




SCU 49 Plaid Cymru wants full independence
C1 Plaid Cymru wants full independence
C2 Plaid Cymru...whose policy is to...go

for an independent Wales within the EC
C3 calls by...(Plaid Cymru)...fully

self-governing Wales within the EC
C4 Plaid Cymru...its campaign for equal rights

to Welsh self-determination

Figure 1: Sample SCU from Pyramid Annotation Guide:
DUC 2006. Four model summaries contribute to an SCU
with the mnemonic label Plaid Cymru wants full indepen-
dence. (Note that the label captures what the annotator finds
in common across the contributors; it plays no role in use of
the pyramid for assessment).

phrase from each model summary. The SCU weight is the
number of contributor models, which ranges from 1 to N .
Figure 1 shows an example SCU from a webpage of guide-
lines used in DUC 2006. It shows that contributor phrases
to the same SCU can have distinct lexical and syntactic real-
izations of the same semantics. Here the weight is four. SCU
weight induces a partition over the SCUs from a given set of
reference summaries. With many models, it can be observed
that the sizes of the equivalence classes in descending or-
der of weight have a Zipfian distribution: a few SCUs occur
in all models, many occur in most, and a long tail of SCUs
occur in only one or two of the model summaries express
(Nenkova, Passonneau, and McKeown 2007).

To score a target summary against a pyramid, annotators
mark spans of text in the target that express an SCU, and the
SCU weights increment the raw score for the target. If dif-
ferent model summaries of the same source text are used, the
set of SCUs and their weights will be different. Three differ-
ent methods to test how many model summaries are required
for scores to be stable and reliable all provided evidence that
four to five models are sufficient (Nenkova, Passonneau, and
McKeown 2007). The raw pyramid scores have various nor-
malizations. A precision analog (used in DUC 2005 (Pas-
sonneau et al. 2005)) normalizes the summed weights of a
set of SCUs by the maximum sum that the same number
of SCUs can have, based on the number of SCUs of each
weight in the pyramid. A recall analog (used in DUC 2006
(Passonneau et al. 2006)) normalizes by the maximum sum
for the average number of SCUs in the model summaries. Fi-
nally, the harmonic mean of these two scores is an f-measure
analog (used in Passonneau et al. 2013).

In manual pyramid annotation, the annotators iterate over
the process until they are satisfied with the semantic content
for each unit, and the contributor assignments. PEAK is de-
signed to produce SCUs with the same properties: a coher-
ent semantics for each SCU expressed in each contributor,
and only one contributor per model summary. Summaries
typically have complex sentences, so one summary sentence
often contributes to more than one SCU. To detect candidate
propositions in the model sentences, we use open informa-
tion extraction to identify relation triples. We assess seman-
tic similarity of triples based on an analysis of a hypergraph
where the nodes are the elements of triples, the three nodes

of a triple are connected by a hyperedge, and nodes in dif-
ferent hyperedges can be connected by weighted edges that
represent their semantic similarity. The next three subsec-
tions present the hypergraph, show how it is used to generate
a pyramid, and explain how the resulting pyramid is used to
score target summaries.

SCU Identification

Due to the condensed nature of human summaries, they of-
ten contain complex sentences. For instance, consider: “The
law of conservation of energy is the notion that energy can
be transferred between objects but cannot be created or de-
stroyed.” It expresses two salient ideas: that energy can be
transferred between objects, and that energy cannot be cre-
ated. Open information extraction (Open IE) methods ex-
tract so-called subject-predicate-object triples, in which the
subject, predicate, and object are natural language phrases
extracted from the sentence, and which often correspond to
syntactic subject, predicate and object. For example, “These
characteristics determine the properties of matter”, yields
the triple 〈These characteristics, determine, the properties
of matter〉. While Open IE extracts individual propositions
from text, it can produce partial duplicates (see Figure 5) and
occasional noise, such as 〈the matter, itself, ∅〉. Our current
implementation relies on the ClausIE system (Del Corro and
Gemulla 2013) for Open IE.

Figure 2: Hypergraph to capture similarites between ele-
ments of triples, with salient nodes circled in red

As illustrated in Figure 2, we create a hypergraph G =
(V,H,E) where the nodes V correspond to all the subject,
predicate and object elements of the triples (inner boxes in
Figure 2), every set of nodes from the same triple (e.g., T1) is
connected by a hyperedge h ∈ H (shaded boxes), and nodes
not connected by a hyperedge can be connected by edges
e ∈ E. Edges e are weighted by similarity scores sim(u, v)
between two nodes u,v. These are obtained from Align, Dis-
ambiguate and Walk (ADW) (Pilehvar, Jurgens, and Navigli
2013), a state-of-the-art approach to semantic similarity of
text. A pair of nodes u and v will have an edge if and only
if their similarity sim(u, v) ≥ t. We picked the midpoint of
0.5 as the threshold t for two nodes to be more similar than
not.

In Figure 2, salient nodes have been circled, based on the
following definition.
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Figure 3: SCU created by PEAK

Definition 3.1. The set of salient nodes VS is defined as

VS = {v ∈ V | deg(v) ≥ dmin}, (1)

where dmin is a pre-defined threshold, representing nodes
that have enough 1-degree neighbors to yield moderate- to
high-weight SCUs. The defined maximum weight is 4 (the
number of model summaries - 1), but in the experiments we
find the maximum weight can be greater than 4, due to rep-
etition in the model summaries. So we set dmin to 3, which
is slightly bigger than the midpoint of the regular maximum
weight, meaning that nodes with degree ≥ 3 are chosen as
salient. We believe this reflects the way humans make such
assessments.

As potential SCUs, we consider all triples where at least
two of the three elements are in VS. For the final set of SCUs,
we merge near-equivalent SCUs extracted from the same
sentence. This is because ClausIE’s open information ex-
traction method decomposes sentences into semantic triples
where one contains the other, as in 〈Energy, is, the property
of matter〉 and 〈Energy, is, the property〉 (see Figure 5). We
also merge similar triples from different sentences, as de-
scribed in Section 3.

Pyramid Induction

After the identification of salient triples, the next step is to
align triples extracted from distinct model summaries into
candidate SCUs. For this, we propose a matching algorithm
based on the notion of a similarity class.

Consider the example in Figure 3. Here, we have an SCU
induced from one of the salient triples: 〈Matter, is, all the
objects and substances〉. We treat each next salient triple in
turn as an anchor for an SCU, and identify contributors that
are semantically similar to the anchor by creating a similar-
ity class for each salient node of the triple.

Definition 3.2. The Similarity Class E(v) of a node v ∈ VS

is defined as

E(v) = {u ∈ V | (u, v) ∈ E}, (2)

i.e., the one-degree neighbors of v, or those nodes u ∈ V
such that u �= v and sim(u, v) ≥ 0.5).

We create a similarity class Ei for every salient node in an
anchor triple. In our example, the subject and object nodes
are salient, and we create E1 for “Matter” and E2 for “all
the objects and substance”, as shown in Figure 4.

Figure 4: Similarity Class

A triple Ti from a summary Si when serving as an an-
chor triple is a candidate contributor to a potential SCU. The
similarity classes of the nodes in Ti provide a mechanism
to find additional contributor triples from model summaries
Sj distinct from Si. Any sentence from a model summary
Sj that yields a triple Tj such that two nodes u, v in Tj are
in distinct similarity classes Ei and Ej for anchor Ti will
be a potential contributor. Any given model summary must
contribute at most once to a given SCU. Therefore, for each
model summary Sj distinct from Si, we need to select the
best contributor triple Tj from possibly multiple candidates
extracted from Sj . We compute similarity scores for each
node in an anchor Ti to each member of the node’s similar-
ity class, and choose an optimal assignment based on maxi-
mizing the similarity of a candidate Tj to the anchor Ti.

Given an SCU anchor triple Ti with subject s, predicate p,
object o, the similarity classes for s, p and o are Es, Ep and
Eo. For every model summary, we only consider as potential
contributors ci those triples 〈si, pi, oi〉 where the majority,
i.e., two or three, of {si, pi, oi} are in at least two of Es, Ep

and Eo. From the set of potential contributors Tj for a given
summary Sj , we find the highest ranking contributor cmax:

max
i

∑
i similarityScore(xi, yi)

s.t. xi ∈ {si, pi, oi}
yi = s if xi ∈ Es

yi = p if xi ∈ Ep

yi = o if xi ∈ Eo

(3)

The total number of contributors for an SCU s provides
the weight ws of the SCU. For the example SCU in Fig-
ure 3, the weight of the candidate SCU is 4 because there
are 4 contributors, including the anchor. For convenience,
we represent an SCU as its anchor and its weight, omitting
the list of contributors that would appear in the manual an-
notation. Note that each next contributor triple to a candidate
SCU has a turn as an anchor. For a candidate SCU that has
n contributors, there will be at least n variants of the same
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SCU. We merge similar candidate SCUs into a single SCU
using Algorithm 1. At this stage of pyramid construction,
the goal is a high precision of hypothesized SCUs, both in
the total number of SCUs and in their weights. The value
of T1 affects both outcomes, which are interdependent. We
experimented with values of 0.7 and below and found that at
0.7, there were too few SCUs and at 0.9, the SCU weights
were too low. So in our experiments, T1 is fixed at 0.8.

Algorithm 1 Merge similar SCUs
1: procedure MERGE(SCU anchors, weights)
2: set a graph G whose nodes are all SCU anchors
3: set threshold T1

4: for each node anchorm do
5: for each node anchorn do
6: calculate similarityScorem,n

7: if similarityScorem,n ≥ T1 then
8: add edge between anchorm and anchorn
9: mergedSCU ← the connected component in G

10: mergedWeight← max. weight of connected component
11: Return mergedAnchor, mergedWeight

Automated Scoring of Summaries

We can now use the pyramids created by PEAK to score
target summaries written by humans (e.g., students) or ma-
chines. For this, we again use our semantic triple-based for-
malism. One advantage of such a formalism is that such an
explicit representation can support the generation of assess-
ment feedback, as well as any other downstream processes
that may benefit from such information. For approaches
based on distributional semantics, such as the matrix-based
one of Passonneau et al. (2013), this may be more challeng-
ing.

Figure 5: Open Information Extraction from target sum-
maries

We again rely on open information extraction using

ClausIE to obtain triples from the target summaries. Fig. 5
shows a target summary, and a list of triples along with the
sentence number for each triple. The three parts of the triple
(subject, predicate, and object) are concatenated into a sin-
gle string, called a label. A target summary will have one
label for each triple.

Recall that our pyramid model consists of s SCUs (an-
chors) with associated weights ws. Every target summary
label t is compared with every SCU s in the automatically
generated pyramid. We again use ADW for the similarity
computation. An SCU s here may be a merged one, so it
may contain several triples, possibly with distinct weights.
We compare t with all the triples in s, storing their simi-
larity scores. Finding the maximal score for a target sum-
mary and ensuring that every t is matched to at most one
s amounts to solving a maximal matching problem. We use
the Munkres-Kuhn algorithm, as described in Algorithm 2.
In our experiments, T is fixed to 0.6.

Algorithm 2 Computing scores for target summaries
1: procedure SCORE(target summary sum)
2: for each sentence s in sum do
3: Ts ← triples extracted from s

4: for each triple t ∈ ⋃
Ts do

5: for each SCU s with weight w do
6: m ← similarity score between t and s
7: if m ≥ T then
8: W [t][s] ← w � store weight
9: S ← Munkres-Kuhn (Hungarian) Algorithm(W )

10: Return S

4 Experiments

Student Summaries

Our experiments focus on a student summary dataset from
Perin et al. (2013) with twenty target summaries written by
students. For this data, the study by Passonneau et al. (2013)
had produced five reference model summaries, written by
proficient native speakers of English, and two manually cre-
ated pyramids, each from a different annotator. We use the
reference summaries as input to PEAK in order to have it
automatically generate a pyramid P. Subsequently, this pyra-
mid is used to score the twenty student summaries. We com-
pare the automatically generated scores with the original
scores for those summaries produced by humans, as well as
with previous automatic algorithms. For the score compari-
son, we use the raw (non-normalized) scores.

Table 1 gives the correlations between scores based on P
and scores based on one of the two manual pyramids P1 and
P2, which were created by different annotators who worked
independently with the same five reference summaries.

We see that PEAK produces very strong results using
an entirely automatically generated pyramid. The study by
Passonneau et al. (2013) evaluated a series of algorithms
with different parameter settings, obtaining Pearson’s corre-
lations between 0.71 and 0.93. However, their method starts
off with the manually created pyramids and only performs
the scoring automatically. For comparison, we re-ran PEAK
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using the manual pyramids. In Table 1, we also list corre-
lation scores based on P2 (on P1 the results are similar, but
slightly lower, as our algorithm performs best with a some-
what larger number of SCUs).

P1 + M. Scoring P2 + M. Scoring
P + A.Scoring 0.8263 0.7769
P2 +A. Scoring 0.8538 0.8112
P1 + M. Scoring 1 0.8857

Table 1: Pearson’s correlations between scores based on
PEAK’s pyramid P as well as the two human pyramids P1,
P2, with either manual or automatic scoring.

Analysis. For further analysis, we compared the different
pyramids themselves. Note that even different human ex-
perts may create quite distinct pyramids, but the final scores
and ranks can be consistent (Passonneau 2010). When com-
paring the two manual pyramids P1 and P2, we find that
they are indeed rather dissimilar. P1 has 34 SCUs but P2 has
60 SCUs. Still, the Pearson’s correlation score between the
manual scores based on P1 vs. P2 is 0.8857.

Figure 6: Histogram of weight differences between P1 and
P2, P1 and P, P2 and P for every anchor

PEAK’s pyramid P consists of 80 SCUs with 156 anchors.
The counts of weight differences between P1 and P2, P1
and P, P2 and P for every anchor is depicted in Fig. 6. We
find that PEAK identifies surprisingly many of P1’s SCUs.
Among the 34 SCUs in P1, 32 are matched, for a recall
of 94.12%. For P2, the overall recall is just 56.7%. How-
ever, for the SCUs with weight 5, 4, or 3 in that pyramid,
recall is 91.30%. We mainly miss SCUs with weights of 2
or 1. Fortunately, these lower-weight SCUs are less signif-
icant for scoring and ranking. Additionally, PEAK’s pyra-
mid contains other SCUs with weight 2 and 1 not consid-
ered noteworthy in the manual pyramids. While this results

in low precision scores, a detailed analysis of the weight dif-
ferences reveals that the pyramids are not overly dissimilar.
Most of the extra SCUs have a weight of just 1 and hence
do not affect the overall ranking. Given the profound differ-
ences between the two manual pyramids, we see that direct
comparisons between pyramids are not necessarily signifi-
cant. Instead, the correlation scores reported above appear
more meaningful.

Studying PEAK’s output in more detail, we observed fur-
ther benefits of our approach. Relying on Open IE for ex-
traction enables us to cope with multi-faceted sentences, for
which we may obtain multiple extractions that constitute
separate SCUs. Consider, for instance, “The law of conser-
vation of energy is the notion that energy can be transferred
between objects but cannot be created or destroyed.” From
this sentence, we obtain both 〈energy, can not be, created〉
as well as 〈energy, can be transferred, between objects〉 as
SCUs.

In a few cases, the weights obtained by our approach turn
out to be even more accurate than those from humans. For
instance, PEAK chooses an SCU 〈Matter, is, all the objects
and substances〉, which matches SCU “Matter is what makes
up all objects or substances” in a human pyramid. Compar-
ing the two, PEAK’s SCU lacks one contributor from the
sentence “Matter is anything that has mass and takes up
space (volume)”. However, PEAK instead adds the corre-
sponding triple to another SCU 〈Matter, can be measured,
because it contains volume and mass〉. The latter appears to
be a much closer match.

Machine-Generated Summaries

For further validation, we also conducted an additional ex-
periment on data from the 2006 Document Understanding
Conference (DUC) administered by NIST (“DUC06”). The
original data consists of twenty parts, each of which contain
four reference summaries and 22 machine-generated sum-
maries with manual scores. Unfortunately, this data contains
numerous inaccuracies, requiring manual cleaning. To cre-
ate an evaluation dataset, we randomly chose one of the
twenty parts and asked annotators to follow a set of guide-
lines to correct the original annotations.2

We evaluate PEAK on this data by generating a pyramid
based on the four reference summaries, which is then used to
score the twenty-two machine-generated summaries. These
scores from PEAK are then compared with the manual ones.

The Pearson’s correlation score between PEAK’s scores
and the manual ones is 0.7094.

5 Conclusion

In this paper, we have proposed the first fully automatic ver-
sion of the pyramid method. Our method not only assesses
target summaries but also generates the pyramids automat-
ically. We rely on open information extraction to obtain a
more accurate picture of the semantics of sentences, score
similarities between nodes in a graph to determine salient
SCUs, and develop an approach based on similarity classes
to assign the weights for SCUs. Experiments show that our

2This data is available from http://www.larayang.com/peak/.
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SCUs are very similar to those created by human annotators.
Additionally, we present a method for assessing target sum-
maries automatically, again obtaining a high Pearson corre-
lation with human assessors. A distributable code package is
available at http://www.larayang.com/peak/.

In terms of future work, we intend to refine the pyra-
mid induction process by handling additional phenomena.
For instance, coreference resolution and ideas from seman-
tic parsing (Tandon et al. 2015) could expose further con-
nections between sentences during the information extrac-
tion and merging stages.

Overall, our research shows great promise for automated
scoring and assessment of manual or automated summaries,
opening up the possibility of wide-spread use in the educa-
tion domain and in information management.
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