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Abstract—Many attacks originate from inside, and security
problems within cloud-computing platforms are becoming more
and more severe. Although many Intrusion Detection System
(IDS) help monitor and protect the inbound and outbound traffic
of data centers, it is still challenging to deploy IDS inside a cloud-
computing platform due to extremely high bandwidth within, and
the lack of a single ingress point to deploy the IDS. This paper
presents two ideas allowing traditional IDS to be adopted to
the cloud environment: software-defined-networking (SDN) based
packet collection and a hybrid sampling algorithm to significantly
reduce workload on the IDS.

We integrate our data collector in the Open vSwitch of every
physical server, making packets capturing highly efficient. Our
hybrid sampling algorithm combines both flow statistics and IDS
feedback to intelligently chose which packets to sample. The
sampling rate is determined by the current workload in the cloud,
and thus minimizing the effects to normal workload.

We evaluate our prototype CIDS on a 125-server production
OpenStack cloud using real world attack traces, and demonstrate
the effectiveness of our approach.

I. INTRODUCTION

With the wide adoption of cloud computing and so-called
big data, more and more data are processed, stored and trans-
mitted in the cloud. Many reports point out that security and
privacy issues are among the biggest challenges facing cloud
platforms [12] [4]. Intrusion detection and prevention becomes
one of the most important tasks in cloud computing [19], after
many attacks on cloud-based applications, impacting hundreds
of millions of users in the past few years [13] [11].

Intrusion Detection Systems (IDS) are widely used middle
boxes that try to detect intrusions using a combination of data
processing techniques on raw packets, such as packet dump,
packet decoding, session reassembling, signature matching and
machine learning [17]. It has played a key role in traditional
area of network security monitoring. IDS has been proven
successful as a strong mechanism to protect traditional net-
work systems. Cloud platforms even help deploying the IDS
boxes as virtual machine appliances (one form of the network
function virtualization [2]). However, many challenges remain
when we deploy traditional IDS in the cloud platforms [28].

It is important to realize that many attacks originate from
inside the cloud itself, rather from the outside Internet through
the network gateway, as many researchers have pointed out
[24] [9]. Insider attacks are an important issue for public
clouds. Different from traditional attacks, insider attacks in

the cloud bring the following challenges to IDS systems in
the cloud.

(1) Efficiency and scalability. Most IDS depends on deep
packet inspection. As the network traffic within the cloud can
be tremendous, with the high-bandwidth data center network
(e.g. 10Gbps to server and 100Gbps at core). Comparing to
just inspecting the ingress/egress traffic at the gateway, it is
prohibitively expensive in terms of the amount of computa-
tional and communication resources required to process all
packets. In fact, during our experiments, we see high packet
loss rate in IDS, even with moderate utilization and many IDS
resources.

(2) Virtualized, dynamic changing and multi-tenant network
environment [3]. To accommodate multiple tenant, the cloud
network often uses tunneling for network virtualization, which
hides the real packet header, making it more expensive for IDS
to decode packets. Also, the virtual machines (VM), virtual
networks, cluster nodes and tenants are dynamically changing,
and thus the operators have to consistently reconfigure the IDS
to capture meaningful traffic in the cloud.

We design CIDS, a framework for adapting off-the-shelf
IDS into the cloud environment, to detect attacks from inside
the cloud environment. The key idea of CIDS is to reduce
and balance the data collection and computation workload
dynamically, according to the resource utilizations in the
cloud. The goal of CIDS is to increase the probability that
the IDS captures the attack traffic, while keep both the IDS
and the data center network from being overloaded.

CIDS consists of a set of mechanisms to perform dynamical-
ly configurable packet capturing, sampling, filtering, as well as
a hybrid sampling policy engine to automatically determine the
right sampling rate according to the resource utilization. We
make no assumptions of the implementation of the IDS itself,
and thus support any IDS that runs inside a virtual machine.

We use a combination of both local and global packet
processing mechanisms. On each physical server, we deploy a
host-based data collection module as a virtual switches (Open
vSwitch [26] in our setup) plugin to perform both packet
filtering and local statistics collection. We also employ a
distributed stream processing engine, Storm [1] to pre-process
the packets and computes global statistics. The host modules
eliminate unnecessary packets as early as possible to reduce
communication overhead. The distributed Storm engine keeps
global statistics, in order to provide better insights on the



sampling policy decision.

The local data collection module captures packets, samples
them according to a central sampling policy and forward them
to the correct IDS VMs for processing. The data collection
module works before GRE or other tunneling protocol en-
capsulating IP packets and thus it captures clear-text packets
that can be decoded and processed directly by the succeeding
modules without additional de-encapsulation operations.

For global packet statistics, we use Apache Storm [I].
Specifically, we compute the flows counting and feature en-
tropy [16] at a global level, and then select the most abnormal
top-n flows under large-scale anomaly situation, making sure
that they receive the highest priority to be processed.

To decide which packets to sample, we design a hybrid
sampling policy that takes into account the network workload
(to decide the max amount of packets we can process), the
flow size / length, global properties such as feature entropy,
as well as allowing the IDS to provide feedback to mark
suspicious flows. All the sampling decisions are made through
a centralized controller. Our hybrid sampling algorithm has
two desirable properties: 1) we can dynamically adjust the
sampling rate according to the resource utilization; and 2) we
intelligently select the most suspicious flows for IDS.

The key policy decision in CIDS is which packets to sample.
Naive random sampling methods, either packet-based or flow-
based, lead to information loss, and thus are not usable in
signature-based IDS. As we will show in our evaluation,
random sampling decreases detection accuracy significantly.

We evaluated CIDS on a production OpenStack [10] cloud
platform with 125 physical nodes running thousands of virtual
machines, using the open source Snort [27] as IDS. Replaying
two different sets of public attack traces, we show that CIDS
almost doubles the intrusion detection rate than traditional
sampling-based methods, automatically adapts to the cloud
workload, and significantly reduces the computation overhead
and network communication overhead.

Our core contributions of this paper include:

(1) We design a hybrid sampling scheme. In this design,
using a combination of local and global sampling decisions,
we filter out many packets and yet maintain detection accuracy,
making unmodified traditional IDS usable in a cloud environ-
ment.

(2) We provide an SDN-based packet collection and moni-
toring mechanism that allows efficient packet collection from
inside a cloud.

(3) We evaluated our system using real world attack traces in
a production cloud environment with over a hundred servers,
and demonstrate the efficiency and applicability of the system.

The remaining of this paper is organized as follows: We
give the overview of CIDS in Section III. In Section IV, we
discuss our hybrid sampling algorithm. Section V shows the
design details of our CIDS framework. Experimental results of
our proposed framework are given in Section VI. And finally
we conclude and discuss about future works in VII.

II. RELATED WORK

Researchers have proposed various approaches to detect
intrusions for cloud-computing platforms. Baraka et al. [3] p-
resented an approach that leverages IDS to protect the compute
nodes in cloud. They deployed Snort at the frontend, backend,
or in VMs to detect attacks originated from internal and/or
external. With their approach, DDoS attacks can be detected
highly efficiently. [21] proposed Snort based on signature
intrusion detection in open source cloud, Eucalyptus [25]. For
this approach, Snort is deployed in each physical machine
which host users’ VMs to identify attacks initiated from
external networks. A number of instances or VMs for running
IDS are used to secure cloud. However, this solution requires
each physical node to reserve resource for the IDS, causing lots
of complexity in task scheduling, as not every single physical
node can accommodate the resource requirements. Modi et
al. [24] proposed a framework which combined Network
Intrusion Detection System (NIDS) with Decision Tree (DT)
Classifier in the cloud infrastructure. They deployed NIDS
at the frontend and the backend of cloud to detect known
intrusions based on configured rules. Uncertain packets were
forwarded to DT classifier to identify which class (intrusion
or normal) they belonged to. The output of DT were sent back
to NIDS to generate rules for accurate detection.

Other researchers focus on sampling-based anomaly detec-
tion [15], [20]. But issues how sampling affects intrusion
detection accuracy are still open. In [15], they proposed
approaches that leverage sampled data to detect port-scan
behavior. In [20], they compare and analyze four classic
sampling algorithms under distinct sampling rate and different
detection parameters empirically and they get the conclu-
sion that flow sampling is better than packet sampling. The
authors of [16] proposed an approach to detect anomaly
from backbone networks based on analysis of the entropies
for principal packet features. Their experiment showed that
anomalies naturally fall into distinct and meaningful clusters
according to feature distribution. In [6], they concluded that
entropy-based anomaly detection had high tolerance degree
despite of the information loss for sampling. Worm outbreak
events could also be exposed at low sampling rate using
entropy-based approaches.

III. CIDS OVERVIEW

Instead of designing a all-new IDS, the goal of CIDS is
to provide a framework so that the cloud operators can adapt
existing IDS software or hardware boxes to detect intrusions
from inside the cloud. System-wise, we combine software-
defined networking techniques, scalable data stream process-
ing and hybrid sampling algorithms to provide a practical
and efficient system design. We assume that the existing IDS
system runs in virtual machines, which is a black box for
CIDS. The core ideas of CIDS are the following:

Configurable and scalable packet monitoring and filtering
framework. As the traffic is huge within a cloud, we need
to eliminate unnecessary traffic as early as possible. Thus, we



decide to filter out traffic at the source. Most cloud platforms
already have built-in software switches at the hosts to handle
multiple virtual machines, and we leverage these software
switches to perform packet filtering. In CIDS, we integrate our
data collection module with the Open vSwitch (OVS) on each
physical server. We dynamically choose which (virtual) port to
monitor and set up rules to include / exclude specific packet
headers, and then forward them to the correct IDS VM for
processing. The filtering behavior is controlled by a centralized
controller.

Collecting data at the software switches also solves the
tunneling problem discussed in Section I, as we capture the
raw packet headers before the encapsulation, so we can pro-
cess them later without complex decoding, saving significant
bandwidth and computation overhead.

Local and global packet statistics. To make detailed sam-
pling decisions, we need to maintain packet and flow statistics,
such as rate and feature entropy at both local level and global
level. At the local level, the host-based module computes
statistics, and we use Apache Storm [!] to perform flow-
counting and calculation of feature entropy at a global level.
All the statistics are sent to the centralized sampling controller
to determine the sampling rate, as well as the priority.

Hybrid sampling algorithm to capture more potential at-
tacks. Sampling is necessary considering the amount of traffic
in the cloud. However, the IDS uses a stateful algorithm for
detection, which means randomly dropping packets or flows
can severely affect the detection accuracy. CIDS provides a
way to select the most suspicious traffic to feed into the IDS.

There are two classes of attacks prevalent in the cloud, based
on the amount of attack traffic, small scale and large scale [23]
[15] [16] [20]. Small scale attacks include exploiting specific
vulnerabilities to get root privilege, attempting to crash victim
machines or steal user data. They sometimes only involve a
handful of packets, and happen quite irregularity. Large scale
attacks, such as denial-of-service (DoS), on the other hand,
involves tremendous intrusion traffic and distributed attack
agents. Both kinds of attacks can originate from inside of the
cloud.

Our hybrid sampling algorithm first make an estimate of
the network resource utilization at each host, and decide a
maximum sampling rate. Based on this max rate (workload
aware), it then decide which flows / packets to sample, based
on local metrics such as flow length, and global metrics
such as feature entropies. Moreover, it allows the IDS system
to provide feedback on which (partially observed) flows are
suspicious, and all subsequent packets from the suspicious
flow are sampled.

System architecture. Figure 1 shows the architecture of
CIDS. There are three major components in CIDS: highly
efficient local data collection module, global packet statistics
module, and a centralized controller.

Data collection works with Open vSwitch (OVS) of each
physical host. It collects raw data from OVS and executes
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Fig. 1: CIDS architecture.

a series of actions including packets decoding, flow size
estimation, flow filtering and flow sampling.

The global packet statistics runs in a set of dynamically
allocated virtual machines, and it is implemented with Apache
Storm [1], a distributed data stream processing framework. It
computes global flow statistics so that we can detect large
scale attacks.

The centralized controller coordinates local and global
actions. The controller collects flow statistics and resource
utilization from local and global components, computes the
global sampling strategy, and then send control command to
all agents to perform the actual packet filtering actions.

Although we can use CIDS with many off-the-shelf IDS,
throughout this paper, we use Snort [27], a popular open source
system, as our IDS. We use a custom program to dynamically
add / delete Snort VM instances according to the workload,
in order to to emulate the modern virtualized IDS setup.

IV. CIDS SAMPLING STRATEGIES

Sampling strategy is the core of CIDS. There are two levels
of sampling consideration in CIDS. First, we need to compute
a maximum allowed sampling rate, p,;, for each host, based
on the resource utilization. To achieve the sampling rate,
naively we can randomly drop packets. However, as we will
show in our evaluation, random sampling reduces detection
accuracy significantly. Thus, our goal is to intelligently utilize
the allowed sampling rate to capture the most likely attacks.
In CIDS, we make the sampling decisions based on a combi-
nation of three types of statistics, local, global and feedback
from IDS cluster. Although we keep global statistics, most of
the sampling mechanism actually happens the host, and thus
eliminate the data collection overhead early in the process.

A. Determine the Maximum Allowed Sampling Rate

For intrusion detection, we want to capture as much traffic
as possible. However, we need to avoid overloading the IDS
cluster and avoid competing with production workload for
shared resources in the cluster, most importantly, the data



center network capacity. In a virtualized cloud environment,
the network bottleneck is usually at the software switch (Open
vSwitch), and thus we determine the max allowed sampling
rate on each physical server, p,y, using the following equation

bm = UIDS X Unetwork7 (1)

where U;pg is the utilization of the IDS cluster. It is a global
parameter that is periodically broadcast to each host from
the centralized controller. Uy, cwork 1S the network utilization
observed at the server.

B. Local Sampling Strategy

In the cloud, a few long flows occupy the majority of
network traffic, while a large number of small flows generate
a small amount of total traffic [29] [15]. As researchers have
pointed out, intrusion traffic does not consists of much of the
total network traffic (usually no more than 0.05%) [31], and
super long flows are highly unlikely to be attacks [8]. This is
because attackers usually use small flows to scan the network
to collect information about victims, and use moderate flows
to upload malware [14]. In fact, researches show that the size
of more than 95% abnormal flows is less than 10 packets [31].

With these observations, we want to put more priority on
capturing small flows at a given maximum sampling rate. As
we do not know the flow size, each host computes the sampling
rate for a particular flow f, py, as

1
LCUT‘

where pjs is the maximum sampling rate for the host,
calculated using Eq.1, L, is the current flow size. Note that
the simple equation reduces the sampling probability for f
quickly as more packets arrive.

There is one exception to the sampling rule. If the IDS
detect a flow as suspicious from the first few packets, the
IDS system can mark the flow and inform the host. Then
all subsequent packets from the flow is sampled. Capturing
marked flows has the highest priority, and we further reduce
pap for other flows to accommodate the resource need.

Df =DM X 2

C. Global Sampling Strategy

The sampling decisions discussed above are based on local
information only. However, there are many large scale attacks,
such as distributed denial-of-service (DDoS) attack, use many
flows. Detecting these types of attacks requires global flow
statistics. However, it is beyond the processing capacity of IDS
to track all these flows. Thus, we need a simple yet efficient
global sampling strategy to detect abnormal flow patterns in a
global sense. We adopt the feature entropy method proposed
in [16]. The advantage of the method is its simplicity: it only
tracks a few metrics per flow, and it is easy to implement as
a distributed stream processing algorithm.

The key idea of feature entropy is to detect sudden changes
of value distributions of different features across all the flows,
such as source / destination addresses / ports. For example,
during a DDoS attack, there might be a sudden increase in

the number of distinct source IP addresses, and a majority of
destination IP addresses will be concentrated to a few values.
As another example, with a worm propagating in the cloud, we
can see an increase in the number of distinct destinations IP
addresses, but the destination ports will be more concentrated
to a single value.

Formally, we use the entropy of a feature f, to capture the
randomness of its value distribution. We define a feature f,
as a set of IV distinct possible values as

fo={(mom),i=1,2,...,

where each value x; appears n; times in the feature set. We
can calculate the feature entropy using the following equation.

N}, 3)

Z| log, i, where |S| = an 4)
=1

It is easy to see that H(f,) has the range of (0,log,N).
On one extreme, if f, only has a single value, H(f,) = 0.
On the other extreme, if all values of feature f, are distinct,
H(fm) = ZOQZN [16].

We compute the global entropy across all flows for each
feature periodically. From the example above, we can see that
during a DDoS, H(source_ip) increases while H(dest_ip)
decreases, while during a worm propagation, H (dest_ip)
increases and H (dest_port) decreases.

Of course the feature entropy changes all the time. We
capture amount of change using expectation deviation, (H),
of an entropy H, and we have

X — E(H)

§(H):W7

&)
where E(H) and 6(H) are the expectation and standard
deviation of H respectively. Intuitively, the magnitude of £(H )
reflects the amount of change of the entropy value.

We need to note that entropies of different features have
different variations. Thus we train a threshold for each feature,
¢ (H) to capture the normal variation, based on historical traffic
traces (during a period with no known large attacks).

We periodically compute £(H) for each feature globally
across the entire cloud using the Storm cluster (to be described
in the next section). If we found &(H) > £(H), we would
suspect there is a large-scale attack, and the controller will
instruct all hosts to start sampling the top flows contributed
to the entropy changes. Again, each host will reduce the
sampling rate for general traffic to accommodate the resource
requirement.

V. SYSTEM DESIGN AND IMPLEMENTATION

CIDS consists of the following modules. Per physical server
data collection modules, the global flow statistics engine, a
centralized controller, and a adapter to connect to different oft-
the-shelf IDSes. Figure 2 shows the implementation structure
of CIDS.
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A. Data Collection Module (DCM)

The DCM modules are installed on each physical server.
A DCM consists of three components: packets capturing
component (PCC), flow filtering and local sampling decision
component (FLSDC) and sampling component (SC). For each
fixed length time slot, DCM collects a set of packets and com-
putes their statistics. We leverage software-defined network
features in the OVS to perform packet sampling. Specifically,
we add a virtual interface to OVS and set it to mirror all
other interfaces of VMs according to the OpenFlow protocol
[22]. PCC listening on this virtual interface to capture packets,
and thus we can obtain all VMs communications. PCC works
on the virtual interface of OVS for each physical server. All
captured packets are passed to the local flow filtering and local
sampling decision component (FLSDC) for further processing.

FLSDC accepts input flows from PCC and determine
whether the flows belong to (user defined) normal services
running in cloud, such as the common storage accesses and
data transfers in Storm. If so, we abandon these packets, and if
not, we report the local 5-tuple flow statistics to the global flow
statistics engine. All filtered traffic are sent to the sampling
component (SC). At the same time, FLSDC calculates local
sampling rate for each flow using flow length and information
from the central controller.

SC decides whether to drop a packet at the local server.
It makes the decision according to both the decision from
FLSDC component, as well as feedback from the central
controller (discussed later in this section). If SC does not drop
a packet, the packet is sent to the global flow statistics engine
for further processing.

B. Global Flow Statistics Engine

To identify attacks at a global level, we implement a
global flow statistics engine. In order to maintain scalablity
and reliability of the processing, we decide to implement
the engine using Apache Storm [I], a popular open source
data stream processing framework. In the Storm framework,
there are two kinds of processing units, the spout representing

the producer of data streams, and the bolts representing the
consumer to compute on the data streams. These processing
units form a topology that execute the entire stream processing
pipeline. We leverage the Storm framework to handle common
tasks like failover and load balancing over multiple compute
(virtual) machines.

We implement four tasks on top of the Storm framework.
The gather_spout spout task receives local flow statistics from
DCM, and transforms them into message streams processed
by succeeding tasks. The exp_dev_bolt bolt tasks receive
messages from gather_spout every time slot. At the end of
each time slot, it computes all the feature entropies and their
expectation deviation, using the following steps:

o Receive messages from gather_spout and calculate the
sets for every feature (e.g. srcip, srcport, destip, destport)
according to Eq.3 for the time slot.

o According to Eq.4, calculate feature entropies of current
time slot.

e According to Eq.5, calculate the expectation deviation
until current time slot.

A top_n_bolt bolt task compares the expectation devia-
tion outputted from exp_dev_bolt with threshold value from
the output of training_spout to ascertain whether large-scale
anomaly happens. If yes, then calculate top-n flows accord-
ing to global sampling strategy. A training_spout spout task
takes normal traffic as the input dataset for training_spout,
and calculate the feature entropies, mathematical expectation
and standard variance under normal conditions. At the end,
we get the critical threshold of expectation deviation under
general/common conditions.

C. Controller

A centralized controller collects data from all the local data
collection units, as well as the global statistics engine. The data
include both the resource utilization and flow-level statistics.
Based on these statistics, the controller decides whether there
is potentially a global-scale attacks (e.g. DDoS or port scan)
going on, and if so, it computes the most suspicious N
flows, and informs all the DCMs on each server, so that all
packets from these suspicious flows are collected. Otherwise,
the controller will let the local DCMs to make their own local
decisions.

D. IDS Adapter

The goal of CIDS is to adapt unmodified off-the-shelf IDS
to the cloud. To this end, we only add an (optional) adapter
module to the IDS. IDS can use this adapter to provide
feedback to the controller. The feedback is simple: IDS can
only tell the controller which flows it wants to monitor closely.
These flows are then considered marked so the system will
make all the efforts to keep these flows sampled and delivered
to the IDS. This feedback mechanism is a key to improve
sampling accuracy.

In addition, in a cloud environments, it is likely that an
attack stream can be captured by several different DCMs,
causing duplicate alarms. In order to suppress these alrams, we



TABLE I: Attack traces selected from KDD’99 and CAIDA’14

Categoryl No| Name Dataset Attack packets | Enlarge
U2R 1 loadmodule | KDD’99 10%23 10
R2L 2 | imap KDD’99 10*84 10
R2L 3 | named KDD’99 10%47 10
R2L 4 | sshtrojan KDD’99 10*60 10
DOS 5 | teardrop KDD’99 S12%7#254%*] 512
DOS 6 | mailbomb KDD’99 SI2*1*1%667 512
DOS 7 | land KDD’99 512%9%254%2 512
DOS 8 | synflood CAIDA’14| 1,440,562 1
Prob 9 | nmap KDD’99 256%38%254*3 | 256
Prob 10 | ipsweep KDD’99 256%9%254*] 256
worm 11| Code redll | CAIDA’14| 5,609,294 1

also provide an optional alarm filtering and logging module
that records and supresses alarms in a user configurable way.

Though we can adapt to different IDSes, in this paper, we
use Snort [27] for experiment, because it is open source yet
quite effective.

V1. EVALUATION RESULTS
A. Experiment Setup

We evaluate our CIDS in an in-house OpenStack production
cluster. The platform has 125 2U servers, and each server
has 12 CPU cores, 128GB DRAM, 10TB disks and 10Gbps
Ethernet. We deploy data collection module on each of the
125 physical servers. We implement the IDS adapter using a
Snort cluster of 31 virtual machines (VMs). We compute the
global flow statistics using a Storm cluster with 16 VMs. Each
VM has 2 virtual CPUs, 4GB RAM and 100GB disk.

Dataset. We adopt two widely used dataset for IDS evaluation,
KDD’99 [18] and CAIDA UCSD anonymized 2014 Internet
Traces [7] to evaluate CIDS. KDD’99 includes five weeks of
data and CAIDA’ 14 anonymized passive traffic traces on high-
speed Internet backbone links.

We replay traces in both datasets using the Scapy [5] tool in
our cloud platform. To match the high network capacity of the
cloud, We enlarge the normal and attack traffic in the trace by
modifying packets header of source IP address, destination IP
address, source port, or destination port. Thus, we have traffic
with mixed attack and normal flows originating from different
VMs in the cloud. Table I summarizes the attacks contained
in these datasets, and our enlargement factor for each types of
attacks.

Evaluation Metrics. In the evaluation, we compare CIDS
with the following three naive scheme:

o Full Traffic. Send all traffic to the IDS, and let the IDS
to drop extra traffic if overloaded.
« Random Packets. Provide a uniformly random sample
of packets at the source.
« Random Flows. Provide a uniformly random sample of
flows at the source.
We focus on comparing the most important metric in IDS
evaluation, namely, the intrusion detection rate (IDR). We also
compare the Detection Latency of different schemes. Finally,
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TABLE III: Average detection latency (seconds)

Attacks DOS U2R | R2L | Probe | Worm
Hybrid 3.45 0.23 | 0.89 3.03 3.76
Random flow 9.10 1.12 | 290 | 12.94 10.38
Random packet | 13.31 1.47 | 3.16 | 13.22 16.97
Full traffic 15.95 1.52 | 3.48 | 1391 17.0

we show that CIDS helps significantly reduce the resource
utilization of the IDS nodes.

B. Amount of valid attack packets captured.

Using the 11 types of attacks above, we first evaluate how
many valid attack packets we can capture using each sampling
scheme, and Table II shows the results. We can see that with
CIDS we can capture the most valid packets.

It is especially true for the seven large-scale attacks, such
as DDoS and probing, as CIDS captures almost twice as
many valid attack packets than other schemes. For example,
86,319 ipsweep attack packets are captured by CIDS while
only 43,891 and 20, 483 are captured by random flow / packet
sampling, respectively.

For these small-scale and short-lasting attacks, such as
named, sshtrojan, and imap, all three other schemes miss
almost all attack packets, while CIDS captures a large portion
of them, under the same system workload.

C. Intrusion detection rate (IDR).

Being able to capture more attack packets directly leads to
a significant improvement on IDR. Figure 3 shows the IDR
comparison over different schemes.

For common attacks, such as loadmodule (230 attack pack-
ets lasting about 3 minutes), CIDS achieves an IDR of 37%,
higher than that of 10% for random flow and 0% for random
packet sampling. This is because of the preference to smaller
flows, as well as the IDS feedback used by CIDS.

CIDS’s preference on short-flows causes many initial attack
packets to be captured with high probability, and this is why



TABLE II: The number of valid attack packets captured using different sampling schemes.

Attacks No.l | No.2 | No.3 | No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11
Total packets 231 840 474 600 910, 336 | 341,504 | 2,340, 864 | 1,440,562 | 1, 853, 184 | 146, 304 | 5, 609, 294
Hybrid 70 320 193 200 | 491, 581 | 167,337 | 1, 193, 841 619, 442 1, 037, 783 86, 319 3, 471, 762
Random packet 0 130 32 102 118, 344 40, 980 234, 086 129, 651 222, 382 20, 483 617, 022
Random flow 32 220 85 71 236, 687 64, 886 421, 356 273, 707 333, 573 43, 891 1, 290, 138
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It is preferable that the IDR degrades gracefully when the = og
system load increases. Here we show that CIDS achieves this % ’
desirable property. We replay the synflood attack traffic, using = 07}
a varying amount of normal iperf [30] traffic as background :
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traffic to adjust the workload in the network. E 0.6
Figure 4 shows the change of IDR under different network é 05 b
load. We can see that under low load (smaller than 1Gbps), all
schemes achieves similar IDR. However, IDR of other all other 04t
three naive sampling schemes degrade dramatically when load 0
increases. On the contrary, CIDS automatically selects flows ) CPU Memory Network

that are more likely to be abnormal and thus provides a more
graceful degradation on IDR.

E. Detection latency.

It is also important to be able to detect attacks quickly. We
show that although CIDS adds a bit of detection latency, the
overhead is quite acceptable.

CIDS gets small detection latency of user-to-root and
remote-to-local attacks, with 0.23 and 0.89 seconds respective-
ly. Detection latency of large-scale anomalies, such as DDoS,
probe, and worm is about 3 seconds, also much lower than
the random sampling schemes. Large-scale anomalies take
longer time to detect in CIDS because CIDS need several
time slots to calculate feature entropies. CIDS presents better
detection latency because it is less likely to miss attack
packets, letting the IDS to capture and accumulate these attack
packets quickly. Table III shows the detailed data.

Fig. 5: IDS-VMs resource utilization comparison.

F. Resource utilization on IDS.

As IDS systems are scares and expensive resources in the
system (especially when the cloud adopts commercial IDSes
that requires a per-CPU license), we want to save as much IDS
resources as possible. We show that CIDS can help achieve
this goal.

We perform this evaluation using no attacks. Thus all traffic
is normal from iperf, and we measure the resource utilization
on the IDS to process these traffic. Figure 5 shows that CIDS
can save much resource on the IDS system, keeping them from
being overwhelmed.



VII. CONCLUSION AND FUTURE WORK

Attacks within cloud are hard to detect using traditional
IDS. However, the tremendous bandwidth in the data center
network renders most of existing IDS systems too expensive
to apply directly. Random sampling partially helps solving the
problem, but uniform random packet or even flow sampling
significantly decreases the detection accuracy in a traditional
IDS. Instead of redesigning an IDS, we propose CIDS, a novel
architecture that integrates flow filters built on software defined
networking technology, IDS-aware sampling mechanisms and
policy, to allow adapting traditional IDS system in cloud,
maintaining their detection ability while keeping the overhead
low. In the experiments on a sizable cluster running real world
traces, we demonstrate the effectiveness of CIDS.

As future work, we will focus on the mechanisms of small
scale intrusions to improve IDR for such type of attacks.
Furthermore, a type of long term intrusion (e.g. advanced
persistent threat, or APT) is a dangerous category of threats to
cloud computing platform. It is hard to detect such kind of at-
tacks mainly because it is impossible to keep track of all flows
for an extended period of time, due to the resources limitation.
We consider detecting APT in the cloud an important future
direction and we are designing a approximation algorithm to
keep (partial) states, in order to obtain enough states for APT
detection.
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