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Abstract
Studying the spread of phenomena in social networks is
critical but still not fully solved. Existing influence max-
imization models assume a static network, disregarding
its evolution over time. We introduce the continuous
time constrained influence maximization problem for
dynamic diffusion networks, based on a novel diffusion
model called DYNADIFFUSE. Although the problem is
NP-hard, the influence spread functions are monotonic
and submodular, enabling fast approximations on top
of an innovative stochastic model checking approach.
Experiments on real social network data show that our
model finds higher quality solutions and our algorithm
outperforms state-of-art alternatives.

1 Introduction
Understanding how information, diseases, etc. spread in a
network is vital in many settings. Companies may wish to
target users such that they, by word-of-mouth, influence their
friends, friends-of-friends, and so on, to purchase a prod-
uct. Finding a set of initial nodes that will eventually in-
fluence the largest number of nodes in a network is critical
for achieving a high success rate (Domingos and Richardson
2001). Solving such an influence maximization problem can
enable us to predict the success or failure of new innovations
in their early stages, or to shape the process accordingly.

While several influence diffusion models have been pro-
posed, all of them assume the given network is static (Guille
et al. 2013). In reality, however, networks may evolve quite
notably during the diffusion process (Mislove et al. 2008;
Tang et al. 2010). Matsubara et al. (2012) found that the in-
formation diffusion process often goes on for days or even
months. During this time, the degree of influence between
two nodes can change quite substantially due to chang-
ing interests or social ties. Likewise, the network topology
may change, with new nodes appearing or disappearing, and
edges coming and going. Gomez-Rodriguez, Leskovec, and
Schölkopf (2013) show that information diffusion networks
inferred from cascade data often evolve dramatically as the
information cascades accumulate. Accounting for such dy-
namics and thus pursuing seed node sets of a higher quality
may lead to significant financial gains.
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In this paper, we thus drop the assumption of a static
network and investigate how to account for network evo-
lution in influence maximization. We define the contin-
uous time constrained influence maximization problem
and propose the continuous time dynamic diffusion model
(DYNADIFFUSE) for dynamic diffusion networks. Having
captured specific dynamic characteristics of networks (such
as herd behavior and activeness), DYNADIFFUSE enables
us to consider their effects while estimating the influence
spread of a set of nodes within a given time frame. This is
achieved using an innovative stochastic model checking ap-
proach. Although the new problem is NP-hard, the influence
spread function is monotonic and submodular. This enables
us to obtain fast approximations with a lower bound preci-
sion ratio of 1 − 1/e. In our experiments on real social net-
work data, we show that network evolution indeed plays an
important role in influence maximization. DYNADIFFUSE
leads to significantly more influential node sets than previ-
ous models, with negligible time overhead.

2 Related Work
Kempe, Kleinberg, and Tardos (2003) first formulated the
problem of influence maximization in a graph, in which in-
fluence propagation is captured using stochastic cascades,
as in their independent cascade (IC) model. Recently, tem-
poral aspects have been gaining increasing attention. Chen,
Lu, and Zhang (2012) incorporated the time delay of influ-
ence diffusion into the IC model. Liu et al. (2012) defined
a discrete time constrained information maximization prob-
lem and improved the IC model by adding the time stamps
of every time period for each edge, but their algorithms do
not consider continuous time constraints. Gomez-Rodriguez
and Schölkopf (2012) proposed a continuous time con-
strained diffusion model, which can be inferred from a cas-
cade database (Gomez-Rodriguez, Balduzzi, and Schölkopf
2011). However, unlike DYNADIFFUSE, all aforementioned
models assume a static network with fixed propagation rates
or probabilities during the diffusion process.

Finding the best initial set of nodes requires combinato-
rial optimization, which is very costly. Many studies aimed
at speeding up Kempe’s greedy algorithm. Kimura and Saito
(2006) introduced a shortest-path based IC model and pro-
vided efficient algorithms for it. Leskovec et al. (2007)
proposed the Cost-Effective Lazy Forward (CELF) scheme
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for selecting new seeds to significantly reduce the num-
ber of influence spread evaluations. Chen, Wang, and Yang
(2009) proposed two algorithms: MixedGreedy and De-
greeDiscount. Liu et al. (2014) developed a heuristic algo-
rithm based on independent influence paths. Furthermore,
Tang, Xiao, and Shi (2014) presented a greedy algorithm
called TIM by generating many random graph sets under
parameters control. Cohen et al. (2014) developed an effi-
cient sketch-based algorithm (SKIM) by pre-generating a
small sketch for nodes. However, these algorithms all as-
sume static networks with fixed propagation probabilities.

3 Problem Definition and Overview
In contrast to previous work, our problem definition more
closely reflects real networks by allowing diffusion rates and
probabilities for each edge to vary during the diffusion.
Definition 1. Continuous time constrained influence
maximization problem for dynamic diffusion networks:
Suppose we are given (1) a social network snapshot
G(V,E), (2) a set of dynamic characteristics reflecting how
it will evolve, (3) a time bound T , and (4) a positive integer
k < |V |. Our goal is to find an initial set I ⊂ V of k nodes,
maximizing the expected total number of nodes influenced
up to time T , as estimated by an influence function σT (I).
Our solution to this problem consists of three parts:

1. In Section 4, we propose a new continuous time con-
strained dynamic diffusion model, called DYNADIFFUSE.

2. In Section 5.1, an influence spread analysis method for
DYNADIFFUSE, relying on stochastic model checking, is
given to estimate the influence of an initial set of nodes.

3. In Section 5.2, we design a fast greedy algorithm called
FASTMARGIN after proving the monotonicity and sub-
modularity of the influence function for DYNADIFFUSE.

4 Dynamic Diffusion Model
We now present a new dynamic diffusion model
(DYNADIFFUSE) and then derive a specific instantia-
tion based on real social network data.

4.1 Model Definition
In our diffusion model, each node is either influenced or not.
Initially only a small set of nodes in an initial set I are influ-
enced (by an external action such as supplying free product
samples). Then, every node in I tries to influence its adja-
cent neighbors. If a node has successfully been influenced,
it tries to influence its own neighbors, and so on. We assume
that once a node has been influenced, this state persists until
the end. The process terminates when there are no remaining
uninfluenced nodes or when the given time T has elapsed.

Whether a node succeeds in influencing its neighbor is
modeled using propagation rates. Clearly, different edges
have different propagation rates (Kossinets, Kleinberg, and
Watts 2008), and these may also change over time. Follow-
ing previous work, we use the exponential distribution to
model the propagation rate. For an edge from node i to node
j associated with a propagation rate r, the influence diffu-
sion probability is 1 − e−rt, where t is the time span af-
ter node i is influenced. We can infer a diffusion network

with potential diffusion edges and edge-specific propagation
rates directly from diffusion cascade data using an optimiza-
tion algorithm. Then we can construct a Continuous Time
Markov Chain (CTMC) when given an initial set.

Definition 2. Continuous Time Markov Chain (CTMC):
A (labeled) CTMC is a tuple (S, s0, R, L), where S is a finite
set of states and s0 ∈ S is the initial state.R : S×S → R≥0
is a transition rate matrix assigning rates to pairs of states
with r ∈ R used as rate parameters of the exponential distri-
bution f(t) = re−rt,t > 0. We allow self-loops. Finally, for
a fixed finite set P of action labels, L : R→ 2P is a function
assigning such labels to every transition with r > 0.

We can create a CTMC (S, s0, R, L), denoted by M0,
to represent the behavior of an inferred diffusion network
G(V,E) as follows. Each state s ∈ S has |V | dimensions,
with values of 0 or 1 representing whether a node has been
influenced. We first create an initial state s0 for I , the initial
set. For example, in Figure 1a and b, s0 = (1, 0, 0) repre-
sents that for I = {A} only A is initially influenced. Next,
we iteratively create all other reachable states in S and their
corresponding transitions in R. Iterating over A’s outgoing
edges, we find that nodes B and C can be influenced, so
we need two new states in S, (1, 1, 0) for reaching B and
(1, 0, 1) for reaching C, along with two associated transi-
tions for them. If these states are already in S, we just need to
add transitions. We iterate this process until there is nothing
left to add. For a transition from state s1 to s2, the transition
rate is calculated as

∑
ei
ri, where ri is the propagation rate

of each edge that can influence the new node. For example,
A and B in state (1, 1, 0) can independently influence C, so
the transition rate is r2 + r3. Finally, we get four reachable
states in S plus associated transitions in R, and L = ∅.

Next, we consider dynamic properties of social networks
(Lang and Wu 2011, for example). It is impossible to model
all possible dynamics exhibited by different social networks.
However, having discovered salient dynamic characteris-
tics from real data, we can capture these using additional
CTMC models. We introduce local variables f1, . . . , fm,
which model dynamic factors for a dynamic characteristic.
These factors are used to model the degree of effects on the
diffusion network by a positive function Φ(f1, . . . , fm). In
the CTMCs for dynamic characteristics, transitions can be
divided into two types: Internal transitions define how these
dynamic factors evolve stochastically, while external tran-
sitions associated with action labels will be used for syn-
chronization with the main CTMC M0 defined earlier. M0’s
action labels will be updated to match these labels.

For example, Figure 1c presents a dynamic characteris-
tic called activeness (detailed in Section 4.3). There is only
one state and one local variable step. The internal transition,
[]dr : step++, represents that step increases with rate dr,
where dr is a constant. The external transition, [AL]ddstep,
is labeled with an action label AL indicating low activeness.
After defining dynamic characteristics, we update the corre-
sponding action labels for M0. If node C has low activeness
in Figure 1a, we add the action label AL for all transitions
that can influence C. The result is shown in Figure 1d. We
next explain how to connect these CTMCs to model the evo-
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[AL]r3. ddstep
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(e) Parallel Composition for (c) and (d) 

Figure 1: DYNADIFFUSE modeling example, where dd stands for decreaseDelta and dr for decreaseRate

lution of the inferred network.

Definition 3. CTMC Parallel Composition: For two la-
beled CTMCs M1 = (S1, s01, R1, L1) and M2 = (S2, s02,
R2, L2), the parallel composition, M1 ‖ M2, is a CTMC
(S1 × S2, (s01, s02), Rc, L1 ∪ L2), where Rc is defined as:

[ι]s1
α−→1 s

′
1

[ι]〈s1, s2〉
α−→ 〈s′1, s2〉 ι ∈ L1 \ L2, α ∈ R1

[ι]s2
α−→2 s

′
2

[ι]〈s1, s2〉
α−→ 〈s1, s′2〉 ι ∈ L2 \ L1, α ∈ R2

[ι]s1
α1−→1s

′
1 ∧ [ι]s2

α2−→2s
′
2

[ι]〈s1, s2〉
α1·α2−→ 〈s′1, s′2〉 ι ∈ L1 ∩ L2, α1 ∈ R1, α2 ∈ R2

Here, [ι]s
α−→ s′ means that the CTMC evolves from state

s to s′ when α ∈ R is performed with action label ι ∈ L.

We can see that transitions with different action labels
in different Mi may only occur independently. In contrast,
transitions with the same action labels in different Mi must
occur together with a combined transition rate

∏
i αi. The

combined CTMC with the activeness dynamic characteris-
tic is shown in Figure 1d. In this example, if step is changed
during the simulation, the transition rates of subsequent tran-
sitions will evolve as [AL]r3 · ddstep.

In this way, we can model most common dynamic char-
acteristics. If a new connection appears, we can introduce
an edge with a minimal positive value at the beginning that
increases later. An edge (re-)emerges when its rate increases
from the minimal value, and conversely an edge disappears
if its rate decreases to that value. Nodes can be regarded as
removed when all of their edges have disappeared.

With this modeling approach, we get a labeled CTMCM0

for an inferred diffusion network and a series of CTMCs
D = {d1...dn} for dynamic characteristics. Finally, we de-
fine the DYNADIFFUSE model as follows.

Definition 4. Continuous Time Dynamic diffusion Model
(DynaDiffuse): Given a CTMC M0 for a network G =
(V,E), a set A of propagation rates αu,v for each (u, v) ∈
E, an initial set of vertices I ⊆ V , and a set of dynamic
characteristics D = {d1, . . . , dn}, where each di ∈ D is
a CTMC model whose transition rate matrix represents a
given positive function Φ(f1, . . . , fm) (with dynamic factors
fj and Φ ≥ 0), DYNADIFFUSE M is a synchronous CTMC
model defined as M = M0 ‖ D = M0 ‖ d1 ‖ · · · ‖ dn.

4.2 Modeling Process
Algorithm 1 presents the complete modeling process for a
DYNADIFFUSE instantiation. First, we make use of a con-
vex optimization algorithm (Gomez-Rodriguez, Balduzzi,
and Schölkopf 2011) to infer the diffusion network topol-
ogy G = (V,E) with R̄ as a set of propagation rates for
every edge (Figure 1a). Given an initial set, we can con-
struct its corresponding CTMC M0 = (S, I,R, L) where
L is empty, i.e., L(r) = ∅ for all r ∈ R. Then, we model
each dynamic characteristic by a dynamic module di ∈ D
as a CTMC (Figure 1c). To establish their correlation, we
add action labels L of M0 for corresponding external tran-
sitions in di (Figure 1b). Finally we synchronize them by
following Definition 3 (Figure 1e). We can then use stochas-
tic model checking to predict the influence spread in a given
time (Section 5.1).

Algorithm 1 Complete Modeling Process
Input: C (Cascade Data), T (time constraint), I (initial set)

1: G(V,E, R̄)← gls(C, T ) # optimization algorithm
2: Create CTMC M0 = (S, I,R, L) from G, A
3: D ← dynamic modules mined from real data
4: modify L of M0 to capture the correlation with D
5: return M0 ‖ D as DynaDiffuse

4.3 Salient Dynamic Characteristics
While DYNADIFFUSE can flexibly capture various kinds of
network evolution, we focus on two important characteris-
tics of information spread in social networks.

Herd Behavior. It is a well-established phenomenon that
over time, with an increasing number of influenced people,
propagation rates increase. The strength of this effect, how-
ever, differs for different types of users. Several studies show
that information diffusion is affected by a person’s confor-
mity, i.e., inclination to be influenced (Li, Bhowmick, and
Sun 2011; Tang, Wu, and Sun 2013; Raafat, Chater, and
Frith 2009). For each user v, we compute a conformity score

|{(m, v, t) ∈ Pv | ∃(m, v′, t′) : pv,v′ ∧ ε ≥ t− t′ ≥ 0}|
|Pv|

where Pv is the set of user v’s posting history logs, pv,v′ ∈
P , representing the posting logs that user v posted to user
v′ and ε is a maximal time difference for v’s reposting of
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v′’s posting (one week in our dataset from Section 6). In-
dividual conformity represents how strongly v’s posting be-
havior conforms to that of her friends. In our dataset, we
discover that nearly 30% of users have a conformity > 0.6.
We divided the users into three groups according to their
conformity values and randomly selected 100 users from
each group to calculate the distribution of the times a post-
ing had been reposted before they forwarded it. Our analysis
revealed that users with high conformity either repost very
popular postings or brand new ones posted by their close
friends, often related to their personal offline life. Low con-
formity users, in contrast, do not seem to show any clear
pattern. Therefore, we model herd behavior at different in-
tensities for different conformity levels. Given a conformity
vector for all nodes, we define a CTMC as follows.
module “herd behavior”

n : [0..|V |] init by |I|;
/* conformity ≥ 60% */
[CH] n > 0→ 1 + ψ(n) ∗ conformityhigh : (n′ = n+ 1);
/* 60% > conformity ≥ 30% */
[CM ] n > 0→ 1+ψ(n)∗conformitymiddle : (n′ = n+1);
/* conformity < 30% */
[CL] n > 0→ 1 + ψ(n) ∗ conformitylow : (n′ = n+ 1);

end module

The module definition syntax used here is based on the
Reactive Modules formalism (Alur and Henzinger 1999),
with local variables and transition commands that reflect
the operational behavior of the module, i.e., state transi-
tions of the CTMC. Here, the local variable n (with range
from 0 to |V |) represents the current number of influenced
nodes, which is initialized as |I|. The form of each transi-
tion command is [action label] guard condition → rate :
updates. Updates can be performed if and only if the cur-
rent state of the CTMC meets the guard condition. We la-
bel each node’s incoming edge by its conformity level in
the CTMC for the inferred diffusion network, with [CH]
for high, [CM ] for medium, and [CL] for low conformity.
For each level i, conformityi is the average value for all
nodes at this level. The transition rate function Φ(n) =
1 + ψ(n) · conformityi models the changing trend of the
rate as the number of influenced users increases. We define
ψ(n) = γ

(
1 + e−δ(

n
|V |−b)

)−1
for γ > 0, as this mirrors

the spread process for popular events in a network, first in-
creasing gradually at an increasing rate and then stabilizing.
The range ofψ(n) is determined by γ, the curve’s slope by δ,
and b is the rate’s breakpoint. In our experiments, we study
how these variables affect the initial set selection for influ-
ence maximization.

Activeness of Actors. Studies (Lang and Wu 2011;
Viswanath et al. 2009) show that social actors exhibit dif-
ferent levels of activeness. In particular, highly active ones
contribute more towards the interaction, e.g. by reposting
messages and posting new stories. Although there are many
other factors, such as user interests, beliefs, and topics, much
of their effects can be attributed to a user’s activeness.

From our real diffusion dataset (cf. Section 6), we
first measure the activeness of every node v ∈ V as
activeness(v) = |vp|, i.e., the total number of messages
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Figure 2: Fraction of interactions over time for one year .

the user has posted or reposted (during a one week period
in our experiments). For analysis purposes, we divided the
users into groups according to their activeness values and
randomly selected 10% of users in each group to calculate
the average interaction levels based on one year of historic
data. Figure 2 illustrates that highly active users display a
relatively more even distribution of posting messages over
time, compared to other groups. On the contrary, less active
users post less and less over time. The trends are different
for different groups. To capture this, we thus divide the user
base into two parts using a threshold on their activeness. For
active nodes (whose activeness is larger than the threshold),
we assume stable transition rates for all of their incoming
edges during the diffusion process. On the contrary, the in-
coming edges’ transition rates for inactive nodes (low level
activeness) will stochastically decrease over time, following
an exponential distribution with expectation decreaseRate.
Given a classification threshold γ, the function Φ of this dy-
namic module can be expressed as

Φ =


decreaseDeltastep activeness < γ

1 otherwise

Then, given an activeness vector of all nodes, we define
the activeness module using a label AL for low activeness
and a parameter decreaseRate to control the evolution.
module “Activeness”

const float decreaseRate;
const float decreaseDelta;
step : [0..IntMax] init by 0;
[] step ≥ 0→ decreaseRate : (step′ = step + 1);
[AL] step > 0→ decreaseDeltastep : (step′ = step);

end module

5 Influence Analysis and Maximization
We now define the influence function for the DYNADIFFUSE
model and apply our novel stochastic model checking ap-
proach to predict the influence spread.

5.1 Spread Analysis
Definition 5. The influence spread σT (I) of an initial set I
until time T in a DYNADIFFUSE model MI is defined as the
expected number of nodes influenced until T :

σT (I) = ENT (I) =

|V |∑
i=1

P (ti ≤ T |MI),

where ti denotes the time when node i is influenced.
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To estimate the influence spread of a given initial set I , we
rely on stochastic model checking (Kwiatkowska, Norman,
and Parker 2007), a method for computing possible behav-
iors of a stochastic system. Given a model description and
a formula in temporal logic, stochastic model checking pro-
vides the likelihood of the model satisfying the formula as
well as a wider range of quantitative measures relating to
model behavior. For example, one can use stochastic model
checking to determine the expected running time or expected
number of lost messages of a system.

Transitions (except self-loops) of the DYNADIFFUSE
model correspond to non-influenced nodes becoming influ-
enced. To calculate ENT (I), we tie a reward to every such
transition, and accumulate all rewards in the diffusion pro-
cess to estimate the number of influenced nodes. Given a
DYNADIFFUSE model M , we denote the instantaneous re-
ward associated with the transition from state i to state j as
rewardij . The reward Markov process associated with M is
then (M,REM ), where the reward accumulated in the time
interval (0, t] is REM =

∫ t
0

rewardM(u−),M(u)dNM (t),
where NM (t) is the number of state transitions of M in the
time interval (0, t]. Assume rewardij = 1 for all transitions.
Then REM =

∫ t
0
dNM (t) =

∑|V |
i=1 P (ti ≤ T |MI). This

can be determined using a Uniformisation based Stochas-
tic Model Checking approach (Kwiatkowska, Norman, and
Parker 2007). It allows us to either get an exact result by
verification, or to estimate the result using a faster simu-
lation approach. In our study, we used the PRISM system
(Kwiatkowska, Norman, and Parker 2011) for this.

5.2 Scalable Influence Maximization
Complexity, Monotonicity, and Submodularity.
Theorem 1. Continuous time constrained influence maxi-
mization on a DYNADIFFUSE model is NP-hard.

Proof. With dynamic modules D = ∅ and T → ∞, our
DYNADIFFUSE model turns out to be an instance of the in-
dependent cascade model. Hence, the latter is a special case
of DYNADIFFUSE. As the traditional influence maximiza-
tion problem is known to be NP-hard (Kempe, Kleinberg,
and Tardos 2003), this new problem is also NP-hard.

Theorem 2. The influence function σT (I) for DYNA-
DIFFUSE is monotonous.

Proof. If initial nodes are influenced at t = 0, each tran-
sition (except self-loops) of a DYNADIFFUSE model means
there will be a new influenced node. The time delay is de-
termined by an exponential distribution with a step-varied
expectation value. Consider the possible distributions of all
possible time differences between each pair of states in the
model. There will be a series of different state graphs χ. For
a given ∆x ∈ χ, we define σT,∆x(I) as equal to the number
of nodes reachable from I by at least one path with length no
larger than T . It is very natural to discover that σT,∆x(S) ≤
σT,∆x(S ∪ v) (for S ⊂ V ). Therefore, σT,∆x(I) is
monotonous. As σT (I) = (

∑
x∈χ σT,∆x(I))/|χ|, we obtain

that σT (I) is monotonous as well.

Theorem 3. The influence function σT (I) for DYNA-
DIFFUSE is submodular.

Proof. Consider any set of nodes V1 ⊆ V2 ⊆ V , and a node
v0 ∈ V \ V2 (if V2 = V , then trivially V01,T = V02,T be-
low). We again use ∆x ∈ χ, as in the proof of Theorem 2.
We assume ∆V0i,T is the set of nodes that can be reached
from v0, but cannot be reached by Vi (i = 1, 2) within the T
bound in the∆x graph. Since V1 ⊆ V2, we obtain∆V01,T ≥
∆V02,T . We see that σT,∆x(V1 ∪ {v0}) − σT,∆x(V1) =
∆V01,T ≥ ∆V02,T = σT,∆x(V2 ∪ {v0}) − σT,∆x(V2) and
thus σT,∆x(I) is submodular. From this it follows that σT (I)
is submodular, concluding the proof.

FASTMARGIN Greedy Algorithm. The standard greedy
algorithm for maximizing monotonic and submodular func-
tions has a provable lower bound ratio of 1 − 1/e. How-
ever, for genuine scalability, we propose a faster marginal
influence spread estimation algorithm for the continuous
time diffusion model. Our algorithm (Algorithm 2) first pre-
dicts a relatively precise influence spread using stochas-
tic model checking on the CTMC Parallel Composition.
Then, we predict the increased marginal influence spread
(σT (I∪{v})−σT (I)) of adding each v ∈ V \I when select-
ing an additional node to be added to the current initial set.
To improve the efficiency, we estimate this marginal influ-
ence spread using a faster discounted formula for σT ({v}) in
Line 12, instead of determining a precise value with stochas-
tic model checking.

Algorithm 2 FASTMARGIN Greedy algorithm
Require: a DYNADIFFUSE for a graph G = (V,E), the size k of

the desired initial set, a time constraint T
1: I ← ∅;
2: for each v ∈ V do
3: predict accurate σT ({v}) using stochastic model checking
4: u← argmaxv(σT ({v}))
5: I ← {u}
6: for i← 2 to k do
7: for each v ∈ V \ I do
8: if (v, u) ∈ E and u ∈ N(I) then
9: PI,u ← 1−Π(w,u)∈E,w∈I(1− e−ru,w(T ))

10: else
11: PI,u ← 0
12: ∆σT ({v})← σT (I ∪ {v})− σT (I)

≈ σT ({v})Σ(v,u)∈E(1−e−rv,u(T ))(1−PI,u)σT ({u})

Σ(v,u)∈E(1−e−rv,u(T ))σT ({u})

13: u← argmaxv(∆σT ({v})) # using CELF
14: I ← I ∪ {u}
15: return I # best set I

Here,N(I) is the set of directed successors of I , and PI,u
is the probability that u is influenced immediately by current
initial nodes. We estimate the probability with an exponen-
tial distribution for the whole diffusion period. The discount
is to subtract the influence spread that may be obtained by
I from σT ({v}). The higher the probability that v’s neigh-
bors are already influenced by I , the larger the discount that
should be applied to σT ({v}). For scalability to large net-
works, we also adopt the CELF lazy evaluation approach
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(Leskovec et al. 2007), which dramatically reduces the num-
ber of evaluations of argmaxv(σT (I ∪ {v}) − σT (I)). We
call this algorithm FASTMARGIN. This algorithm can flex-
ibly be used in any continuous-time constrained diffusion
model that assumes that the diffusion rate follows the expo-
nential distribution.

Time and space complexities. Let dmax be the maxi-
mum degree of all nodes, and S and R be the states and
transition matrix of a DYNADIFFUSE instance, respectively.
In Algorithm 2, the first for loop requires O(|V ||S|2) time
for uniformisation. The second for loop will cost O((k −
1)|V |dmax). So the total runtime complexity isO(|V ||S|2 +
(k− 1)|V |dmax). However, the standard greedy algorithm’s
time complexity is O(k|V ||S|2). Thus, they have the same
running time when k = 1, and Algorithm 2 is faster for
k > 1. The space complexity is O(|V |(|S| + |R|)), domi-
nated by stochastic model checking in line 3.

6 Experimental Evaluation
Dataset. We evaluate our model and algorithm on a mi-
croblog diffusion dataset from Sina Weibo, a major Chinese
microblogging platform. The data covers 96, 700 users and
373, 412 microblog postings (211, 052 original and 162, 360
reposted) from the time period of November 2–8, 2013. For
each of these postings, it contains a set of time-stamped
reposting logs with user ID, reposting time, and reposting
contents, in total nearly 4, 000, 000 entries. From this data,
we inferred an underlying diffusion network with 6, 000
top nodes and the 30, 000 fastest edges using the algorithm
from Gomez-Rodriguez, Balduzzi, and Schölkopf (2011),
and calculated the conformity and activeness vectors.
Comparing Models. Figure 3a shows that the seeds’ influ-
ence spread obtained by DYNADIFFUSE (i.e., FastMargin-
Dynamic, CELF-Dynamic) is consistently superior to that
of the static continuous time diffusion model (Gomez-
Rodriguez and Schölkopf 2012) (i.e., FastMargin–Static,
CELF–Static), as well as the IC model (Kempe, Kleinberg,
and Tardos 2003) (i.e., CELF-IC). The FASTMARGIN algo-
rithm is slightly less precise than the pure CELF algorithm
because of its heuristics, but the gap is not large. We ad-
ditionally compare the DYNADIFFUSE-estimated influence
spread with the real influence spread in the social network.
To assess the real diffusion, we first crawled all original mi-
croblogs published on November 9, 2013 for every user in
the obtained initial set and then calculated the average to-
tal number of repostings in the following week (T = 1 to
7). We regard the average total number of repostings as the
influence spread for each user. We only calculate the repost-
ing numbers within our data set (96,700 users) and minus the
overlap. Figure 3b illustrates that the estimated results of our
dynamic model, i.e., FastMargin–Dynamic (Slow, Quick),
are closer to the real situation than those of the static dif-
fusion model, FastMargin–Static. Moreover, the evolution
speed parameters in our model influence the precision of
the estimated results. To get even more precise results, we
could easily tune them with collected historic data. Note
that DYNADIFFUSE consistently outperforms existing mod-
els across different values of these parameters.
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Figure 3: (a) Diffusion models comparison by DYNADIFFUSE
with T = 3 days. Herd behavior module: δ = 30, b = 0.05, ac-
tiveness module: decreaseDelta = 0.9, decreaseRate = 0.2. (b)
Comparison by the real influence spread with K = 6. Slow evolu-
tion: δ = 30, b = 0.05, decreaseDelta = 0.9, decreaseRate =
0.2. Quick evolution: δ = 100, b = 0.01, decreaseDelta = 0.9,
decreaseRate = 0.4. Legend: greedy algorithm–diffusion model
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Figure 4: Running time of algorithms (T = 6 days)

Comparing Algorithms. We then evaluated the efficiency
and scalability of DYNADIFFUSE and the FASTMARGIN
algorithm. Figure 4 shows running time on a worksta-
tion (2.5GHz Dual core, 4GB RAM). FastMargin–Dynamic
and FastMargin–Static are significantly faster than CELF
(CELF–Dynamic and CELF–Static) and are more scalable
as K grows. Interestingly, the time gap between DYNA-
DIFFUSE (i.e., CELF–Dynamic, FastMargin–Dynamic) and
the static model (i.e., CELF–Static, FastMargin–Static) is
very small. The analysis for DYNADIFFUSE with FAST-
MARGIN is thus just slightly more costly than for the IC
model, yet produces an initial set of significantly higher
quality. Note that FASTMARGIN’s running time remains al-
most constant as k increases. CELF-IC has similar behavior,
but with worse output quality, as we have seen earlier.

7 Conclusion and Future Work
We have presented the novel continuous constrained influ-
ence maximization problem for dynamic networks, and in-
troduced a novel diffusion model called DYNADIFFUSE for
it. Under DYNADIFFUSE, we employ an innovative stochas-
tic model checking approach to considering dynamic effects
and estimating the influence spread of a set of nodes within
a given time frame. Our experiments show that network dy-
namics indeed have strong effects on the solution’s quality.
In the future, we will investigate how to learn dynamic be-
havior from data. Additionally, we believe that our novel ap-
proach of relying on stochastic model checking can serve as
an important new framework for many new forms of social
network analysis.
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