
 obliv if (a < b) res = true;
 revealOblivBool (&io->result, res, 0);

intersection = Array(n, sint)
is_match_at = Array(n, sint)

nge(n)
):
@for_range(n)
def _(j):
 match = a[i] == b[j]
 is_match_at[i] += match
 intersection[i] = if_else(match, a[i], intersection[i])

SPDZ

PICCO

Why? Many pitfalls if written in Python resulting in inefficiency.

OblivC

Auto vectorization

$$x_{1} * y_{1} + x_{2} * y_{2} + \dots + x_{n} * y_{n}$$

$$\vec{x} = (x_{1}, x_{2}, \dots, x_{n}) \quad \checkmark \quad \vec{y} = (y_{1}, y_{2}, \dots, y_{n})$$

Still adding more optimizations to the language frontend.

• Array is a built-in type

$$\blacktriangleright A = pp.sarr([...]); B = pp.sarr([...])$$

- \blacktriangleright Both A * B and A + B work
- Array type is essential for data mining: reduces # of ops, thus # of rounds
- Support large arrays (e.g. 1 million imes 5000, ~200GB) using automatic disk buffer management

Beyond arrays: NumPy's broadcasting and ndarray

◆ Allow operations between arrays of different shapes
 ▷ E.g.

 \succ 12d-scalar x, a 3 * 4 array A and a 2 * 3 * 4 array B

> x + A, A * B and x > B all work

Can even mix plaintext and cipher text

Ndarray methods

all	any	append	argmax
argmin	argparition	argsort	clip
compress	сору	cumprod	cumsum
diag	dot	fill	flatten
item	itemset	max	mean
min	ones	outer	partition
prod	ptp	put	ravel
repeat	reshape	resize	searchsorted
sort	squeeze	std	sum
swapaxes	take	tile	trace
transpose var		zeros	

API example: neural network inference

import privpy as pp
x = ... # read data using ss()
W, b = ... # read model using ss()
for i in range(len(W)):
 x = pp.dot(W.T, x) + b
 x = pp.relu(x)
res = pp.argmax(x, axis=1)
res.reveal()

model

Throughput of basic operations (ops per second)

	Engine	Approach	LAN (10Gbps)		
			decimal multiplication	comparison	
	PrivPy	SS	10,473,532	1,282,027	
	Helib	FHE	258	-	
	Obliv-C	GC	3,930	78,431	
	P4P+HE	SS+HE	4,344	-	
	SPDZ	SS with active security	83,073	20,472	
	SPDZ+PrivPy	SS with active security	83,229	20,320	

Real world algorithm performance

Dataset: MNIST with 70,000 labeled handwritten digits Algorithm:

- Logistic Regression (LR): trained using SGD
- Matrix Factorization (MF): decomposes a $m \times n$ matrix to a $m \times 5$ matrix and a $5 \times n$ matrix
- CNN: LeNet-5

Time of training/inference for 1 iteration (seconds)

		LAN (10Gbps)		WAN (50Mbps)		
Batch size	LR training	MF training	CNN inference	LR training	MF training	CNN inference
Single op	5.3e-3	7.1e-3	9.6e-2	2.61	0.37	7.64
Batch (1000 ops)	3.92	5.67	12.02	7.3	13.2	56.3

Conclusion and future work

- MPC can be useful in data mining, but big gap to bridge
- PrivPy is an early attempt to make MPC practical for large datasets
 - > Language, data types, function libraries
 - Scalable and efficient system implementation
 - Heavily rely on language-level optimizations
- PrivPy is an on-going effort
 - \geq Integrating with other privacy-preserving techniques differential privacy, federated learning, trusted execution etc.
 - More libraries, algorithms and compiler optimizations
 - Wei Xu –<u>http://iiis.tsinghua.edu.cn/~weixu</u> – xiaolixiaoyi@gmail.com Yi Li

