Semi-supervised Learning for Neural Machine Translation

Yong Cheng

joint work with Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, Yang Liu

Machine Translation

Automated translation using computer software

Machine Translation

Rule-based Machine Translation 1970s

1984 Example-based Machine Translation

* Statical Machine Translation (SMT) 1993

Neural Machine Translation (NMT)

2014

Trends: learning to translate from DATA

Machine Translation

Parallel corpora are usually limited in

Monolingual Corpora

Parallel Corpora

Monolingual Corpora Used in SMT and NMT

- * N-gram language model in SMT Koehn et al., [2007]
- Monolingual corpora as decipherment Ravi and Knight [2011]
- Integrate a neural language model into NMT. Gulccehre et al. [2015]
- * Additional pseudo parallel corpus. Sennrich et al. [2016]

Supervised Training

$$\mathcal{D} = \{\langle \mathbf{x}^{(n)}, \mathbf{y}^{(n)} \rangle\}_{n=1}^{N}$$

$$L(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log P(\mathbf{y}^{(n)}|\mathbf{x}^{(n)};\boldsymbol{\theta})$$

Unsupervised Training

Monolingual Corpus $\mathcal{T} = \{\mathbf{y}^{(t)}\}_{t=1}^T$

bushi yu shalong juxing le huitan

bushi yu shalong juxing le huitan

latent

Bush held a talk with sharon

y

bushi yu shalong juxing le huitan

X

latent

Bush held a talk with sharon

bushi yu shalong juxing le huitan

X

bushi yu shalong juxing le huitan

x'

latent

Bush held a talk with sharon

y

bushi yu shalong juxing le huitan

X

target autoencoder

source autoencoder

Unsupervised Training (Autoencoders)

Monolingual Corpus $\mathcal{T} = \{\mathbf{y}^{(t)}\}_{t=1}^T$

target autoencoder

Semi-supervised Training

Training Objective

$$= \underbrace{\sum_{n=1}^{N} \log P(\mathbf{y}^{(n)}|\mathbf{x}^{(n)}; \overrightarrow{\boldsymbol{\theta}})}_{source-to-target\ likelihood} + \underbrace{\sum_{n=1}^{N} \log P(\mathbf{x}^{(n)}|\mathbf{y}^{(n)}; \overleftarrow{\boldsymbol{\theta}})}_{target-to-source\ likelihood}$$

$$+\lambda_1 \underbrace{\sum_{t=1}^{T} \log P(\mathbf{y}'|\mathbf{y}^{(t)}; \overrightarrow{\boldsymbol{\theta}}, \overleftarrow{\boldsymbol{\theta}})}_{target\ autoencoder} + \lambda_2 \underbrace{\sum_{s=1}^{S} \log P(\mathbf{x}'|\mathbf{x}^{(s)}; \overrightarrow{\boldsymbol{\theta}}, \overleftarrow{\boldsymbol{\theta}})}_{source\ autoencoder},$$

System	Training Data			Direction	NIST06	NIST02	
System	CE	С	Е	Direction	1415100	1115102	
	,	V	×	$C \rightarrow E$	32.48	32.69	
Moses	√	×		$E \rightarrow C$	14.27	18.28	
MOSES							
					-		
	/	×	×	C →E	30.74	35.16	
	V		_^_	$E \rightarrow C$	15.71	20.76	
RNNSEARCH							
RITTOLARCH							

System	Training Data			Direction	NIST06	NIST02	
System	CE	С	Е	Direction	113100	1415102	
	√	×	×	$C \rightarrow E$	32.48	32.69	
Moses				$E \rightarrow C$	14.27	18.28	
		×		$C \rightarrow E$	34.59	35.21	
			×	$E \rightarrow C$	20.69	25.85	
	√		×	C →E	30.74	35.16	
		×		$E \rightarrow C$	15.71	20.76	
RNNSEARCH							

System	Training Data			Direction	NIST06	NIST02	
System	CE	C	Е	Direction	1415100	1415102	
	,	×		$C \rightarrow E$	32.48	32.69	
Moses	∨	^	×	$E \rightarrow C$	14.27	18.28	
MOSES		×		$C \rightarrow E$	34.59	35.21	
			×	$E \rightarrow C$	20.69	25.85	
	,			C →E	30.74	35.16	
	V	×	×	$E \rightarrow C$	15.71	20.76	
RNNSEARCH	,	×	√	$C \rightarrow E$	35.61**++	38.78**++	
KININSEARCH	V			$E \rightarrow C$	17.59++	23.99 ++	

System	Training Data			Direction	NIST06	NIST02	
System	CE	C E		Direction	1415100	1115102	
	,	×	×	$C \rightarrow E$	32.48	32.69	
Moses	√			$E \rightarrow C$	14.27	18.28	
MOSES		×		$C \rightarrow E$	34.59	35.21	
			×	$E \rightarrow C$	20.69	25.85	
RNNSEARCH	√	×	×	C →E	30.74	35.16	
		^		$E \rightarrow C$	15.71	20.76	
	√	×	√	$C \rightarrow E$	35.61**++	38.78**++	
				$E \rightarrow C$	17.59++	23.99 ++	
	√	√	×	C →E	35.01++	38.20**++	
				$E \rightarrow C$	21.12*++	29.52**++	

System			Data	Direction	NIST06	NIST02	NIST03	NIST04	NIST05
	CE	C	E						
	,			$C \rightarrow E$	32.48	32.69	32.39	33.62	30.23
Moses	√	×	×	$E \rightarrow C$	14.27	18.28	15.36	13.96	14.11
MOSES		×		$C \rightarrow E$	34.59	35.21	35.71	35.56	33.74
			×	$E \rightarrow C$	20.69	25.85	19.76	18.77	19.74
	,	×	×	C →E	30.74	35.16	33.75	34.63	31.74
	√			$E \rightarrow C$	15.71	20.76	16.56	16.85	15.14
DNNSEADOU			. /	$C \rightarrow E$	35.61**++	38.78**++	38.32**++	38.49**++	36.45**++
RNNSEARCH	∨	√ ×	V	$E \rightarrow C$	17.59++	23.99 ++	18.95++	18.85++	17.91++
	,	, ,		$C \rightarrow E$	35.01++	38.20**++	37.99**++	38.16**++	36.07**++
	\(\ \ \ \ \	\ \	×	$E \rightarrow C$	21.12*++	29.52**++	20.49**++	21.59**++	19.97++

Compared with Sennrich et al. [2015a]

Method	Training Data			Direction	NIST06	NIST02	NIST03	NIST04	NIST05
Method	CE	C	Е	Direction	1413100	1415102	1415105	1415104	1415105
Sennrich et al. [2015a]		×		$C \rightarrow E$	34.10	36.95	36.80	37.99	35.33
Seminon et at. [2013a]			×	$E \rightarrow C$	19.85	28.83	20.61	20.54	19.17
	,		,	$C \rightarrow E$	35.61**	38.78**	38.32**	38.49*	36.45**
this work	V	×	\ \	$E \rightarrow C$	17.59	23.99	18.95	18.85	17.91
inis work	./	./	~	$C \rightarrow E$	35.01**	38.20**	37.99**	38.16	36.07**
V	\ \ \	×	$E \rightarrow C$	21.12**	29.52**	20.49	21.59**	19.97**	

Example Translation of Monolingual Corpus

Monolingual	hongsen shuo, ruguo you na jia famu gongsi dangan yishenshifa, name
	tamen jiang zihui qiancheng.
Reference	hongsen said, if any logging companies dare to defy the law, then they will
	destroy their own future.
Translation	hun sen said, if any of those companies dare defy the law, then they will
	have their own fate. [iteration 0]
	hun sen said if any tree felling company dared to break the law, then they
	would kill themselves . [iteration 40K]
	hun sen said if any logging companies dare to defy the law, they would
	destroy the future themselves . [iteration 240K]

$$\mathbf{y}^* = \operatorname*{argmax}_{\mathbf{x}} \left\{ P(\mathbf{y}|\mathbf{x}; \overrightarrow{\boldsymbol{\theta}}) P(\mathbf{x}'|\mathbf{y}; \overleftarrow{\boldsymbol{\theta}}) \right\}$$

Conclusion

- Monolingual corpora is an important resource for neural machine translation.
- * We have proposed a semi-supervised approach to training bidirectional neural machine translation models for exploiting monolingual corpora.
- * As our method is sensitive to the OOVs present in monolingual corpora, we plan to integrate Jean et al. (2015)'s technique on using very large vocabulary into our approach.

Thank You!

Effect of Sample Size

Effect of OOV ratio

