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Introduction

Optical Character Recognition (OCR) is a widely adopted
application for conversing printed or handwritten images
to text, which becomes a critical preprocessing component
in text analysis pipelines, such as document retrieval and
summarization. OCR has been significantly improved in re-
cent years thanks to the wide adoption of the deep neural
network (DNN), and thus deployed in many critical appli-
cations where OCR’s quality is vital. For example, photo-
based ID recognition depends on OCR’s quality to automat-
ically structure information into databases, and automatic
trading sometimes relies on OCR to read certain news ar-
ticles for determining the sentiment of news.

Unfortunately, OCR also inherits all counter-intuitive se-
curity problems of the DNNs. Especially, the OCR model is
also vulnerable to adversarial examples, which are crafted
by making human-imperceptible perturbations on original
images with the intent of misleading the model. The wide
adoption of OCR in real pipelines gives more incentives for
adversaries to game the OCR, such as causing fake ID in-
formation, incorrect readings of metrics or instructions, etc.
Figure 2 and 3 in the evaluation section illustrate two real-
world examples with attacking the ID number and financial
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Traditional Attacks

[Goodfellow, 2013] [Brown, 2017]
5 - o M "%“ :.

Original image noise Adverarial example | | Original image Patch  Adversarial example

‘Panda” 57.7%  “nematode” 8.2%  “gibbon” 99.3% “Banana” 97% “toaster” 99%
Visually imperceptible Adversarial patch

[Thys, 2019] [Eykholt, 2018]




Traditional Attack vs. OCR
1. image Backgrounds

= colorful background vs. white background

[Chen, 2018]
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Attack:

Traditional Attack vs. OCR
1. image Backgrounds

= colorful background vs., white background

[Chen, 2018]
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= Traditional models ---- image classification task &d cross entropy loss
= DNN-based OCR models ---- sequential labeling task &d CTC loss

Image Classification Task: )

Sequential Labeling Task:

Text Image

Image dog
Classifier

CTC decoder

Predict a
sequence of
tokens

DNN-based

\ 4

recognition
engine

— Merge repeats,
drop €

Final output

from: https://distill.pub/2017/ctc/



background pollution

FAWA Fast ¥ sequential labeling task
Watermark Attack

. Basic idea:
Making use of the popularity of watermark (WM) in the
documents, we hide noise in watermarks.

A\
Abstract l EREHH

Optical character recognition (OCR) is widely applied in real

applications serving as a key preprocessing tool. The adoption of F—%, SRR
deep neural network (DNN) in OCR results-in the vulnerability o AMEEH
/ against adversarial examples- which are crafted to mislead the w2 AESR
‘ output of the threat model. Different from vanilla colorful images, %ﬁé’ W5 4%
images of printed text have clear backgrounds usually. However, : ;
adversarial examples generated by most of the existing FLRF, WHHE
adversarial attacks are unnatural and pollute the background HRF, BAWUEITZHER
severely. To address this issue, we propose a watermark attack F B H.

watermarks and evade human eyes' detection. Experimental %,
results show that watermark attacks can yield a set of natural
adversarial examples attached with watermarks and attain similar
attack performance to the state-of-the-art methods in different —0=-0&=
attack scenarios.

method to produce natural distortion that is in the disguise of AER—XEH, EF'Z.XY??%M '\\

arXiv:2002.03095v1 [cs.CV] 8 Feb 2020

@ Lu Chen




background pollution

FAWA: East . Tsarial sequential labeling task
Watermark Attack

. Basic idea:
Making use of the popularity of watermark (WM) in the

documents, we hide noise in watermarks.

(Z‘@ New Hampshire Z DRIVER LICENSE

ib EXPIRATION DATE  4d CREDENTIAL IDENTIFISR
B 01/02/2022 NHL12506717

SAMPLE
ﬂ'm ZE'BTLV¢MES
Target Output:
toncoro ni  NAL12505717

15 SEX 16HGT 17 WGT 18 EYES 19 HAIR 4
F 5-05" 1251b BLK BLK )
1a |SSUE DATE 3 DATE OF BIRTH ; 2
01112017 01/02/1996 2 RN
\\ 6 3CLASS D “§ L “‘\s‘f
5 12 RESTRICTIONS  9a ENDORSEMENTS pul @@ 22 |
‘P& o 2 None NONE e = u



background pollution
sequential labeling task

FAWA

1. Natural traditional attack FAWA

targeted text: taupe p arts pa rtS -;.

2. Fast 100% attack succes rate

78% fewer iterations

3. Low Perturbation Level

60% less noise



background pollution
sequential labeling task

FAWA

1. Colored Watermark

targeted text: randem random

2. OCR Model of Other Language

oBE17HILHAE, EEHE Target Output:
ShiE O S 3t (Chinese) 9 A 12 H_E2H,
ﬁgﬁ,%;fﬁigﬁ ;ET'}’Jf ZEERMEHFOSEM 31.3

L Fig. IA_SERTH, &AM
BEE A~ i & &7,

3. OCR accuracy-enhancing mechanism
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Attack Setting
© White-box Model @

= Attackers have perfect knowledge of the DNN architecture and
parameters.

S

© Targeted Attack

= Attackers aim to generate specific recognition texts.




Attack Pipeline

& clean image x
f(x): random

random

¥ adversarial image x’
t: randem

random

P
o

harmless image

adversarial image




. A A -
N
5
A R o By u
‘: a ﬁ : :‘ it %
%3 . A i
U % 2 g

1. Fmdmtns

© im L ] ial i !
clean image x initial watermark adversarial image x
f(x): random — t: randem

random | |00 CE T random

7 v
Find positions :—> random

L — — — | watermarked image x,

harmless image

adversarial image

| intermediate status ]
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2. Watermark Attack e s
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I | Attack
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random random |- | random
Q i B AW 4428 6 f— i B f— J — 'I
8 o Find Watermark
FE ® | Position random Attack |

Find osuons h

= Basic Attack
= We find positions based on the noise of the basic attack.

= We use Momentum lIterative Method (MIM) as the basic attack to find
positions.

[Dong, Yinpeng et al. “Boosting Adversarial Attacks with Momentum.” 2078 CVPR]
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1. Basic Attack
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2. Dilate & Erode

& clean image x

random
!

Basic attack Dilate & Erode

 — — [ — —

| e

L | L ' 1

.A A-
~

)

2

random

| o Find
Position

B 2 _J_]
random H W?A"[tet;rgfrk ]

random

1 random

—E—— EE—— E— e e —

Get the largest region

watermarked image x,

random

T

Frame the region

— —

42— i

—— |




3 Get the Iargest region
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4, Frame the reglon

& clean image x

random
!

Basic attack

Dilate & Erode
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4. Add a Shift
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random random }- ) random
—_ — ¥ S
pre 11 ‘&r e | Position | Attac Opt-WM

IVI Attack=Basic Attack + WM

= Basic Attacks: (traditional attacks)
= Grad-Basic: Gradient-based Basic Attack
= Momentum lterative Method (MIM) [Dong et al. 2018]

= Opt-Basic: Optimization-based Basic Attack
= OCR Attack [Song et al. 2018]

= WM: Watermark region allowed to add noise
= Watermark Attacks: (our attacks)
= Grad-WM: Gradient-based Watermark Attack
= Grad-WM = Grad-Basic + WM

= Opt-WM: Optimization-based Watermark Attack B @
= Opt-WM = Opt-Basic + WM u



cross entropy ¢
e-bounded noise
step size a
decay factor u

Gradient-based Basic Attack:
Grad BaS|c X background pollution

X sequential labeling task

- - iteration i :
ground-truth f(x): 7 | Gior = 1~ G; + target output t : 8
Vel (Xi,t)

70l

clean image x saliency map adversarial image x;. 4

V.2(x;t) 9gi+1

T
initialization: xo = x; go = 0; H Xjq = x; + clip.(a -

)

1gis1llp

n 1
X = X p }_9, — 2’ o0
Ixllp = (), 1xil”)P,p | | | . &

[Dong, Yinpeng et al. “Boosting Adversarial Attacks with Momentum.” 2078 CVPR]

Lp-norm:




cross entropy £
e-bounded noise
step size a
decay factor u

3 ra ‘ E e »? as ‘ '%:t c k:
G rad - BaSic X background pollution

X sequential labeling task

ground-truth f(x): 7 iteration i target output t : 8

Jiv1 =4 gi Tt

Vil (xjt)

70l

model |
" I

;

clean image x saliency map adversarial image x;. 4
!
initialization: x, = x; go = 0; H x;' Vit(x;t) C gir1
0 9o i X1 = x; + clip.(a - )
1gis1llp

L,-norm: - - .
new iteration [/

n 1
X = X p )_9, — 2’ o0
Ixlly = (. xl?)P.p 26

[Dong, Yinpeng et al. “Boosting Adversarial Attacks with Momentum.” 2078 CVPR]
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Grad akgro IIution
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cross entropy ¢
e-bounded noise
step size a
decay factor u
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Grad akgro IIut

sequential labeling task

-truth ; iteration i :
ground-truth f(x): 7 Gio1 = 1~ G; + target output t : 8
V,(x}t)
[Vxt(xi 0|,
4 gl+1 ﬁ
clean image x saliency map adversarial image x;. 4

fo(xg, t) gi i+

T
initialization: xo = x; go = 0; H Xjq = x; + clip.(a -

)

1gis1llp

[Dong, Yinpeng et al. “Boosting Adversarial Attacks with Momentum.” 2078 CVPR]

Lp-norm:

n 1
Ixllp = (), 1xl")P,p = 2,00
=




Grad akgro IIution

cross entropy ¢
e-bounded noise
step size a
decay factor u

sequential labeling task

ground-truth f(x): 7 iteration i
clean image x
initialization: xp = x; go = 0; =

L -norm:

Iy = (Y. bl =2,
=

saliency map

[Dong, Yinpeng et al.

target output £ : 8

Jir1 =1 gi t J P
Vb (xi.t)

[Vxt(xi 0,

adversarial image x;, 4
9i+1
1gi+1 ”p

“Boosting Adversarial Attacks with Momentum.” 20718 CVPR]

V.2(x;t)

/ ol .
Xit1 = X; t clipe(a -

)
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= grayscale 3

= watermark mask (,,

= text mask Q;

iteration i

ground-truth f(x): random

random

& clean image x

initialization: g, = 0;
x6 - (1 o QWG)-Q_t)@x
+ﬁ ° QWQQt;

o

VM=Grad-Basic+ WM

© © 5.
random random }- ) random
s — X — — T _ | | Grad-wM
‘ S Find Watermark -

sequentlal Iabellng task
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V. lerc(xi t)
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W adversarial i image x;,4

Xiy1 = x; + clip.(a - (2,0
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early stopping
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= grayscale 3

= watermark mask (,,

= text mask Q;

iteration i

ground-truth f(x): random
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sequential labeling task
M Grad 'aSIC+WM background pollution

= grayscale 3

= watermark mask (,, - A
= text mask Lol | Gt =1 git Vilere(xi )
i+1 = K Gi
ground-truth f(x): random |VereCxi, £) ”1 target output t: randem

& clean image x saliency map ¥ adversarial image X1
initialization: go = 0; Vatere(xi ) X, = )+ clip.(a - (Q,® Gi+1 )
xXp = (1= 0Q,00,)0x m— ' 1gi+1llp
+ﬁ ° QWQQt; -
early stopping
amazon amazon - - )
‘ new iteration )_I ~

tennts ‘ spread noise over entire image @

Grad-Basic Grad-WM Q,,-bounded natural noise
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ground-truth f(x): random

random

& clean image x

initialization: g, = 0;

+,B ’ ‘Q‘W G)Q_t'

Grad-V

iteration i

IVI=rad-Basic+WM

sequentlal Iabellng task
background pollution

V. lerc(xi t)

git1 = U - giT

saliency map
Vilere(xi, t)

|Vere(xi, ©) I target output t: randem

E '—»@——» random

W adversarial i image x;,4

Xiy1 = x; + clip.(a - (2,0

i+
lgitallp

early stopping

© © 5.
random random }- ) random
s — X — — T _ | | Grad-wM
‘ S Find Watermark -

)

attack efficienc

2



o 1) )

random random }- ) random
— R 1 [ Grad-wht

Find Watermark rad-
I_Poﬂon_- random —)l ttac { Opt-WM

_Opt_ BaS|+WM sequential Iabellnq task

background pollution

= Opt-Basic:

_ <tanh(w) +1 ) tanh(w) + 1 2
min c¢- ‘£CTC ) t + -
w 2 2 5
= Opt-WM:
= 1. Separate the perturbation term w

_ tanh(w + x) + 1 tanh(w + x) + 1 2

min c¢- £CTC , )+ -
w 2 2 )

= 2. Introduce the watermark mask (),

_ tanh(Q,,Ow + x) + 1 tanh(Q,Ow + x) + 1 2
min c¢- £CTC ) t + — X
w 2 2 "
x G0 4T ",:vl_’ } ‘
= FNNIS = (tennis =
. 1 "|,'?' ' ‘I,." "‘:

Opt-Basic (traditional) Opt-WM (ours)
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random random }- ) random

i_‘ - AN

§ 5 Ope®
eadability: PN e T

mproving R
Full-Color Conversion

= Grayscale watermark < watermark

= Given grayscale value Gray, fix R value and B value, we can calculate
the left G value by the ITU-R 601-2 luma transform:
Gray = R*0.299 + G*0.587 + B*0.114




Threat Model

= Calamari OCR
= a open-source OCR model

= 2 convolutional layers, 2 pooling layers, a LSTM layer
= trained by CTC in Tensorflow

Calamari OCR

https://github.com/Calamari-OCR/calamari



Data Generatmn‘---- IMDB

= Printed-text images (100% accuracy)
= 5 fonts: Courier, Georgia, Helvetica, Times, Arial (font size:32 px)

parts parts parts parts parts

= 1092 word images
= 1479 sentence images
= 97 paragraph images



Experiment Settings:
Data Generation ---- I

= Attack pairs
= Letter-Level Attacks (word images)

= Difficulty: Easy Case / Random Case / Hard Case (Replace)
parts .. pants parts .| pacts parts . pasts
= Operation: Replace Case / Insert Case / Delete Case
parts .| pants parts. partis parts.. pars (parts)
= Word-Level Attacks (word / sentence / paragraph images) (Replace)
parts taupe (This.one did exactly that.| Tale one did exactly that.

N
<4



Evaluation Metrics

= Perturbation Level
MSE: mean-square error

image quality

= PSNR: peak-signal-to-noise ratio

= SSIM:
= Success Rate

structural similarity index

» ASR: targeted attack success rate %%

= Attack Efficiency

<lavg :+ average iterations of successful attacks

ASR-lter: plot the change of ASR along with increasing iterations .. /-

MSE = — (x — x')2

| x|

DZ
PSNR = 10 log(

MSE)

_ #(f(x")=p)
ASR = 400
Y.I' #(iteration;)
Iavg = n




Grad-|

Basic Attack vs. FAWA

asm vs.

I
replacement insertion | deletion
easy random hard

MSE Iavg |MSE Ly |[MSE Ilave |MSE Lo [MSE lavg

Courier [10.5 59 [(14.0 74 |17.0 70 |11.6 50 | 3.2 21

Georgia [ 27.4 43 |32.8 99 |37.3 104 [22.1 83 |17.3 55
Grad-Basic|Helvetica| 27.0 51 |33.6 113 [38.6 113 |[23.0 70 [16.7 43
Times [26.4 62 [31.5 85 |35.8 109 [20.3 98 |17.2 68

Arial [29.8 51 [36.7 73 [42.5 66 [24.3 88 [19.2 59

example parts parts parts parts parts
Courier | 28 30 | 3.6 18 | 4.3 27 (3.6 21 | 0.7 8

Georgia | 7.8 15 |89 33 |98 30 (5.1 39 |35 21

Grad-WM |Helvetica| 8.4 9 [10.0 52 |[11.2 52 |63 23 3.7 19
Times | 7.3 15 | 83 20 | 9.3 34 | 4.5 7 3.4 21

Arial 94 13 |11.1 14 |12.7 25 [ 6.2 33 |44 20

example parts parts parts parts parts

target output pants pacts pasts partis pars

letter-level attack in word images

« MSE: mean-square error
l.vg : @average iterations
of successful attacks
« ASR: targeted attack
success rate %%

B ASR: 100% in default




bl

Lower Perturbation Level

0 o

replacement insertion | deletion
easy random hard

MSE Iavg |MSE Ly |[MSE Ilave |MSE Lo [MSE lavg

Courier |10.5 59 [(14.0 74 |17.0 70 |11.6 50 | 3.2 21

Georgia [ 27.4 43 |32.8 99 |37.3 104 [22.1 83 |17.3 55
Grad-Basic|Helvetica| 27.0 51 |33.6 113 [38.6 113 |[23.0 70 [(16.7 43
Times [26.4 62 |[31.5 85 |35.8 109 [20.3 98 |17.2 68

Arial [29.8 51 [36.7 73 [42.5 66 [24.3 88 [19.2 59

example parts parts parts parts parts
Courier | 28 $ 30 | 3.6y 18 | 43P 27 | 3.6 § 21 0.7 8

Georgia | 7.8 % 15 | 893 33 [ 983 30 | 51939 | 35¥y 21
Grad-WM |Helvetica| 8.4 % 9 10.0y 52 |[11.2y 52 6.3y 23 | 3.7y 19
Times | 7.3 ) 15 8.3y 20 | 9.3y 34 4.5y 7 34Y 21
Arial 9.4y 13 11.1y 14 |12.7y 25 6.2y 33 | 44y 20

example parts parts parts parts parts

target output pants pacts pasts partis pars

letter-level attack in word images

MSE: mean-square error
[avg - @verage iterations

of successful attacks

« ASR: targeted attack

success rate %

W 74% less noise (MSE)
on average




« MSE: mean-square error
[avg - @verage iterations

F A RiINR o of successful attacks
TR « ASR: targeted attack

FaS AttaCk Sp ee d success rate %

m 67% fewer iterations (l,,,) on average
m A sharper slope indicates faster attack speed in the figure.

Grad-Basic Grad-WM
1.0 1 P Sag— >
— easy — easy
random random
— hard — hard
-=- Insert -= Insert
-- delete -- delete
0 100 200 300 0 100 200 300
# of iterations # of iterations



Opt-sic VS.

replacement insertion deletion
easy random hard

MSE Ilivg |MSE lave [MSE Iive |MSE Ilivg |MSE Iiye

Courier |25.4 266 |30.3 313 |36.7 321 (25.4 309 |13.6 43
Georgia | 52.0 292 |59.4 318 |67.5 328 [41.6 337 |45.0 169
Opt-Basic [Helvetica| 52.1 301 | 60.2 328 [68.2 340 [47.1 321 |45.0 178
Times [49.9 294 |56.1 324 |(61.6 345 |[41.7 314 |44.3 172
Arial |56.3 304 |65.3 327 |73.8 341 |48.3 324 |51.0 176

example parts parts parts parts parts
ourier | 16.7 116 [20.1 96 |204 95 [31.1 29 | 3.2 13

Georgia | 31.6 30 |35.1 32 (383 37 |21.7 12 |16.2 9

Opt-WM |Helvetica|33.3 31 [37.0 42 |38.8 53 [25.1 13 [165 9
Times [30.3 22 [|33.9 26 (359 36 [19.2 11 |154 8

Arial |[37.2 30 |40.4 45 [43.6 50 |254 16 (194 10

example parts | parts .| parts | parts. | parts
target output pants pacts pasts partis pars

letter-level attack in word images

MSE: mean-square error
[avg - @verage iterations

of successful attacks

B 44% less noise
B 88% fewer iterations

1.0

o

QO.S-

0.0 1

1.01

50.5-

0.0 1

Opt-Basic

easy
random
hard
insert

- delete

0 100 200 300 400

# of iterations
Opt-WM

““::------.
Vo
I I
1

- delete

easy
random
hard
insert

100 200
# of iterations

O 1

300

@



« MSE: mean-square error

] R
@ B e B N
2 W za & B B S

- The first to the last line are clean, gray and watermark backgrounds.

";- E A5 2

L =yl
- S A
[ 2 L Apeat i

- Reduced contrast is beneficial to reduce noise.

clean images adversarial images saliency map MSE saliency map+ MSE+ saliency map- MSE-

parts partS {;;:'” 55.82 >‘ | 34.77 A a  21.05

parts parts 1547 - 692 & A 855
par ts p 8r ts *’ 24.97 14.13 - i- 10.84

The target output is "ports". r @



Attack Difficulty

Easy < Random < Hard

1.0

101

letter-level attack in word images with Arial font

Grad-Basic

easy
random
hard

100 200
# of iterations

300

Opt-Basic

easy
random
hard

0

200

100
# of iterations

300

400

1.0

1.0

QO.S"

0.0+

Grad-WM

easy

——— random
. — hard
0 50 100
# of iterations
Opt-WM

easy
random
hard

0 20 40

# of iterations

60




— easy
— random
— hard
insert
---- delete

0

200 400

# of iterations

IR Vi
o I — easy
0.5 - ~— random
2 — hard
---=- insert
0.0 - -=-- delete
0 100 200 300 400

# of iterations

1.01

o

gg 0.5 1

0.0 1

Grad-WM

—— easy
— random
— hard
-==-= insert
---- delete
0 100 200
# of iterations
Opt-WM

=== delete

0 20 40 60

# of iterations

letter-level attack in word images with Arial font




WM ls More Natural

taupe WM attack:
Grad-Basic: parts B 56% lower noise

B 50% less iterations

Grad-WM: parts:
Tale one did exactly that.

crad-Basic: | NS one did exactly that.
saawm: (This.one did exactly that.




© . . I

random | _randem |- - random |

i L SN TS ]
a0k . Find | | Watermark |
p Eﬂ I Position random _’I Attack ]

Full-Color Watermarks

Input Image: @ positive

This is one of thé funniest movies | have ever seen. This,
in my opinion; is Rob Lowe at his,best. I'm not quite sure
why this film has gotten such a lowirating. | guess you
either love it or hate it, but if nothing else, itis

definitely worth a rental. tyre foy rum there pen

Other Colored Adversarial Examples:

easy Wpe toy run where pan

: hard (Wash' humour expeéct (good | shaft
OCR Output: @ negative

cash rumour expert hood shift
This is one of the scariest movies | have ever seen. This, P - }

in my opinion, is Rob Lowe at his worst. I'm not quite sure word ({rob warm sing P off
why this film has gotten such a high rating. | guess you tow heir blue dirt add

either love it or hate it, but if nothing else, it is not

definitely worth a rental. 1)
N )/



Conclusion

= We propose fast adversarial watermark attacks (FAWA) on
sequence-based OCR models.

= Sequential labeling task——CTC loss
= Background pollution——watermark
= Natural watermark-style noise.

= Lower perturbation level.

= Faster attack speed.
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