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ABSTRACT
In recent years, a number of projects have turned to Wikipedia to
establish large-scale taxonomies that describe orders of magnitude
more entities than traditional manually built knowledge bases. So
far, however, the multilingual nature of Wikipedia has largely been
neglected. This paper investigates how entities from all editions of
Wikipedia as well as WordNet can be integrated into a single co-
herent taxonomic class hierarchy. We rely on linking heuristics
to discover potential taxonomic relationships, graph partitioning
to form consistent equivalence classes of entities, and a Markov
chain-based ranking approach to construct the final taxonomy. This
results in MENTA (Multilingual Entity Taxonomy), a resource that
describes 5.4 million entities and is presumably the largest multi-
lingual lexical knowledge base currently available.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Form-
alisms and Methods; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
Motivation. Capturing knowledge in the form of machine-read-
able semantic knowledge bases has been a long-standing goal in
computer science, information science, and knowledge manage-
ment. Such resources have facilitated tasks like query expansion
[20], semantic search [27], faceted search [4], question answering
[35], and many more. In the past few years, the open, community-
developed encyclopedia Wikipedia has been recognized as a valu-
able source of such knowledge. Projects like DBpedia [3], YAGO
[39], Intelligence-in-Wikipedia [44], and Freebase (freebase.com)
have exploited the semi-structured nature of Wikipedia to produce
valuable repositories of formal knowledge that are orders of magni-
tude larger than hand-crafted resources like SUMO [29], OpenCyc
(opencyc.org), or WordNet [17].
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To date, however, these extraction efforts have largely neglected
the significant potential of Wikipedia’s multilingual nature. While
DBpedia and some other knowledge bases do extract abstracts and
other information also from non-English versions, the coverage is
still restricted to those entities that have a corresponding article in
the English Wikipedia. Certainly, the English Wikipedia is by far
the most comprehensive version. Yet, its articles make up only 24%
among those of the 50 largest Wikipedias. By aggregating from
multiple editions of Wikipedia, we are able to construct MENTA
– Multilingual Entity Taxonomy – a large-scale taxonomic knowl-
edge base that covers a significantly greater range of entities than
existing knowledge bases. Additionally, MENTA enables tasks like
semantic search also in languages other than English, for which ex-
isting taxonomies are often very limited or entirely non-existent.
Finally, we also hope that MENTA will facilitate decidedly multi-
lingual applications like cross-lingual information retrieval [16, 5],
machine translation [24], or learning transliterations [32].

Contribution. The main challenge we tackle is aggregating unre-
liable taxonomic links between entities from different Wikipedias
into a single more reliable and coherent taxonomy. At the heart of
our approach lies an algorithm that considers sets of weighted state-
ments linking entities to equivalent entities or parent entities. The
input to this algorithm is supplied by a set of heuristic linking func-
tions that connect Wikipedia articles, categories, infoboxes, and
WordNet synsets from multiple languages. The algorithm produces
aggregated rankings of parents that take into account the dependen-
cies between the linked entities. The output for a specific entity is
given by the stationary distribution of a Markov chain, in the spirit
of PageRank, but adapted to our specific setting. Overall, this leads
to MENTA having three major distinguishing properties.

1. Extended Coverage of Entities: The taxonomy draws on all
existing editions of Wikipedia and hence includes large numbers
of local places, people, products, etc. that are not covered by the
English Wikipedia. For example, the Quechua Wikipedia has an ar-
ticle about the Bolivian salt lake Salar de Coipasa, and the Japanese
Wikipedia has an article about Italian Parma ham.

2. Ranked Class Information: Individual entities are linked via
instance statements to classes (e.g. City, Airline compa-

ny, etc.) based on information provided by multiple Wikipedia
editions, thus exploiting complementary clues from different lan-
guages. Even when an English article provides ample information,
it is useful to capture that the Colorado River being a river is more
salient than it being a border of Arizona.

3. Coherent Taxonomy: While Wikipedia is an excellent source
of semi-structured knowledge about entities, it lacks an ontologi-
cally organized taxonomy. The category systems of Wikipedia i)
fail to distinguish classes from topic labels (Yellowstone National
Park is a natural park but not a ‘History of Wyoming’, Ulm is a city



but not a ‘Swabian League’), ii) tend to lack a clear organization
especially at the most abstract level, and iii) differ substantially be-
tween different languages. A single, more complete yet coherent
ontological class hierarchy is obtained by aggregating information
from multiple editions of Wikipedia and WordNet.

The resulting taxonomy in MENTA goes beyond what is cur-
rently offered by repositories of semantic knowledge. For instance,
DBpedia and YAGO do not have a multilingual upper-level ontol-
ogy. None of the existing taxonomies have managed to accommo-
date culture-specific entities from non-English Wikipedia editions.
Even for those entities that are covered, the DBpedia Ontology pro-
vides class information only for around a third. Likewise, in the
field of multilingual taxonomies or hierarchically-organized multi-
lingual lexical knowledge bases, our knowledge base surpasses all
existing resources in the number of entities described. MENTA is
freely available under an open-source license1.

Overview. Section 2 lays out how information is extracted from
Wikipedia and represented in a form amenable to further process-
ing. Section 3 then introduces the heuristics that are used to inter-
link entities and provide the input for the taxonomy induction step.
Section 4 describes the actual algorithm for producing the unified
knowledge base with a single taxonomic class hierarchy. Section
5 evaluates this algorithm and the resulting knowledge base. Sec-
tion 6 describes related knowledge bases and approaches. Finally,
Section 7 provides concluding remarks.

2. KNOWLEDGE EXTRACTION

2.1 Representation Model
As entities, we consider both individual entities as well classes.

We regard taxonomies as knowledge bases that describe relation-
ships between entities, including but not limited to ontological rela-
tionships that yield a hierarchy of entities. A taxonomy of this form
could describe the Mayflower as an instance of a Ship, Ship as a
subclass of Watercraft, Watercraft as a subclass of Vehicle,
and so on, up to the taxonomy’s universal root node, often called
Entity. More formally, we rely on the following definitions.

Definition 1. A statement is an item from U × R × U × R+
0 ,

where U is a universal set of entity identifiers and R is a set of
relations. A statement (x, r, y, w) expresses that two entities x, y
stand in relation r to each other with weight w, where a weight of
0 means there is no evidence, and strictly positive values quantify
the degree of confidence in the statement being true.

Definition 2. A knowledge base K is a tuple (U ,R,S), where
U is a set of (arbitrary) entity identifiers,R is a set of relations, and
S is a set of statements that describe relationships between entities.

In our case, U will contain entity identifiers for Wikipedia pages
(including categories and infobox templates), word senses (“synsets“)
taken from the WordNet database [17], as well as string literals with
language designators. The setR includes:

• equals: identity of entities (i.e. two entity identifiers refer
to the same entity)
• subclass: the relation between a class and a subsuming

parent class
• instance: the relation between an individual entity and a

class it is a member of (its type)
• means: the meaning relationship between a language-specific

string entity (a word or a name) and another entity
1http://www.mpii.de/yago-naga/menta/

A statement might express that the Mayflower stands in an inst-

ance relation to the class Ship with confidence 1, or that the Czech
name ‘Curych’ stands in a means relation to the city of Zürich.
Such statements can easily be cast into an RDF [21] form, if reifi-
cation is used to capture the confidence values.

2.2 Extraction from Wikipedia
Entities. Before aggregating information, we parse the raw XML
and wiki-markup-based Wikipedia dumps, extract relevant infor-
mation, and cast it into our representation model to facilitate fur-
ther processing. In particular, each article page (including redirect
pages), category page, or template page in an edition of Wikipedia
is given a preliminary entity identifier. Unfortunately, not all in-
formation necessary for parsing the Wikipedia dumps is available
from within the dumps alone. We additionally query the web ser-
vices provided by each server to find out for instance that on the
Tagalog Wikipedia, titles starting with “Kategorya:” refer to cate-
gories (in addition to the default “Kaurian:” and the English “Cat-
egory:”, which are also accepted). In order to have canonical entity
identifiers, such information is normalized.

Statements. Additional information about entities and meta-data
about articles that may be of use later on is extracted and stored
with appropriate relations, e.g. template invocations, cross-lingual
“interwiki” links, and category links. Among other things, we cre-
ate short descriptions glosses for each article by processing wiki-
text and HTML mark-up and attempting to identify and possibly
truncate the first proper paragraph in an article’s wikitext mark-up
(ignoring infoboxes, links to disambiguation pages, etc.).

Meanings. Article titles allow us to create means statements con-
necting entities with language-specific strings (labels or names)
that refer to them. Some articles use special markup to provide
the true capitalization of a title, e.g. ‘iPod’ instead of ‘IPod’. If no
markup is provided, we check for the most frequent capitalization
variant within the article text.

3. LINKING FUNCTIONS
The first step towards producing a more coherent knowledge

base involves exposing connections between different entities. We
rely on linking functions to produce statements connecting different
entities based on various inputs and heuristics. In particular, Sec-
tion 3.1 introduces equals linking functions that identify identical
entities, and Sections 3.2 and 3.3 present linking functions for the
subclass and instance relations. The output of these functions
will later serve as input in the actual taxonomy induction step.

Definition 3. Given a relation r ∈ R, a linking function lr :
U × U → R+

0 is a function that yields confidence weight scores
lr(x, y) ∈ R+

0 and is used to produce statements (x, r, y, lr(x, y))
for pairs of entities x, y.

Later on,we will explain how information from rather simple, noisy
linking functions can be aggregated to provide meaningful results.
Hence, the linking functions can make use of heuristics and need
not provide perfect results.

3.1 Equality Link Heuristics
We used the following linking functions for evaluating whether

equals should hold for two entity identifiers x, y.

3.1.1 Cross-Lingual Linking
If x, y are Wikipedia entities connected via cross-lingual inter-

wiki links, e.g. Zürich from the English Wikipedia and Curych

from the Czech one, it returns 1, otherwise 0.



Figure 1: Simplified sample of noisy input from link heuristics Figure 2: Relevant sample of the desired output

3.1.2 Category-Article Linking
This function returns 1 when x, y are a category and an article,

respectively, known to be about the same concept, e.g. the cate-
gory Abugida writing systems and the article Abugida. This
is detected by checking for specific templates on the category page.

3.1.3 Supervised WordNet Disambiguation
To see if a Wikipedia article, category, or infobox matches a

WordNet synset, we use a linker that assesses their similarity and
is trained on a small set of manually labelled training examples to
disambiguate possible meanings (see Section 5.2). The linker re-
lies on Ridge Regression [6] to obtain a statistical model from the
training examples. As input, it uses three major signals as features.

Term Overlap. The term overlap quantifies the degree of overlap
between the respective natural language labels. The set of labels
for a Wikipedia entity is given by its title (after capitalization de-
tection) and titles of its redirection articles. A set of labels for a
WordNet entity is retrieved from the English, Arabic, Catalan, Es-
tonian, Hebrew, and Spanish wordnets (see globalwordnet.org), as
well as from MLSN [10]. For a Wikipedia entity x and a WordNet
entity y, the term overlap feature is then computed as:∑

lx∈labels(x)

max
ly∈labels(y)

wx(lx, x)wy(ly, y)sim(lx, ly) (1)

Here, sim(lx, ly) is a a simple similarity measure between labels
that returns 1 if the languages match and the strings match after
lemmatizing and removing additional qualifications in parentheses,
and 0 otherwise. For Wikipedia, the additional label weighting wx

generally yields 1, while for WordNet 1/n is returned by wy when
n different meanings of ly are listed. It turns out that determin-
ing the right capitalization of terms aids in filtering out incorrect
links. WordNet synsets for ‘house’ will then only match articles
about houses but not articles about movies or music singles called
‘House’.

Cosine Similarity. The cosine vT
x vy(||vx|| ||vy||)−1 between

vectors vx, vy derived for the short description gloss extracted
from the English Wikipedia and the gloss/labels provided by Word-
Net, respectively. The vectors are created using TF-IDF scores after
stemming using Porter’s method.

Primary Sense Heuristic. The number of unqualified English
Wikipedia labels where the WordNet synset is listed as the first
(most frequent) noun sense in WordNet. A Wikipedia title like
‘House’ is considered unqualified if it does not include an addi-
tional qualification in parentheses, unlike ‘House (novel)’. The

most frequent sense of ‘house’ listed in WordNet is much more
likely to correspond to Wikipedia’s ‘House’ article than to pages
with additional qualifications like ‘House (1977 film)’ or ‘House
(novel)’. The former reflects the most important meaning of a word
as chosen by Wikipedia editors, and thus is more likely to corre-
spond to the first sense listed in WordNet.

Together, these three signals allow us to learn whether a Wiki-
pedia article and a WordNet synset describe the same thing.

3.1.4 Redirect Matching
Many projects treat redirects in Wikipedia as simple aliases for

an entity. However, many redirects do not share the same referent
with the page they redirect to. For instance, there are redirects from
Physisist (i.e. human beings) to Physics (a branch of science)
and from God does not play dice to Albert Einstein. There
are large numbers of redirects from song names to album names or
artist names, and so on. We decided to conservatively equate redi-
rects with their targets only in the following two cases.

• the titles of redirect and redirect target match after parenthe-
sized substring removal, Unicode NFKD normalization, dia-
critics and punctuation removal, and lower-case conversion
• the redirect uses certain templates or categories that explic-

itly indicate co-reference with the target (alternative names,
abbreviations, etc.)

3.1.5 Infobox Matching
This function returns a constant w > 0 when an infobox tem-

plate like Infobox actor is matched with an article or category
having a corresponding title, in this case Actor, and 0.0 otherwise.
We chose w = 0.5 because these links are not as reliable as inter-
wiki links or redirect links. The function does not consider article
titles with additional qualifications as matching, so Actor (UML)

would not be considered.

3.2 Subclass Link Heuristics
Subclass linking functions use simple heuristics to link a class x

to its potential parent classes y.

3.2.1 Parent Categories
This linker checks if categories are subclasses of their own par-

ent categories as listed in Wikipedia. It first ensures that both x
and y are likely to be categories denoting genuine classes. A gen-
uine class like Biologists can have instances as its class mem-
bers (individual biologists, ontologically speaking, are regarded
as instances of Biologists). In contrast, other categories like



Biology or Molecular biology merely denote topic labels. It
would be wrong to say that Charles Darwin “is a” Biology. For
distinguishing the two cases automatically, we found that the fol-
lowing heuristic generalizes the singular/plural heuristic proposed
for YAGO [39] to the multilingual case:

• headword nouns that are countable (can have a plural form)
tend to indicate genuine classes
• headword nouns that are uncountable (exist only in singular

form) tend to be topic tags

Hence, we take the titles of a category as well as its cross-lingual
counterparts, remove parentheses, and rely on a dependency parser
(if available) to keep only the headword. We then check that the
headword is given in plural (for English), or is countable (in the
general case). Countability information is extracted from WordNet
and Wiktionary, the latter using regular expressions. We also added
a small list of Wikipedia-specific exceptions (words like ‘articles’,
‘stubs’) that are excluded from consideration as classes.

3.2.2 Category-WordNet Subclass Relationships
If x is a category, then the headword of its title also provides a

clue as to what parent classes are likely in WordNet. For instance,
a category like University book publishers has ‘publishers’
as a headword. As earlier for the equality linker, we again relied on
supervised learning to obtain a model that helps us disambiguate
possible meanings of a word. This linker, too, relies on Ridge Re-
gression [6] to learn likely meanings based on a labelled training
set (see Section 5.3). As one of the main features, it uses∑

lx∈sim(x)

max
ly∈labels(y)

wx(lx, x)wy(ly, y)sim(lx, ly) (2)

This is similar to Equation 1, however sim(lx) is used to obtain
headwords of titles (with a dependency parser if possible). Addi-
tionally, wx(lx, x) will be 1 if lx is in plural or countable and 0 oth-
erwise, allowing us to distinguish topic labels from genuine classes.
A few exceptions are specified manually, e.g. ‘physics’, ‘arts’, and
Wikipedia-specific ones like ‘articles’, ‘templates’. wy(ly, b) uses
the number of alternative meanings as earlier. Apart from this, the
linker also relies on the other features mentioned above for equals,
e.g. cosine similarity.

3.2.3 WordNet Hypernymy
WordNet’s notion of hypernymy between synsets is closely re-

lated to the subclass relation. This linking function hence returns
1 if y is a hypernym of x in WordNet, and 0 otherwise.

3.3 Instance Link Heuristics
Instance linking functions link individual entities to their classes.

3.3.1 Infoboxes
An ”Actor“ infobox in an article is a very strong indicator of

the article being about an actor. The instance linker returns a con-
stant winfobox > 0 if y is recognized as an infobox template that
occurred on the page of the article associated with x, and 0 other-
wise. Since infoboxes are just template invocations, heuristics need
to be used to identify them. For this, we rely on a list of suffixes
and prefixes (like “_Infobox”) for different languages.

3.3.2 Categories
If y is a Wikipedia category for the article associated with x,

this linking function assesses whether a headword of y (or of its
interwiki translations) is in plural or countable, and returns 1 if this
is the case, and 0 otherwise.

4. TAXONOMY INDUCTION
As shown in Figure 1, what we obtain using the linking func-

tions is a large collection of statements connecting articles, cate-
gories, and infoboxes to each other and to WordNet by means of
the equals relation (solid lines), statements connecting categories
and WordNet entities to parent classes by means of subclass, and
statements connecting articles to categories and infoboxes as in-
stance links (both using dotted lines). However, due to the noisy
heuristic nature of the connections and the fact that these entities
come from different language editions of Wikipedia, it is not trivial
to recognize that ‘Fersental’ is a valley rather than a language. In
fact, in reality, we may have more than 100 languages and many
more potential classes. What is needed is a procedure to aggregate
information and produce the final, much more coherent knowledge
base, which would ideally include the parts depicted in Figure 2.
We proceed in two steps. The first step aggregates entity identifiers
referring to the same entity by producing consistent equivalence
classes. In the second step, taxonomical information from different
linkers is aggregated to produce one single output taxonomy.

4.1 Consistency of Equality
In general, there will often be multiple entity identifiers that refer

to the same entity and that are connected by equals statements.
For instance, the German Fersental is equivalent to the corre-
sponding Italian, Norwegian, and other articles about the valley. It
will sometimes be convenient to jointly refer to the set of all of
these equivalents. The symmetry and transitivity of equality leads
us to the following definition to capture the connected components
of the transitive closure of equals.

Definition 4. In a knowledge base K = (U ,R,S), an e-com-
ponent E ⊆ U for some entity x ∈ U is a minimal set of en-
tities containing x such that for all x ∈ E, y ∈ U : statements
(x, r, y, w) ∈ S or (y, r, x, w) ∈ S with r = equals, w > 0 im-
ply y ∈ E. We use the notation E(x) to denote the e-component
containing a node x.

Due to the heuristic nature of the equality linking functions, it often
occurs that two entities x, y are transitively identified within an
e-component, although it is known a priori that they should not
be. For instance, we may have two different articles linked to the
same WordNet synset. In some cases, the input from Wikipedia is
imprecise, e.g. the English articles Differential calculus and
Derivative are both linked to the same German-language article,
despite being ontologically different.

Definition 5. The function δ(x, y) determines whether two enti-
ties x,y ∈ U should be separated. δ(x, y) = 1 if and only if one of
the following conditions hold (0 in all other cases).

a) x and y are two different WordNet entity identifiers
b) x and y are two different Wikipedia articles from the same

edition of Wikipedia, and are not redirects of each other
c) x and y are two different Wikipedia categories from the same

edition of Wikipedia, and are not redirects of each other
d) x has an interwiki link to a specific subsection within y, or

vice versa
e) x is a Wikipedia disambiguation page and y is not recognized

as one, or vice versa

Separating two such entities while removing a minimal (weighted)
number of edges corresponds to computing minimal graph cuts.
Unfortunately, we often have multiple pairs that simultaneously
need to be separated. Computing a globally minimal cut corre-
sponds to solving the Minimum Multicut problem, which is APX-
hard and likely to be outside of APX [9]. To cope with this, we



first apply generic graph partitioning heuristics [13] to break up
very large sparsely connected components into individual, much
more densely connected clusters. On each of these densely con-
nected clusters, we then apply a more accurate algorithm [12] with
a logarithmic approximation guarantee. The implementation re-
lies on CPLEX to obtain the fractional linear program solutions
required by this algorithm (see our prior work [12] for details). In
a few cases, the LP solver may time out, in which case we resort
to computing minimal s-t cuts [15] between individual pairs of en-
tities that should be separated. Minimal s-t cuts can be computed
efficiently in O(V E2) or O(V 2E) time. The statements corre-
sponding to the cut edges are removed, and hence we obtain small
e-components that should no longer conflate different concepts.

4.2 Aggregated Ranking
Having made the equals links consistent, we then proceed to

build the class hierarchy. The algorithm generating the final output
taxonomy should have the following three properties.

Property 1. The input links often link individual articles to their
categories, but these categories might be language-specific local
ones that are not part of a shared multilingual class hierarchy. The
algorithm should hence consider not only immediate parents but
also higher-order parents as candidate parents for the final output.

Property 2. Information derived from multiple sources should
be given a higher weight than comparable information obtained
only from a single source, as it is likely to be more reliable and
more salient. For example, many Wikipedia editions describe the
Colorado River as a river, but only few declare it to be a border of
Arizona. The output should be a ranked list of parents with corre-
sponding scores rather than a simple set.

Property 3. The output ranking needs to take into account that
classes are not independent, but themselves can stand in a relation-
ship, e.g. two different versions of Wikipedia may have what is
essentially the same class (equals links) or classes that stand in a
subclass relationship to each other (subclass links). For instance,
information about a Malay article entity may benefit from infor-
mation available about a corresponding English article entity, and
vice versa. Also, if an article is found to be in the class State

capitals in Malaysia in the English Wikipedia, then the pos-
sible parent class State capital from WordNet should also gain
further credibility.

Taking these considerations into account requires going beyond
conventional rank aggregation algorithms. We use a Markov chain
approach that captures dependencies between parents.

Definition 6. Given a set of entities X and a target relation r
(subclass or instance), the set of parents P (X, r) is the set of
all nodes xm that are reachable from x0 ∈ X following paths of
the form (x0, x1, . . . , xm) with (xi, ri, xi+1, wi) ∈ S, wi > 0
for all 0 ≤ i < m, and specific ri. The path length m may be
0 (i.e. the initial entity x0 is considered part of the parent entity
set), and may be limited for practical purposes. When producing
subclass links as output (r =subclass), all ri must be subclass
or equals. When producing instance links as output (r =inst-

ance), the first ri that is not equalsmust be an instance relation,
and any subsequent ri must be either equals or subclass.

Instead of operating on original sets of parent entities P (X, r),
we consider the corresponding set of parent e-components {E(x)
| x ∈ P (X, r)} (see Definition 4), which consists of the e-compo-
nents for all x ∈ P (X, r).

Definition 7. Given a root node x0, a target relation r, and a
corresponding set of parent e-components {E0, . . . , En} (such that
x0 ∈ E0), we define wi,j =

∑
x∈Ei

∑
y∈Ej

∑
(x,r′,y,w)∈S

w for all i,j

from 0 to n, where r′ is instance if i = 0 and r=instance, and
r′ is subclass in all other cases (i.e. if i > 0 or r =subclass).
We further define out(i) as {j | wi,j > 0}.

Definition 8. Given an entity x0, a target relation r, a corre-
sponding set of parent e-components {E0, . . . , En} (x0 ∈ E0),
and a weight matrix wi,j characterizing the links between Ei, we
define a Markov chain (Ei0 , Ei1 , . . . ) as follows. The set {E0,
. . . , En} serves as a finite state space S, an initial state Ei0 ∈ S is
chosen arbitrarily, and the transition matrix Q is defined as:

Qi,j =


wi,j

c+
∑

k∈out(i)
wi,k

j 6= 0

c+wi,j

c+
∑

k∈out(i)
wi,k

j = 0
. (3)

Note that root node’s component E0 is included as part of the
chain. The probability mass received by E0 rather than by genuine
parents Ei (i > 0) reflects the extent of our uncertainty about the
parents: For instance, if all immediate parents of the root node are
linked with very low weights, thenE0 will attract a high probability
mass. In the definition, c is the weight endowed to random restarts,
i.e. transitions from arbitrary states back to E0. Higher values of
c lead to a bias towards more immediate parents of the E0, while
lower values work in favour of more general (and presumably more
reliable) parents at a higher level. It is easy to see that the Markov
chain is irreducible and aperiodic if c > 0, so a unique stationary
distribution must exist in those cases.

THEOREM 1. If c > 0, then the Markov chain possesses a
unique stationary probability distribution π (π = πQ). A unique
stationary probability does not necessarily exist if c = 0.

PROOF. Since S contains only E0 and the parents, S is finite
and every state is reachable from E0. Since c > 0, we obtain
a non-zero random restart probability Qi,0 > 0 for every i, so
from every state one can transition back E0, and thus the chain is
irreducible. Additionally, if c > 0, then the state E0 is aperiodic
(one can remain in E0 for any amount of steps), and hence the
entire chain is aperiodic. By the Fundamental Theorem of Markov
chains, a unique stationary distribution exists. In contrast, if c = 0,
then E0 is likely to be a transient state, in which case a unique
stationary distribution cannot exist.

Therefore, we can use the stationary distribution of the Markov
chain to rank parents of a root node with respect to their connect-
edness to the root node. Algorithm 4.1 captures the steps taken
to induce the taxonomy. It begins by forming e-components, which
become the entities of the output knowledge base. Entity identifiers
can be chosen arbitrarily from within each component, or, more
likely, one would prefer article titles in a specific language. Non-
taxonomic statements like means statements that provide human-
readable labels or statements capturing factual knowledge like birth
dates of people are directly mapped to the e-components.

Then, for each e-component E, the heuristics described in Sec-
tion 3.2 are used to assess whether E is likely to be a class. In
accordance with the outcome of this assessment, the parents are
retrieved and a Markov chain is constructed. The fixpoint of π
is computed using the well-known power iteration method. Af-
ter ranking, a pre-defined selection function σ(π, r, E0, . . . , En)
produces output statements of the form (E0, r, Ei, w) for parent e-
components Ei (i > 0) with r as either instance or subclass



Algorithm 4.1 Taxonomy induction
1: procedure TAXONOMY(U0,R0,S0, c, σ)
2: U ← consistent e-components formed from U0 and S0 . as explained in Section 4.1
3: R← R0 . complete set of relations
4: RT ← {equals,instance,subclass} . set of taxonomic relations
5: S ← {(E, r,E′, w) | (x, r, y, w) ∈ S0, x ∈ E, y ∈ E′, r 6∈ RT} . map all non-taxonomic statements
6: for all E in U do . for all e-components

7: r ←
{
subclass if E likely to be a class
instance otherwise

. Heuristic from Section 3.2

8: determine parent entities P (E, r) of E . as per Definition 6
9: enumerate {E(x) | x ∈ P (E, r)} as E0, . . . , En (E0 = E, other Ei arbitrary) . the corresponding parent e-components

10: construct Markov chain for E using E0, . . . , En and c, r . as per Definition 8
11: choose arbitrary π such that ||π||1 = 1, πj ≥ 0 . initial distribution
12: repeat π0 ← π, π ← Qπ until ||π − π0||2 < ε . Power iteration method (for some very small ε)
13: S ← S ∪ σ(π, r, E0, . . . , En) . choose suitable parents fulfilling some selection criterion
14: return K = (U ,R,S) . taxonomic knowledge base as output

and w derived from π. Usually, the top-ranked k e-components
will be chosen, where k = 1 leads to a more traditional hierarchy,
while higher k lead to more comprehensive knowledge bases. Fil-
tering with respect to specific criteria can be performed, e.g. only
classes with Chinese labels, or only WordNet synsets as classes,
and of course filtering with respect to some minimal probability
threshold. Although this process needs to be repeated for all e-
components, this step is nevertheless not a bottleneck (see Section
5).

Properties of the Algorithm. The state space S includes not only
immediate parents, but also e-components of superordinate parents
(Definitions 6 and 8). For each suitable path from the root node x0
to some superordinate parent xm, all statement weights along the
path are non-zero, so corresponding weights wi,j and state transi-
tion probabilities Qi,j must be non-zero. Hence the parent’s state
is reachable from the root node’s state with non-zero probability,
so Property 1 is fulfilled. Definition 7 implies that an e-component
with similar input links from multiple children will have a higher
wi,j than a comparable e-component with only one such incoming
link, so Property 2 is satisfied. Finally, the aggregation into e-com-
ponents accounts for equals dependencies between nodes, and the
stationary distribution π of a Markov chain accounts for subclass
dependencies (π = πQ), so Property 3 holds as well.

With these properties, the algorithm allows us to aggregate link
information from heterogeneous sources, e.g. information from
multiple editions of Wikipedia, including category and infobox in-
formation, and from WordNet. The output is a much more coherent
taxonomic knowledge base.

5. EVALUATION

5.1 Dataset
We wrote a custom web crawler that downloads the latest Wiki-

pedia XML dumps from Wikimedia’s download site, retrieving 271
different editions of Wikipedia as of April 2010. The size of the un-
compressed XML dumps amounts to around 89.55GB in total, out
of which 25.4GB stem from the English edition.

5.2 Entity Equality
The linking functions provided 184.3 million directed interwiki

links and 7.1 million other directed equals links. The WordNet
disambiguation model was obtained by training on 200 manually
labelled training examples, selected randomly among all Wikipedia
articles and WordNet synsets sharing a label. The precision-recall
curve on 207 random test examples (Fig. 3) shows the remark-

Figure 3: Precision-Recall curve for Wikipedia-WordNet links

ably reliable results of the model, e.g. with a threshold of 0.5 we
obtain 94.3% precision at 80.7% recall (F1: 87.0%). The precision
only drops sharply once we move towards recall levels significantly
above 80%. The overall ROC AUC is 93.06%.

The equality links led to 19.5 million initial e-components, in-
cluding templates, categories, and redirects. It turns out that roughly
150,000 of these e-components contained nodes to be separated,
among them a single large e-component consisting of nearly 1.9
million nodes. Overall, more than 5.0 million node pairs needed to
be separated according to the criterion from Definition 5.

We applied the approach from Section 4.1 to separate the en-
tities and obtain more consistent links. The process took several
days to complete, with the expensive linear program solving with
CPLEX (for the approximation algorithm) as the major bottleneck.
We experimented with agglomerative clustering as an alternative,
but found the solutions to be orders of magnitude worse in the num-
ber of edges to be cut. Using the approximation algorithm, a total
of 2.3 million equals connections (4.6 million directed) were re-
moved, resulting in 19.9 million e-components after separation.

5.3 Taxonomy
Linking Functions. As additional input to our ranking algorithm,
the linking functions produced what correspond to 1.2 million sub-
class links and 20.1 million instance links between e-compo-
nents. For the instance links, we chose winfobox = 2 because
classes derived from infoboxes are more reliable than categories.
The WordNet disambiguation for subclass was trained on 1,539
random mappings, the majority of these (1,353) being negative ex-



amples. On a test set of 234 random mappings, we obtain a pre-
cision of 81.3% at 40.0% recall, however going above 40% recall,
the precision drops sharply, e.g. 60.8% precision at 47.7% recall.
This task is apparently more difficult than the equals disambigua-
tion, because less contextual information is directly available and
because our heuristics for detecting classes may fail. Overall, there
would be 6.1 million subclass links, but we applied a minimal
threshold weight of 0.4 to filter out the very unreliable ones. The
ROC AUC is only 65.8%. This shows that using these linking func-
tions alone can lead to a taxonomy with many incorrect links.

Table 1: Ranked subclass examples
Class WordNet parent Wikipedia parent

Hamsters 1. rodent Rodents
2. hamster Pets
3. mammal Domesticated animals

Science museums 1. museum Museums
in New Mexico 2. science museum Science museum

3. depository Museums in
New Mexico

Table 2: Ranked instance examples
Entity WordNet parent Wikipedia parent

Fersental 1. valley Valleys
2. natural depression Valleys of Italy
3. geological formation Valleys of Trentino/

Alto Adige

The Spanish 1. book Book
Tragedy 2. publication British plays

3. piece of work Plays

Table 3: Coverage of individual entities by source Wikipedia
instances WN

instances
non-Engl.

WN
instances

English 3,109,029 3,004,137 N/A
German 911,287 882,425 361,717
French 868,864 833,626 268,693
Polish 626,798 579,702 159,505
Italian 614,524 594,403 161,922
Spanish 568,373 551,741 162,154
Japanese 544,084 519,153 241,534
Dutch 533,582 508,004 128,764
. . . . . . . . . . . .

Total 13,982,432 13,405,345 2,917,999
E-components 5,790,490 5,379,832 2,375,695

Algorithm. We thus relied on our algorithm to choose reliable par-
ents. In our experiments, the algorithm’s c parameter was fixed at
c = 1

2
, based on the intuition that if there is only one parent with

weight 0.5, then that parent should be reached with probability 1
2

from the current state. In order to increase the speed, we limited
the maximal parent path length in Definition 6 to m = 4. This
means that thousands of states that would obtain near-zero prob-
abilities are pruned in advance. A second key to making it fast

is relying on the fact that many entities share common parents, so
the expensive parent lookups should be cached. This allowed us
to process all 19.9 million e-components in less than 3 hours on a
single 3GHz CPU. Examples of subclass and instance rankings are
given in Tables 1 and 2, respectively, showing the highest-ranked
WordNet and Wikipedia parents.

Coherence. Out of the 19.9 million e-components, a large major-
ity consist of singleton redirects that were not connected to their
redirect targets, due to our careful treatment of redirects in Section
3.1. For roughly 5.8 million e-components, we actually had in-

stance links as input. To quantify the coherence, we determine
what fraction of these e-components can be connected to e-com-
ponents involving WordNet synsets, as WordNet can be consid-
ered a shared upper-level core. Table 3 shows that nearly all of
these e-components are successfully attached to the shared upper
ontology. The first column shows the number of entities for which
we have instance links, while the second column is restricted to
those for which we could establish instance links to WordNet (at
a reachability probability threshold of 0.01). The small differences
in counts between these two columns indicate that most entities for
which there is any class information at all can be integrated into
the upper-level backbone provided by WordNet. The third column
lists the number of e-components that are independent of the En-
glish Wikipedia but nevertheless have successfully been integrated
by our algorithm. While some fraction of those may correspond
to entities for which cross-lingual interwiki links need to be added,
large numbers are entities of local interest without any matching
English Wikipedia article. Additionally, we found that 338,387 e-
components were connected as subclasses of WordNet synsets, out
of a total of 360,476 e-components with outgoing subclass links.

Table 4: Accuracy of Subclass Links To WordNet
top-k Sample

Size
Initial Links Ranked Links

1 104 82.46%± 7.08% 83.38%± 6.92%

2 196 57.51%± 6.85% 83.03%± 5.17%

3 264 45.89%± 5.97% 79.87%± 4.78%

Accuracy. Table 4 shows a manual assessment of highest-ranked
WordNet-based parent classes for over 100 random entities. We
rely on Wilson score intervals to generalize our findings to the en-
tire data set. For k = 2, 3, the ranked output is significantly more
reliable than the wi,j between e-components resulting from the ini-
tial subclass links. The aggregation effect is even more notice-
able for the instance links to WordNet in Table 5. To connect
instances to WordNet, the algorithm needs to combine instance

links with unreliable subclass links. Yet, the output is signifi-
cantly more accurate than the input subclass links, for k = 1, 2,
and 3. This means that the Markov chain succeeds at aggregating
evidence across different potential parents to select the most reli-
able ones. We additionally asked speakers of 3 other languages to
evaluate the top-ranked WordNet synset for at least 100 randomly
selected entities covered in the respective language, but without
corresponding English articles. We see that non-English entities
are also connected to the shared upper-level ontology fairly reliably.
The main sources for errors seem to be topic categories that are in-
terpreted as classes and word sense disambiguation errors from the
subclass linking function. Fortunately, we observed that additional
manually specified exceptions as in YAGO [39] would lead to sig-
nificant accuracy improvements with very little effort, as certain
categories are very frequent.



Table 5: Accuracy of Instance Links To WordNet
Language top-k Sample

Size
Wilson score interval

English 1 116 90.05%± 5.20%

English 2 229 86.72%± 4.31%

English 3 322 85.91%± 3.75%

Chinese 1 176 90.59%± 4.18%

German 1 168 90.15%± 4.36%

French 1 151 92.30%± 4.06%

Coverage. The total number of output e-components in MENTA
is roughly 5.4 million excluding redirects (Table 3), so in terms of
the number of entities and entity labels, this means that MENTA is
significantly larger than existing multilingual and monolingual tax-
onomies relying only on the English Wikipedia, which as of June
2010 has around 3.3 million articles.

5.4 Upper-Level Ontology
Wikipedia as Upper Level. We can choose to retain WordNet
as an integral core of MENTA, or alternatively, we may also cre-
ate a more Wikipedia-centric version where WordNet only serves
as background knowledge to help us connect different articles and
categories and obtain a more coherent taxonomy. To achieve this, it
suffices to have the selection function σ choose only e-components
including Wikipedia articles or categories. This amounts to prun-
ing all e-components that consist only of WordNet synsets with-
out corresponding Wikipedia articles or categories. What we ob-
tain is a taxonomy where the root node is based on the English
article Entity and its equivalents in other languages. The upper
level is shallower than with WordNet, as many different classes like
Organisms, Unit, Necessity, are directly linked to Entity.

Lexical Knowledge. If we instead maintain all of WordNet at the
top level, then after forming e-components, that part of our knowl-
edge base can be considered a multilingual version of WordNet.
A total of 42,041 WordNet synsets have been merged with corre-
sponding Wikipedia articles or categories. We found that WordNet
is extended with words and description glosses in 254 languages,
although the coverage varies significantly between languages. The
average number of Wikipedia-derived labels for these synsets is 20.
In Table 6, the results are compared with UWN [11], a multilin-
gual wordnet derived mainly from translation dictionaries. While
MENTA’s coverage is limited to nouns, we see that MENTA cov-
ers comparable numbers of distinct terms. The number of means
statements is lower than for UWN, because each Wikipedia article
is only merged with a single synset. The precision of MENTA’s
disambiguation is 94.3%, which is significantly higher than the 85-
90% of UWN. This is not surprising, because an approach based on
translation dictionaries has much less context information available
for disambiguation, while MENTA can make use of Wikipedia’s
rich content and link structure. Additionally, MENTA’s output is
richer, because we add not only words but also have over 650,000
short description glosses in many different languages as well as
hundreds of thousands of links to media files and Web sites as addi-
tional information for specific WordNet synsets. Gloss descriptions
are not only useful for users but are also important for word sense
disambiguation [25]. Finally, of course, our resource adds millions
of additional instances in multiple languages, as explained earlier.

Alternative Upper-Level Ontologies. In an additional experiment,
we studied replacing WordNet’s lexically oriented upper-level on-

Table 6: Multlingual WordNet (upper-level part of MENTA)
Language means

Statements in
MENTA

Distinct Terms
in MENTA

Distinct Terms
in UWN

Overall 845,210 837,627 822,212

French 036,093 035,699 033,423
Spanish 031,225 030,848 032,143
Portuguese 026,672 026,465 023,499
German 025,340 025,072 067,087
Russian 023,058 022,781 026,293
Dutch 022,921 022,687 030,154

tology with the more axiomatic one provided by SUMO [29]. We
added SUMO’s class hierarchy as well as the publically available
SUMO-WordNet mappings as inputs to the instance ranking, and
found that SUMO can be extended with 3,036,146 instances if we
accept those linked to a SUMO class with a Markov chain station-
ary probability of at least 0.01. The sampled accuracy of 177 top-1
links was 87.9% ± 4.7%. Problems often resulted from SUMO-
WordNet mappings that did not reflect the meaning of a WordNet
sense appropriately.

5.5 Large-Scale Domain-Specific Extensions
A salient property of our approach is that we can easily tap on

additional large-scale knowledge sources in order to obtain even
larger knowledge bases. Of course, infobox attributes and other in-
formation as provided by DBpedia can easily be integrated. Addi-
tionally, we can rely on the many domain-specific knowledge bases
in the Linked Data Web [7], which describe biomedical entities, ge-
ographical objects, books and publications, music releases, etc. In
order to integrate them we merely need an equals linking function
for all entities and equals or subclass links for a typically very
small number of classes. Our entity aggregation from Section 4.1
will then ensure that the links are consistent, and our ranking al-
gorithm from Section 4.2 will choose the most appropriate classes,
taking into account the weights of the subclass links.

As a case study, we investigated a very simple integration of the
LinkedMDB dataset, which describes movie-related entities. The
equals links for instances were derived from the existing DBpe-
dia links provided with the dataset, which are available for films
and actors. Hence we only needed to specify two manual equals
links for these two classes to allow all corresponding entities to be
integrated. We obtain additional information on 18,531 films and
11,774 actors already in our knowledge base. Additionally, up to
78,636 new films and 48,383 new actors are added. Similar exten-
sions of MENTA are possible for many other domains.

5.6 Entity Search
Knowledge bases like MENTA are useful for semantic search

applications. For instance, the Bing web search engine integrates
results from Freebase for queries like ‘pablo picasso artwork’. In
Table 7, we compare the numbers of instances obtained as results
from the English Wikipedia with the numbers of instances in MENTA.
The Wikipedia column lists the number of articles belonging to a
given category in the English Wikipedia, while the MENTA columns
list the number of instances in MENTA’s aggregated ranking (with
a minimum stationary probability of 0.01). Even if we consider
only MENTA instances present in the English Wikipedia, we often
find more instances than directly given there, because our approach
is able to infer new parents for instances.



Table 7: Entity Search Query Examples
Query Wikipedia MENTA

(English
Wikipedia)

MENTA
(All)

cities and towns in Italy 8,156 8,509 12,992
european newspapers 13 389 1,963
people 441,710 882,456 1,778,078
video games developed in Japan 832 775 1,706

6. RELATED WORK
A number of projects have imported basic information from Wiki-

pedia, e.g. translations and categories [22, 36], or facts like birth
dates in Freebase (freebase.com). Such resources lack the semantic
integration of conflicting information as well as the taxonomical
backbone that is the focus of our work. Apart from such facts,
DBpedia [3] also provides an ontology, based on a set of man-
ually specified mappings from infoboxes to a coarse-grained set
of 260 classes. However, the majority of English articles do not
have any such infobox information, and entirely non-English arti-
cles are simply ignored. DBpedia additionally includes class in-
formation from YAGO [39], a knowledge base that links entities
from Wikipedia to an upper-level ontology provided by WordNet.
We adopted this idea of using WordNet as background knowledge
as well as some of the heuristics for creating instance and subclass
links. YAGO’s upper ontology is entirely monolingual, while in
MENTA the class hierarchy itself is also multilingual and addition-
ally accommodates entities that are found in non-English Wikiped-
ias. Furthermore, the class information is simultaneously computed
from multiple editions of Wikipedia. Nastase et al. [28] exploit
categories not only to derive isA relationships, but also to uncover
other types of relations, e.g. a category like ‘Villages in Branden-
burg’ also reveals where a village is located.

There are other projects that have proposed heuristics for in-
terlinking Wikipedia editions or linking Wikipedia to WordNet.
Ponzetto et al. [34, 33] investigated heuristics and strategies to link
Wikipedia categories to parent categories and to WordNet. Their
results are very interesting, as they lead to a taxonomy of classes
based on the English Wikipedia’s category system, however they
did not study how to integrate individual entities (articles) into this
taxonomy. Wu and Weld [44] use parsing and machine learning to
link infobox templates to WordNet. The Named Entity WordNet
project [42] attempts to link entities from Wikipedia as instances
of roughly 900 WordNet synsets. Others investigated heuristics
to generate new cross-lingual links between different editions of
Wikipedia [30, 38]. The focus in our paper is on a suitable tech-
nique to aggregate and rank information delivered by such heuris-
tics, and many of these heuristics could in fact be used as addi-
tional inputs to our algorithm. The same holds for the large body
of work on information extraction to find isA relationships in text
[19]. Adar et al. [1] and Bouma et al. [8] studied how information
from one Wikipedia’s infoboxes can be propagated to another edi-
tion’s articles, which is distinct from the problem we are tackling.

Concerning multilingual knowledge bases in general, previous
results have been many orders of magnitude smaller in terms of the
number of entities covered [24, 18], or lack an ontological class
hierarchy [26]. EuroWordNet [43] and UWN [11] provide multi-
lingual labels for many general words like ‘university’, but lack the
millions of individual named entities (e.g. ‘Napa Valley’ or ‘San
Diego Zoo’) that Wikipedia provides.

There are numerous studies on supervised learning of hierarchi-
cal classifications [14], but such approaches would require reliable

training data for each of the several hundred thousand classes that
we need to consider. Hierarchical agglomerative clustering has
been used to derive monolingual taxonomies [23], however cluster-
ing techniques will often merge concepts based on semantic relat-
edness rather than specific ontological relationships. Our work in-
stead capitalizes on the fact that reasonably clean upper ontologies
already exist, so the main challenge is integrating the information
into a coherent whole. Snow et al. [37] proposed a monolingual
taxonomy induction approach that also considers the evidence of
coordinate terms when disambiguating. Their approach assumes
that evidence for any superordinate candidates is directly given as
input, while our approach addresses the question of how to produce
evidence for superordinate candidates based on evidence for subor-
dinate candidates. For instance, very weak evidence that Stratford-
upon-Avon is either a village or perhaps a city may suffice to infer
that it is a populated place. Talukdar et al. [40] studied a ran-
dom walk technique to propagate class labels from seed instances to
other coordinate instances, but did not consider hierarchical depen-
dencies between classes. Another interesting alternative approach,
proposed by Wu and Weld [44], relies on Markov Logic Networks
to jointly perform mappings between entities and derive a taxon-
omy. Unfortunately, such techniques do not scale to the millions of
entities we deal with in our setting.

Our Markov chain algorithm is most similar to PageRank with
personalized random jump vectors [31], however our transition ma-
trix is based on statement weights, and the probability for returning
to the root node depends on the weights of the alternative state-
ments rather than being uniform for all nodes. Uniform weights
mean that single parents are visited with very high probability even
if they are only very weakly connected, while in our approach such
irrelevant parents will not obtain a high transition probability. Other
studies have relied on PageRank to find important vocabulary in an
ontology [45] and to perform word sense disambiguation [2]. Our
Markov chain model differs from these in that we look for salient
parents for a specific node rather than generic random walk reach-
ability probabilities. We are not aware of any Markov chain-based
approaches for constructing class hierarchies.

7. CONCLUSIONS AND FUTURE WORK
We have presented techniques to integrate multilingual informa-

tion into a single taxonomy. We succeeded in integrating 13.4
million out of 14.0 million possible articles from different Wiki-
pedia editions into a single taxonomy. The result of this work is
MENTA, presumably the largest multilingual lexical knowledge
base, which is freely available for download at http://www.
mpii.de/yago-naga/menta/.

In future work, we would like to investigate algorithms for an
extended scenario where we assume that we are additionally given
a set of class disjointness constraints (for example a human be-
ing cannot simultaneously be a geographical location) and need
to post-process the rankings accordingly. Such extra information
would allow us to improve the quality even further. We would also
like to apply our approach to other types of input data, e.g. using
large-scale information extraction techniques [41] to collect named
entities and clues about their classes from text. Overall, we see our
research as an important step towards new knowledge bases that in-
tegrate many existing large-scale data sources and offer more than
the sum of the inputs.
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