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Abstract. Privacy has become a serious concern in data mining. Achiev-
ing adequate privacy is especially challenging when the scale of the
problem is large. Fundamentally, designing a practical privacy-preserving
data mining system involves tradeoffs among several factors such as the
privacy guarantee, the accuracy or utility of the mining result, the com-
putation efficiency and the generality of the approach. In this paper, we
present PEM, a practical system that tries to strike the right balance
among these factors. We use a combination of noise-based and noise-free
techniques to achieve provable differential privacy at a low computational
overhead while obtaining more accurate result than previous approaches.
PEM provides an efficient private gradient descent that can be the basis
for many practical data mining and machine learning algorithms, like
logistic regression, k-means, and Apriori. We evaluate these algorithms
on three real-world open datasets in a cloud computing environment.
The results show that PEM achieves good accuracy, high scalability, low
computation cost while maintaining differential privacy.

1 Introduction

With the increasing digitization of society, more and more data are being col-
lected and analyzed in many industries, including e-commerce, finance, health
care and education. At the same time, however, privacy concerns are becoming
more and more acute as our ever-increasing ability to extract valuable informa-
tion from the data may also work against people’s fundamental rights to privacy.
How to make good use of the data while providing an adequate level of privacy
is an urgent problem facing both data mining and security communities.

Fundamentally, the problem boils down to striking a balance among three
factors that are often at odds with one another: privacy, utility, and efficiency.
Previous works largely focus on one or two of these aspects and, as a result,
fail to provide practical solutions that can be used in real-world systems (to
be elaborated later). Also, due to the diversity of applications regarding goals,
algorithms, and data partition situations, a general solution that supports all
the situations appears to be extremely hard, if not entirely impossible.

In this paper we target the cross-institutional mining problem where each in-
stitution (referred to as a client here) collects data independently and together
they would like to mine collective data to extract insights. This setup can be



found in many real-world situations and typically it is more beneficial to include
more data in the analysis. For example, to study the side effects of a drug, it is
more accurate and timely if one could pool all the data from multiple relevant in-
stitutions (medical research institutes, hospitals, pharmaceutical companies and
so on). The same applies to quick public health threats detection, educational
data mining etc. Due to privacy concerns, however, institutions are prohibited
by law from sharing their data.

This problem is called the horizontally partitioned database model in the
privacy-preserving data mining community and has been studied extensively.
Many solutions are algorithm-specific, such as clustering [25] and recommenda-
tion [3], and they are not scalable to handle large-scale problems. Some solutions
are data-specific, e.g. [21]. Other solutions either make impratical assumptions
(e.g., [27] assumes all the participants are semi-honest and the exact results do
not reveal privacy), or involve heavy computation and communication cost that
makes it unacceptable (e.g., [2] is based on secure multi-party computation and
is very slow even for vector addition). In addition, early works tend to have a
less rigorous notion of privacy.

The privacy we provide is differential privacy [12], a rigorous and strong
notion that limits the probability that an adversary can distinguish between
two datasets that differ only by one record. A holistic privacy solution needs
to protect any information that is released from its owner. In a distributed
setting where data is partitioned among multiple institutions, general differential
privacy doctrine would add noise in every of these occasions [3,21,22,24]. This
approach does poorly for iterative data mining algorithms, as these algorithms
would require noise for all intermediate results at each iteration, resulting in a
final result too noisy to be useful.

The key idea of our approach is that we can use efficient and noise-free cryp-
tographic primitives to reduce or even eliminate the noise for the intermediate
results, preserving final accuracy while achieve the same level of differential pri-
vacy. We adopt a secret sharing over small field approach, similar to that of
P4P [9] and Sharemind [5]. These frameworks are noise-free and efficient, but
lacking explicit mechanisms to protect the intermediate results, and supports
only limited operations (e.g. addition). Our noise adding mechanisms compen-
sate the limitation.

Concretely, we make the following contributions:

1) We combine a natural noise addition mechanism with an efficient noise-free
cryptographic primitive, making it differentially private. We show that utilizing
our framework significantly reduces the amount of noise necessary for maintain-
ing differential privacy. We can use orders of magnitude lower noise and thus
improve resulting model accuracy dramatically.

2) We provide a complete solution, together with easy to use programming
APIs and flexible options that enable differential privacy and performance opti-
mizations. PEM automatically determines the noise level. This enables users to
easily implement tradeoff between privacy, scalability and accuracy.



3) We design mechanisms to deal with common distributed system issues
such as fault tolerance and load balancing.

4) The system provides a differentially private gradient method that can be
the basis of many machine learning algorithms. We also implement a number of
commonly used machine learning algorithms such as k-means, Apriori etc.

Our goal is to provide a practical solution with provable privacy for many
real-world analysis. We evaluate the tradeoff between accuracy and privacy using
three real-word datasets. Our results show that PEM not only guarantees differ-
ential privacy, achieving similar results as the original non-private algorithms,
but also introduce very low computation overhead. We are adding more machine
learning algorithms into PEM, and we will release PEM open source.

The paper is organized as follows. Section 2 reviews recent research on
privacy-preserving computation. Section 3 formulates the problem and intro-
duces import definitions. Section 4 introduces the goals of our system and de-
scribes some details about the system design. Section 5 gives some proofs why
our system works. Section 6 illustrates three kinds of algorithms implemented in
our system. Section 7 shows the experiment results. We conclude in Section 8.

2 Related Work

People have proposed many definitions of privacy over the years. Earlier versions,
such as k-anonymity and l-diversity [16], are vulnerable to simple attacks [4,12].
Differential privacy is a popular definition that has strong privacy guarantee
while still achievable in practice [12]. There are extended versions of differential
privacy definitions such as pan privacy [11] and noiseless privacy [4]. These
extensions often come with restriction to the datasets or use cases. Thus we
adopt the general differential privacy definition.

The general approach to achieving differential privacy is to add noise to
the released results [10,22]. Adding noise inevitably affects the accuracy and
people have explored several noise-free methods [4,8]. These works make use
of the adversary’s uncertainty about the data thus eliminating the need for
external noise. However, both [8] and [4] make strong assumptions about the
data distribution to maintain differential privacy.

Many systems use cryptography to achieve differential or other types of pri-
vacy. They are based on either homomorphic encryption (HE) or secure multi-
party computation (MPC) [28]. The problem with HE or MPC is that both make
expensive use of large integer operations and are orders of magnitude slower than
the non-private version, making them impractical. For example, Rastogi et al.
proposes an algorithm PASTE, which uses HE for noise generation to mine
distributed time-series data without any trusted server [21]. SEIPA performs
privacy-preserving aggregation of network statistics using Shamir’s secret shar-
ing scheme [23], which involves heavy polynomial calculation, making it slow in
large datasets [6]. DstrDP [26] and SDQ [29] use HE and secure equality check
to garble the noise from participants. Other approaches, including [2,5,14,19],
also use expensive cryptograph techniques.



The other trend is to take advantage of the property of application algo-
rithm or statistics of the dataset to avoid the expensive cryptographic operations.
Chaudhuri et al. shows that sampling is helpful for increasing the accuracy of
principal component analysis while preserving differential privacy [7]. Shokri et
al. implements a system for privacy-preserving deep learning [24], using dis-
tributed selective SGD algorithm. However, the convergence of the algorithm
strongly depends on the dataset. PINQ assumes a trusted third party to imple-
ment privacy-preserving queries [18] by adding Laplace noise. However, a single
trusted third party is not only a strong assumption but also a performance and
security bottleneck. P4P relaxes the trust assumption by allowing non-colluding
semi-honest servers [9]. However, the noise-free approach in P4P still assumes
too much about the dataset.

We combine these methods into a coherent system: we take the relaxed trust
model, adding (reduced amount of) Laplace noise to achieve provable differential
privacy, and leverage the properties of algorithms (such as sampling) to further
reduce the amount of noise.

3 Preliminaries

3.1 Problem Formulation

In PEM, there are n clients. Each client Ci(i = 1, 2, . . . , n) has a subset of records
Di to contribute to the computation. The goal of our computation is to use the
union of all Di’s, which we denote as D, to compute some statistics, f(D).
During the computation, each client wants to ensure that no information about
the individual records in the dataset is leaked to other clients or any third pary.
Specifically, we want to support any iterative computation where each iteration
can be expressed in the form of

f(D) = g(
∑
v∈D

h(v)). (1)

where both h and g can be nonlinear. This simple form can support a surpris-
ingly large number of widely-used data mining algorithms, including k-means,
expectation maximization (EM), singular value decomposition (SVD), etc.

Assume we havem independent servers, S1, . . . , Sm, and an aggregator server.
We make the following key assumptions about the servers, which usually hold
for real-world applications:

1. All servers are semi-honest, which means each server follows the protocol
but may attempt to learn about all private data when it has a chance.

2. There are at least two servers that do not conspire with other servers to
break the protocol. We can achieve this goal by using servers from different
administrate domains.

3. All communications are secure so that adversaries cannot see / change any
useful information in the communication channels. We can ensure this as-
sumption using encryption and message authentication methods.



In a realistic scenario, the clients can be collaborating institutions (e.g., hos-
pitals, schools) that do not wish their data exposed to any party. The servers
and aggregator can be cloud computing facilities that are owned by different ser-
vice providers. The non-colluding assumption upholds as the service providers
are prohibited by law to leak their customer data. The number of servers, m,
does not have to be very large. Using more servers increases security but also
the cost. m = 2 or 3 is enough for many situations.

3.2 Definitions

We summarize important definitions for readers not familiar with the field.

Differential Privacy [12]. An algorithm K gives ε-differential privacy if for all
adjacent datasets D, D′ and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ eε · Pr[K(D′) ∈ S) (2)

where adjacent datasets are two data sets that differ in at most a single record.
Intuitively, with differential privacy, we make the distributions of K(D) and
K(D′) nearly undistinguishable by perturbing the outputs.

Laplace Distribution [12]. A random variable X follows Laplace distribution
Lap(λ) if the probability density function (PDF) is

Pr{X = x} =
1

2λ
e−|x|/λ (3)

where λ is a parameter that determines the variance. The mean and variance
of Lap(λ) are 0 and 2λ2, respectively. We denote Lapd(λ) as a d-dimensional
vector consisting of d independent Lap(λ) random variables.

Sensitivity . For a function f : D → Rn, the L1-sensitivity S(f) is defined as:

S(f) = max
D1,D2

‖f(D1)− f(D2)‖1 (4)

where D1 and D2 are two neighboring datasets differing in at most one row. It
can be shown that f(D) + r is ε-differentially private if r ∼ Lapd(S(f)/ε).

4 System Design

Differential privacy provides a rigorous definition and tuneable parameters for
us to specify the level of protection that we desire. However, prior works such
as [3,13,24] indicate that direct application of the noisy response approach may
not allow us to find a spot where acceptable level of privacy and utility coexist.
In all the cases a large ε must be used, meaning that there is essentially little
privacy, if we want the results to have any sensible usage.

To address this problem, it is clear that we must reduce noise as much as
possible. Considering the distributed setting that we are dealing with, we are
motivated to adopt the following design principle: use efficient cryptographic
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Fig. 1. The overview of PEM architecture.

tools whenever possible to eliminate the need for noise. Instead of adding noise at
every client, we adopt secret sharing over small field to perform the aggregation.
This paradigm allows us to only perturb the final aggregates, as secret sharing
itself protects each client’s input. Since the number of servers is far less than the
number of clients, the final noise is much smaller.

4.1 System Architecture

There are three roles in PEM, and Figure 1 shows an overview of the system.

Clients. The clients are the owners of the data sources. The PEM client module
uses secret sharing protocol to privatize the data while providing useful tools for
privacy tracing and model updates.

Servers. The servers compute partial sums and add noise to the sums. Each
server is logically a single component, while it can be implemented as a dis-
tributed system for scalability and fault tolerance.

Aggregator. The aggregator performs all data aggregation and application-
specific computation. It completes an iteration of model update based on the
noisy aggregates and sends the model back to the clients.

4.2 Data Processing Protocol

On the start of the job, PEM distributes important parameters and the appli-
cation executables to all the nodes, such as the privacy parameter ε and the list
of participants. Then the data processing follows four major steps in PEM:

1) (Clients-Servers) Using secret sharing to aggregate client data.
Each client secret-shares each data vector into m random vectors, one for each
server. Specifically, for a vector vi held by client Ci (here we assume vi is an inte-
ger vector, while real-value vectors can be converted by discretization), the client
can first generate m− 1 random vectors vij ∈ Zdφ(j = 1, 2, . . . ,m− 1), where φ



is a 32- or 64-bit prime and Zφ is the additive group of integers module φ. Then

it computes the m-th vector as vim = vi −
∑m−1
j=1 vij mod φ. Obviously, the

sum of the m vectors equals to vi mod φ. The client Ci sends a random vector
vij to the server Sj(j = 1, 2, . . . ,m), and Sj receives a random vector from each
client. Each server computes a sum vector using vectors from all clients.

2) (Servers) Generating Laplace noise to achieve privacy. To preserve
differential privacy, each server automatically determines the level of noise, gen-
erates Laplace noise following the approaches in [10] and adds it to its partial
sum. Each server Sj(j = 1, 2, . . . ,m) generates a d-dimensional random vector

rj following Lapd(λ), and sends
∑n
i=1 vij + rj to the aggregator.

3) (Servers - Aggregator) Computing the sum of all vectors. At this
step, each server sends its perturbed partial sum to the aggregator for final
aggregation. On receiving the sums from servers, the aggregator sums up the
vectors and obtains the final sum, v =

∑n
i=1 vi +

∑m
j=1 rj . The noise prevents

the aggregator from guessing the original sum.

4) (Aggregator - Clients) Update model and complete an iteration.
The aggregator runs the application code to generate or update the model. As
many learning algorithms can be written in the form in Eq. 1, the sum obtained
from the previous step is sufficient for a single iteration in the model update.
Then the aggregator sends back necessary information, e.g., the latest models,
back to each client for the next iteration.

4.3 ε-splitting and dynamic L setting

Privacy parameter (ε) splitting. As mentioned above, the servers add noise
r ∼ Lapd(λ) to a d-dimensional sum. This works in many cases. However, some-
times we want to apply different noise levels to each dimension. For example,
when we use k-means for clustering, we should calculate the sum of and the count
of each class to get the mean of these records. As the sensitivity of the records
and the sensitivity of the count of each class are different, it is reasonable to add
noise of different levels to them. PEM allows users to specify different privacy
parameters to different dimensions. Specifically, users can assign privacy param-
eter as [d1 : ε1, d2 : ε2, . . . , dk : εk] where di is the subset of dimensions, as long

as ∀i,jdi ∩ dj = ∅, ∪idi = {1, 2, . . . , d} and
∑k
i=1 εi = ε. Servers automatically

compute the amount of noise according to the manner of ε splitting.

Dynamic sensitivity (L) setting. PEM splits the ε(s) equally to each iteration
in advance, and thus the noise levels of different iterations can be calculated
independently according to the sensitivity L and other parameters. However,
sometimes the vectors to be added up from the clients may change over iterations,
leading to a change of the sensitivity. In this case, L is set dynamically over each
iteration, making the servers generate noise of different levels. PEM allows users
to specify L for each iteration. Then the λ will change accordingly and the servers
will update the level of noise automatically.



4.4 Automatically computing the noise level (λ)

A key feature of PEM is the automatical computation of λ based on user set-
tings, such as ε and L. As mentioned, each server generates noise following
Laplace noise Lapd(λ), where λ is the noise level. In PEM, the servers auto-
matically compute the noise level according to iteration count T , ε and L. As
different parameter setting means different ways to generate noise, we consider
the following cases:

– In the simplest case, where there is no ε-splitting or dynamic L setting, each
server Sj computes λ = T · L/ε and generates noise rj = Lapd(λ).

– If ε-splitting is specified, i.e., the privacy parameter is assigned as [d1 : ε1, d2 :
ε2, . . . , dk : εk], each server Sj computes λk = T · Lk/εk where Lk is the
sensitivity of elements in dk and generates noise rj = [rj,1, rj,2, . . . , rj,k] =

[Lap|d1|(λ1),Lap|d2|(λ2), . . . ,Lap|dk|(λk)].
– If dynamic L setting is specified, i.e., the sensitivity of iteration t is L(t), each

server Sj computes λ(t) = T · L(t)/ε and generates noise rj = Lapd(λ(t)).

4.5 Optimizations

PEM is a federated system across multiple administrative domains. To handle
the privacy-related requirements, we make the following extensions.

Extending servers to clusters. Although these operations are simple, we can
still accelerate them to make PEM more efficient. We can extend each server to a
cluster (e.g., a Spark cluster) to parallize the communications and computations
such that the servers are unlikely to be bottlenecks.

Handling client failures. If a server does not hear from a client for an ex-
tended period, it informs the aggregator about the client’s failure, and the ag-
gregator notifies all servers to remove the client.

Intuitive configurations and programing interfaces. The application de-
velopers only need to provide a few intuitive parameters, such as the sensitivity
L, privacy strength ε, and the switch of sparse vector technique. PEM automati-
cally determines other settings. The programmers only need to implement three
functions: init, mapInClient and reduceInAggregator (see Sec. 6 for details).

Online processing. PEM also supports online processing. Clients send the data
streams to servers for online processing. We model a data stream as a sequence of
mini-batches, to reduce the communication overhead. In a mini-batch iteration,
each client buffers the data records locally and sends them out periodically.

Algorithm specific optimizations. There are often algorithm specific op-
timizations to further reduce the required level of noise, such as sampling and
sparse vector technique [12]. Sampling is commonly used to deal with imbalanced
data, and can introduce more uncertainty about the raw data, reducing the level
of noise required for differential privacy [15]. Sparse vector technique selects the
queries above a pre-defined threshold τ and set the unselected elements to 0.
Thus we can compress the proposed sparse vector and save communication cost
with a small accuracy loss [12]. PEM allows users to enable these optimizations,
and PEM automatically performs them and adjusts the noise level accordingly.



5 Analysis

Provable differential privacy. We first prove that we can make the algorithms
differentially private to the aggregator and clients, and then prove that the algo-
rithms are also differentially private to the servers. Formally, we determine the
parameter λ using the sensitivity method [10]. Assuming the sensitivity is no
more than L, i.e. |vi − vj | ≤ L, we have the following theorem.

Theorem 1 For any v ∈ Rd, v +
∑m
j=1 rj is ε-differentially private if, for j =

1, 2, . . . ,m, rj is drawn independently from Lapd(L/ε).

Proof. According to [10], if we add only one of rj(j = 1, 2, . . . ,m), the algorithm
is already ε-differentially private. As rj(j = 1, 2, . . . ,m) are independent, adding
another random noise to the result can still achieve ε-differential privacy.

We now show that the mechanism in PEM for calculating the sum is differ-
entially private. Specifically, in PEM, as long as there are at least two servers
that do not collude with others, the noisy sum calculated by the aggregator is
ε-differentially private to all roles. The reason is straightforward: both the ag-
gregator and the clients see the true vector sum plus at least two pieces of noise
generated independently according to Lapd(L/ε). By Theorem 1, the aggrega-
tion is ε-differentially private to the aggregator and clients. Meanwhile, according
to [9], PEM leaks no information beyond the intermediate sums to the servers
as the servers’ view of the intermediate sums is uniformly random and contains
no information about the raw data. On the other hand, as there are at least
two semi-honest servers generating noise faithfully, each server sees the result
perturbed by at least one piece of noise following Lapd(L/ε) even if it excludes
its own noise from the sum, which is enough for preserving ε-differential privacy.

Cost and complexity. In PEM, there arem servers and n clients. We havem�
n in general. To preserve the privacy of data, m servers generate independent
Laplace noise. As the variance of Laplace distribution Lap(λ) is 2λ2, the variance
of the sum of m independent noises is 2mλ2. Comparing to the methods where
all clients add noise (e.g. [3,24]), where the overall variance of the sum is 2nλ2,
our method reduces much noise as m� n.

As most of operations in PEM are vector addition and noise generation, the
computational overhead grows nearly linearly with the number of clients and
the data dimensionality. Thus, PEM is suitable for processing high-dimensional
vectors. In PEM, noise generation and addition is orders of magnitudes faster,
comparing to many homomorphic-encryption-based approaches, especially those
related to high-dimensional vectors.

6 Sample Algorithms in PEM

To implement privacy-preserving data mining algorithms in PEM, users only
need to implement the following necessary functions:



Function Init():
Initialize ε and L as constants. Initialize the iteration count T , the weight w,

loss function φ and the learning rate η.

Function mapInClient(x, y,w, φ):
return ∂φ(x, y,w)/∂w.

Function reduceInAggregator(v,x, η, t):
update w as w = w− η 1√

t
· 1∑n

i=1 bi
v.

Algorithm 1: The user functions of gradient descent.

– init : initialize the parameters, including privacy parameter ε and the sensi-
tivity L. Note that ε can be an array and L may change over the iterations.

– mapInClient : map the records of the local database to the vectors.
– reduceInAggregator : analyze the sum of the vectors from the clients and

update the parameters.

We present three algorithms we have implemented on PEM: logistic regres-
sion, k-means and Apriori as examples.

6.1 Gradient descent

Gradient descent (GD) is a commonly-used algorithm for finding a local min-
imum of a function. Given an optimization problem, we want to minimize the
loss function φ(x, y,w), where x is the input, y is the expected output and w is
the parameter. In GD, to estimate the optimal w, we first calculate the gradient
∇φ(w) on the dataset, then update w as wt+1 = wt − ηt · ∇φ(wt) where ηt is
the learning rate in iteration t. We set ηt to O( 1√

t
), like [30] does.

In PEM, servers add Laplace noise to the sum of the gradients from the
clients. The formula for update becomes wt+1 = wt−ηt 1∑n

i=1 bi
(
∑n
i=1∇φi(wt)+∑m

j=1 rj) where bi is the size of sub-dataset Di held by client Ci, ∇φ(w) is the
sum of gradients on Di and rj is the Laplace noise. Usually, GD consists of mul-

tiple iterations. Assuming the number of iterations is T , rj follows Lapd(TL/ε).
Algorithm 1 shows the user functions for gradient descent.

6.2 k-means

k-means is a simple yet popular algorithm for clustering. In standard k-means,
if we want to partition the d-dimensional records to l clusters, we first initialize
l centroids c1, c2, . . . , cl of different clusters. In each iteration, we assign each
record x to the cluster whose centroid c is the closest to it. Then we update
each centroid to the mean of the records in its cluster: ci = 1

|Si|
∑

x∈Si
x where

ci is the centroid of cluster i, Si is the set of records belonging to cluster i
and |Si| is the number of elements in Si. In one iteration, c1, c2, . . . , cl should



Function Init():
Initialize the iteration count T and the number of centroids l. Then initialize

the rest parameters as follows: c = [c1, c2, . . . , cl], d1 = {1 to ld},
d2 = {ld+ 1 to ld+ l}, ε = [d1 : ε1, d2 : ε2] and L = [d1 : 2Lx, d2 : 2].

Function mapInClient(x, c):
First we initialize the gradient g := [g1,g2, · · · ,gl, g1, g2, · · · , gl], where

gi = 0 and gi = 0 for each i ∈ {1 to l}. Then we calculate
k = findCluster(x, c) and set gi = x and gi = 1. Return g as the result.

Function reduceInAggregator(v):
Represent v as [v1,v2, · · · ,vl, v1, v2, · · · , vl] and update the centroid

c = [v1/v1,v2/v2, . . . ,vl/vl].

Algorithm 2: The user functions of k-means.

be updated all together, which means that the clients should jointly calculate
(
∑

x∈S1
x,
∑

x∈S2
x, . . . ,

∑
x∈Sl

x, |S1|, |S2|, . . . , |Sl|).
As the change of a record belonging to cluster i may change

∑
x∈Si

x and |Si|
simultaneously, the servers in PEM should not only add noise to perturb the cen-
troids, but also add noise to perturb the number of records of each cluster. Specif-
ically, we modify the formula for centroid update as ci = 1

|Si|+
∑m

j=1 rj,2
(
∑

x∈Si
x+∑m

j=1 rj,1) where rj,1 is the noise for the sum of records and rj,2 is the noise for
the number of records in each cluster.

The records themselves and record-count obviously carry different amount
of privacy information, and thus we add different levels of noises to the records
dimensions and the count dimension. Using PEM’s ε-spliting feature, we set the
values of ε1 and ε2 as the users want, as long as their sum is ε. Denote L1 to be
the sensitivity of the sum of records (

∑
x∈S1

x,
∑

x∈S2
x, . . . ,

∑
x∈Sl

x) and L2 to
be the sensitivity of the number of records in the clusters (|S1|, |S2|, . . . , |Sl|). It
is easy to see that L1 = 2 ·Lx and L2 = 2 · 1, where Lx is the maximum 1-norm
of x. There is a coefficient 2 here is because the change of an record may affect at
most two clusters. Then we have rj,1 ∼ Lapld(TL1/ε1) and rj,2 ∼ Lapl(TL2/ε2)
where T is the number of iterations. Algorithm 2 shows the pseudo-code.

6.3 Apriori

Apriori is an algorithm for frequent itemset mining [17]. The support of a set
of items (itemset) is the fraction of records containing the itemset respect to
the database D. If the support of an itemset is above a preassigned minimum
support, we call the itemset a large itemset. The target of frequent itemset mining
is to find all the large itemsets. We denote Ik as the set of large itemsets of
length k. To find large itemsets Ik, Apriori uses a function called apriori-gen,
which takes Ik−1 as an argument and generates candidates of k-itemsets denoted
by I∗k . Then Apriori calculates the count of each itemset in I∗k and reserves the



Function Init():
Set lm as the length of the longest record, I1 as the set of atomic items, and

minsup. Initialize the iteration count T and the privacy parameter ε. Then set
the sensitivity function L(k, I∗k) accordingly.

Function mapInClient(x, Ik−1):
Set I∗k = apriori-gen(Ik−1) and return count(I∗k ,x).

Function reduceInAggregator(v):
Here the parameter v is count(I∗k ,x), i.e. the output of mapInClient. First we

set I∗k = apriori-gen(Ik−1) and Ik as the empty set {}. Then for each element
e ∈ I∗k , if v[e] > minsup, put it in Ik. Ik is the set of large items of length k.

Algorithm 3: The user functions of Apriori.

itemsets whose supports are above the minimum support. The set of reserved
large k-itemsets from I∗k is Ik.

As the change of a record will affect the count of itemsets, we should add noise
to the count of the itemsets to preserve privacy. In PEM, in the situation where
the dataset is distributed in multiple clients, apriori-gen can be done locally in
each client given Ik−1 and the count of each itemset in Ik−1. Filtering I∗k to
get Ik involves no raw data and thus can be done in the aggregator without
privacy issue. We only need to add noise to the count of each itemset in I∗k .
Formally, we represent I∗k as [t1, t2, . . . , t|I∗k |] where ti ∈ I∗k is a candidate large
itemset. In each iteration for generating Ik, count(I∗k , D) = [c1, c2, . . . , c|I∗k |] is
calculated, where ci is the count of ti respect to the dataset D. The sensitivity
L of k-itemset counts is different for different k values. A record of length l
contains at most

(
l
k

)
= l!

k!(l−k)! itemsets of length k. The change of a record may

affect the counts of at most 2 ·
(
l
k

)
itemsets. Then if we know the length lm of

the longest record beforehand, we can calculate the sensitivity of count(I∗k , D) as

Lk = min(2·
(
lm
k

)
, |I∗k |). Algorithm 3 shows the user functions. We enable dynamic

L setting and thus λ is modified in each iteration along with the sensitivity Lk.

7 Evaluation

7.1 Evaluation Setup

We empirically evaluate PEM in a cloud computing environment. We setup one
aggregator and two servers (m = 2). Each of them runs on a virtual machine
(VM) node. Each VM has 8 Xeon CPU cores, 16GB RAM and 10GE ethernet.
We emulate 100 ∼ 1000 clients, each of which uses a sperate VM node with the
same configuration. We use three open datasets from UCI Machine Learning
Repository [1] for evaluation. We partition each dataset evenly onto the clients,
emulating a horizontally partitioned dataset setting.



– The Adult dataset contains information of many people, including gender,
age and salary. We clean the dataset and finally get 48,842 data records,
each of which has 124 dimensions.

– The Nursery dataset is derived from a hierarchical decision model originally
for nursery schools. There are 21,960 instances and 8 categorical attributes.

– The Mushroom dataset contains information of hypothetical samples cor-
responding to 23 species of gilled mushrooms. There are 8,124 instances with
22 attributes, each of which describes some shape information.

In our evaluation, we compare our algorithms with no-privacy versions. Mean-
while, many approaches add adequate noise on all clients, which means 100 ∼
1000 Laplace noises in our experiment setting. We call the approach noise-only
approach, and we show the comparison with ours. Finally we show the perfor-
mance overhead of PEM.

7.2 Performance of Algorithms

Distributed gradient descent. We use logistic regression as the example of
gradient descent shown in Algorithm 1. With the Adult dataset, we construct
a logistic regression model to predict whether each person has high income (>
50K) or not (≤ 50K). We preprocess the dataset using one-hot encoding and
the sensitivity L is 28 here. Each accuracy number is obtained from a 10-fold
validation with 1000 iterations. Using different values of ε, we compare the model
prediction accuracy using different approaches including no privacy, noise-only
(100 clients) and PEM approach. Using different numbers of clients, we compare
the model prediction accuracy with ε = 1. Figure 2(a) shows the comparison.
As expected, the noise-only approach needs to add significant noise, reducing
the prediction accuracy significantly. Using the severs to add noise significantly
lowers the loss in model accuracy, even for small ε. In comparison, noise-only
approach with too many clients will cause too much noise.

Distributed clustering. We use k-means for clustering as shown in Algo-
rithm 2, with the Nursery dataset. There are 8 categorical attributes in the
dataset. We preprocess using one-hot encoding and finally get 27 binary at-
tributes. It is easy to see that Lx = 8, and thus L1 = 16. In this experiment,
we partition the records into five clusters, i.e., l = 5. We split ε equally to
ε1 and ε2, i.e. ε1 = ε2 = 1

2ε. We calculate the loss function φ as φ(D, c) =∑l
i=1

∑
x∈Si

‖x−ci‖2. As our goal is to compare the loss of different approaches,
we use the relative loss to evaluate the performance of different approaches,

which is calculated as φr(D, c) = φ(D,c)−φ0

φ0
where φ0 is the loss of the approach

without noise. Each training has 50 iterations. Figure 2(b) shows the result.

Distributed frequent itemset mining. We perform distributed frequent item-
set mining on the Mushroom dataset using Algorithm 3. Considering the item-

sets and the counts of them, we define the loss function as φ(I) =
∑

k

∑
t∈Ik∪Ik0

|Ik(t)−Ik0(t)|∑
k

∑
t∈Ik∪I0k

|Ik(t)+Ik0(t)|

where I = [I2, I3, . . . ], Ik0 is the set of large itemsets of length k generated with-
out noise, and Ik(t) is the (perturbed) count of t for t ∈ Ik. In this experiment, we
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Fig. 2. Evaluation of algorithms using the according datasets with different values of
ε (client count = 100) and different numbers of clients (fixing ε = 1).

consider the large itemsets of length no more than 4, which means I = [I2, I3, I4].
We set minsup to 0.01. Figure 2(c) shows the result.

7.3 Scalability

The main computation workload of PEM comes from two parts: 1) computation
overhead: vector addition and noise generation; and 2) communication overhead.
We show that the overhead is small in most of the cases. First, we increase the
number of clients from 0 to 10000 and Figure 3(a) shows the computation time
for a scalar on different roles. The aggregator computation time is independent
of the number of clients, as it only receives a vector from each server. Thus the
aggregator is unlikely to become the bottleneck. The server workload increases
linearly with the number of clients. Fortunately, we can increase each logical
server capacity by adding more nodes. Figure 3(b) shows that the computation
time is linear to the dimensionality of the feature vector, as expected. Finally, we
record the overall overhead of vector addition, including the computation and
communication overhead. Figure 3(c) shows that, compared with the communi-
cation time, the computation (i.e. vector addition) time can be negligible.

8 Conclusion and Future Work

We present PEM as a practical tradeoff among privacy, utility and computation
overhead. PEM is practical in that 1) it has simple assumptions: it only requires
a few semi-honest servers and there is no restriction on the dataset itself; 2) it
supports a large range of common applications; 3) PEM entails low computation
overhead and is scalable to a large number of clients; and 4) all user-visible
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Fig. 3. (a) computation overhead w.r.t. number of clients. (b) computation overhead
w.r.t the dimensionality of feature vectors. (c) overall overhead.

configuration parameters are intuitive and PEM automatically determines other
internal parameters. Using algorithms on real datasets, we show that we can
achieve the same level of privacy without the amount of accuracy degradation
that previous systems suffer from. Our system also has low computation and
communication cost, and thus is very practical.

There are lots of future directions along the lines of privacy. Firstly, we are
extending our system to support more operations, such as handling vertically
partitioned datasets. Secondly, we will provide the flexibility allowing the clients
to choose different trust assumptions, so that the application programmers can
choose their own tradeoffs. Last but not least, we will provide a permission
system allowing different clients to see different levels of private content, like
CryptDB [20] does, but on a much larger scale.
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