Maximum Reconstruction Estimation for Generative Latent-Variable Models

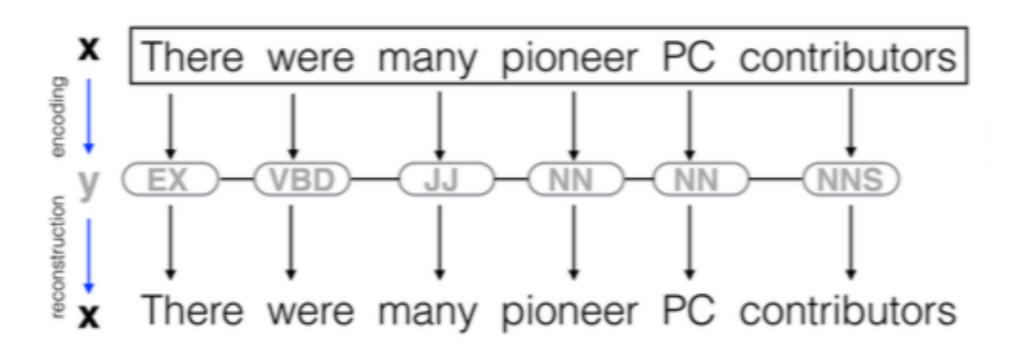
Yong Cheng

joint work with Yang Liu, Wei Xu

Problem

- * Generative latent-variable models are important for natural language processing due to their capability of providing compact representations of data.
- * Maximum likelihood estimation suffers from a significant problem: it may guide the model to focus on explaining irrelevant but common correlations in the data.

 Circumvent irrelevant but common correlations by maximizing the probability of reconstructing observed data.



- * Advantages:
 - Direct learning of model parameters.
 - * Tractable inference.

Maximum Likelihood Estimation

* A generative latent-variable model:

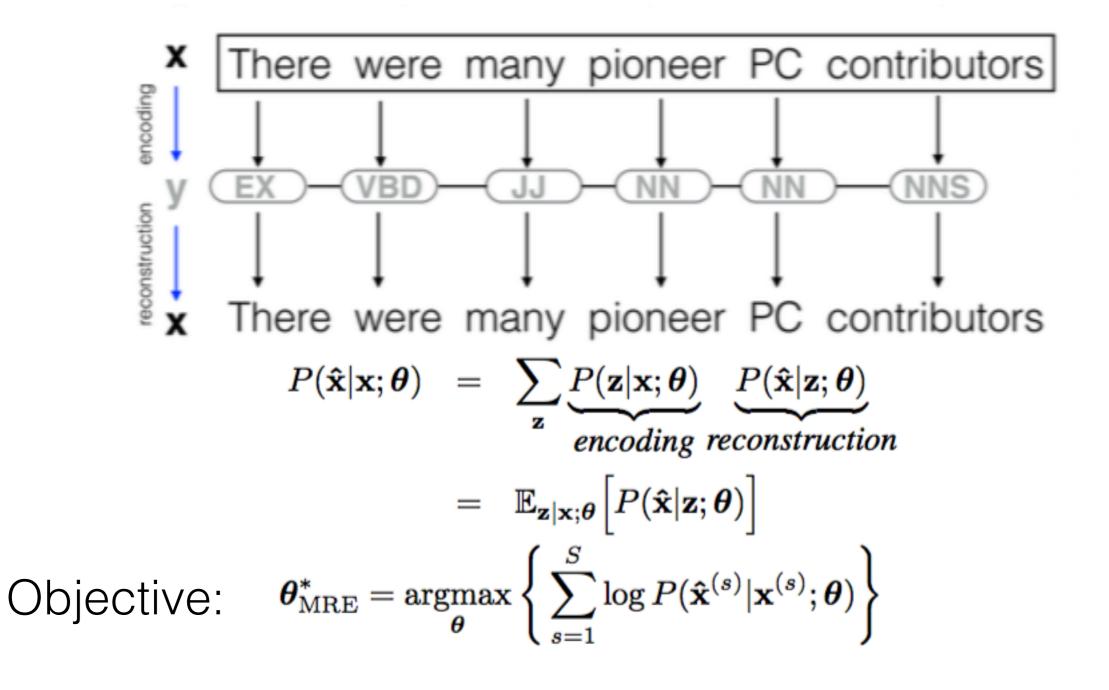
$$P(\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})$$

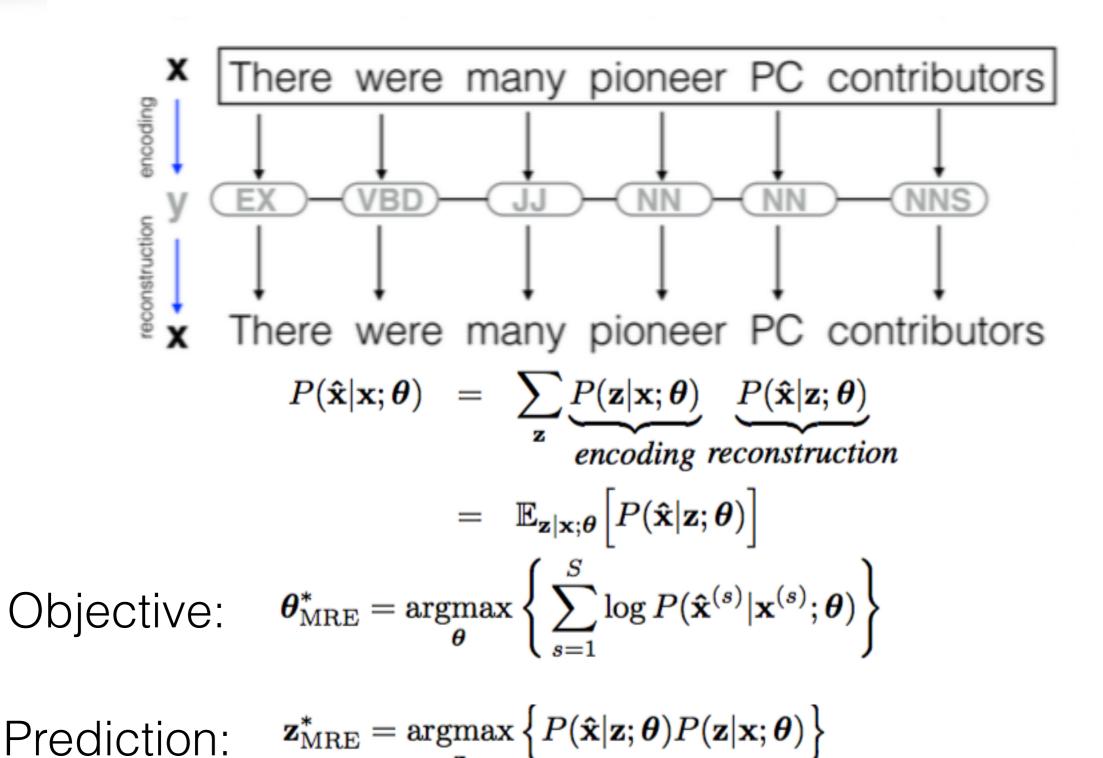
* Maximum likelihood estimation (MLE)

$$m{ heta}_{ ext{MLE}}^* = rgmax_{m{ heta}} \left\{ \sum_{s=1}^S \log P(\mathbf{x}^{(s)}; m{ heta})
ight\}$$

* Inference

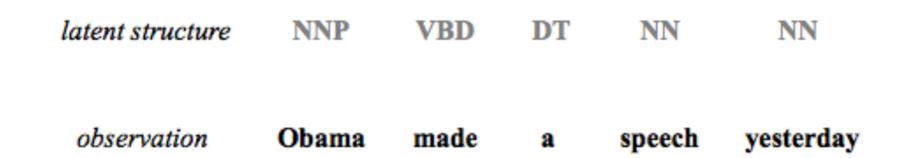
$$\mathbf{z}_{\mathrm{MLE}}^{*} = \operatorname*{argmax}_{\mathbf{z}} \left\{ P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) \right\}$$





7

- * Two classical generative latent-variable models:
 - * Hidden Markov models for unsupervised POS induction
 - * IBM translation models for unsupervised word alignment



* Given an observed English sentence, the task is to induce the latent sequence of part-of-speech tags.

latent structure NNP VBD DT NN NN
observation Obama made a speech yesterday

* Given an observed English sentence, the task is to induce the latent sequence of part-of-speech tags.

$$P(\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} p(\mathbf{z}_1) p(\mathbf{x}_1 | \mathbf{z}_1) \prod_{n=2}^{N} p(\mathbf{z}_n | \mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n)$$

$$P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})$$

$$P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n)$$

$$P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})$$

$$P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n)$$

$$P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) = \frac{P(\mathbf{z}; \boldsymbol{\theta})P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})}{P(\mathbf{x}; \boldsymbol{\theta})}$$

$$P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})$$

$$P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n)$$

$$P(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}) = \frac{P(\mathbf{z};\boldsymbol{\theta})P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta})}{P(\mathbf{x};\boldsymbol{\theta})}$$

$$P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})$$

$$P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n)$$

$$P(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}) = \frac{P(\mathbf{z};\boldsymbol{\theta})P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta})}{P(\mathbf{x};\boldsymbol{\theta})}$$

$$P(\mathbf{x}|\mathbf{x};\boldsymbol{\theta}) = \frac{\sum_{\mathbf{z}} P(\mathbf{z};\boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta})^2}{P(\mathbf{x};\boldsymbol{\theta})}$$

Maximum Reconstruction Estimation (MLE)

$$\frac{\partial \log P(\mathbf{x}; \boldsymbol{\theta})}{\partial p(z'|z)}$$

$$= \frac{1}{p(z'|z)} \mathbb{E}_{\mathbf{z}|\mathbf{x};\boldsymbol{\theta}} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right]$$

$$\frac{\partial \log P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta})}{\partial p(z'|z)} = \frac{1}{p(z'|z)} \left(\mathbb{E}_{Q} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right] - \mathbb{E}_{\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right] \right)$$

Maximum Reconstruction Estimation (MLE)

$$\frac{\partial \log P(\mathbf{x}; \boldsymbol{\theta})}{\partial p(z'|z)}$$

$$= \frac{1}{p(z'|z)} \mathbb{E}_{\mathbf{z}|\mathbf{x};\boldsymbol{\theta}} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right]$$

$$\frac{\partial \log P(\mathbf{x}|\mathbf{x}; \boldsymbol{\theta})}{\partial p(z'|z)}$$

$$= \frac{1}{p(z'|z)} \left(\mathbb{E}_{Q} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right] - Q(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \frac{P(\mathbf{z}; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}; \boldsymbol{\theta})^{2}}{\sum_{\mathbf{z}'} P(\mathbf{z}'; \boldsymbol{\theta}) P(\mathbf{x}|\mathbf{z}'; \boldsymbol{\theta})^{2}} \right)$$

$$\mathbb{E}_{\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}} \left[\sum_{n=2}^{N} \delta(\mathbf{z}_{n-1}, z) \delta(\mathbf{z}_{n}, z') \right]$$

Comparison with MLE

# state	MLE		MRE	
	accuracy	VI	accuracy	VI
10	0.4054	3.0575	0.3881	2.9322
20	0.4804	3.1119	0.5203	2.8879
30	0.5341	3.0835	0.5653	2.8199
40	0.5817	3.1780	0.6191	2.9255
50	0.6108	3.2087	0.6739	2.7522

Comparison with MLE

# sent.	MLE		MRE	
	accuracy	VI	accuracy	VI
10,000	0.5087	3.3471	0.5825	2.9018
20,000	0.5390	3.2387	0.5874	2.9217
30,000	0.5556	3.0764	0.6000	2.7904
40,000	0.5800	3.0117	0.6112	2.7403

Comparison with CRF autoencoder

# state	CRF Autoencoders		MRE	
	accuracy	VI	accuracy	VI
10	0.4059	2.7145	0.3881	2.9322
20	0.4657	2.7462	0.5203	2.8879
30	0.5479	2.9585	0.5653	2.8199
40	0.5377	3.1048	0.6191	2.9255
50	0.5662	2.8450	0.6739	2.7522

Example emission probabilities for the POS "VBD" (verb past tense)

M	LE	MRI	Ξ
,	0.2077	said	0.4632
said	0.1514	says	0.0773
is	0.0371	reported	0.0326
says	0.0312	officials	0.0198
say	0.0307	announced	0.0195
:	0.0237	unit	0.0158
's	0.0203	noted	0.0119
think	0.0169	gained	0.0106
added	0.0129	told	0.0102
was	0.0129	court	0.0101

$$P(\mathbf{x}|\mathbf{y}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}|\mathbf{y}; \boldsymbol{\theta})$$

$$= \sum_{\mathbf{z}} \epsilon \prod_{n=1}^{N} p(\mathbf{z}_{n}|n, M, N) p(\mathbf{x}_{n}|\mathbf{y}_{\mathbf{z}_{n}})$$

Maximum Likelihood Estimation (MLE)

$$\frac{\partial \log P(\mathbf{x}|\mathbf{y}; \boldsymbol{\theta})}{\partial p(x|y)} = \frac{1}{p(x|y)} \mathbb{E}_{\mathbf{z}|\mathbf{x},\mathbf{y};\boldsymbol{\theta}} \left[\sum_{n=1}^{N} \delta(\mathbf{x}_{n}, x) \delta(\mathbf{y}_{\mathbf{z}_{n}}, y) \right]$$

$$\frac{\partial \log P(\mathbf{x}|\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})}{\partial p(x|y)} = \frac{1}{p(x|y)} \left(\mathbb{E}_{Q} \left[\sum_{n=1}^{N} 2\delta(\mathbf{x}_{n}, x) \delta(\mathbf{y}_{\mathbf{z}_{n}}, y) \right] - \mathbb{E}_{\mathbf{z}|\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}} \left[\sum_{n=1}^{N} \delta(\mathbf{x}_{n}, x) \delta(\mathbf{y}_{\mathbf{z}_{n}}, y) \right] \right)$$

Maximum Likelihood Estimation (MLE)

$$\frac{\partial \log P(\mathbf{x}|\mathbf{y}; \boldsymbol{\theta})}{\partial p(x|y)} = \frac{1}{p(x|y)} \mathbb{E}_{\mathbf{z}|\mathbf{x},\mathbf{y};\boldsymbol{\theta}} \left[\sum_{n=1}^{N} \delta(\mathbf{x}_n, x) \delta(\mathbf{y}_{\mathbf{z}_n}, y) \right]$$

$$\frac{\partial \log P(\mathbf{x}|\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})}{\partial p(x|y)} = \frac{1}{p(x|y)} \left(\mathbb{E}_{Q} \left[\sum_{n=1}^{N} 2\delta(\mathbf{x}_{n}, x)\delta(\mathbf{y}_{\mathbf{z}_{n}}, y) \right] - Q(\mathbf{x}, \mathbf{y}, \mathbf{z}; \boldsymbol{\theta}) = \frac{P(\mathbf{x}, \mathbf{z}|\mathbf{y}; \boldsymbol{\theta})P(\mathbf{x}|\mathbf{z}, \mathbf{y}; \boldsymbol{\theta})}{\sum_{\mathbf{z}'} P(\mathbf{x}, \mathbf{z}'|\mathbf{y}; \boldsymbol{\theta})P(\mathbf{x}|\mathbf{z}', \mathbf{y}; \boldsymbol{\theta})} \right]$$

$$\mathbb{E}_{\mathbf{z}|\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}} \left[\sum_{n=1}^{N} \delta(\mathbf{x}_{n}, x)\delta(\mathbf{y}_{\mathbf{z}_{n}}, y) \right] \right)$$

Comparison with MLE

criterion	model	$\mid \mathbf{C} \to \mathbf{E}$	$E \rightarrow C$
MLE	Model 1	43.07	45.89
MILE	Model 2	40.28	42.38
MRE	Model 1	41.90	45.39
	Model 2	38.33	41.73

Conclusion

- * We have presented maximum reconstruction estimation for training generative latent-variable models such as hidden Markov models and IBM translation models.
- * In the future, we plan to apply our approach to more generative latent-variable models such as probabilistic context-free grammars and explore the possibility of developing new training algorithms that minimize reconstruction errors.

Thank you!