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Abstract

Most existing event extraction (EE) methods
merely extract event arguments within the sen-
tence scope. However, such sentence-level EE
methods struggle to handle soaring amounts of
documents from emerging applications, such
as finance, legislation, health, etc., where event
arguments always scatter across different sen-
tences, and even multiple such event men-
tions frequently co-exist in the same docu-
ment. To address these challenges, we pro-
pose a novel end-to-end model, Doc2EDAG,
which can generate an entity-based directed
acyclic graph to fulfill the document-level EE
(DEE) effectively. Moreover, we reformal-
ize a DEE task with the no-trigger-words de-
sign to ease document-level event labeling. To
demonstrate the effectiveness of Doc2EDAG,
we build a large-scale real-world dataset con-
sisting of Chinese financial announcements
with the challenges mentioned above. Ex-
tensive experiments with comprehensive anal-
yses illustrate the superiority of Doc2EDAG
over state-of-the-art methods. Data and codes
can be found at https://github.com/
dolphin-zs/Doc2EDAG.

1 Introduction

Event extraction (EE), traditionally modeled as
detecting trigger words and extracting correspond-
ing arguments from plain text, plays a vital role in
natural language processing since it can produce
valuable structured information to facilitate a vari-
ety of tasks, such as knowledge base construction,
question answering, language understanding, etc.

In recent years, with the rising trend of digital-
ization within various domains, such as finance,
legislation, health, etc., EE has become an increas-
ingly important accelerator to the development of
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Figure 1: The rapid growth of event-related announce-
ments considered in this paper.

business in those domains. Take the financial do-
main as an example, continuous economic growth
has witnessed exploding volumes of digital finan-
cial documents, such as financial announcements
in a specific stock market as Figure 1 shows, spec-
ified as Chinese financial announcements (ChFi-
nAnn). While forming up a gold mine, such large
amounts of announcements call EE for assisting
people in extracting valuable structured informa-
tion to sense emerging risks and find profitable op-
portunities timely.

Given the necessity of applying EE on the finan-
cial domain, the specific characteristics of finan-
cial documents as well as those within many other
business fields, however, raise two critical chal-
lenges to EE, particularly arguments-scattering
and multi-event. Specifically, the first challenge
indicates that arguments of one event record may
scatter across multiple sentences of the docu-
ment, while the other one reflects that a doc-
ument is likely to contain multiple such event
records. To intuitively illustrate these challenges,
we show a typical ChFinAnn document with two
Equity Pledge event records in Figure 2. For the
first event, the entity1 “[SHARE1]” is the correct
Pledged Shares at the sentence level (ID 5). How-
ever, due to the capital stock increment (ID 7),

1 In this paper, we use “entity” as a general notion that in-
cludes named entities, numbers, percentages, etc., for brevity.
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ID Sentence

5
[DATE1]�[PER]�� #'
�[SHARE1]*�.�)[ORG]�
In [DATE1], [PER] pledged his [SHARE1] to [ORG].

7

��!0%
(31�*%���.�*���[SHARE2]�
After the company carried out the transferring of the capital accumulation fund to the capital stock, his pledged shares became [SHARE2].

8
[DATE2]�[PER]�� #'[SHARE3]
�*�.�)[ORG]�����2.�*�',	.��
In [DATE2], [PER] pledged [SHARE3] to [ORG], as a supplementary pledge to the above pledged shares.

9
�2.��,	.�*��-�[SHARE4]���/�"$�[DATE3]�
The aforementioned pledged and supplementary pledged shares added up to [SHARE4], and the original repurchase date was [DATE3].

10
[DATE3]�[PER]4��.�'[SHARE4]*��&��$/���/�"$�5+[DATE4]�
In [DATE3], [PER] extended the repurchase date to [DATE4] for [SHARE4] he pledged.

12
�+%
�"�[PER] #
�*�[SHARE5]��
��*%'[RATIO]�
As of the date of this announcement, [PER] hold [SHARE5] of the company, accounting for [RATIO] of the total share capital of the company.

Event Table of Equity Pledge

Pledger Pledged Shares Pledgee Begin Date End Date Total Holding Shares Total Holding Ratio
[PER] [SHARE2] [ORG] [DATE1] [DATE4] [SHARE5] [RATIO]

[PER] [SHARE3] [ORG] [DATE2] [DATE4] [SHARE5] [RATIO]

Event 
Role

Event 
Record

Event 
Argument

Entity
Mention

Entity Mark Table

Mark Entity Entity 
(English)

[PER] ��5 Weiqun Liu

[ORG] �7�6�
38�.

Guosen
Securities

Co., ltd.

[DATE1] ���	0�2��1 Sept. 22nd, 2017

[DATE2] ���
0�2%1 Sept. 6th, 2018

[DATE3] ���
0�2��1 Sept. 20th, 2018

[DATE4] ����0�2��1 Mar. 20th, 2019

[SHARE1] 	�����6 750000 shares

[SHARE2] �	����6 975000 shares

[SHARE3] ������6 525000 shares

[SHARE4] �������6 1500000 shares

[SHARE5] �%	%
���6 16768903 shares

[RATIO] ���
�
� 1.0858%

Figure 2: A document example with two Equity Pledge event records whose arguments scatter across multiple
sentences, where we use ID to denote the sentence index, substitute entity mentions with corresponding marks,
and color event arguments outside the scope of key-event sentences as red.

the correct Pledged Shares at the document level
should be “[SHARE2]”. Similarly, “[DATE3]”
is the correct End Date at the sentence level (ID
9) but incorrect at the document level (ID 10).
Moreover, some summative arguments, such as
“[SHARE5]” and “[RATIO]”, are often stated at
the end of the document.

Although a great number of efforts (Ahn, 2006;
Ji and Grishman, 2008; Liao and Grishman, 2010;
Hong et al., 2011; Riedel and McCallum, 2011;
Li et al., 2013, 2014; Chen et al., 2015; Yang
and Mitchell, 2016; Nguyen et al., 2016; Liu
et al., 2017; Sha et al., 2018; Zhang and Ji, 2018;
Nguyen and Nguyen, 2019; Wang et al., 2019)
have been put on EE, most of them are based
on ACE 20052, an expert-annotated benchmark,
which only tagged event arguments within the
sentence scope. We refer to such task as the
sentence-level EE (SEE), which obviously over-
looks the arguments-scattering challenge. In con-
trast, EE on financial documents, such as ChFi-
nAn, requires document-level EE (DEE) when
facing arguments-scattering, and this challenge
gets much harder when coupled with multi-event.

The most recent work, DCFEE (Yang et al.,
2018), attempted to explore DEE on ChFinAnn,
by employing distant supervision (DS) (Mintz
et al., 2009) to generate EE data and perform-
ing a two-stage extraction: 1) a sequence tagging
model for SEE, and 2) a key-event-sentence detec-
tion model to detect the key-event sentence, cou-
pled with a heuristic strategy that padded missing
arguments from surrounding sentences, for DEE.

2 https://www.ldc.upenn.edu/
collaborations/past-projects/ace

However, the sequence tagging model for SEE
cannot handle multi-event sentences elegantly,
and even worse, the context-agnostic arguments-
completion strategy fails to address the arguments-
scattering challenge effectively.

In this paper, we propose a novel end-to-end
model, Doc2EDAG, to address the unique chal-
lenges of DEE. The key idea of Doc2EDAG is
to transform the event table into an entity-based
directed acyclic graph (EDAG). The EDAG for-
mat can transform the hard table-filling task into
several sequential path-expanding sub-tasks that
are more tractable. To support the EDAG gen-
eration efficiently, Doc2EDAG encodes entities
with document-level contexts and designs a mem-
ory mechanism for path expanding. Moreover, to
ease the DS-based document-level event labeling,
we propose a novel DEE formalization that re-
moves the trigger-words labeling and regards DEE
as directly filling event tables based on a docu-
ment. This no-trigger-words design does not rely
on any predefined trigger-words set or heuristic
to filter multiple trigger candidates, and still per-
fectly matches the ultimate goal of DEE, mapping
a document to underlying event tables.

To evaluate the effectiveness of our proposed
Doc2EDAG, we conduct experiments on a real-
world dataset, consisting of large scales of finan-
cial announcements. In contrast to the dataset used
by DCFEE where 97%3 documents just contained
one event record, our data collection is ten times
larger where about 30% documents include multi-
ple event records. Extensive experiments demon-
strate that Doc2EDAG can significantly outper-

3 Estimated by their Table 1 as 2∗NO.ANN−NO.POS
NO.ANN .

https://www.ldc.upenn.edu/collaborations/past-projects/ace
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form state-of-the-art methods when facing DEE-
specific challenges.

In summary, our contributions include:

• We propose a novel model, Doc2EDAG,
which can directly generate event tables
based on a document, to address unique chal-
lenges of DEE effectively.

• We reformalize a DEE task without trigger
words to ease the DS-based document-level
event labeling.

• We build a large-scale real-world dataset
for DEE with the unique challenges of
arguments-scattering and multi-event, the ex-
tensive experiments on which demonstrate
the superiority of Doc2EDAG.

Note that though we focus on ChFinAnn data
in this work, we tackle those DEE-specific chal-
lenges without any domain-specific assumption.
Therefore, our general labeling and modeling
strategies can directly benefit many other business
domains with similar challenges, such as criminal
facts and judgments extraction from legal docu-
ments, disease symptoms and doctor instructions
identification from medical reports, etc.

2 Related Work

Recent development on information extraction has
been advancing in building the joint model that
can extract entities and identify structures (rela-
tions or events) among them simultaneously. For
instance, (Ren et al., 2017; Zheng et al., 2017;
Zeng et al., 2018a; Wang et al., 2018) focused
on jointly extracting entities and inter-entity re-
lations. In the meantime, the same to the fo-
cus of this paper, a few studies aimed at design-
ing joint models for the entity and event extrac-
tion, such as handcrafted-feature-based (Li et al.,
2014; Yang and Mitchell, 2016; Judea and Strube,
2016) and neural-network-based (Zhang and Ji,
2018; Nguyen and Nguyen, 2019) models. Nev-
ertheless, these models did not present how to
handle argument candidates beyond the sentence
scope. (Yang and Mitchell, 2016) claimed to han-
dle event-argument relations across sentences with
the prerequisite of well-defined features, which,
unfortunately, is nontrivial.

In addition to the modeling challenge, another
big obstacle for democratizing EE is the lack of

training data due to the enormous cost to ob-
tain expert annotations. To address this problem,
some researches attempted to adapt distant super-
vision (DS) to the EE setting, since DS has shown
promising results by employing knowledge bases
to automatically generate training data for rela-
tion extraction (Mintz et al., 2009). However, the
vanilla EE required the trigger words that were ab-
sent on factual knowledge bases. Therefore, (Chen
et al., 2017; Yang et al., 2018) employed either
linguistic resources or predefined dictionaries for
trigger-words labeling. On the other hand, an-
other recent work (Zeng et al., 2018b) showed that
directly labeling event arguments without trigger
words was also feasible. However, they only con-
sidered the SEE setting and their methods cannot
be directly extended to the DEE setting, which is
the main focus of this work.

Traditionally, when applying DS to relation ex-
traction, researchers put huge efforts into alleviat-
ing labeling noises (Riedel et al., 2010; Lin et al.,
2016; Feng et al., 2018; Zheng et al., 2019). In
contrast, this work shows that combining DS with
some simple constraints can obtain pretty good la-
beling quality for DEE, where the reasons are two
folds: 1) both the knowledge base and text doc-
uments are from the same domain; 2) an event
record usually contains multiple arguments, while
a common relational fact only covers two entities.

3 Preliminaries

We first clarify several key notions: 1) entity men-
tion: an entity mention is a text span that refers
to an entity object; 2) event role: an event role
corresponds to a predefined field of the event ta-
ble; 3) event argument: an event argument is an
entity that plays a specific event role; 4) event
record: an event record corresponds to an entry
of the event table and contains several arguments
with required roles. For example, Figure 2 shows
two event records, where the entity “[PER]” is an
event argument with the Pledger role.

To better elaborate and evaluate our proposed
approach, we leverage the ChFinAnn data in this
paper. ChFinAnn documents contain firsthand of-
ficial disclosures of listed companies in the Chi-
nese stock market and have hundreds of types,
such as annual reports and earnings estimates.
While in this work, we focus on those event-
related ones that are frequent, influential, and
mainly expressed by the natural language.



4 Document-level Event Labeling

As a prerequisite to DEE, we first conduct the DS-
based event labeling at the document level. More
specifically, we map tabular records from an event
knowledge base to document text and regard well-
matched records as events expressed by that docu-
ment. Moreover, we adopt a no-trigger-words de-
sign and reformalize a novel DEE task accordingly
to enable end-to-end model designs.

Event Labeling. To ensure the labeling quality,
we set two constraints for matched records: 1) ar-
guments of predefined key event roles must exist
(non-key ones can be empty) and 2) the number of
matched arguments should be higher than a certain
threshold. Configurations of these constraints are
event-specific, and in practice, we can tune them
to directly ensure the labeling quality at the docu-
ment level. We regard records that meet these two
constraints as the well-matched ones, which serve
as distantly supervised ground truths. In addition
to labeling event records, we assign roles of argu-
ments to matched tokens as token-level entity tags.
Note that we do not label trigger words explic-
itly. Besides not affecting the DEE functionality,
an extra benefit of such no-trigger-words design is
a much easier DS-based labeling that does not rely
on predefined trigger-words dictionaries or manu-
ally curated heuristics to filter multiple potential
trigger words.

DEE Task Without Trigger Words. We refor-
malize a novel task for DEE as directly filling
event tables based on a document, which gener-
ally requires three sub-tasks: 1) entity extraction,
extracting entity mentions as argument candidates,
2) event detection, judging a document to be trig-
gered or not for each event type, and 3) event ta-
ble filling, filling arguments into the table of trig-
gered events. This novel DEE task is much dif-
ferent from the vanilla SEE with trigger words but
is consistent with the above simplified DS-based
event labeling.

5 Doc2EDAG

The key idea of Doc2EDAG is to transform tabu-
lar event records into an EDAG and let the model
learn to generate this EDAG based on document-
level contexts. Following the example in Figure 2,
Figure 3 typically depicts an EDAG generation
process and Figure 4 presents the overall workflow
of Doc2EDAG, which consists of two key stages:

[PER] [SHARE2] [ORG]

[SHARE3] [ORG]

Role 1
Pledger

Role 2
Pledged Shares

Role 3
Pledgee

Event
Triggering

Path Expanding

Figure 3: An EDAG generation example that starts
from event triggering and expands sequentially follow-
ing the predefined order of event roles.

document-level entity encoding (Section 5.1) and
EDAG generation (Section 5.2). Before elaborat-
ing each of them in this section, we first describe
two preconditioned modules: input representation
and entity recognition.

Input Representation. In this paper, we denote
a document as a sequence of sentences. For-
mally, after looking up the token embedding ta-
ble V ∈ Rdw×|V |, we denote a document d as
a sentence sequence [s1; s2; · · · ; sNs ] and each
sentence si ∈ Rdw×Nw is composed of a sequence
of token embeddings as [wi,1,wi,2, · · · ,wi,Nw ],
where |V | is the vocabulary size, Ns and Nw are
the maximum lengths of the sentence sequence
and the token sequence, respectively, and wi,j ∈
Rdw is the embedding of jth token in ith sentence
with the embedding size dw.

Entity Recognition. Entity recognition is a typ-
ical sequence tagging task. We conduct this task
at the sentence level and follow a classic method,
BI-LSTM-CRF (Huang et al., 2015), that first en-
codes the token sequence and then adds a condi-
tional random field (CRF) layer to facilitate the
sequence tagging. The only difference is that we
employ the Transformer (Vaswani et al., 2017)
instead of the original encoder, LSTM (Hochre-
iter and Schmidhuber, 1997). Transformer en-
codes a sequence of embeddings by the multi-
headed self-attention mechanism to exchange con-
textual information among them. Due to the supe-
rior performance of the Transformer, we employ
it as a primary context encoder in this work and
name the Transformer module used in this stage as
Transformer-1. Formally, for each sentence ten-
sor si ∈ Rdw×Nw , we get the encoded one as
hi = Transformer-1(si), where hi ∈ Rdw×Nw

shares the same embedding size dw and sequence
length Nw. During training, we employ roles of
matched arguments as entity labels with the clas-
sic BIO (Begin, Inside, Other) scheme and wrap
hi with a CRF layer to get the entity-recognition
loss Ler. As for the inference, we use the Viterbi



decoding to get the best tagging sequence.

5.1 Document-level Entity Encoding
To address the arguments-scattering challenge ef-
ficiently, it is indispensable to leverage global con-
texts to better identify whether an entity plays
a specific event role. Consequently, we uti-
lize document-level entity encoding to encode ex-
tracted entity mentions with such contexts and
produce an embedding of size dw for each entity
mention with a distinct surface name.

Entity & Sentence Embedding. Since an en-
tity mention usually covers multiple tokens with a
variable length, we first obtain a fixed-sized em-
bedding for each entity mention by conducting
a max-pooling operation over its covered token
embeddings. For example, given lth entity men-
tion covering jth to kth tokens of ith sentence,
we conduct the max-pooling over [hi,j , · · · ,hi,k]
to get the entity mention embedding el ∈ Rdw .
For each sentence si, we also take the max-
pooling operation over the encoded token se-
quence [hi,1, · · · ,hi,Nw ] to obtain a single sen-
tence embedding ci ∈ Rdw . After these opera-
tions, both the mention and the sentence embed-
dings share the same embedding size dw.

Document-level Encoding. Though we get em-
beddings for all sentences and entity mentions,
these embeddings only encode local contexts
within the sentence scope. To enable the aware-
ness of document-level contexts, we employ the
second Transformer module, Transformer-2, to fa-
cilitate the information exchange between all en-
tity mentions and sentences. Before feeding them
into Transformer-2, we add them with sentence
position embeddings to inform the sentence or-
der. After the Transformer encoding, we utilize
the max-pooling operation again to merge multi-
ple mention embeddings with the same entity sur-
face name into a single embedding. Formally, af-
ter this stage, we obtain document-level context-
aware entity mention and sentence embeddings as
ed = [ed1, · · · , edNe

] and cd = [cd1, · · · , cdNs
], re-

spectively, where Ne is the number of distinct en-
tity surface names. These aggregated embeddings
serve the next stage to fill event tables directly.

5.2 EDAG Generation
After the document-level entity encoding stage,
we can obtain the document embedding t ∈ Rdw

by operating the max-pooling over the sentence

tensor cd ∈ Rdw×Ns and stack a linear classifier
over t to conduct the event-triggering classifica-
tion for each event type. Next, for each triggered
event type, we learn to generate an EDAG.

EDAG Building. Before the model training,
we need to build the EDAG from tabular event
records. For each event type, we first manually
define an event role order. Then, we transform
each event record into a linked list of arguments
following this order, where each argument node is
either an entity or a special empty argument NA.
Finally, we merge these linked lists into an EDAG
by sharing the same prefix path. Since every com-
plete path of the EDAG corresponds to one row of
the event table, recovering the table format from a
given EDAG is simple.

Task Decomposition. The EDAG format aims
to simplify the hard table-filling task into several
tractable path-expanding sub-tasks. Then, a natu-
ral question is how the task decomposition works,
which can be answered by the following EDAG
recovering procedure. Assume the event trigger-
ing as the starting node (the initial EDAG), there
comes a series of path-expanding sub-tasks fol-
lowing a predefined event role order. When con-
sidering a certain role, for every leaf node of the
current EDAG, there is a path-expanding sub-task
that decides which entities to be expanded. For
each entity to be expanded, we create a new node
of that entity for the current role and expand the
path by connecting the current leaf node to the new
entity node. If no entity is valid for expanding, we
create a special NA node. When all sub-tasks for
the current role finish, we move to the next role
and repeat until the last. In this work, we leverage
the above logic to recover the EDAG from path-
expanding predictions at inference and to set asso-
ciated labels for each sub-task when training.

Memory. To better fulfill each path-expanding
sub-task, it is crucial to know entities already con-
tained by the path. Hence, we design a mem-
ory mechanism that initializes a memory tensor m
with the sentence tensor cd at the beginning and
updates m when expanding the path by append-
ing either the associated entity embedding or the
zero-padded one for the NA argument. With this
design, each sub-task can own a distinct memory
tensor, corresponding to the unique path history.
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Figure 4: The overall workflow of Doc2EDAG, where we follow the example in Figure 2 and the EDAG structure
in Figure 3, and use stripes to differentiate different entities (note that the number of input tokens and entity
positions are imaginary, which do not match previous ones strictly, and here we only include the first three event
roles and associated entities for brevity).

Path Expanding. For each path-expanding sub-
task, we formalize it as a collection of multiple
binary classification problems, that is predicting
expanding (1) or not (0) for all entities. To en-
able the awareness of the current path state, his-
tory contexts and the current event role, we first
concatenate the memory tensor m and the entity
tensor ed, then add them with a trainable event-
role-indicator embedding, and encode them with
the third Transformer module, Transformer-3, to
facilitate the context-aware reasoning. Finally, we
extract the enriched entity tensor er from outputs
of Transformer-3 and stack a linear classifier over
er to conduct the path-expanding classification.

Optimization. For the event-triggering classifi-
cation, we calculate the cross-entropy loss Ltr.
During the EDAG generation, we calculate a
cross-entropy loss for each path-expanding sub-
task, and sum these losses as the final EDAG-
generation loss Ldag. Finally, we sum Ltr, Ldag

and the entity-recognition loss Ler together as the
final loss, Lall = λ1Ler +λ2Ltr +λ3Ldag, where
λ1, λ2 and λ3 are hyper-parameters.

Inference. Given a document, Doc2EDAG first
recognizes entity mentions from sentences, then
encodes them with document-level contexts, and
finally generates an EDAG for each triggered
event type by conducting a series of path-
expanding sub-tasks.

Practical Tips. During training, we can uti-
lize both ground-truth entity tokens and the given
EDAG structure. While at inference, we need to
first identify entities and then expand paths se-
quentially based on embeddings of those entities
to recover the EDAG. This gap between training

and inference can cause severe error-propagation
problems. To mitigate such problems, we utilize
the scheduled sampling (Bengio et al., 2015) to
gradually switch the inputs of document-level en-
tity encoding from ground-truth entity mentions
to model recognized ones. Moreover, for path-
expanding classifications, false positives are more
harmful than false negatives, because the former
can cause a completely wrong path. Accordingly,
we can set γ(> 1) as the negative class weight of
the associated cross-entropy loss.

6 Experiments

In this section, we present thorough empirical
studies to answer the following questions: 1) to
what extent can Doc2EDAG improve over state-
of-the-art methods when facing DEE-specific
challenges? 2) how do different models behave
when facing both arguments-scattering and multi-
event challenges? 3) how important are various
components of Doc2EDAG?

6.1 Experimental Setup

Data Collection with Event Labeling. We uti-
lize ten years (2008-2018) ChFinAnn4 documents
and human-summarized event knowledge bases to
conduct the DS-based event labeling. We focus on
five event types: Equity Freeze (EF), Equity Re-
purchase (ER), Equity Underweight (EU), Equity
Overweight (EO) and Equity Pledge (EP), which
belong to major events required to be disclosed by
the regulator and may have a huge impact on the
company value. To ensure the labeling quality, we
set constraints for matched document-record pairs

4 Crawling from http://www.cninfo.com.cn/
new/index
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Event #Train #Dev #Test #Total MER (%)

EF 806 186 204 1, 196 32.0
ER 1, 862 297 282 3, 677 16.1
EU 5, 268 677 346 5, 847 24.3
EO 5, 101 570 1, 138 6, 017 28.0
EP 12, 857 1, 491 1, 254 15, 602 35.4

All 25, 632 3, 204 3, 204 32, 040 29.0

Table 1: Dataset statistics about the number of docu-
ments for the train (#Train), development (#Dev) and
test (#Test), the number (#Total) and the multi-event
ratio (MER) of all documents.

Precision Recall F1 MER (%)

98.8 89.7 94.0 31.0

Table 2: The quality of the DS-based event labeling
evaluated on 100 manually annotated documents (ran-
domly select 20 for each event type).

as Section 4 describes. Moreover, we directly use
the character tokenization to avoid error propaga-
tions from Chinese word segmentation tools.

Finally, we obtain 32, 040 documents in total,
and this number is ten times larger than 2, 976
of DCFEE and about 53 times larger than 599
of ACE 2005. We divide these documents into
train, development, and test set with the propor-
tion of 8 : 1 : 1 based on the time order. In
Table 1, we show the number of documents and
the multi-event ratio (MER) for each event type
on this dataset. Note that a few documents may
contain multiple event types at the same time.

Data Quality. To verify the quality of DS-based
event labeling, we randomly select 100 docu-
ments and manually annotate them. By regard-
ing DS-generated event tables as the prediction
and human-annotated ones as the ground-truth, we
evaluate the labeling quality based on the metric
introduced below. Table 2 shows this approximate
evaluation, and we can observe that DS-generated
data are pretty good, achieving high precision and
acceptable recall. In later experiments, we di-
rectly employ the automatically generated test set
for evaluation due to its much broad coverage.

Evaluation Metric. The ultimate goal of DEE is
to fill event tables with correct arguments for each
role. Therefore, we evaluate DEE by directly com-
paring the predicted event table with the ground-
truth one for each event type. Specifically, for each
document and each event type, we pick one pre-
dicted record and one most similar ground-truth

record (at least one of them is non-empty) from
associated event tables without replacement to cal-
culate event-role-specific true positive, false pos-
itive and false negative statistics until no record
left. After aggregating these statistics among all
evaluated documents, we can calculate role-level
precision, recall, and F1 scores (all reported in per-
centage format). As an event type often includes
multiple roles, we calculate micro-averaged role-
level scores as the final event-level metric that re-
flects the ability of end-to-end DEE directly.

Hyper-parameter Setting. For the input, we set
the maximum number of sentences and the maxi-
mum sentence length as 64 and 128, respectively.
During training, we set λ1 = 0.05, λ2 = λ3 =
0.95 and γ = 3. We employ the Adam (Kingma
and Ba, 2015) optimizer with the learning rate
1e−4, train for at most 100 epochs and pick the
best epoch by the validation score on the develop-
ment set. Besides, we leverage the decreasing or-
der of the non-empty argument ratio as the event
role order required by Doc2EDAG, because more
informative entities in the path history can better
facilitate later path-expanding classifications.

Note that, due to the space limit, we leave other
detailed hyper-parameters, model structures, data
preprocessing configurations, event type specifica-
tions and pseudo codes for EDAG generation to
the appendix.

6.2 Performance Comparisons
Baselines. As discussed in the related work, the
state-of-the-art method applicable to our setting is
DCFEE. We follow the implementation described
in (Yang et al., 2018), but they did not illustrate
how to handle multi-event sentences with just a se-
quence tagging model. Thus, we develop two ver-
sions, DCFEE-O and DCFEE-M, where DCFEE-
O only produces one event record from one key-
event sentence, while DCFEE-M tries to get multi-
ple possible argument combinations by the closest
relative distance from the key-event sentence. To
be fair, the SEE stages of both versions share the
same neural architecture as the entity recognition
part of Doc2EDAG. Besides, we further employ a
simple decoding baseline of Doc2EDAG, Greedy-
Dec, that only fills one event table entry greedily
by using recognized entity roles to verify the ne-
cessity of end-to-end modeling.

Main Results. As Table 3 shows, Doc2EDAG
achieves significant improvements over all base-



Model EF ER EU EO EP
P. R. F1 P. R. F1 P. R. F1 P. R. F1 P. R. F1

DCFEE-O 66.0 41.6 51.1 84.5 81.8 83.1 62.7 35.4 45.3 51.4 42.6 46.6 64.3 63.6 63.9
DCFEE-M 51.8 40.7 45.6 83.7 78.0 80.8 49.5 39.9 44.2 42.5 47.5 44.9 59.8 66.4 62.9

GreedyDec 79.5 46.8 58.9 83.3 74.9 78.9 68.7 40.8 51.2 69.7 40.6 51.3 85.7 48.7 62.1
Doc2EDAG 77.1 64.5 70.2 91.3 83.6 87.3 80.2 65.0 71.8 82.1 69.0 75.0 80.0 74.8 77.3

Table 3: Overall event-level precision (P.), recall (R.) and F1 scores evaluated on the test set.

Model EF ER EU EO EP Avg.
S. M. S. M. S. M. S. M. S. M. S. M. S. & M.

DCFEE-O 56.0 46.5 86.7 54.1 48.5 41.2 47.7 45.2 68.4 61.1 61.5 49.6 58.0
DCFEE-M 48.4 43.1 83.8 53.4 48.1 39.6 47.1 42.0 67.0 60.6 58.9 47.7 55.7

GreedyDec 75.9 40.8 81.7 49.8 62.2 34.6 65.7 29.4 88.5 42.3 74.8 39.4 60.5
Doc2EDAG 80.0 61.3 89.4 68.4 77.4 64.6 79.4 69.5 85.5 72.5 82.3 67.3 76.3

Table 4: F1 scores for all event types and the averaged ones (Avg.) on single-event (S.) and multi-event (M.) sets.

Model EF ER EU EO EP Avg.

Doc2EDAG 70.2 87.3 71.8 75.0 77.3 76.3

-PathMem -11.2 -0.2 -10.1 -16.3 -10.9 -9.7
-SchSamp -5.3 -4.8 -5.3 -6.6 -3.0 -5.0
-DocEnc -4.7 -1.5 -1.6 -1.1 -1.5 -2.1
-NegCW -1.4 -0.4 -0.7 -1.3 -0.4 -0.8

Table 5: Performance differences of Doc2EDAG vari-
ants for all event types and the averaged ones (Avg.).

lines for all event types. Specifically, Doc2EDAG
improves 19.1, 4.2, 26.5, 28.4 and 13.4 F1 scores
over DCFEE-O, the best baseline, on EF, ER,
EU, EO and EP events, respectively. These vast
improvements mainly owe to the document-level
end-to-end modeling of Doc2EDAG. Moreover,
since we work on automatically generated data,
the direct document-level supervision can be more
robust than the extra sentence-level supervision
used in DCFEE, which assumes the sentence con-
taining most event arguments as the key-event one.
This assumption does not work well on some event
types, such as EF, EU and EO, on which DCFEE-
O is even inferior to the most straightforward base-
line, GreedyDec. Besides, DCFEE-O achieves
better results than DCFEE-M, which demonstrates
that naively guessing multiple events from the key-
event sentence cannot work well. By comparing
Doc2EDAG with GreedyDec that owns high pre-
cision but low recall, we can clearly see the benefit
of document-level end-to-end modeling.

Single-Event vs. Multi-Event. We divide the
test set into a single-event set, containing docu-
ments with just one event record, and a multi-

event set, containing others, to show the extreme
difficulty when arguments-scattering meets multi-
event. Table 4 shows F1 scores for different sce-
narios. Although Doc2EDAG still maintains the
highest extraction performance for all cases, the
multi-event set is extremely challenging as the ex-
traction performance of all models drops signif-
icantly. Especially, GreedyDec, with no mecha-
nism for the multi-event challenge, decreases most
drastically. DCFEE-O decreases less, but is still
far away from Doc2EDAG. On the multi-event
set, Doc2EDAG increases by 17.7 F1 scores over
DCFEE-O, the best baseline, on average.

Ablation Tests. To demonstrate key designs of
Doc2EDAG, we conduct ablation tests by evalu-
ating four variants: 1) -PathMem, removing the
memory mechanism used during the EDAG gener-
ation, 2) -SchSamp, dropping the scheduled sam-
pling strategy during training, 3) -DocEnc, remov-
ing the Transformer module used for document-
level entity encoding, and 4) -NegCW, keeping
the negative class weight as 1 when doing path-
expanding classifications. From Table 5, we can
observe that 1) the memory mechanism is of prime
importance, as removing it can result in the most
drastic performance declines, over 10 F1 scores
on four event types except for the ER type whose
MER is very low on the test set; 2) the sched-
uled sampling strategy that alleviates the mis-
match of entity candidates for event table filling
between training and inference also contributes
greatly, improving by 5 F1 scores on average;
3) the document-level entity encoding that en-
hances global entity representations contributes



2.1 F1 scores on average; 4) the larger negative
class weight to penalize false positive path ex-
panding can also make slight but stable contribu-
tions for all event types.

Case Studies. Let us follow the example in Fig-
ure 2, Doc2EDAG can successfully recover the
correct EDAG, while DCFEE inevitably makes
many mistakes even with a perfect SEE model, as
discussed in the introduction. Due to the space
limit, we leave another three fine-grained case
studies to the appendix.

7 Conclusion and Future Work

Towards the end-to-end modeling for DEE, we
propose a novel model, Doc2EDAG, associated
with a novel task formalization without trigger
words to ease DS-based labeling. To validate the
effectiveness of the proposed approach, we build
a large-scale real-world dataset in the financial
domain and conduct extensive empirical studies.
Notably, without any domain-specific assumption,
our general labeling and modeling strategies can
benefit practitioners in other domains directly.

As this work shows promising results for
the end-to-end DEE, expanding the inputs of
Doc2EDAG from pure text sequences to richly
formatted ones (Wu et al., 2018) is appealing, and
we leave it as future work to explore.
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